Design of short membrane selective antimicrobial pept arginine residues for improved activity, saltâ€resistanc

Biotechnology and Bioengineering 111, 37-49 DOI: 10.1002/bit.25003

Citation Report

#	Article	IF	CITATIONS
1	Modified Cysteine-Deleted Tachyplesin (CDT) Analogs as Linear Antimicrobial Peptides: Influence of Chain Length, Positive Charge, and Hydrophobicity on Antimicrobial and Hemolytic Activity. International Journal of Peptide Research and Therapeutics, 2014, 20, 519-530.	0.9	18
2	The in vitro effects of new D186 dendrimer on virulence factors of Candida albicans. Journal of Antibiotics, 2014, 67, 425-432.	1.0	16
3	Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomaterialia, 2014, 10, 258-266.	4.1	134
4	High specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Scientific Reports, 2015, 5, 15963.	1.6	74
5	Antimicrobial benzodiazepine-based short cationic peptidomimetics. Journal of Peptide Science, 2015, 21, 512-519.	0.8	4
6	Anti-Mycobacterial Peptides: From Human to Phage. Cellular Physiology and Biochemistry, 2015, 35, 452-466.	1.1	24
7	N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity. RSC Advances, 2015, 5, 68610-68620.	1.7	19
8	Defense peptides: recent developments. Biomolecular Concepts, 2015, 6, 237-251.	1.0	18
9	Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. European Journal of Medicinal Chemistry, 2015, 105, 106-119.	2.6	34
10	Interaction of blood components with cathelicidins and their modified versions. Biomaterials, 2015, 69, 201-211.	5.7	20
11	Saltâ€resistant short antimicrobial peptides. Biopolymers, 2016, 106, 345-356.	1.2	33
12	Modification and characterization of a new recombinant marine antimicrobial peptide N2. Process Biochemistry, 2016, 51, 734-739.	1.8	5
13	Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. Journal of Peptide Science, 2016, 22, 438-451.	0.8	64
14	Improving short antimicrobial peptides despite elusive rules for activity. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1024-1033.	1.4	57
15	Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomaterialia, 2016, 30, 78-93.	4.1	92
16	Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World Journal of Microbiology and Biotechnology, 2016, 32, 31.	1.7	67
17	Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1012-1023.	1.4	15
18	Antifungal peptides: a potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazoleâ€resistant <scp><i>Candida albicans</i></scp> . Journal of Peptide Science, 2017, 23, 215-221	0.8	19

#	Article	IF	CITATIONS
19	Peptoids successfully inhibit the growth of gram negative E. coli causing substantial membrane damage. Scientific Reports, 2017, 7, 42332.	1.6	70
20	Screening for a Potent Antibacterial Peptide to Treat Mupirocin-Resistant MRSA Skin Infections. International Journal of Peptide Research and Therapeutics, 2017, 23, 481-491.	0.9	2
21	Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm. ACS Nano, 2017, 11, 9330-9339.	7.3	462
22	The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discovery Today, 2017, 22, 234-248.	3.2	143
23	Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria. Molecules, 2017, 22, 1817.	1.7	7
24	Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Frontiers in Neuroscience, 2017, 11, 73.	1.4	388
25	Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides. Acta Biomaterialia, 2018, 69, 243-255.	4.1	65
26	Effects of Hydrophobic Amino Acid Substitutions on Antimicrobial Peptide Behavior. Probiotics and Antimicrobial Proteins, 2018, 10, 408-419.	1.9	73
27	Peptidoglycan potentiates the membrane disrupting effect of the carboxyamidated form of DMS-DA6, a Gram-positive selective antimicrobial peptide isolated from Pachymedusa dacnicolor skin. PLoS ONE, 2018, 13, e0205727.	1.1	6
28	Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. BMC Microbiology, 2018, 18, 54.	1.3	34
29	Arginine/Tryptophanâ€Rich Cyclic α/βâ€Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solventâ€Accessible Surface Areas upon Activity and Membrane Selectivity. Chemistry - A European Journal, 2018, 24, 14242-14253.	1.7	18
30	Imidazole-molecule-capped chitosan–gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. Journal of Colloid and Interface Science, 2018, 531, 269-281.	5.0	41
31	Membrane Active Peptides and Their Biophysical Characterization. Biomolecules, 2018, 8, 77.	1.8	126
32	Antibacterial activity of Staphylococcus aureus biofilm under combined exposure of glutaraldehyde, near-infrared light, and 405-nm laser. PLoS ONE, 2018, 13, e0202821.	1.1	13
33	Influence of pH on the activity of thrombin-derived antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2374-2384.	1.4	25
34	Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opinion on Drug Discovery, 2019, 14, 1053-1063.	2.5	23
35	Design of Trp-Rich Dodecapeptides with Broad-Spectrum Antimicrobial Potency and Membrane-Disruptive Mechanism. Journal of Medicinal Chemistry, 2019, 62, 6941-6957.	2.9	63
36	A short peptide with selective anti-biofilm activity against Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemase-producing bacteria. Microbial Pathogenesis, 2019, 135, 103605.	1.3	7

CITATION REPORT

#	Article	IF	CITATIONS
37	De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. Pharmaceuticals, 2019, 12, 82.	1.7	42
38	Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization. Journal of the American Chemical Society, 2019, 141, 9837-9853.	6.6	60
39	Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomaterials Science, 2019, 7, 2394-2409.	2.6	65
40	Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Biomaterials Science, 2019, 7, 2440-2451.	2.6	39
41	Antibacterial mechanisms of GNâ€2 derived peptides and peptoids against <i>Escherichia coli</i> . Biopolymers, 2019, 110, e23275.	1.2	15
42	Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Medicinal Research Reviews, 2019, 39, 831-859.	5.0	309
43	Harnessing snake venom phospholipases A ₂ to novel approaches for overcoming antibiotic resistance. Drug Development Research, 2019, 80, 68-85.	1.4	30
44	Study on the effects of different dimerization positions on biological activity of partial d-Amino acid substitution analogues of Anoplin. Microbial Pathogenesis, 2020, 139, 103871.	1.3	19
45	Characterization of the structure–function relationship of a novel salt-resistant antimicrobial peptide, RR12. RSC Advances, 2020, 10, 23624-23631.	1.7	8
46	Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. International Journal of Molecular Sciences, 2020, 21, 5773.	1.8	47
47	Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics. International Journal of Molecular Sciences, 2020, 21, 9692.	1.8	36
48	Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater. Chemical Engineering Journal, 2020, 390, 124648.	6.6	54
49	Hybridization with Insect Cecropin A (1–8) Improve the Stability and Selectivity of Naturally Occurring Peptides. International Journal of Molecular Sciences, 2020, 21, 1470.	1.8	21
50	In Vitro and Ex Vivo Efficacy of Novel Trp-Arg Rich Analogue of α-MSH against <i>Staphylococcus aureus</i> . ACS Omega, 2020, 5, 3258-3270.	1.6	11
51	Peptides With Triplet-Tryptophan-Pivot Promoted Pathogenic Bacteria Membrane Defects. Frontiers in Microbiology, 2020, 11, 537.	1.5	10
52	Design and characterization of new antimicrobial peptides derived from aurein 1.2 with enhanced antibacterial activity. Biochimie, 2021, 181, 42-51.	1.3	19
53	An acid-triggered porphyrin-based block copolymer for enhanced photodynamic antibacterial efficacy. Science China Chemistry, 2021, 64, 459-466.	4.2	25
54	Design of improved synthetic antifungal peptides with targeted variations in charge, hydrophobicity and chirality based on a correlation study between biological activity and primary structure of plant defensin Î ³ -cores. Amino Acids, 2021, 53, 219-237.	1.2	6

CITATION REPORT

#	Article	IF	CITATIONS
55	New Antimicrobial Peptides with Repeating Unit against Multidrug-Resistant Bacteria. ACS Infectious Diseases, 2021, 7, 1619-1637.	1.8	22
56	Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochemical Pharmacology, 2021, 186, 114470.	2.0	22
57	The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences. Communications Biology, 2021, 4, 605.	2.0	45
58	Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends in Food Science and Technology, 2021, 112, 312-324.	7.8	36
59	Differential interactions of the antimicrobial peptide, RQ18, with phospholipids and cholesterol modulate its selectivity for microorganism membranes. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129937.	1.1	10
60	Key Physicochemical Determinants in the Antimicrobial Peptide RiLK1 Promote Amphipathic Structures. International Journal of Molecular Sciences, 2021, 22, 10011.	1.8	4
61	Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129989.	1.1	6
62	A Thermostable, Modified Cathelicidin-Derived Peptide With Enhanced Membrane-Active Activity Against Salmonella enterica serovar Typhimurium. Frontiers in Microbiology, 2020, 11, 592220.	1.5	7
63	The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. Research, 2020, 2016201.	2.8	14
64	The Trp-rich Antimicrobial Amphiphiles With Intramolecular Aromatic Interactions for the Treatment of Bacterial Infection. Frontiers in Microbiology, 2021, 12, 733441.	1.5	4
65	Antimicrobial Activity of Snake \hat{I}^2 -Defensins and Derived Peptides. Toxins, 2022, 14, 1.	1.5	7
66	A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities. Scientific Reports, 2022, 12, 4365.	1.6	16
67	Amphiphilic cyclic peptide [W4KR5]-Antibiotics combinations as broad-spectrum antimicrobial agents. European Journal of Medicinal Chemistry, 2022, 235, 114278.	2.6	7
69	A new bioinspired peptide on defensin from C. annuum fruits: Antimicrobial activity, mechanisms of action and therapeutical potential. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130218.	1.1	4
70	Design and Evaluation of Short Bovine Lactoferrin-Derived Antimicrobial Peptides against Multidrug-Resistant Enterococcus faecium. Antibiotics, 2022, 11, 1085.	1.5	4
71	The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomaterialia, 2022, 153, 557-572.	4.1	13
72	<scp>PLâ€101â€WK</scp> , a novel tryptophan―and lysine―ich peptide with antimicrobial activity against <i>Staphylococcus aureus</i> . Peptide Science, 0, , .	1.0	0
73	Short, mirror-symmetric antimicrobial peptides centered on "RRR―have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomaterialia, 2022, 154, 145-167.	4.1	5

CITATION REPORT

#	Article	IF	CITATIONS
74	Electrospinning membranes with Au@carbon dots: Low toxicity and efficient antibacterial photothermal therapy. , 2022, 142, 213155.		8
75	Deciphering Structure-Function Relationship Unveils Salt-Resistant Mode of Action of a Potent MRSA-Inhibiting Antimicrobial Peptide, RR14. Journal of Bacteriology, 0, , .	1.0	О
76	Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. Journal of Medicinal Chemistry, 2022, 65, 15819-15839.	2.9	7
77	Rational design of potent ultrashort antimicrobial peptides with programmable assembly into nanostructured hydrogels. Frontiers in Chemistry, 0, 10, .	1.8	3
78	Thinking on the Construction of Antimicrobial Peptide Databases: Powerful Tools for the Molecular Design and Screening. International Journal of Molecular Sciences, 2023, 24, 3134.	1.8	6
79	Actinomycin-X2-Immobilized Silk Fibroin Film with Enhanced Antimicrobial and Wound Healing Activities. International Journal of Molecular Sciences, 2023, 24, 6269.	1.8	3