Spiropyran-based dynamic materials

Chemical Society Reviews 43, 148-184 DOI: 10.1039/c3cs60181a

Citation Report

#	Article	IF	CITATIONS
5	Comparison of Intraocular Straylight in Patients with Clear and Photochromic Intraocular Lenses. Journal of Korean Ophthalmological Society, 2014, 55, 190.	0.0	1
6	Selective and rapid cell injection of fluorescence sensor encapsulated in liposome using optical control of zeta potential and local mechanical stimulus by optical tweezers. , 2014, , .		2
7	Multi-Responsive Photo- and Chemo-Electrical Single-Molecule Switches. Nano Letters, 2014, 14, 7064-7070.	4.5	134
8	Light-Responsive Polymer Surfaces via Postpolymerization Modification of Grafted Polymer-Brush Structures. Langmuir, 2014, 30, 14971-14981.	1.6	33
9	Waste Management of Chemically Activated Switches: Using a Photoacid To Eliminate Accumulation of Side Products. Journal of the American Chemical Society, 2014, 136, 17438-17441.	6.6	113
10	Watching Single Molecules Move in Response to Light. ACS Nano, 2014, 8, 11913-11916.	7.3	24
11	Electrochemical Characterization of Spiropyran Structures. Procedia Chemistry, 2014, 12, 41-46.	0.7	7
12	25th Anniversary Article: Organic Electronics Marries Photochromism: Generation of Multifunctional Interfaces, Materials, and Devices. Advanced Materials, 2014, 26, 1827-1845.	11.1	259
13	Nanoporous frameworks exhibiting multiple stimuli responsiveness. Nature Communications, 2014, 5, 3588.	5.8	146
14	Reversible Photochemical Tuning of Net Charge Separation from Contact Electrification. ACS Applied Materials & Interfaces, 2014, 6, 8754-8761.	4.0	11
15	Quantitative investigations of thermal and photoinduced J- and H-aggregation of hydrophobic spirooxazines in binary solvent through UV/vis spectroscopy. RSC Advances, 2014, 4, 20974-20983.	1.7	11
16	Photoswitching Using Visible Light: A New Class of Organic Photochromic Molecules. Journal of the American Chemical Society, 2014, 136, 8169-8172.	6.6	401
17	A Light-Responsive Release Platform by Controlling the Wetting Behavior of Hydrophobic Surface. ACS Nano, 2014, 8, 744-751.	7.3	102
18	An Upconversion Nanoparticle with Orthogonal Emissions Using Dual NIR Excitations for Controlled Twoâ€Way Photoswitching. Angewandte Chemie - International Edition, 2014, 53, 14419-14423.	7.2	137
19	Stimuli-responsive photonic polymer coatings. Chemical Communications, 2014, 50, 15839-15848.	2.2	119
20	Light-Driven Directed Proton Transport across the Liposomal Membrane. Langmuir, 2014, 30, 13667-13672.	1.6	6
21	Layerâ€byâ€Layer Assembly of Lightâ€Responsive Polymeric Multilayer Systems. Advanced Functional Materials, 2014, 24, 5624-5648.	7.8	106
22	"On–off–on―Switchable Sensor: A Fluorescent Spiropyran Responds to Extreme pH Conditions and Its Bioimaging Applications. ACS Applied Materials & Interfaces, 2014, 6, 19515-19519.	4.0	94

#	Article	IF	CITATIONS
23	<i>ortho</i> â€Fluoroazobenzenes: Visible Light Switches with Very Long‣ived <i>Z</i> Isomers. Chemistry - A European Journal, 2014, 20, 16492-16501.	1.7	311
24	A Lewis acid-mediated conformational switch. Organic and Biomolecular Chemistry, 2014, 12, 7937-7941.	1.5	10
25	Cyclic Kinetics during Thermal Equilibration of an Axially Chiral Bis-Spiropyran. Journal of the American Chemical Society, 2014, 136, 11276-11279.	6.6	28
26	Photo―and pHâ€Tunable Multicolor Fluorescent Nanoparticleâ€Based Spiropyran―and BODIPYâ€Conjugated Polymer with Graphene Oxide. Chemistry - an Asian Journal, 2014, 9, 2921-2927.	1.7	49
27	Light-Responsive Smart Surface with Controllable Wettability and Excellent Stability. Langmuir, 2014, 30, 12236-12242.	1.6	51
28	Photochromism of a Spiropyran and a Diarylethene in Bile Salt Aggregates in Aqueous Solution. Langmuir, 2014, 30, 11319-11328.	1.6	19
29	Engineered Photochromism in Crystalline Salicylidene Anilines by Facilitating Rotation to Reach the Colored <i>trans</i> -Keto Form. Crystal Growth and Design, 2014, 14, 3667-3673.	1.4	25
30	Gene-modified cell detachment on photoresponsive hydrogels strengthened through hydrogen bonding. Acta Biomaterialia, 2014, 10, 2529-2538.	4.1	29
31	Exploiting Hydrophobic Interactions at the Nanoscale. Journal of Physical Chemistry Letters, 2014, 5, 2455-2463.	2.1	26
32	Synthesis and photochemical properties of spiropyran graft and star polymers obtained by â€~click' chemistry. Polymer Chemistry, 2014, 5, 6318-6324.	1.9	33
33	Tetrapodal Molecular Switches and Motors: Synthesis and Photochemistry. Journal of Organic Chemistry, 2014, 79, 7032-7040.	1.7	27
34	Simple Hydrazone Building Blocks for Complicated Functional Materials. Accounts of Chemical Research, 2014, 47, 2141-2149.	7.6	154
35	A Photoresponsive Biomimetic Dry Adhesive Based on Doped PDMS Microstructures. Chemistry of Materials, 2014, 26, 4330-4333.	3.2	28
36	Spectroscopic, photochromic and kinetic properties of 5'-benzothiazolyl derivatives of spiroindolinenaphthopyrans: An experimental and theoretical study. Dyes and Pigments, 2014, 111, 108-115.	2.0	10
37	Spiropyran-Modified Gold Nanoparticles: Reversible Size Control of Aggregates by UV and Visible Light Irradiations. ACS Applied Materials & Interfaces, 2014, 6, 7554-7562.	4.0	73
38	Light initiated E–Z and Z–E isomerization of isatinphenylsemicarbazones: Tautomeric equilibrium effect. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 288, 60-69.	2.0	11
42	Mechanically Induced Multicolor Change of Luminescent Materials. ChemPhysChem, 2015, 16, 1811-1828.	1.0	220
43	Humidityâ€Triggered Selfâ€Healing of Microporous Polyelectrolyte Multilayer Coatings for Hydrophobic Drug Delivery. Advanced Functional Materials, 2015, 25, 7470-7477.	7.8	70

#	Article	IF	CITATIONS
45	Orthogonal Lightâ€Induced Selfâ€Assembly of Nanoparticles using Differently Substituted Azobenzenes. Angewandte Chemie, 2015, 127, 12571-12574.	1.6	42
47	Visibleâ€Lightâ€Activated Molecular Switches. Angewandte Chemie - International Edition, 2015, 54, 11338-11349.	7.2	623
48	Orthogonal Lightâ€Induced Selfâ€Assembly of Nanoparticles using Differently Substituted Azobenzenes. Angewandte Chemie - International Edition, 2015, 54, 12394-12397.	7.2	132
49	Visibleâ€Lightâ€Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex. Angewandte Chemie - International Edition, 2015, 54, 11457-11461.	7.2	63
50	Photoregulation of αâ€Chymotrypsin Activity by Spiropyranâ€Based Inhibitors in Solution and Attached to an Optical Fiber. Chemistry - A European Journal, 2015, 21, 10703-10713.	1.7	11
51	Azobenzene Câ€Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature. Chemistry - A European Journal, 2015, 21, 17870-17876.	1.7	42
54	Onâ€Tip Photoâ€Modulated Molecular Printing. Angewandte Chemie - International Edition, 2015, 54, 12894-12899.	7.2	20
55	Switchable Materials Containing Polyzwitterion Moieties. Polymers, 2015, 7, 2344-2370.	2.0	67
57	Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. Journal of Physical Chemistry Letters, 2015, 6, 2259-2264.	2.1	35
58	Intracellular pH-induced fluorescence used to track nanoparticles in cells. Journal of Materials Chemistry B, 2015, 3, 5411-5414.	2.9	2
59	A spiropyran-based X-ray sensitive fiber. Chemical Communications, 2015, 51, 11170-11173.	2.2	36
60	Light-controlled switching of the self-assembly of ill-defined amphiphilic SP-PAMAM. RSC Advances, 2015, 5, 101894-101899.	1.7	4
61	Acylhydrazones as Widely Tunable Photoswitches. Journal of the American Chemical Society, 2015, 137, 14982-14991.	6.6	207
62	Synthesis and characterization of new spiropyran micrometer-sized photochromic fluorescent polymeric particles of narrow size distribution by a swelling process. Polymer, 2015, 61, 68-74.	1.8	13
63	Synthesis of 3â€Fluoroâ€2â€hetarylindoles and 3,3â€Difluoroâ€2â€hetarylindolines through Lewis Acidâ€Catalyz Formation of 3,3â€Difluoroindolium Ions. European Journal of Organic Chemistry, 2015, 2015, 995-1006.	ed 1.2	12
64	Solvatochromic and Photochromic Behavior of Spiropyranâ€cored <scp>PAMAM</scp> Dendron and Cu ²⁺ â€Selective Sensing. Bulletin of the Korean Chemical Society, 2015, 36, 104-110.	1.0	7
65	Synthesis and Antibacterial Activities of Antibacterial Peptides with a Spiropyran Fluorescence Probe. Scientific Reports, 2014, 4, 6860.	1.6	10
66	Controllable multicolor switching of oligopeptide-based mechanochromic molecules: from gel phase to solid powder. Journal of Materials Chemistry C, 2015, 3, 3399-3405.	2.7	30

#	Article	IF	CITATIONS
67	A pyrene-appended spiropyran for selective photo-switchable binding of Zn(II): UV–visible and fluorescence spectroscopy studies of binding and non-covalent attachment to graphene, graphene oxide and carbon nanotubes. Tetrahedron, 2015, 71, 6776-6783.	1.0	23
68	Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite. Light: Science and Applications, 2015, 4, e316-e316.	7.7	18
69	Photo, pH, and thermo triple-responsive spiropyran-based copolymer nanoparticles for controlled release. Chemical Communications, 2015, 51, 12633-12636.	2.2	115
70	Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications. Chemistry of Materials, 2015, 27, 5925-5931.	3.2	141
71	Synthesis of zinc chlorin–spiropyran dyads and their self-aggregation properties. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 36-43.	2.0	4
72	Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polymer Chemistry, 2015, 6, 5143-5184.	1.9	124
73	Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers. AIP Advances, 2015, 5, .	0.6	19
74	Light-controlled self-assembly of non-photoresponsive nanoparticles. Nature Chemistry, 2015, 7, 646-652.	6.6	440
75	Spiropyran salts and their neutral precursors: synthesis, crystal structure, photochromic transformations in solutions and solid state. Organic Photonics and Photovoltaics, 2015, 3, .	1.3	5
76	Photochromic and Thermochromic Heterocycles. Advances in Heterocyclic Chemistry, 2015, , 131-177.	0.9	24
77	Synthesis and spectral characterization of photoswitchable oligo(p-phenylenevinylene)–spiropyran dyad. RSC Advances, 2015, 5, 56855-56864.	1.7	7
78	Electron Injection and Energy-Transfer Properties of Spiropyran–Cyclodextrin Complexes Coated onto Metal Oxide Nanoparticles: Toward Photochromic Light Harvesting. Journal of Physical Chemistry C, 2015, 119, 14076-14084.	1.5	32
79	Photoisomerization action spectroscopy: flicking the protonated merocyanine–spiropyran switch in the gas phase. Physical Chemistry Chemical Physics, 2015, 17, 25676-25688.	1.3	46
80	A Light-Triggered Switch Based on Spiropyran/Layered Double Hydroxide Ultrathin Films. Journal of Physical Chemistry C, 2015, 119, 7428-7435.	1.5	16
81	Self-assembly of photoswitchable diblock copolymers: salt-induced micellization and the influence of UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 12215-12221.	1.3	11
82	Enhanced bi-stability in a ruthenium alkynyl spiropyran complex. Dalton Transactions, 2015, 44, 8812-8815.	1.6	19
83	Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 2015, 44, 3474-3504.	18.7	397
84	High molecular weight mechanochromic spiropyran main chain copolymers via reproducible microwave-assisted Suzuki polycondensation. Polymer Chemistry, 2015, 6, 3694-3707.	1.9	27

#	Article	IF	CITATIONS
85	Fluorescent chemodosimeter based on spirobenzopyran for organophosphorus nerve agent mimics (DCP). RSC Advances, 2015, 5, 28996-29001.	1.7	43
86	Trigger Chemistries for Better Industrial Formulations. ACS Applied Materials & Interfaces, 2015, 7, 6369-6382.	4.0	58
87	DFT predictions of the oxidation potential of organic dyes for opto-electronic devices. Computational and Theoretical Chemistry, 2015, 1070, 68-75.	1.1	11
88	A dual-stimuli-responsive fluorescent switch ultrathin film. Nanoscale, 2015, 7, 16737-16743.	2.8	21
89	Multi-responsive supramolecular hydrogels based on merocyanine–peptide conjugates. Organic and Biomolecular Chemistry, 2015, 13, 11492-11498.	1.5	27
90	Spiropyran-Decorated SiO ₂ –Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly. ACS Applied Materials & Interfaces, 2015, 7, 24585-24591.	4.0	95
91	Preparation of a conjugation-ready thiol responsive molecular switch. Tetrahedron Letters, 2015, 56, 6569-6573.	0.7	9
92	Photoresponsive Molecular Switch for Regulating Transmembrane Proton-Transfer Kinetics. Journal of the American Chemical Society, 2015, 137, 14059-14062.	6.6	29
93	Pseudo crystalline state thermochromic and reverse-photochromic reactivity of spiroindolinobenzopyran upon encapsulation into Zn-MOF-74. CrystEngComm, 2015, 17, 8607-8611.	1.3	14
94	Triazole-conjugated spiropyran: synthesis, selectivity toward Cu(II), and binding study. Tetrahedron Letters, 2015, 56, 6080-6084.	0.7	22
95	Light-Triggered Responsive Janus Composite Nanosheets. Macromolecules, 2015, 48, 7256-7261.	2.2	49
96	Photoswitchable fluorescent nanoparticles and their emerging applications. Nanoscale, 2015, 7, 19342-19357.	2.8	63
97	Light-controllable linear dichroism in nematics. Applied Optics, 2015, 54, 8293.	2.1	2
98	Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing. Journal of Materials Chemistry A, 2015, 3, 22441-22447.	5.2	44
99	pH-induced on/off-switchable graphene bioelectronics. Journal of Materials Chemistry B, 2015, 3, 7434-7439.	2.9	33
100	Influence of electronic vs. steric factors on the solid-state photochromic performances of new polyoxometalate/spirooxazine and spiropyran hybrid materials. RSC Advances, 2015, 5, 79635-79643.	1.7	10
101	Preparation of Stimuli-Responsive Functionalized Latex Nanoparticles: The Effect of Spiropyran Concentration on Size and Photochromic Properties. Langmuir, 2015, 31, 10672-10682.	1.6	77
102	A high fatigue resistant, photoswitchable fluorescent spiropyran–polyoxometalate–BODIPY single-molecule. Chemical Communications, 2015, 51, 16088-16091.	2.2	49

#	Article	IF	CITATIONS
103	Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies. Soft Matter, 2015, 11, 7857-7866.	1.2	75
104	Isatin phenylhydrazones: anion enhanced photochromic behaviour. Photochemical and Photobiological Sciences, 2015, 14, 2064-2073.	1.6	16
105	Intramolecular spin state switching mechanisms of transition metal complexes. Russian Chemical Bulletin, 2015, 64, 475-497.	0.4	28
106	Nonadiabatic dynamics and photoisomerization of biomimetic photoswitches. Chemical Physics, 2015, 463, 95-105.	0.9	9
107	Ciprofloxacin–Photoswitch Conjugates: A Facile Strategy for Photopharmacology. Bioconjugate Chemistry, 2015, 26, 2592-2597.	1.8	86
108	Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions. Journal of the American Chemical Society, 2015, 137, 15262-15275.	6.6	245
109	Spiropyrans and spirooxazines. Russian Chemical Bulletin, 2015, 64, 677-682.	0.4	5
110	Photo-driven near-IR fluorescence switch: synthesis and spectroscopic investigation of squarine-spiropyran dyad. RSC Advances, 2015, 5, 97681-97689.	1.7	8
111	Indolinooxazolidine: A Versatile Switchable Unit. Journal of Physical Chemistry B, 2015, 119, 307-315.	1.2	31
112	Spatial Structuring of a Supramolecular Hydrogel by using a Visibleâ€Light Triggered Catalyst. Angewandte Chemie - International Edition, 2015, 54, 998-1001.	7.2	135
113	Ion-mediated conformational switches. Chemical Science, 2015, 6, 1630-1639.	3.7	90
114	Fast and stable light-driven molecular switch based on a 5a,13-methanoindolo[2,1-b][1,3]benzoxazepine ring system. Dyes and Pigments, 2015, 113, 546-553.	2.0	6
115	The photophysical behavior of the photochromic naphthopyran derivative having photo-switching ability. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1291-1297.	2.0	7
116	Surface Grafting of Paper with Photochromic Spiropyran Ether Methacrylate. BioResources, 2016, 11, .	0.5	3
117	Tilted Orientation of Photochromic Dyes with Guest-Host Effect of Liquid Crystalline Polymer Matrix for Electrical UV Sensing. Sensors, 2016, 16, 38.	2.1	7
118	Aqueous Lightâ€Controlled Selfâ€Assembly of Nanoparticles. Advanced Optical Materials, 2016, 4, 1373-1377.	3.6	81
119	Direct Photocontrol of Peptidomimetics: An Alternative to Oxygenâ€Dependent Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2016, 55, 5493-5496.	7.2	62
120	Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film. Macromolecular Rapid Communications, 2016, 37, 500-505.	2.0	24

~			n		
CF	ΓΑΤ	ION	RE	ΞPΟ	RT

#	Article	IF	CITATIONS
121	Studies of a photochromic model system using NMR with <i>exâ€situ</i> and <i>inâ€situ</i> irradiation devices. Magnetic Resonance in Chemistry, 2016, 54, 485-491.	1.1	29
122	Wholly Synthetic Molecular Machines. ChemPhysChem, 2016, 17, 1780-1793.	1.0	120
123	Highly Sensitive Builtâ€In Strain Sensors for Polymer Composites: Fluorescence Turnâ€On Response through Mechanochemical Activation. Advanced Materials, 2016, 28, 6592-6597.	11.1	56
124	Lightâ€Induced Reversible Selfâ€Assembly of Gold Nanoparticles Surfaceâ€Immobilized with Coumarin Ligands. Angewandte Chemie, 2016, 128, 948-952.	1.6	21
125	Transient spectroscopic characterization of the ringâ€opening reaction of tetrahydrochromeno[2,3â€dimethyl]indole. Journal of Physical Organic Chemistry, 2016, 29, 221-226.	0.9	0
126	Adjusting Local Molecular Environment for Giant Ambient Thermal Contraction. Macromolecular Rapid Communications, 2016, 37, 1904-1911.	2.0	12
127	Modified Electrodes and Electrochemical Systems Switchable by Temperature Changes. Electroanalysis, 2016, 28, 1916-1929.	1.5	30
128	Fluorescence enhancement of photoswitchable metal ion sensors. , 2016, , .		1
129	Crystal structure determination as part of an undergraduate laboratory experiment: $1\hat{a}\in^2,3\hat{a}\in^2$ -trimethylspiro[chromene-2,2 $\hat{a}\in^2$ -indoline] and $1\hat{a}\in^2,3\hat{a}\in^2$ -trimethyl-4-[(<i>E</i>)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2 $\hat{a}\in^2$ -indoline]. Crystallographica Section E: Crystallographic Communications, 2016, 72, 1659-1662.	Acta ²	2
130	Modulation of Eu(III) and Yb(III) Luminescence Using a DTE Photochromic Ligand. Inorganic Chemistry, 2016, 55, 12635-12643.	1.9	26
131	Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chemical Reviews, 2016, 116, 15089-15166.	23.0	671
132	Photodynamic chromogenic system based on photo- and ionochromic 8-(1,3-benzoxazol-2-yl)-substituted spirobenzopyran. Doklady Chemistry, 2016, 471, 368-372.	0.2	2
133	Smart material platforms for miniaturized devices: implications in disease models and diagnostics. Lab on A Chip, 2016, 16, 1978-1992.	3.1	26
134	Remote control over folding by light. Chemical Communications, 2016, 52, 6639-6653.	2.2	85
135	Ion-mediated single-molecular optical switching and sensing based on the fluorophore-tethered calix[4]pyrrole. Chemical Communications, 2016, 52, 5852-5855.	2.2	16
136	Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres. Biomedical Optics Express, 2016, 7, 442.	1.5	9
137	Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Current Opinion in Chemical Biology, 2016, 34, 1-10.	2.8	85
138	Writing and erasing hidden optical information on covalently modified cellulose paper. Chemical Communications, 2016, 52, 7672-7675.	2.2	19

# 139	ARTICLE Photoresponsive gelators. Chemical Communications, 2016, 52, 8196-8206.	IF 2.2	CITATIONS
140	Naphthopyran-Based Silica Nanoparticles as New High-Performance Photoresponsive Materials. ACS Applied Materials & Interfaces, 2016, 8, 7221-7231.	4.0	34
141	Labelling Bacterial Nanocages with Photoâ€switchable Fluorophores. ChemPhysChem, 2016, 17, 1815-1818.	1.0	28
142	Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Analytical Chemistry, 2016, 88, 4833-4840.	3.2	77
143	Programmable bioelectronics in a stimuli-encoded 3D graphene interface. Nanoscale, 2016, 8, 9976-9981.	2.8	21
144	Unraveling the Photoswitching Mechanism in Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2016, 138, 6344-6347.	6.6	143
145	The ultrafast reactions in the photochromic cycle of water-soluble fulgimide photoswitches. Physical Chemistry Chemical Physics, 2016, 18, 10289-10296.	1.3	18
146	New spiropyrans based on 1,3-benzoxazine-2-one: acid catalyzed synthesis and theoretical insight into the photochromic activity. Tetrahedron Letters, 2016, 57, 2382-2385.	0.7	5
147	High contrast off–on fluorescence photo-switching via copper ion recognition, trans–cis isomerization and ring closure of a thiosemicarbazide Schiff base. RSC Advances, 2016, 6, 44599-44605.	1.7	7
148	Preparation of Fast Photoresponsive Cellulose and Kinetic Study of Photoisomerization. Journal of Physical Chemistry C, 2016, 120, 9985-9991.	1.5	49
149	Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties. Carbohydrate Polymers, 2016, 150, 131-138.	5.1	59
150	Dynamically controlled construction of microstructures based on photo-induced phase transition of a spirobenzopyran-modified polymer solution. RSC Advances, 2016, 6, 44212-44215.	1.7	4
151	Redispersible PMMA latex nanoparticles containing spiropyran with photo-, pH- and CO2- responsivity. Polymer, 2016, 101, 274-283.	1.8	40
152	Nanocomposites of Spiropyran-Functionalized Polymers and Upconversion Nanoparticles for Controlled Release Stimulated by Near-Infrared Light and pH. Macromolecules, 2016, 49, 7490-7496.	2.2	85
153	Semiconductor Quantum Dots with Photoresponsive Ligands. Topics in Current Chemistry, 2016, 374, 73.	3.0	10
154	Two-Photon-Induced Isomerization of Spiropyran/Merocyanine at the Air/Water Interface Probed by Second Harmonic Generation. Journal of Physical Chemistry A, 2016, 120, 7859-7864.	1.1	10
155	Application of response surface methodology for exploring Î ² -cyclodextrin effects on the decoloration of spiropyran complexes. Chemical Physics Letters, 2016, 662, 296-305.	1.2	4
156	Morphological patterns of controlled particle dispersion by photoisomerization of spiropyrans. Materials Letters, 2016, 180, 291-294.	1.3	6

#	Article	IF	CITATIONS
157	Photo-, Thermo-, and Piezochromic Nafion Film Incorporating Cationic Spiropyran. Chemistry Letters, 2016, 45, 1397-1399.	0.7	17
158	Kontrolle der Kinetik von Iminaustauschreaktionen mit Photoschaltern zur lichtgesteuerten Modulation der Selbstheilung in Polysiloxannetzwerken. Angewandte Chemie, 2016, 128, 14086-14090.	1.6	25
159	Applied Photochemistry. Lecture Notes in Quantum Chemistry II, 2016, , .	0.3	9
160	Recent Progress in Photoswitchable Supramolecular Selfâ€Assembling Systems. Advanced Optical Materials, 2016, 4, 1322-1349.	3.6	149
161	Photoresponsive organic field-effect transistors involving photochromic molecules. Chinese Chemical Letters, 2016, 27, 1319-1329.	4.8	45
162	Light―and Solventâ€Controlled Selfâ€Assembly Behavior of Spiropyran–Polyoxometalate–Alkyl Hybrid Molecules. Chemistry - A European Journal, 2016, 22, 11756-11762.	1.7	31
163	Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application. Journal of Fluorescence, 2016, 26, 1939-1949.	1.3	13
164	Synthesis, structure and photochromic properties of hybrid molecules based on fullerene C ₆₀ and spiropyrans. RSC Advances, 2016, 6, 71151-71155.	1.7	22
165	Noncovalent Interactions with Proteins Modify the Physicochemical Properties of a Molecular Switch. ChemPlusChem, 2016, 81, 44-48.	1.3	14
166	Grafting Spiropyran Molecular Switches on TiO ₂ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 18281-18288.	1.5	7
167	Aggregation induced emission (AIE) active carbazole styryl fluorescent molecular rotor as viscosity sensor. ChemistrySelect, 2016, 1, 2058-2064.	0.7	21
168	In Situ Solid‣tate Reactions Monitored by Xâ€ray Absorption Spectroscopy: Temperatureâ€Induced Proton Transfer Leads to Chemical Shifts. Chemistry - A European Journal, 2016, 22, 15600-15604.	1.7	4
169	Unraveling the Hydrolysis of Merocyanine-Based Probes in Biological Assay. Analytical Chemistry, 2016, 88, 9136-9142.	3.2	10
170	Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines. Journal of Organic Chemistry, 2016, 81, 8744-8758.	1.7	83
171	Photochromism of novel [1]benzothien-2-yl fulgides. Tetrahedron, 2016, 72, 5776-5782.	1.0	9
172	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
173	Photoswitchable conjugated assembly involving fluorescent boranil. Journal of Luminescence, 2016, 179, 314-321.	1.5	8
174	A photo-controllable third-order nonlinear optical (NLO) switch based on a rhodamine B salicylaldehyde hydrazone metal complex. Journal of Materials Chemistry C, 2016, 4, 8552-8558.	2.7	46

#	Article	IF	CITATIONS
175	Probing Metal Ion Complexation of Ligands with Multiple Metal Binding Sites: The Case of Spiropyrans. Chemistry - A European Journal, 2016, 22, 13976-13984.	1.7	36
176	Tuning the Colors of the Dark Isomers of Photochromic Boron Compounds with Fluoride Ions: Four-State Color Switching. Organic Letters, 2016, 18, 4436-4439.	2.4	27
177	An off-the-shelf sensor for colourimetric detection of sulfide. Tetrahedron Letters, 2016, 57, 5788-5793.	0.7	7
178	Phenomenon to functions: Photochromism of diarylpyrans, spectrokinetic properties and functional materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 73-106.	5.6	59
179	Dynamic Responsive Systems for Catalytic Function. Chemistry - A European Journal, 2016, 22, 17080-17111.	1.7	103
180	Red-Shifted Photochromism of Diarylethenes Induced by Shear Stress. Bulletin of the Chemical Society of Japan, 2016, 89, 671-680.	2.0	3
181	A substituted spiropyran for highly sensitive and selective colorimetric detection of cyanide ions. Sensors and Actuators B: Chemical, 2016, 237, 856-864.	4.0	52
182	Lightâ€Mediated Manufacture and Manipulation of Actuators. Advanced Materials, 2016, 28, 8328-8343.	11.1	186
184	Control of Imine Exchange Kinetics with Photoswitches to Modulate Selfâ€Healing in Polysiloxane Networks by Light Illumination. Angewandte Chemie - International Edition, 2016, 55, 13882-13886.	7.2	123
185	Photochromism of dihydroindolizines. Part XX: Synthesis and photophysical behavior of fluorenyldihydroindolizines photochromes based "Click―chemistry strategy. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 163-170.	2.0	8
186	Preparation of photochromic paper, using fibre-attached spiropyran polymer networks. RSC Advances, 2016, 6, 109514-109518.	1.7	23
187	Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes. Nano Letters, 2016, 16, 7655-7663.	4.5	52
188	Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics in a Thermoplastic Polymer. ACS Macro Letters, 2016, 5, 1312-1316.	2.3	39
189	Controlling the lifetimes of dynamic nanoparticle aggregates by spiropyran functionalization. Nanoscale, 2016, 8, 19280-19286.	2.8	66
190	Synthesis and micellization of a multi-stimuli responsive block copolymer based on spiropyran. Polymer Chemistry, 2016, 7, 6880-6884.	1.9	39
191	Photochromic switching behaviour of donor–acceptor Stenhouse adducts in organic solvents. Chemical Communications, 2016, 52, 13576-13579.	2.2	103
192	Temperature ontrolled Switchable Photochromism in Solid Materials. Angewandte Chemie - International Edition, 2016, 55, 15044-15048.	7.2	58
193	Computer simulation of the isomerization mechanism and spectral characteristics of spiro[1,3,4]oxadiazines. Russian Chemical Bulletin, 2016, 65, 40-46.	0.4	4

#	Article	IF	CITATIONS
194	Temperature ontrolled Switchable Photochromism in Solid Materials. Angewandte Chemie, 2016, 128, 15268-15272.	1.6	22
195	Industrial Photochromism. Lecture Notes in Quantum Chemistry II, 2016, , 227-279.	0.3	15
196	Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nature Communications, 2016, 7, 11118.	5.8	217
198	Multi-dimensional, light-controlled switch of fluorescence resonance energy transfer based on orderly assembly of OD dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Research, 2016, 9, 3828-3838.	5.8	17
199	2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes. RSC Advances, 2016, 6, 97921-97930.	1.7	11
200	Molecularly imprinted polymers bearing spiropyranâ€based photoresponsive binding sites capable of photoâ€triggered switching for molecular recognition activity. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1637-1644.	2.4	10
201	Tuning NLO Susceptibility in Functionalized DNA. Advanced Optical Materials, 2016, 4, 271-275.	3.6	9
202	Direct Photocontrol of Peptidomimetics: An Alternative to Oxygenâ€Dependent Photodynamic Cancer Therapy. Angewandte Chemie, 2016, 128, 5583-5586.	1.6	30
203	Lightâ€Induced Reversible Selfâ€Assembly of Gold Nanoparticles Surfaceâ€Immobilized with Coumarin Ligands. Angewandte Chemie - International Edition, 2016, 55, 936-940.	7.2	81
205	Reversible Photoisomerization of Spiropyran on the Surfaces of Au ₂₅ Nanoclusters. ChemPhysChem, 2016, 17, 1805-1809.	1.0	28
206	FRET-based acrylic nanoparticles with dual-color photoswitchable properties in DU145 human prostate cancer cell line labeling. Polymer, 2016, 98, 263-269.	1.8	36
207	Precise protein assembly of array structures. Chemical Communications, 2016, 52, 10595-10605.	2.2	28
208	Synchronised photoreversion of spirooxazine ring opening in thin crystals to uncover ultrafast dynamics. CrystEngComm, 2016, 18, 7212-7216.	1.3	6
209	Absorption Band Shapes of a Push–Pull Dye Approaching the Cyanine Limit: A Challenging Case for First Principle Calculations. Journal of Physical Chemistry A, 2016, 120, 5581-5589.	1.1	31
210	Modulating electron injection from an organic dye to a titania nanoparticle with a photochromic energy transfer acceptor. Journal of Materials Chemistry C, 2016, 4, 6215-6219.	2.7	6
211	Orchestrating Molecular Motion with Light – From Single (macro)Molecules to Materials. Macromolecular Chemistry and Physics, 2016, 217, 189-198.	1.1	19
212	Hybrid Organic/Photochromic Approaches to Generate Multifunctional Materials, Interfaces, and Devices. , 2016, , 243-280.		0
213	A Supramoleculeâ€Triggered Mechanochromic Switch of Cyclodextrinâ€Jacketed Rhodamine and Spiropyran Derivatives. Advanced Functional Materials, 2016, 26, 353-364.	7.8	81

#	Article	IF	CITATIONS
214	Light‶riggered Switchable Graphene–Polymer Hybrid Bioelectronics. Advanced Materials Interfaces, 2016, 3, 1500353.	1.9	15
215	Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. Journal of Materials Science, 2016, 51, 1392-1399.	1.7	31
216	Photochromism of diarylethene derivatives having benzophosphole and benzothiophene groups. Dyes and Pigments, 2016, 126, 186-193.	2.0	11
217	Biological Imaging and Sensing with Multiresponsive Microgels. Chemistry of Materials, 2016, 28, 259-265.	3.2	81
218	Reversible Disassembly–Assembly of Octa Acid–Guest Capsule in Water Triggered by a Photochromic Process. Organic Letters, 2016, 18, 1566-1569.	2.4	27
219	Twofold photoswitching of NIR fluorescence and EPR based on the PMI–N–HABI for optical nanoimaging of electrospun polymer nanowires. Journal of Materials Chemistry C, 2016, 4, 2498-2505.	2.7	17
220	Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry A, 2016, 4, 8676-8681.	5.2	80
221	Inspired smart materials with external stimuli responsive wettability: a review. RSC Advances, 2016, 6, 36623-36641.	1.7	136
222	Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm, 2016, 18, 4006-4012.	1.3	118
223	The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications. Chinese Chemical Letters, 2016, 27, 518-522.	4.8	8
224	Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 2016, 12, 3196-3201.	1.2	68
225	Photochromic properties of spiropyran in epoxy resin as anti-counterfeiting coating on flexible materials. Progress in Organic Coatings, 2016, 100, 100-104.	1.9	20
226	Photochromic spiropyran- and spirooxazine-homopolymers in mesoporous thin films by surface initiated ROMP. Journal of Materials Chemistry C, 2016, 4, 4067-4076.	2.7	51
227	Molecular structure, spectroscopic and quantum chemical studies of 1′,3′,3′-trimethylspiro[benzo[f]chromene-3,2′-indoline. Journal of Molecular Structure, 2016, 1111, 1	08-117.	18
228	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663.	23.0	2,018
229	Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity. ACS Applied Materials & Interfaces, 2016, 8, 4399-4406.	4.0	18
230	Blue to near-IR energy transfer cascade within a dye-doped polymer matrix, mediated by a photochromic molecular switch. Physical Chemistry Chemical Physics, 2016, 18, 5095-5098.	1.3	14
231	Synthesis of an optically switchable salicylaldimine substituted naphthopyran for selective and reversible Cu ²⁺ recognition in aqueous solution. RSC Advances, 2016, 6, 20145-20154.	1.7	21

#	Article	IF	CITATIONS
232	Photochromic Spatiotemporal Control of Bubble-Propelled Micromotors by a Spiropyran Molecular Switch. ACS Nano, 2016, 10, 3543-3552.	7.3	73
233	An electron-transfer photochromic metal–organic framework (MOF) compound with a long-lived charge-separated state and high-contrast photoswitchable luminescence. RSC Advances, 2016, 6, 24190-24194.	1.7	30
234	Theranostics dye integrated zwitterionic polymer for in vitro and in vivo photothermal cancer therapy. Journal of Industrial and Engineering Chemistry, 2016, 33, 336-344.	2.9	27
235	Amphiphilic Molecular Motors for Responsive Aggregation in Water. Journal of the American Chemical Society, 2016, 138, 660-669.	6.6	101
236	A photo, temperature, and pH responsive spiropyran-functionalized polymer: Synthesis, self-assembly and controlled release. Polymer, 2016, 83, 85-91.	1.8	97
237	Photo-responsive chiral cyclic molecular switches based on stiff stilbene. Dyes and Pigments, 2016, 125, 259-265.	2.0	15
238	Amphiphilic photosensitive dextran-g-poly(o-nitrobenzyl acrylate) glycopolymers. Carbohydrate Polymers, 2016, 136, 598-608.	5.1	26
239	Adaptive soft molecular self-assemblies. Soft Matter, 2016, 12, 337-357.	1.2	129
240	A highly selective quinaldine–indole based spiropyran with intramolecular H-bonding for visual detection of Cu(II) ions. Sensors and Actuators B: Chemical, 2016, 222, 35-42.	4.0	44
241	Harnessing isomerization-mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation. Chemical Science, 2016, 7, 333-338.	3.7	32
242	Switchable bioelectronics. Biosensors and Bioelectronics, 2016, 76, 251-265.	5.3	34
243	Tuning microfluidic flow by pulsed light oscillating spiropyran-based polymer hydrogel valves. Sensors and Actuators B: Chemical, 2017, 245, 81-86.	4.0	33
244	Luminescent switch: Synthesis, characterization, and properties of some europium-based dithienylethenes. Inorganica Chimica Acta, 2017, 458, 45-49.	1.2	5
245	4,7â€Bis[3â€(dimesitylboryl)thienâ€2â€yl]benzothiadiazole: Solvatoâ€, Thermoâ€, and Mechanochromism Based the Reversible Formation of an Intramolecular Bâ^N Bond. Chemistry - A European Journal, 2017, 23, 3784-3791.	on 1.7	57
246	Transmission Spectroscopy and Kinetics in Crystalline Solids Using Aqueous Nanocrystalline Suspensions: The Spiropyran-Merocyanine Photochromic System. Crystal Growth and Design, 2017, 17, 637-642.	1.4	20
247	Color change of alternating copolymers with phenyl vinylethylene carbonate and N-phenylmaleimide in a solution and in the solid-state, depending on their structure. RSC Advances, 2017, 7, 9373-9380.	1.7	5
248	Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nature Communications, 2017, 8, 14281.	5.8	130
249	Photoswitchable dual-color fluorescent particles from seeded emulsion polymerization and role of some affecting parameters on FRET process. European Polymer Journal, 2017, 88, 56-66.	2.6	35

#	Article	IF	Citations
250	Determining the Photoisomerization Quantum Yield of Photoswitchable Molecules in Solution and in the Solid State. Scientific Reports, 2017, 7, 41145.	1.6	105
251	A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer. Acta Biomaterialia, 2017, 51, 101-111.	4.1	37
252	Engineering of new spiropyran photochromic fluorescent polymeric nanoparticles of narrow size distribution by emulsion polymerization process. European Polymer Journal, 2017, 89, 13-22.	2.6	15
253	Bistable Photoswitching of Hemithioindigo with Green and Red Light: Entry Point to Advanced Molecular Digital Information Processing. Chemistry - A European Journal, 2017, 23, 6237-6243.	1.7	71
254	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	1.5	38
255	The theoretical study of substituent and charge effects in the conformational transformation process of molecular machine unit spiropyran. Organic Electronics, 2017, 45, 33-41.	1.4	22
256	Mechanochemical Kinetics in Elastomeric Polymer Networks: Heterogeneity of Local Forces Results in Nonexponential Kinetics. Journal of Physical Chemistry B, 2017, 121, 2359-2365.	1.2	22
257	Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core. Organic Letters, 2017, 19, 1402-1405.	2.4	45
258	Investigation of Donor–Acceptor Stenhouse Adducts as New Visible Wavelength-Responsive Switching Elements for Lipid-Based Liquid Crystalline Systems. Langmuir, 2017, 33, 2215-2221.	1.6	39
259	From pH- to Light-Response: Postpolymerization Modification of Polymer Brushes Grafted onto Microporous Polymeric Membranes. ACS Omega, 2017, 2, 455-461.	1.6	19
260	Mechanical Force Sensitive Acrylic Latex Coating. ACS Applied Materials & Interfaces, 2017, 9, 15156-15163.	4.0	35
261	Lightâ€Fueled, Spatiotemporal Modulation of Mechanical Properties and Rapid Selfâ€Healing of Grapheneâ€Doped Supramolecular Elastomers. Advanced Functional Materials, 2017, 27, 1700767.	7.8	55
262	Synthesis and solidâ€state properties of crosslinked alternating copolymers of phenyl vinylethylene carbonate and <i>N</i> â€substituted maleimides. Journal of Applied Polymer Science, 2017, 134, 45247.	1.3	7
263	Triple responsive block copolymers combining pHâ€responsive, thermoresponsive, and glucoseâ€responsive behaviors. Journal of Polymer Science Part A, 2017, 55, 2309-2317.	2.5	34
264	Competitive inclusion of molecular photo-switches in host cavities. Tetrahedron, 2017, 73, 4913-4917.	1.0	23
265	Light-Controlled Switching of a Non-photoresponsive Molecular Shuttle. Organic Letters, 2017, 19, 2945-2948.	2.4	40
266	Photochromic fluorescent indol-3-yl-substituted maleimides. Russian Journal of Organic Chemistry, 2017, 53, 366-370.	0.3	2
267	Substituent Dependence Charge Transfer and Photochemical Properties of Donor-Acceptor Substituted Ethenyl Thiophenes. Journal of Fluorescence, 2017, 27, 1729-1738.	1.3	9

# 268	ARTICLE Ultraviolet–visible/fluorescence behaviors of a spiropyran/polydimethylsiloxane composite film under acid vapors. Journal of Applied Polymer Science, 2017, 134, 45199.	IF 1.3	CITATIONS 5
269	Systematic variation of thiophene substituents in photochromic spiropyrans. Photochemical and Photobiological Sciences, 2017, 16, 1057-1062.	1.6	3
270	Cooperative Binding of Metal Cations to a Spiropyranâ€Conjugated Calix[4]arene. ChemistrySelect, 2017, 2, 3527-3533.	0.7	4
271	Acidochromic fibrous polymer composites for rapid gas detection. Journal of Materials Chemistry A, 2017, 5, 339-348.	5.2	66
272	Dynamics of Dissolutive Wetting: A Molecular Dynamics Study. Langmuir, 2017, 33, 6464-6470.	1.6	21
273	A novel generation of hybrid photochromic vinylidene-naphthofuran silica nanoparticles through fine-tuning of surface chemistry. Dalton Transactions, 2017, 46, 9076-9087.	1.6	7
274	Exploring the diethylaminoflavylium derivatives multistate system of chemical reactions in the presence of CTAB micelles: thermodynamic reversibility achieved through different kinetic pathways. RSC Advances, 2017, 7, 30469-30480.	1.7	5
275	Carrier-assisted dyeing of poly(l -lactic acid) fibers with dispersed photochromic spiropyran dyes. Dyes and Pigments, 2017, 145, 444-450.	2.0	12
276	Third-Generation Light-Driven Symmetric Molecular Motors. Journal of the American Chemical Society, 2017, 139, 9650-9661.	6.6	54
277	Optical properties of conjugated polymer: review of its change mechanism for ionizing radiation sensor. Polymers for Advanced Technologies, 2017, 28, 1559-1571.	1.6	15
278	Thermal, Photochromic and Dynamic Properties of Water-Soluble Spiropyrans. ChemistrySelect, 2017, 2, 4111-4123.	0.7	23
279	In situ control of polymer helicity with a non-covalently bound photoresponsive molecular motor dopant. Chemical Communications, 2017, 53, 6393-6396.	2.2	47
280	An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. Nano Research, 2017, 10, 3068-3076.	5.8	7
281	Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Letters, 2017, 6, 738-742.	2.3	58
282	Photochromic Hydrazone Switches with Extremely Long Thermal Half-Lives. Journal of the American Chemical Society, 2017, 139, 9140-9143.	6.6	128
283	Multi-color fluorescence of pNIPAM-Based nanogels modulated by dual stimuli-responsive FRET processes. Dyes and Pigments, 2017, 145, 216-221.	2.0	30
284	Dualâ€Responsive Molecular Switches Based on Dithienylethene–Ru ^{II} Organometallics in Selfâ€Assembled Monolayers Operating at Low Voltage. Chemistry - A European Journal, 2017, 23, 10205-10214.	1.7	17
285	Experimental and theoretical insight into the complexation behavior of spironaphthopyrans bearing o- positioning benzazole moiety. Journal of Molecular Structure, 2017, 1145, 55-64.	1.8	10

#	Article	IF	CITATIONS
286	Tuning the functionalization degree of amylose and amylopectin with photochromic spiropyran by CuAAc reaction. Polymer, 2017, 120, 82-93.	1.8	5
287	Tunable Mechanoresponsive Selfâ€Assembly of an Amideâ€Linked Dyad with Dual Sensitivity of Photochromism and Mechanochromism. Advanced Functional Materials, 2017, 27, 1701210.	7.8	125
288	The design of new photochromic polymers incorporating covalently or ionically linked spiropyran/polyoxometalate hybrids. Journal of Materials Chemistry C, 2017, 5, 6343-6351.	2.7	21
289	Facile and fast photosensing of polarity by stimuli-responsive materials based on spiropyran for reusable sensors: a physico-chemical study on the interactions. Journal of Materials Chemistry C, 2017, 5, 6588-6600.	2.7	73
290	Self-Cleaning Membranes from Comb-Shaped Copolymers with Photoresponsive Side Groups. ACS Applied Materials & Interfaces, 2017, 9, 13619-13631.	4.0	44
291	Dynamic intracellular tracking nanoparticles via pH-evoked "off–on―fluorescence. Journal of Materials Chemistry B, 2017, 5, 3107-3110.	2.9	5
292	Design of a three-state switchable chromogenic radical-based moiety and its translation to molecular logic systems. Molecular Systems Design and Engineering, 2017, 2, 159-164.	1.7	8
293	Photo-switchable two-dimensional nanofluidic ionic diodes. Chemical Science, 2017, 8, 4381-4386.	3.7	50
294	Fabrication of photochromic hydrogels using an interpenetrating chitosan network. Journal of Applied Polymer Science, 2017, 134, 45120.	1.3	8
295	Substituent Correlations Characterized by Hammett Constants in the Spiropyran–Merocyanine Transition. Journal of Physical Chemistry A, 2017, 121, 2683-2687.	1.1	26
296	Approaches to polymeric mechanochromic materials. Journal of Polymer Science Part A, 2017, 55, 640-652.	2.5	125
297	Suitability of N-propanoic acid spiropyrans and spirooxazines for use as sensitizing dyes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 2981-2989.	1.3	8
298	A Magnetoâ€optical Molecular Device: Interplay of Spin Crossover, Luminescence, Photomagnetism, and Photochromism. Angewandte Chemie, 2017, 129, 15828-15833.	1.6	25
299	Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem, 2017, 12, 1908-1916.	1.6	13
300	Light, Force, and Heat: A Multi-Stimuli Composite that Reveals its Violent Past. ACS Applied Materials & Interfaces, 2017, 9, 38000-38007.	4.0	37
301	Rationally Designed Probe for Reversible Sensing of Zinc and Application in Cells. ACS Omega, 2017, 2, 6201-6210.	1.6	20
302	Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid. ACS Nano, 2017, 11, 9789-9801.	7.3	22
303	Photochromic RAFT reagent helps construct superior photoswitchable fluorescent polymer nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging. Polymer Chemistry, 2017, 8, 6520-6526.	1.9	9

#	Article	IF	CITATIONS
304	<i>50th Anniversary Perspective</i> : Solid-State Multistimuli, Multiresponsive Polymeric Materials. Macromolecules, 2017, 50, 8845-8870.	2.2	117
305	Photoswitchable vesicles. Current Opinion in Colloid and Interface Science, 2017, 32, 29-38.	3.4	17
306	Light-Responsive Janus-Particle-Based Coatings for Cell Capture and Release. ACS Macro Letters, 2017, 6, 1124-1128.	2.3	43
307	Photopatterning Freestanding Chiral Nematic Mesoporous Organosilica Films. Advanced Functional Materials, 2017, 27, 1703346.	7.8	23
308	Time- and Solvent-Dependent Self-Assembly of Photochromic Crystallites. Journal of Physical Chemistry C, 2017, 121, 24245-24251.	1.5	2
309	Photo-responsive polymer materials for biological applications. Chinese Chemical Letters, 2017, 28, 2085-2091.	4.8	35
310	A Magnetoâ€optical Molecular Device: Interplay of Spin Crossover, Luminescence, Photomagnetism, and Photochromism. Angewandte Chemie - International Edition, 2017, 56, 15622-15627.	7.2	117
311	Dependence of color change of vinylethylene carbonate copolymers having N -substituted maleimides on chemical structure by acid-base switching in solution and solid state. Reactive and Functional Polymers, 2017, 120, 139-146.	2.0	6
312	Toward Fractioning of Isomers through Binding-Induced Acceleration of Azobenzene Switching. Journal of the American Chemical Society, 2017, 139, 18271-18280.	6.6	10
313	Photochromism of dihydroindolizines. Part XXII: Significant effect of region B substituents on tuning the photophysical properties of photochromic dihydroindolizines: Absorption, kinetic and computational studies. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 125-133.	2.0	8
314	Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. Small, 2017, 13, 1701763.	5.2	15
315	Plasmonicâ€Based Mechanochromic Microcapsules as Strain Sensors. Small, 2017, 13, 1701925.	5.2	25
316	Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chemical Society Reviews, 2017, 46, 5536-5550.	18.7	208
317	Trapping of Hexadehydro-Diels–Alder Benzynes with Exocyclic, Conjugated Enals as a Route to Fused Spirocyclic Benzopyran Motifs. Synlett, 2017, 28, 2933-2935.	1.0	7
318	Light induced oxidation of an indoline derived system triggered spherical aggregates. Physical Chemistry Chemical Physics, 2017, 19, 26535-26539.	1.3	9
319	Photochrome-doped organic films for photonic keypad locks and multi-state fluorescence. Physical Chemistry Chemical Physics, 2017, 19, 19984-19991.	1.3	11
320	Nanofluidics in two-dimensional layered materials: inspirations from nature. Chemical Society Reviews, 2017, 46, 5400-5424.	18.7	233
321	The influence of surface potential on the optical switching of spiropyran self assembled monolayers. Journal of Physics Condensed Matter, 2017, 29, 414002.	0.7	12

#	Article	IF	CITATIONS
322	Efficient Reversible Optical Sensing of Water Achieved through the Conversion of Hâ€Aggregates of a Merocyanine Salt to Jâ€Aggregates. ChemistrySelect, 2017, 2, 5924-5932.	0.7	18
323	Photoswitchable fluorescent polymeric nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging with AIE-based fluorogens as FRET donors. Polymer Chemistry, 2017, 8, 4849-4855.	1.9	46
324	Spiropyran-modified silicon quantum dots with reversibly switchable photoluminescence. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	11
325	Effects of Chain Parameters on Kinetics of Photochromism in Acrylic–Spiropyran Copolymer Nanoparticles and Their Reversible Optical Data Storage. Langmuir, 2017, 33, 8023-8031.	1.6	42
326	Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches. Journal of the American Chemical Society, 2017, 139, 10956-10959.	6.6	86
327	Advanced carbon nanotubes functionalization. Journal of Physics Condensed Matter, 2017, 29, 423003.	0.7	36
329	Strain Field Self-Diagnostic Poly(dimethylsiloxane) Elastomers. Chemistry of Materials, 2017, 29, 7450-7457.	3.2	27
330	Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nature Communications, 2017, 8, 100.	5.8	100
331	Alkyl-substituted spiropyrans: electronic effects, model compounds and synthesis of aliphatic main-chain copolymers. Polymer Chemistry, 2017, 8, 5407-5414.	1.9	18
332	Polyoxometalate-Based Photo-Sensitive Functional Hybrid Materials. Structure and Bonding, 2017, , 49-63.	1.0	0
333	A new MediaChrom (fluorosolvatochromic and acidochromic) based on bipolar donor-acceptor conjoined carbazolo-phenazine. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 199-208.	2.0	11
334	"The phactalystsâ€ı carbon nanotube/TiO ₂ composites as phototropic actuators for wireless remote triggering of chemical reactions and catalysis. Nanoscale, 2017, 9, 11446-11451.	2.8	19
335	New polyfunctional spiropyran of 1,3-benzoxazin-4-one series with carbonyl-containing substituents in the [2H]-chromene moiety. Doklady Chemistry, 2017, 477, 244-247.	0.2	0
336	Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nature Communications, 2017, 8, 1446.	5.8	210
337	Fabrication of color changeable CO2 sensitive nanofibers. Polymer Chemistry, 2017, 8, 7446-7451.	1.9	17
338	RAFT synthesis and micellization of a photo-, temperature- and pH-responsive diblock copolymer based on spiropyran. Polymer Chemistry, 2017, 8, 7325-7332.	1.9	20
339	Fluorescence Photoswitching of a Diarylethene by Irradiation with Single-Wavelength Visible Light. Journal of the American Chemical Society, 2017, 139, 16498-16501.	6.6	77
340	Light Responsive Silk Nanofibers: An Optochemical Platform for Environmental Applications. ACS Applied Materials & Interfaces, 2017, 9, 40707-40715.	4.0	43

#	Article	IF	CITATIONS
341	A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron, 2017, 73, 4963-4967.	1.0	90
342	A switchable electrochromism and electrochemiluminescence bifunctional sensor based on the electro-triggered isomerization of spiropyran/layered double hydroxides. Chemical Communications, 2017, 53, 8862-8865.	2.2	32
343	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	18.7	241
344	Light-induced release of molecules from polymers. Progress in Polymer Science, 2017, 74, 1-33.	11.8	95
345	Reversible Multistimuli Switching of a Spiropyran-Functionalized Organic Cage in Solid and Solution. Journal of Organic Chemistry, 2017, 82, 7783-7790.	1.7	33
346	Pyridine–Spiropyran Derivative as a Persistent, Reversible Photoacid in Water. Journal of Organic Chemistry, 2017, 82, 8040-8047.	1.7	36
347	Surface Inclusion of Unidirectional Molecular Motors in Hexagonal Tris(<i>o</i> -phenylene)cyclotriphosphazene. Journal of the American Chemical Society, 2017, 139, 10486-10498.	6.6	52
348	Spectrally Resolved Super-Resolution Microscopy Unveils Multipath Reaction Pathways of Single Spiropyran Molecules. Journal of the American Chemical Society, 2017, 139, 9447-9450.	6.6	53
349	Nâ€Type Superconductivity in an Organic Mott Insulator Induced by Lightâ€Driven Electronâ€Doping. Advanced Materials, 2017, 29, 1606833.	11.1	21
350	Photoswitchable calcium sensor: †On'†a€ Off' sensing in cells or with microstructured optical fibers. Sensors and Actuators B: Chemical, 2017, 252, 965-972.	4.0	19
351	Fabrication and photochromic properties of Forcespinning \hat{A}^{\otimes} fibers based on spiropyran-doped poly(methyl methacrylate). RSC Advances, 2017, 7, 33061-33067.	1.7	26
352	Triplet Energy and π-Conjugation Effects on Photoisomerization of Chiral N,C-Chelate Organoborons with PAH Substituents. Organic Letters, 2017, 19, 3851-3854.	2.4	24
353	A theoretical study of the excited-state decay of acylhydrazones. International Journal of Quantum Chemistry, 2017, 117, e25330.	1.0	2
354	On the use of diarylmaleimide derivatives in biological contexts: An investigation of the photochromic properties in aqueous solution. Dyes and Pigments, 2017, 137, 410-420.	2.0	15
355	The photocyclization-dependent ratiometric fluorescent switch: Synthesis, characterization and properties of some terpyridyl-based dithienylethenes. Dyes and Pigments, 2017, 136, 161-167.	2.0	10
356	Diversely halogenated spiropyrans - Useful synthetic building blocks for a versatile class of molecular switches. Dyes and Pigments, 2017, 136, 292-301.	2.0	39
357	Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chemical Science, 2017, 8, 2010-2016.	3.7	35
358	Photo-Physical Behavior and Fluorescence of Thermo Switchable Nanocomposite Based on Methyl Methacrylate -Spirobenzopyran. Journal of Fluorescence, 2017, 27, 501-507.	1.3	2

#	Article	IF	CITATIONS
359	The Literature of Heterocyclic Chemistry, Part XIV, 2014. Advances in Heterocyclic Chemistry, 2017, , 245-301.	0.9	15
360	New indoline spiropyrans containing azomethine fragment. Russian Chemical Bulletin, 2017, 66, 2122-2125.	0.4	6
361	Rationally Controlled Self-Assembly Behavior of Inorganic-Organic Hybrids in Solution. ACS Symposium Series, 2017, , 151-187.	0.5	0
363	Spiropyran-Isoquinoline Dyad as a Dual Chemosensor for Co(II) and In(III) Detection. Molecules, 2017, 22, 1569.	1.7	23
364	Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials. Molecules, 2017, 22, 2236.	1.7	53
365	Light-Responsive Polymer Micro- and Nano-Capsules. Polymers, 2017, 9, 8.	2.0	74
366	Tuning Sensory Properties of Triazole-Conjugated Spiropyrans: Metal-Ion Selectivity and Paper-Based Colorimetric Detection of Cyanide. Sensors, 2017, 17, 1816.	2.1	9
367	A Rationally Designed Reversible †Turn-Off' Sensor for Glutathione. Biosensors, 2017, 7, 36.	2.3	11
368	A Structural Analysis of Spiropyran and Spirooxazine Compounds and Their Polymorphs. Crystals, 2017, 7, 84.	1.0	18
369	Noncovalent Spiropyran Coatings for Photoinduced Wettability Switching. Journal of Nanomaterials, 2017, 2017, 1-6.	1.5	1
370	Synthesis and metal binding properties of <i>N</i> -alkylcarboxyspiropyrans. Beilstein Journal of Organic Chemistry, 2017, 13, 1542-1550.	1.3	6
371	Dipole-switch induced modification of the emissive response of carbon nanotubes. Journal of Physics Condensed Matter, 2017, 29, 454003.	0.7	3
372	A Simply Synthesized, Tough Polyarylene with Transient Mechanochromic Response. Angewandte Chemie, 2018, 130, 1009-1012.	1.6	0
373	Synthesis, structure and photochromic properties of novel highly functionalized spiropyrans of 1,3-benzoxazin-4-one series. Journal of Molecular Structure, 2018, 1161, 18-25.	1.8	11
374	Photo- and ionochromic indolyl(thienyl)maleimides containing naphthalimide linkers. Chemistry of Heterocyclic Compounds, 2018, 54, 32-37.	0.6	1
375	Photo- and ionochromic thienyl(coumarinyl)thiazoles. Journal of Molecular Structure, 2018, 1163, 221-226.	1.8	5
376	Photoinduced Reversible Worm-to-Vesicle Transformation of Azo-Containing Block Copolymer Assemblies Prepared by Polymerization-Induced Self-Assembly. Macromolecules, 2018, 51, 3308-3314.	2.2	78
378	Photoregulating of Stretchability and Toughness of a Selfâ€Healable Polymer Hydrogel. Macromolecular Rapid Communications, 2018, 39, e1800018.	2.0	22

#	Article	IF	CITATIONS
379	Benzo-iridacyclopentadiene complexes: Mechanochromism and the effects of counter anions and halogen ligands. Dyes and Pigments, 2018, 156, 260-266.	2.0	12
380	Reversible Surface Dual-Pattern with Simultaneously Dynamic Wrinkled Topography and Fluorescence. ACS Macro Letters, 2018, 7, 540-545.	2.3	46
381	Arylazopyrazole Photoswitches in Aqueous Solution: Substituent Effects, Photophysical Properties, and Host–Guest Chemistry. Chemistry - A European Journal, 2018, 24, 8639-8647.	1.7	93
382	Selfâ€Reporting Fiberâ€Reinforced Composites That Mimic the Ability of Biological Materials to Sense and Report Damage. Advanced Materials, 2018, 30, e1705483.	11.1	91
383	Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications. Chemistry of Materials, 2018, 30, 2873-2887.	3.2	139
384	Lightâ€Driven Electrohydrodynamic Instabilities in Liquid Crystals. Advanced Functional Materials, 2018, 28, 1707436.	7.8	35
385	Light-fuelled reversible expansion of spiropyran-based vesicles in water. Chemical Communications, 2018, 54, 5311-5314.	2.2	28
386	Acidochromic spiropyran–merocyanine stabilisation in the solid state. CrystEngComm, 2018, 20, 3318-3327.	1.3	17
387	Photochromic 2D Metal-Organic Framework Nanosheets (MONs): Design, Synthesis, and Functional MON-Ormosil Composite. CheM, 2018, 4, 1059-1079.	5.8	71
388	A chemically-responsive bis-acridinium receptor. New Journal of Chemistry, 2018, 42, 4728-4734.	1.4	13
389	Spironaphthoxazine switchable dyes for biological imaging. Chemical Science, 2018, 9, 3029-3040.	3.7	53
390	<i>trans</i> to <i>cis</i> photo-isomerization in merocyanine dysprosium and yttrium complexes. Dalton Transactions, 2018, 47, 4139-4148.	1.6	23
391	Light-responsive polymers for microfluidic applications. Lab on A Chip, 2018, 18, 699-709.	3.1	64
392	Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nature Communications, 2018, 9, 641.	5.8	148
393	New smart functional fluorophores based on stable spirocyclic zwitterionic Meisenheimer compounds. Dyes and Pigments, 2018, 153, 160-171.	2.0	7
394	Non-invasive fluorescence switch in polymer films based on spiropyran-photoacid modified TPE. Journal of Materials Chemistry C, 2018, 6, 2113-2122.	2.7	59
395	Two novel rhodamine-based molecules with different mechanochromic and photochromic properties in solid state. Journal of Materials Chemistry C, 2018, 6, 2270-2274.	2.7	31
396	The Endeavor of Diarylethenes: New Structures, High Performance, and Bright Future. Advanced Optical Materials, 2018, 6, 1701278.	3.6	184

щ	Apticie	IF	CITATIONS
#	ARTICLE	IF	CITATIONS
397	Modified Electrodes and Electrochemical Systems Switchable by Light Signals. Electroanalysis, 2018, 30, 759-797.	1.5	17
398	Photoinduced Proton Transfer between Photoacid and pHâ€Sensitive Dyes: Influence Factors and Application for Visibleâ€Lightâ€Responsive Rewritable Paper. Advanced Functional Materials, 2018, 28, 1705532.	7.8	66
399	When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures. Advanced Materials, 2018, 30, e1706103.	11.1	194
400	Polymer Chelating Ligands: Classification, Synthesis, Structure, and Chemical Transformations. Springer Series in Materials Science, 2018, , 13-197.	0.4	3
401	Specific recognition of Cu2+ by simple spiropyran via forming a ternary complex of spiropyran-Cu2+-DMF. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 165-174.	2.3	10
403	Fuelâ€Selective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie - International Edition, 2018, 57, 1611-1615.	7.2	50
404	Fuelâ€Selective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie, 2018, 130, 1627-1631.	1.6	30
405	Tailoring Photoisomerization Pathways in Donor–Acceptor Stenhouse Adducts: The Role of the Hydroxy Group. Journal of Physical Chemistry A, 2018, 122, 955-964.	1.1	54
406	Lanthanide complexes of spiropyran photoswitch and sensor: spectroscopic investigations and computational modelling. Photochemical and Photobiological Sciences, 2018, 17, 221-230.	1.6	20
407	Surpassing Single Line Width Active Tuning with Photochromic Molecules Coupled to Plasmonic Nanoantennas. Nano Letters, 2018, 18, 853-858.	4.5	30
408	A step-wise self-assembly approach in preparation of multi-responsive poly(styrene-co-methyl) Tj ETQq0 0 0 rgBT 58-69.	/Overlock 5.0	10 Tf 50 347 28
409	Chromogenic systems based on 8-(1,3-benzoxazol-2-yl) substituted spirobenzopyrans undergoing ion modulated photochromic rearrangements. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 174-180.	2.0	11
410	Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives. Photochemical and Photobiological Sciences, 2018, 17, 864-873.	1.6	62
411	Photoswitching Behavior of 5-Phenylazopyrimidines: In Situ Irradiation NMR and Optical Spectroscopy Combined with Theoretical Methods. Journal of Organic Chemistry, 2018, 83, 5986-5998.	1.7	21
412	Photochromism of dihydroindolizines. Part XXIV: Exploiting "Click―chemistry strategy in the synthesis of fluorenyldihydroindolizines with multiaddressable photochromic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 210-223.	2.0	3
413	Photo and Thermo Dualâ€Responsive Copolymer Surfaces for Efficient Cell Capture and Release. ChemPhysChem, 2018, 19, 2107-2112.	1.0	23
414	Photoâ€responsive Supraâ€Amphiphilic Aggregates with Differential Morphology and Fluorescent Property Mediated by the Substituent Position in the Counterions of Bolaâ€Amphiphiles. ChemistrySelect, 2018, 3, 2982-2988.	0.7	0
415	Noncovalent Photochromic Polymer Adhesion. Macromolecules, 2018, 51, 2388-2394.	2.2	22

#	Article	IF	CITATIONS
416	Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47, 4710-4728.	18.7	478
417	Wavelength-Selective Coupling and Decoupling of Polymer Chains via Reversible [2 + 2] Photocycloaddition of Styrylpyrene for Construction of Cytocompatible Photodynamic Hydrogels. ACS Macro Letters, 2018, 7, 464-469.	2.3	99
418	Water-based fluorescent paint: Presenting a novel approach to study and solve the aggregation caused quench (ACQ) effect in traditional fluorescent materials. Progress in Organic Coatings, 2018, 120, 1-9.	1.9	36
419	A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. Journal of the Mechanics and Physics of Solids, 2018, 116, 239-266.	2.3	48
420	Photoresponsive fiber scaffolds with a core–sheath nanostructure for regulating cell behaviors. Journal of Materials Chemistry B, 2018, 6, 2052-2056.	2.9	9
421	Highly Efficient and Bidirectional Photochromism of Spirooxazine on Au(111). Journal of Physical Chemistry C, 2018, 122, 8031-8036.	1.5	11
422	Photoresponsive Passive Micromixers Based on Spiropyran Sizeâ€Tunable Hydrogels. Macromolecular Rapid Communications, 2018, 39, 1700086.	2.0	28
423	Photo―and Thermoresponsive Dehydration of Spiropyranâ€Functionalized Polymer Regulated by Molecular Recognition. Macromolecular Rapid Communications, 2018, 39, 1700234.	2.0	20
424	Stimuli-responsive polymer nano-science: Shape anisotropy, responsiveness, applications. Progress in Polymer Science, 2018, 78, 24-46.	11.8	107
425	Preparation of UV-cured spironaphthooxazine/silica/polyacrylate photochromic hard coatings on plastic substrates. Journal of Coatings Technology Research, 2018, 15, 325-332.	1.2	7
426	Negatively photochromic organic compounds: Exploring the dark side. Dyes and Pigments, 2018, 149, 92-121.	2.0	111
427	Immobilizing Organicâ€Based Molecular Switches into Metal–Organic Frameworks: A Promising Strategy for Switching in Solid State. Macromolecular Rapid Communications, 2018, 39, 1700388.	2.0	23
428	Photo-responsive smart surfaces with controllable cell adhesion. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 202-211.	2.0	26
429	A simple substituted spiropyran acting as a photo reversible switch for the detection of lead (Pb2+) ions. Sensors and Actuators B: Chemical, 2018, 258, 648-656.	4.0	30
430	Conformational switching <i>via</i> an intramolecular H-bond modulates the fluorescence lifetime in a novel coumarin–imidazole conjugate. Physical Chemistry Chemical Physics, 2018, 20, 6060-6072.	1.3	10
431	Combining Lightâ€Gated and pHâ€Responsive Nanopore Based on PEGâ€Spiropyran Functionalization. Advanced Materials Interfaces, 2018, 5, 1701051.	1.9	36
432	Light controlled receptors for heavy metal ions. Coordination Chemistry Reviews, 2018, 357, 18-49.	9.5	79
433	Field-, strain- and light-induced superconductivity in organic strongly correlated electron systems. Physical Chemistry Chemical Physics, 2018, 20, 1321-1331.	1.3	8

#	Article	IF	CITATIONS
434	A Simply Synthesized, Tough Polyarylene with Transient Mechanochromic Response. Angewandte Chemie - International Edition, 2018, 57, 997-1000.	7.2	30
435	Let spiropyran help polymers feel force!. Progress in Polymer Science, 2018, 79, 26-39.	11.8	119
436	Braking of a Lightâ€Driven Molecular Rotary Motor by Chemical Stimuli. Chemistry - A European Journal, 2018, 24, 81-84.	1.7	25
437	The mechanoresponsive self-assembly of spiropyran doped films with dual sensitivity. Materials Letters, 2018, 214, 150-153.	1.3	3
438	Reusable ionogel-based photo-actuators in a lab-on-a-disc. Sensors and Actuators B: Chemical, 2018, 257, 963-970.	4.0	15
439	A spiropyran with enhanced fluorescence: A bright, photostable and red-emitting calcium sensor. Tetrahedron, 2018, 74, 1240-1244.	1.0	17
440	Synthesis of Water-Soluble Spiropyran-Modified Poly(acrylic acid) Micelles and Their Optical Behaviors. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 739-746.	0.1	7
441	Synthesis and Properties of New 4-Oxo-4,5-dihydro-1,3-oxazolium Perchlorates. Russian Journal of General Chemistry, 2018, 88, 2504-2512.	0.3	0
442	Unusual fluorescent photoswitching of imidazole derivatives: the role of molecular conformation and twist angle controlled organic solid state fluorescence. Physical Chemistry Chemical Physics, 2018, 20, 27385-27393.	1.3	15
443	Photomechanochromic <i>vs.</i> mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chemical Science, 2018, 9, 8990-9001.	3.7	47
444	Light-induced desorption of trivalent chromium from adsorbents: one step closer to sustainability. Chemical Communications, 2018, 54, 12770-12773.	2.2	16
445	Photo-switchable smart metal–organic framework membranes with tunable and enhanced molecular sieving performance. Journal of Materials Chemistry A, 2018, 6, 24949-24955.	5.2	41
446	Mechanical modelling of self-diagnostic polymers. Procedia Structural Integrity, 2018, 13, 819-824.	0.3	3
447	Nucleation mechanism of metal-vapor atoms on photochromic diarylethene surface with a low glass transition temperature. Japanese Journal of Applied Physics, 2018, 57, 121601.	0.8	1
448	Mechano-responsive fluorescent hyperbranched poly(amido amine)s. Reactive and Functional Polymers, 2018, 133, 57-65.	2.0	8
449	New Photochromic Spiropyrans with ortho-Hydroxyaldimine Substituent. Doklady Chemistry, 2018, 482, 229-232.	0.2	2
450	Control of Molecular Recognition via Modulation of the Nanoenvironment. ACS Applied Materials & Interfaces, 2018, 10, 41866-41870.	4.0	4
451	Effect of Temperature on the Spectral Fluorescent Properties of Positively Solvatochromic Merocyanines. Theoretical and Experimental Chemistry, 2018, 54, 331-338.	0.2	1

#	Article	IF	CITATIONS
452	Stimulus-Responsive Soft Surface/Interface Toward Applications in Adhesion, Sensor and Biomaterial. Biologically-inspired Systems, 2018, , 287-397.	0.4	1
453	Photochromism and Colorimetric Ion Sensing of a Spiropyran Derivative—Spiropyranâ€Rhodamine Dyad. Bulletin of the Korean Chemical Society, 2018, 39, 1336-1339.	1.0	1
454	Novel Spirocyclic Condensation Products of Gossypol and Fischer's Bases. Chemistry of Natural Compounds, 2018, 54, 1081-1084.	0.2	1
455	In-Place Modulation of Rectification in Tunneling Junctions Comprising Self-Assembled Monolayers. Nano Letters, 2018, 18, 7552-7559.	4.5	41
456	Dual Light- and pH-Responsive Composite of Polyazo-Derivative Grafted Cellulose Nanocrystals. Materials, 2018, 11, 1725.	1.3	19
457	New Photochromic Salt Spiropyran with Benzyl Substituent. Doklady Chemistry, 2018, 482, 220-224.	0.2	3
458	Macroscale fluorescence imaging against autofluorescence under ambient light. Light: Science and Applications, 2018, 7, 97.	7.7	14
459	Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 190.	2.0	37
460	Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect, 2018, 3, 13234-13270.	0.7	13
461	Synthesis of stereochemically-biased spiropyrans by microwave-promoted, one-pot alkylation–condensation. Organic and Biomolecular Chemistry, 2018, 16, 7245-7254.	1.5	9
462	Stimuli-Responsive B/N Lewis Pairs Based on the Modulation of B–N Bond Strength. Organic Letters, 2018, 20, 6467-6470.	2.4	44
463	Tuning the Negative Photochromism of Water-Soluble Spiropyran Polymers. Macromolecules, 2018, 51, 8027-8037.	2.2	51
464	Influence of silyloxy substitution on the photochromic properties of diarylbenzo- and naphthopyrans \$\$^{S }\$\$ §. Journal of Chemical Sciences, 2018, 130, 1.	0.7	3
465	Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nature Communications, 2018, 9, 3842.	5.8	59
466	Solution and Solid-State Emission Toggling of a Photochromic Hydrazone. Journal of the American Chemical Society, 2018, 140, 12323-12327.	6.6	72
467	Multistimuli-Responsive Enaminitrile Molecular Switches Displaying H ⁺ -Induced Aggregate Emission, Metal Ion-Induced Turn-On Fluorescence, and Organogelation Properties. Journal of the American Chemical Society, 2018, 140, 13640-13643.	6.6	46
468	Wavelength ontrolled Dynamic Metathesis: A Lightâ€Driven Exchange Reaction between Disulfide and Diselenide Bonds. Angewandte Chemie, 2018, 130, 16664-16668.	1.6	19
469	Preparation of stimulusâ€responsive, polyfluoreneâ€wrapped carbon nanotubes via palladium cross coupling. Journal of Polymer Science Part A, 2018, 56, 2723-2729.	2.5	6

#	Article	IF	CITATIONS
470	Light-Induced Aggregation and Disaggregation of Stimuli-Responsive Latex Particles Depending on Spiropyran Concentration: Kinetics of Photochromism and Investigation of Reversible Photopatterning. Langmuir, 2018, 34, 13910-13923.	1.6	62
471	Merocyanines of Nonâ€Activated Spiropyrans: Generation and Spectrokinetic Studies. ChemistrySelect, 2018, 3, 11065-11070.	0.7	7
472	Shining New Light on the Spiropyran Photoswitch: A Photocage Decides between <i>cis</i> – <i>trans</i> or Spiro-Merocyanine Isomerization. Journal of the American Chemical Society, 2018, 140, 14069-14072.	6.6	66
473	Wavelengthâ€Controlled Dynamic Metathesis: A Lightâ€Driven Exchange Reaction between Disulfide and Diselenide Bonds. Angewandte Chemie - International Edition, 2018, 57, 16426-16430.	7.2	103
474	Tunable Fluorescence from a Responsive Hyperbranched Polymer with Spatially Arranged Fluorophore Arrays. Chemistry - an Asian Journal, 2018, 13, 3723-3728.	1.7	7
475	Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors. Journal of Materials Chemistry C, 2018, 6, 11536-11551.	2.7	36
476	Use of rhodamine-allyl Schiff base in chemodosimetric processes for total palladium estimation and application in live cell imaging. New Journal of Chemistry, 2018, 42, 17351-17358.	1.4	7
477	Controlling Isomerization Selectivity in Chiral, Photochromic N,C-Chelate Organoboron Systems with Extended π-Conjugation. Journal of Organic Chemistry, 2018, 83, 11970-11977.	1.7	12
478	Enhanced Two-Photon Photochromism in Metasurface Perfect Absorbers. Nano Letters, 2018, 18, 6181-6187.	4.5	26
479	Light-assisted dynamic titration: from theory to an experimental protocol. Physical Chemistry Chemical Physics, 2018, 20, 23998-24010.	1.3	1
480	Structure–function relationships of donor–acceptor Stenhouse adduct photochromic switches. Chemical Science, 2018, 9, 8242-8252.	3.7	89
481	Molecular Orbital Delocalization/Localization-Induced Crystal-to-Crystal Photochromism of Schiff Bases without <i>ortho</i> -Hydroxyl Groups. Journal of Physical Chemistry C, 2018, 122, 24933-24940.	1.5	4
482	A practical green approach to diversified spirochromene/spiropyran scaffolds <i>via</i> a glucose–water synergy driven organocatalytic system. New Journal of Chemistry, 2018, 42, 17279-17290.	1.4	19
483	Mechanically controlled FRET to achieve high-contrast fluorescence switching. Science China Chemistry, 2018, 61, 1587-1593.	4.2	19
484	Flipping the Switch: Fast Photoisomerization in a Confined Environment. Journal of the American Chemical Society, 2018, 140, 7611-7622.	6.6	110
485	A photo-switchable and thermal-enhanced fluorescent hydrogel prepared from <i>N</i> -isopropylacrylamide with water-soluble spiropyran derivative. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1579-1594.	1.9	7
486	Preparation of cellulose colloidal particles in aqueous solution with good photochromic and photoluminescent performances by grafting a spiropyran derivative onto filter paper cellulose. Cellulose, 2018, 25, 4067-4078.	2.4	7
487	Photoswitchable double bonds: Synthetic strategies for tunability and versatility. Journal of Physical Organic Chemistry, 2018, 31, e3858.	0.9	42

#	Article	IF	CITATIONS
488	Visible Light–Induced Supraâ€Amphiphilic Switch Leads to Transition from Supramolecular Nanosphere to Nanovesicle Activated by Pillar[5]areneâ€Based Host–Guest Interaction. Macromolecular Rapid Communications, 2018, 39, e1800133.	2.0	11
489	Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold–Photoactive Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 19483-19493.	4.0	82
490	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie - International Edition, 2018, 57, 8063-8068.	7.2	70
491	Proton-Stabilized Photochemically Reversible <i>E</i> / <i>Z</i> Isomerization of Spiropyrans. Journal of Physical Chemistry B, 2018, 122, 6423-6430.	1.2	76
492	Photoswitchable AIE nanoprobe for lysosomal hydrogen sulfide detection and reversible dual-color imaging. Sensors and Actuators B: Chemical, 2018, 272, 340-347.	4.0	66
493	Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. Journal of the American Chemical Society, 2018, 140, 8027-8036.	6.6	137
494	Solvent Effects on the Actinic Step of Donor–Acceptor Stenhouse Adduct Photoswitching. Angewandte Chemie, 2018, 130, 8195-8200.	1.6	21
495	Nanosecond laser flash photolysis of a 6-nitroindolinospiropyran in solution and in nanocrystalline suspension under single excitation conditions. Photochemical and Photobiological Sciences, 2018, 17, 741-749.	1.6	10
496	Photoprogramming Allostery in Human Serum Albumin. Bioconjugate Chemistry, 2018, 29, 2215-2224.	1.8	3
497	Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coordination Chemistry Reviews, 2018, 372, 66-84.	9.5	80
498	A rapidly responsive photochromic hydrogel with high mechanical strength for ink-free printing. Journal of Materials Chemistry C, 2018, 6, 7619-7625.	2.7	31
501	Multi-Responsive Hydrogels Functionalized with a Photochromic Spiropyran-Conjugated Chitosan Network. Macromolecular Research, 2018, 26, 950-953.	1.0	19
502	A Multiaddressable Dyad with Switchable Cyan/Magenta/Yellow Colors for Full olor Rewritable Paper. Chemistry - A European Journal, 2018, 24, 12539-12545.	1.7	26
503	Isomerization and rearrangement of boriranes: from chemical rarities to functional materials. Science China Materials, 2018, 61, 1249-1256.	3.5	18
504	Tripodal Nâ€Functionalized Arylazoâ€3,5â€dimethylpyrazole Derivatives of Trimesic Acid: Photochromic Materials for Rewritable Imaging Applications. ChemPhotoChem, 2018, 2, 806-810.	1.5	18
505	Facile Synthesis and Photoactivity of Merocyanineâ€Photoacid Polymers. Macromolecular Rapid Communications, 2018, 39, e1800319.	2.0	18
506	Light-responsive bicyclic peptides. Organic and Biomolecular Chemistry, 2018, 16, 7588-7594.	1.5	23
507	Chromogenic Spiroindolinobenzopyrans of the Oxadiazole Series with Photodriven Ionochromic Properties. Doklady Chemistry, 2018, 481, 145-149.	0.2	2

#	Article	IF	CITATIONS
508	Design and Synthesis of Mechanoâ€Responsive Colorâ€Changing Thermoplastic Elastomer Based on Poly(<i>nâ€</i> Butyl Acrylate)–Spiropyranâ€Polystyrene Combâ€Structured Graft Copolymers. Macromolecular Materials and Engineering, 2018, 303, 1800154.	1.7	20
509	Reversible Fluorescence Modulation in a Dyad Comprising Phenothiazine Derivative and Spiropyran. Asian Journal of Organic Chemistry, 2018, 7, 2254-2262.	1.3	3
510	Multicolor Fluorescence Photoswitching: Colorâ€Correlated versus Colorâ€Specific Switching. Advanced Optical Materials, 2018, 6, 1800678.	3.6	78
511	Molecular Photoswitching Aided by Excitedâ€State Aromaticity. ChemPlusChem, 2018, 83, 958-967.	1.3	32
512	Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207.	3.6	111
513	Toward bidirectional photoswitchable colored photochromic molecules with visible light stability. Chemical Communications, 2018, 54, 9356-9359.	2.2	15
514	Direct Access by Mechanochemistry or Sonochemistry to Protonated Merocyanines: Components of a Fourâ€State Molecular Switch. ChemistryOpen, 2018, 7, 520-526.	0.9	7
515	Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Journal of the American Chemical Society, 2018, 140, 10425-10429.	6.6	121
516	Highly efficient photocontrol of mitotic kinesin Eg5 ATPase activity using a novel photochromic compound composed of two azobenzene derivatives. Journal of Biochemistry, 2018, 164, 295-301.	0.9	10
517	Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nature Communications, 2018, 9, 2661.	5.8	53
518	Progress in Photo-Responsive Polypeptide Derived Nano-Assemblies. Micromachines, 2018, 9, 296.	1.4	30
519	A Rationally Designed, Spiropyran-Based Chemosensor for Magnesium. Chemosensors, 2018, 6, 17.	1.8	11
520	New molecular switch architectures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9414-9422.	3.3	182
521	Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems. Frontiers in Chemistry, 2018, 6, 102.	1.8	27
522	Dynamic Metal–Ligand Bonds as Scaffolds for Autonomously Healing Multiâ€Responsive Materials. European Journal of Inorganic Chemistry, 2018, 2018, 2090-2100.	1.0	29
523	Differential reactivity of 3H-indole styrylcyanines: Intermolecular [4ï€Â+ 2ï€] cycloaddition vs. proton - shift coupled six - electron electrocyclization. Tetrahedron, 2018, 74, 2999-3006.	1.0	4
524	Palladium-Catalyzed Tandem Reaction of Three Aryl Iodides Involving Triple C–H Activation. Organic Letters, 2018, 20, 2997-3000.	2.4	45
525	Conjugated Polymer Nanoparticles with Appended Photoâ€Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angewandte Chemie, 2018, 130, 13298-13303.	1.6	11

#	Article	IF	Citations
526	Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-sensors. Carbohydrate Polymers, 2018, 200, 583-594.	5.1	72
527	Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems. Nature Chemistry, 2018, 10, 1031-1036.	6.6	76
528	Substituent Dependent Optical Properties of p-phenyl Substituted ethenyl-E-thiophenes. Journal of Fluorescence, 2018, 28, 1207-1216.	1.3	7
529	Conjugated Polymer Nanoparticles with Appended Photoâ€Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angewandte Chemie - International Edition, 2018, 57, 13114-13119.	7.2	120
530	Micro-Capillary Coatings Based on Spiropyran Polymeric Brushes for Metal Ion Binding, Detection, and Release in Continuous Flow. Sensors, 2018, 18, 1083.	2.1	14
531	Synthesis, Photophysical, Electrochemical, and Halochromic Properties of <i>peri</i> -Naphthoindigo. Organic Letters, 2018, 20, 5027-5031.	2.4	8
532	Tetraphenylethene-Induced Free Volumes for the Isomerization of Spiropyran toward Multifunctional Materials in the Solid State. ACS Applied Materials & Interfaces, 2018, 10, 30879-30886.	4.0	62
533	Switchable single fluorescent polymeric nanoparticles for stable white-light generation. Journal of Materials Chemistry C, 2018, 6, 9897-9902.	2.7	21
534	Highly Sensitive, Anisotropic, and Reversible Stress/Strainâ€5ensors from Mechanochromic Nanofiber Composites. Advanced Materials, 2018, 30, e1802813.	11.1	98
535	Building Strain with Large Macrocycles and Using It To Tune the Thermal Half-Lives of Hydrazone Photochromes. Journal of the American Chemical Society, 2018, 140, 11829-11835.	6.6	56
536	Turn-off mode fluorescent norbornadiene-based photoswitches. Physical Chemistry Chemical Physics, 2018, 20, 23195-23201.	1.3	17
537	Self-Assembled Pd(II) Barrels as Containers for Transient Merocyanine Form and Reverse Thermochromism of Spiropyran. Journal of the American Chemical Society, 2018, 140, 7952-7960.	6.6	134
538	Fluorescence activation with switchable oxazines. Chemical Communications, 2018, 54, 8799-8809.	2.2	37
539	Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells. Chemical Science, 2018, 9, 5816-5821.	3.7	49
540	Tuning of optical properties of p-phenyl ethenyl-E-furans: A Solvatochromism and Density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 396-404.	2.0	8
541	Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 2019, 98, 101149.	11.8	179
542	Two-Way Chromic Systems Based on Tetraarylanthraquinodimethanes: Electrochromism in Solution and Mechanofluorochromism in a Solid State. Bulletin of the Chemical Society of Japan, 2019, 92, 1211-1217.	2.0	25
543	A novel and durable photochromic cotton-based fabric prepared via thiol-ene click chemistry. Dyes and Pigments, 2019, 171, 107778.	2.0	38

#	Article	IF	CITATIONS
544	Photoactive Polyoxometalate/DASA Covalent Hybrids for Photopolymerization in the Visible Range. Chemistry - A European Journal, 2019, 25, 14349-14357.	1.7	8
545	Ultrafast ring-opening and solvent-dependent product relaxation of photochromic spironaphthopyran. Physical Chemistry Chemical Physics, 2019, 21, 18119-18127.	1.3	7
546	Modulating the Charge Transport in 2D Semiconductors via Energy‣evel Phototuning. Advanced Materials, 2019, 31, 1903402.	11.1	30
547	Oneâ€Pot Synthesis of Spiropyrans. Asian Journal of Organic Chemistry, 2019, 8, 1866-1869.	1.3	9
548	Multistimuli Responsive Nanocomposite Tectons for Pathway Dependent Self-Assembly and Acceleration of Covalent Bond Formation. Journal of the American Chemical Society, 2019, 141, 13234-13243.	6.6	40
549	Photoswitchable peptides for spatiotemporal control of biological functions. Chemical Communications, 2019, 55, 10192-10213.	2.2	77
550	Rod ellâ€Mimetic Photochromic Layered Ion Channels with Multiple Switchable States for Controllable Ion Transport. Chemistry - A European Journal, 2019, 25, 12795-12800.	1.7	8
551	Electronic investigation of light-induced reversible coordination of Co(II)/spiropyran complex. Dyes and Pigments, 2019, 171, 107757.	2.0	16
552	Binding of Flavylium Ions to Sulfonatocalix[4]arene and Implication in the Photorelease of Biologically Relevant Guests in Water. Journal of Organic Chemistry, 2019, 84, 10852-10859.	1.7	30
553	Light-Responsive, Shape-Switchable Block Copolymer Particles. Journal of the American Chemical Society, 2019, 141, 15348-15355.	6.6	90
554	Sequence Programming with Dynamic Boronic Acid/Catechol Binary Codes. Journal of the American Chemical Society, 2019, 141, 14026-14031.	6.6	26
555	Photo-Transformation Trajectories of Nitro-Spiropyran in Hybrid Compounds with [60]Fullerene. Journal of Physical Chemistry C, 2019, 123, 18215-18221.	1.5	3
556	110th Anniversary: Reversible Solubilization of Polar Polymers and Polymeric Catalysts in Nonpolar Solvents. Industrial & Engineering Chemistry Research, 2019, 58, 14579-14587.	1.8	3
557	A coloring tool for spiropyrans: solid state metal–organic complexation versus salification. CrystEngComm, 2019, 21, 4925-4933.	1.3	9
558	Spiropyrans for light-controlled drug delivery. Dalton Transactions, 2019, 48, 15537-15544.	1.6	35
559	Controlled photoisomerization in acrylic copolymer nanoparticles based on spironaphthoxazine for reduced thermal reversion. European Polymer Journal, 2019, 119, 487-498.	2.6	16
560	Revealing the Dependence of Molecular-Level Force Transfer and Distribution on Polymer Cross-Link Density via Mechanophores. ACS Macro Letters, 2019, 8, 882-887.	2.3	10
561	Selective sensing Ca ²⁺ with a spiropyranâ€based fluorometric probe. Luminescence, 2019, 34, 707-714.	1.5	14

#	Article	IF	CITATIONS
562	ON/OFF Photostimulation of Isatin Bipyridyl Hydrazones: Photochemical and Spectral Study. Molecules, 2019, 24, 2668.	1.7	5
563	Synergy of Electron Transfer and Charge Transfer in the Control of Photodynamic Behavior of Coordination Polymers. Chemistry - A European Journal, 2019, 25, 13152-13156.	1.7	19
564	Recent Advances on Stimuliâ€Responsive Smart Materials and their Applications. ChemPlusChem, 2019, 84, 1103-1121.	1.3	97
565	Photoâ€Powered Collapse of Supramolecular Polymers Based on an Overcrowded Alkene Switch. Chemistry - an Asian Journal, 2019, 14, 3141-3144.	1.7	4
566	Photo-Irresponsive Molecule-Amplified Cell Release on Photoresponsive Nanostructured Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 29681-29688.	4.0	18
567	Nitrogen Bridged Diazocines: Photochromes Switching within the Near-Infrared Region with High Quantum Yields in Organic Solvents and in Water. Journal of the American Chemical Society, 2019, 141, 13592-13600.	6.6	101
568	Multiaddressable Photochromic Architectures: From Molecules to Materials. Advanced Optical Materials, 2019, 7, 1900224.	3.6	78
569	Deciphering the grounds of the suitability of acylhydrazones as efficient photoswitches. Physical Chemistry Chemical Physics, 2019, 21, 16075-16082.	1.3	5
570	A multistimuli-responsive fluorescent switch in the solution and solid states based on spiro[fluorene-9,9′-xanthene]-spiropyran. Journal of Materials Chemistry C, 2019, 7, 9102-9111.	2.7	26
571	Light-responsive block copolymers with a spiropyran located at the block junction. European Polymer Journal, 2019, 119, 83-93.	2.6	4
572	Photochromic coumarin spiropyranes with switching of optical properties by lanthanide ions. Russian Chemical Bulletin, 2019, 68, 1223-1231.	0.4	6
573	Synthesis and study of new photochromic spiropyrans modified with carboxylic and aldehyde substituents. Journal of Molecular Structure, 2019, 1196, 409-416.	1.8	13
574	Metal ions doped into merocyanine form of coumarin derivatives: nonlinear optical molecular switches. Journal of Molecular Modeling, 2019, 25, 212.	0.8	4
575	Investigating the Photochemistry of Spiropyran Metal Complexes with Online LED-NMR. Inorganic Chemistry, 2019, 58, 15479-15486.	1.9	34
576	Inducing molecular isomerization assisted by water. Communications Chemistry, 2019, 2, .	2.0	35
578	Design and Synthesis of a Well-Controlled Mechanoluminescent Polymer System Based on Fluorescence Resonance Energy Transfer with Spiropyran as a Force-Activated Acceptor and Nitrobenzoxadiazole as a Fluorescent Donor. Macromolecules, 2019, 52, 7920-7928.	2.2	24
579	Solution Phase and Surface Photoisomerization of a Hydrazone Switch with a Long Thermal Half-Life. Journal of the American Chemical Society, 2019, 141, 17637-17645.	6.6	30
582	Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid and Polymer Science, 2019, 297, 1383-1401.	1.0	8

#	Article	IF	CITATIONS
583	Artificial phototropism for omnidirectional tracking and harvesting of light. Nature Nanotechnology, 2019, 14, 1048-1055.	15.6	191
584	New stable colored complex of Al 3+ with 1',3',3'â€trimethylspiro[2 H â€1â€benzopyranâ€2,2'â€indoline] (BIPS). Journal of Physical Organic Chemistry, 2019, 32, e4012.	0.9	0
585	X Inactivation and Escape: Epigenetic and Structural Features. Frontiers in Cell and Developmental Biology, 2019, 7, 219.	1.8	95
586	Ultrafast processes triggered by one- and two-photon excitation of a photochromic and luminescent hydrazone. Beilstein Journal of Organic Chemistry, 2019, 15, 2438-2446.	1.3	6
587	Visible-Light-Controlled Reaction-Separation for Asymmetric Sulfoxidation in Water with Photoresponsive Metallomicelles. ACS Sustainable Chemistry and Engineering, 2019, 7, 17967-17978.	3.2	17
588	Reversible and Photoresponsive Immobilization of Nonadherent Cells by Spiropyran-Conjugated PEG–Lipids. ACS Applied Bio Materials, 2019, 2, 33-38.	2.3	9
589	Azobenzene-Equipped Covalent Organic Framework: Light-Operated Reservoir. Journal of the American Chemical Society, 2019, 141, 19078-19087.	6.6	86
590	Photobreathing Zwitterionic Micelles. ChemSystemsChem, 2019, 1, e1900018.	1.1	3
591	Diarylethene-based conjugated polymer networks for ultrafast photochromic films. New Journal of Chemistry, 2019, 43, 15797-15803.	1.4	7
592	Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. Journal of Materials Chemistry C, 2019, 7, 11515-11521.	2.7	57
593	Colorimetric and Fluorescence-Based Detection of Mercuric Ion Using a Benzothiazolinic Spiropyran. Chemosensors, 2019, 7, 35.	1.8	24
594	An easily accessible isospiropyran switch. Organic and Biomolecular Chemistry, 2019, 17, 9124-9128.	1.5	2
595	Acid-base isomerization of hybrid molecules based on fullerene C60 and spiropyrans. Mendeleev Communications, 2019, 29, 229-231.	0.6	5
596	Polysilsesquioxane Nanowire Networks as an "Artificial Solvent―for Reversible Operation of Photochromic Molecules. Nano Letters, 2019, 19, 7106-7111.	4.5	23
597	Photoluminescence ON/OFF Switching of CdSe/ZnS Core/Shell Quantum Dots Coated with Diarylethene Ligands. Chemistry Letters, 2019, 48, 1394-1397.	0.7	11
598	Near-Infrared Microlasers from Self-Assembled Spiropyrane-Based Microsphercial Caps. ACS Applied Materials & Interfaces, 2019, 11, 38226-38231.	4.0	19
599	Molecular dynamics simulation of thermo-mechanical behaviour of elastomer cross-linked <i>via</i> multifunctional zwitterions. Physical Chemistry Chemical Physics, 2019, 21, 21615-21625.	1.3	2
600	Chemically and Mechanically Controlled Single-Molecule Switches Using Spiropyrans. ACS Applied Materials & Interfaces, 2019, 11, 36886-36894.	4.0	69

	CITATION RI	CITATION REPORT	
#	Article	IF	Citations
601	Damage-Reporting Carbon Fiber Epoxy Composites. ACS Applied Polymer Materials, 2019, 1, 2990-2997.	2.0	21
602	Eliminating Fatigue in Surface-Bound Spiropyrans. Journal of Physical Chemistry C, 2019, 123, 25908-25914.	1.5	10
603	Design, Synthesis, and Biological Evaluation of Novel Fused Spiro-4 <i>H</i> -Pyran Derivatives as Bacterial Biofilm Disruptor. ACS Omega, 2019, 4, 16794-16807.	1.6	33
604	Mechanics of innovative responsive polymers. Mechanics Research Communications, 2019, 100, 103403.	1.0	5
605	Dynamic Covalent Switches and Communicating Networks for Tunable Multicolor Luminescent Systems and Vapor-Responsive Materials. Journal of the American Chemical Society, 2019, 141, 16344-16353.	6.6	42
606	An AIE fluorescent switch with multi-stimuli responsive properties and applications for quantitatively detecting pH value, sulfite anion and hydrostatic pressure. Materials Chemistry Frontiers, 2019, 3, 1052-1061.	3.2	40
607	New Acylhydrazone Photoswitches with Quantitative Conversion and High Quantum Yield but without Hydrogen Bond Stabilizing (<i>Z</i>)-Isomer. ACS Applied Materials & Interfaces, 2019, 11, 7303-7310.	4.0	13
608	Dynamically Switching the Electronic and Electrostatic Properties of Indium–Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 1102-1110.	2.4	20
609	Insight into 6ï€ Electrocyclic Reactions of 1,8â€Đioxatetraene. Angewandte Chemie - International Edition, 2019, 58, 2660-2664.	7.2	9
610	Light-induced shape morphing of thin films. Current Opinion in Colloid and Interface Science, 2019, 40, 70-86.	3.4	38
611	Rewritable Optical Patterns in Light-Responsive Ultrahigh Molecular Weight Polyethylene. ACS Applied Polymer Materials, 2019, 1, 392-396.	2.0	16
612	Fast responsive photo-switchable dual-color fluorescent cyclodextrin nanogels for cancer cell imaging. Carbohydrate Polymers, 2019, 210, 379-388.	5.1	23
613	Recent Developments in Polydiacetylene-Based Sensors. Chemistry of Materials, 2019, 31, 1196-1222.	3.2	177
614	Rational Design of Reversible Molecular Photoswitches Based on Diarylethene Molecules. Journal of Physical Chemistry C, 2019, 123, 2736-2745.	1.5	8
615	Stimuli-responsive cellulose paper materials. Carbohydrate Polymers, 2019, 210, 350-363.	5.1	55
616	Modulating Noncovalent Cross-links with Molecular Switches. Journal of the American Chemical Society, 2019, 141, 3597-3604.	6.6	28
617	Reversible Hydrogel Photopatterning: Spatial and Temporal Control over Gel Mechanical Properties Using Visible Light Photoredox Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 24627-24638.	4.0	35
618	Photoâ€/Basoâ€Chromisms and the Application of a Dualâ€Addressable Molecular Switch. Chemistry - an Asian Journal, 2019, 14, 2838-2845.	1.7	9

	CHATION REPORT		
#	Article	IF	CITATIONS
619	Light-Stabilized Dynamic Materials. Journal of the American Chemical Society, 2019, 141, 12329-12337.	6.6	63
620	Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 114-115, 86-134.	3.9	52
622	Spiropyran-based photoswitchable dimethylaminopyridine. New Journal of Chemistry, 2019, 43, 8869-8872.	1.4	3
623	Synthesis, fabrication and characterization of polymer microgel/photochromic dye-based sandwiched sensors. Iranian Polymer Journal (English Edition), 2019, 28, 515-525.	1.3	9
624	Competition and Cooperation among Different Attractive Forces in Solutions of Inorganic–Organic Hybrids Containing Macroionic Clusters. Langmuir, 2019, 35, 7603-7616.	1.6	12
625	The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chemical Society Reviews, 2019, 48, 3406-3424.	18.7	421
626	Elastic carbon dot/polymer films for fluorescent tensile sensing and mechano-optical tuning. Carbon, 2019, 152, 363-371.	5.4	42
627	Photochromic transparent wood for photo-switchable smart window applications. Journal of Materials Chemistry C, 2019, 7, 8649-8654.	2.7	125
628	pHâ€Induced Fluorescence and Thermal Relaxation Rate Modulation in a Hydrazone Photoswitch. ChemPhotoChem, 2019, 3, 361-364.	1.5	11
629	Use of Photoacids and Photobases To Control Dynamic Self-Assembly of Gold Nanoparticles in Aqueous and Nonaqueous Solutions. Nano Letters, 2019, 19, 3804-3810.	4.5	42
630	Chiral Symmetry Breaking of Spiropyrans and Spirooxazines by Dynamic Enantioselective Crystallization. Chemistry - A European Journal, 2019, 25, 9758-9763.	1.7	9
631	Solvation Structure of Poly(benzyl methacrylate) in a Solvate Ionic Liquid: Preferential Solvation of Li–Glyme Complex Cation. Journal of Physical Chemistry B, 2019, 123, 4098-4107.	1.2	2
632	A Hierarchical Nanoparticleâ€inâ€Micropore Architecture for Enhanced Mechanosensitivity and Stretchability in Mechanochromic Electronic Skins. Advanced Materials, 2019, 31, e1808148.	11.1	113
633	Redox/pH Dual Stimuliâ€Responsive Acridine Spiropyran. Asian Journal of Organic Chemistry, 2019, 8, 863-866.	1.3	2
634	Multiple modulations for supramolecular hydrogels of bola-form surfactants bearing rigid and flexible groups. Soft Matter, 2019, 15, 5034-5041.	1.2	7
635	Asymmetric heterostructured SiO2/Al2O3 nanofluidic diodes modulating ionic transport for highly efficient light-gating device. Electrochimica Acta, 2019, 316, 266-272.	2.6	15
636	Lightâ€Responsive Polymer Membranes. Advanced Optical Materials, 2019, 7, 1900252.	3.6	45
637	Functionalization of 2D Materials with Photosensitive Molecules: From Lightâ€Responsive Hybrid Systems to Multifunctional Devices. Advanced Optical Materials, 2019, 7, 1900286.	3.6	44

#	Article	IF	CITATIONS
638	Novel group of negative photochromes containing a nitrile-rich acceptor: synthesis and photochromic properties. Research on Chemical Intermediates, 2019, 45, 4625-4636.	1.3	10
639	Tuning the photochromic properties of chromophores containing a nitrile-rich acceptor: a novel branch in the investigation of negative photochromes. New Journal of Chemistry, 2019, 43, 8414-8417.	1.4	20
640	Photocontrol of peptide secondary structure through non-azobenzene photoswitches. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 1-20.	5.6	30
641	Phase transition of spiropyrans: impact of isomerization dynamics at high temperatures. Chemical Communications, 2019, 55, 5813-5816.	2.2	17

642 Synthesis and solution behaviour of dual light- and temperature-responsive poly(triethylene) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 582 T

643	Layered photochromic films stacked from spiropyran-modified montmorillonite nanosheets. RSC Advances, 2019, 9, 12325-12330.	1.7	18
644	New Photochromic Salt Spiropyrans of Indoline Series. Doklady Chemistry, 2019, 484, 58-63.	0.2	2
645	Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: investigation of merocyanine-stacking effects on liposome–fiber assembly-transition. Soft Matter, 2019, 15, 3740-3750.	1.2	18
646	Reversible Photo-Switching of Dual-Color Fluorescent Mn-Doped CdS-ZnS Quantum Dots Modulated by Diarylethene Molecules. Frontiers in Chemistry, 2019, 7, 145.	1.8	13
647	Unusual Behavior of Donor–Acceptor Stenhouse Adducts in Confined Space of a Water-Soluble Pd ^{II} ₈ Molecular Vessel. Journal of the American Chemical Society, 2019, 141, 8638-8645.	6.6	84
648	Structure Property Analysis of the Solution and Solid-State Properties of Bistable Photochromic Hydrazones. Journal of the American Chemical Society, 2019, 141, 8364-8371.	6.6	92
649	Unusual concentration dependence of the photoisomerization reaction in donor-acceptor Stenhouse adducts. Photochemical and Photobiological Sciences, 2019, 18, 1587-1595.	1.6	42
650	(De)bonding on Demand with Optically Switchable Adhesives. Advanced Optical Materials, 2019, 7, 1900230.	3.6	82
651	Synthesis, Photo-, and Ionochromic Properties of Indolyl(thienyl)maleimides with Terpyridine Receptor. Russian Journal of General Chemistry, 2019, 89, 409-415.	0.3	1
652	Synthesis and Acid-Responsiveness of an Insulated π-Conjugated Polymer Containing Spiropyrans in Its Backbone. Molecules, 2019, 24, 1301.	1.7	8
653	Designing Molecular Photoswitches for Soft Materials Applications. Advanced Optical Materials, 2019, 7, 1900404.	3.6	99
654	New mechanism, new chromophore: investigating the electrophilic behaviour of styrylindolium dyes. Organic and Biomolecular Chemistry, 2019, 17, 4825-4834.	1.5	1
655	Ion-depended photochromism of oxadiazole containing spiropyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 201-210.	2.0	8

#	Article	IF	CITATIONS
656	High strength dual-crosslinked hydrogels with photo-switchable color changing behavior. European Polymer Journal, 2019, 116, 545-553.	2.6	12
657	Dinuclear ruthenium acetylide complexes with diethynylated anthrahydroquinone and anthraquinone frameworks: a multi-stimuli-responsive organometallic switch. Dalton Transactions, 2019, 48, 7432-7441.	1.6	11
658	Spiropyran <i>in Situ</i> Switching: A Real-Time Fluorescence Strategy for Tracking DNA G-Quadruplexes in Live Cells. Analytical Chemistry, 2019, 91, 5354-5361.	3.2	35
659	Selfâ€Assembly of Giant Polymer Vesicles by Lightâ€Assisted Solid Hydration. Macromolecular Rapid Communications, 2019, 40, 1900027.	2.0	11
660	Fulgimides as Lightâ€Activated Tools in Biological Investigations. European Journal of Organic Chemistry, 2019, 2019, 5018-5024.	1.2	32
661	Spiropyran as a potential molecular diagnostic tool for double-stranded RNA detection. BMC Biomedical Engineering, 2019, 1, 6.	1.7	10
662	Lightâ€Responsive Shape hanging Polymers. Advanced Optical Materials, 2019, 7, 1900067.	3.6	126
663	Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5350-5358.	6.6	90
664	Design and Applications of Photoresponsive Hydrogels. Advanced Materials, 2019, 31, e1807333.	11.1	353
665	Water Softening Using a Light-Responsive, Spiropyran-Modified Nanofiltration Membrane. Polymers, 2019, 11, 344.	2.0	18
666	Photoâ€Regulated Supramolecular Polymers: Shining Beyond Disassembly and Reassembly. Advanced Optical Materials, 2019, 7, 1900033.	3.6	60
667	Unique Photophysical Behavior of Coumarin-Based Viscosity Probes during Molecular Self-Assembly. ACS Omega, 2019, 4, 4785-4792.	1.6	2
668	Viscosity sensitive red shifted novel D-π-A carbazole chromophore with chlorine in π-spacer: Synthesis, photophysical properties, NLO study and DFT approach. Journal of Luminescence, 2019, 211, 162-175.	1.5	10
669	Easily Prepared and Reusable Films for Fast-Response Rewritable Light Printing. ACS Applied Materials & Interfaces, 2019, 11, 14322-14328.	4.0	25
670	Synthesis of functionalized diazocines for application as building blocks in photo- and mechanoresponsive materials. Beilstein Journal of Organic Chemistry, 2019, 15, 727-732.	1.3	25
671	Effect of Chemical Microenvironment in Spirothiopyran Monolayer Direct-Write Photoresists. Langmuir, 2019, 35, 3871-3879.	1.6	8
672	Development of a Photoswitchable Lithium-Sensitive Probe to Analyze Nonselective Cation Channel Activity in Migrating Cancer Cells. Molecular Pharmacology, 2019, 95, 573-583.	1.0	17
673	Photosensitive materials for constructing on-demanded drug-release systems. , 2019, , 193-210.		2

#	Article	IF	CITATIONS
674	Switching the Electronic Properties of ZnO Surfaces with Negative Tâ€Type Photochromic Pyridylâ€dihydropyrene Layers and Impact of Fermi Level Pinning. Advanced Materials Interfaces, 2019, 6, 1900211.	1.9	13
675	Photoswitchable polymerization catalysis: state of the art, challenges, and perspectives. Chemical Communications, 2019, 55, 4290-4298.	2.2	50
676	A Universal Approach toward Light-Responsive Two-Dimensional Electronics: Chemically Tailored Hybrid van der Waals Heterostructures. ACS Nano, 2019, 13, 4814-4825.	7.3	51
677	A ratiometric near-infrared fluorescence strategy based on spiropyran in situ switching for tracking dynamic changes of live-cell lysosomal pH. Dyes and Pigments, 2019, 166, 433-442.	2.0	40
678	Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Science Advances, 2019, 5, eaav7199.	4.7	198
679	Preparation of Thermochromic Films from Latexes Made by Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2019, 13, 1900009.	0.9	2
680	Light-Controlled in Vitro Gene Delivery Using Polymer-Tethered Spiropyran as a Photoswitchable Photosensitizer. ACS Applied Materials & Interfaces, 2019, 11, 15222-15232.	4.0	12
681	Insight into 6ï€ Electrocyclic Reactions of 1,8â€Dioxatetraene. Angewandte Chemie, 2019, 131, 2686-2690.	1.6	0
682	Photochromic Diarylethenes Designed for Surface Deposition: From Selfâ€Assembled Monolayers to Single Molecules. ChemPlusChem, 2019, 84, 564-577.	1.3	6
683	Chemical Locking in Molecular Tunneling Junctions Enables Nonvolatile Memory with Large On–Off Ratios. Advanced Materials, 2019, 31, 1807831.	11.1	56
684	Conjugated prototropic and ring opening rearrangements in Schiff base derivatives of formyl functionalized 2-oxaindane series spiropyran: synthesis, NMR, IR, UV/Vis, and DFT study. Structural Chemistry, 2019, 30, 1381-1393.	1.0	6
685	Photoinduced Reversible Solidâ€toâ€Liquid Transitions for Photoswitchable Materials. Angewandte Chemie - International Edition, 2019, 58, 9712-9740.	7.2	208
686	Photoinduzierte, reversible Festâ€flüssigâ€Ãœbergäge unter Verwendung photoschaltbarer Materialien. Angewandte Chemie, 2019, 131, 9814-9843.	1.6	22
687	Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorganic Chemistry, 2019, 58, 3968-3981.	1.9	33
688	Solid Materials with Tunable Reverse Photochromism. ACS Applied Materials & Interfaces, 2019, 11, 11884-11892.	4.0	54
689	DNA-binding mechanism of spiropyran photoswitches: the role of electrostatics. Physical Chemistry Chemical Physics, 2019, 21, 8614-8618.	1.3	6
690	Design, synthesis and study of a photochromic α,ω-diene: toward new classes of photoswitchable polymers. Organic and Biomolecular Chemistry, 2019, 17, 2486-2491.	1.5	4
691	Tuning Merocyanine Photoacid Structure to Enhance Solubility and Temporal Control: Application in Ring Opening Polymerization. ChemPhotoChem, 2019, 3, 467-472.	1.5	31

		CITATION REPORT		
#	Article		IF	CITATIONS
692	Insights into the mechanochromism of spiropyran elastomers. Polymer Chemistry, 2019,	10, 1650-1659.	1.9	33
693	One-Pot Synthesis and Structure Study of a New Indoline Spiropyran with Cationic Subst Doklady Chemistry, 2019, 488, 252-256.	ituent.	0.2	4
694	Photoregulation between small DNAs and reversible photochromic molecules. Biomateria 2019, 7, 4944-4962.	ıls Science,	2.6	26
695	Light and ferric ion responsive fluorochromic hydrogels with high strength and self-healir Polymer Chemistry, 2019, 10, 6481-6488.	g ability.	1.9	19
696	Functional and smart materials by electrospinning for advanced applications. AIP Confere Proceedings, 2019, , .	ence	0.3	0
698	The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polymer 2019, 10, 5686-5720.	Chemistry,	1.9	141
699	Nanostructured and Photochromic Material for Environmental Detection of Metal Ions. N 2019, 24, 4243.	10lecules,	1.7	13
700	Photoresponsive spiro-polymers generated in situ by C–H-activated polyspiroannulatio Communications, 2019, 10, 5483.	n. Nature	5.8	46
702	Dye Clicked Thermoplastic Polyurethane as a Generic Platform toward Chromic-Polymer / Scientific Reports, 2019, 9, 18648.	Applications.	1.6	7
703	Electro-activity and magnetic switching in lanthanide-based single-molecule magnets. Inc Chemistry Frontiers, 2019, 6, 3398-3417.	organic	3.0	55
704	Light on the Structural Evolution of Photoresponsive Molecular Switches in Electronically States. Chemistry - A European Journal, 2019, 25, 6252-6258.	' Excited	1.7	2
705	Lichtinduziertes Schalten der LeitfĤigkeit von MOFs mit eingelagertem Spiropyran. Ang Chemie, 2019, 131, 1205-1210.	ewandte	1.6	27
706	Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic app Advanced Drug Delivery Reviews, 2019, 138, 148-166.	lications.	6.6	69
707	Supramolecular Control of Azobenzene Switching on Nanoparticles. Journal of the Ameri Chemical Society, 2019, 141, 1949-1960.	can	6.6	85
708	Light-Responsive Size of Self-Assembled Spiropyran–Lysozyme Nanoparticles with Enzy Biomacromolecules, 2019, 20, 979-991.	matic Function.	2.6	22
709	Rational design of SR-Fe3O4@AMEO@SP composites with light and magnetism dual stir properties. Chemical Physics Letters, 2019, 714, 11-17.	nuli-responsive	1.2	8
710	Mechanics of materials with embedded unstable molecules. International Journal of Solid Structures, 2019, 162, 21-35.	s and	1.3	11
711	Conductance Photoswitching of Metal–Organic Frameworks with Embedded Spiropyra Chemie - International Edition, 2019, 58, 1193-1197.	an. Angewandte	7.2	116

#	Article	IF	CITATIONS
712	Concurrent reaction and diffusion in photo-responsive hydrogels. Journal of the Mechanics and Physics of Solids, 2019, 124, 599-611.	2.3	17
713	New photochromic indoline spiropyrans containing cationic substituent in the 2H-chromene moiety. Journal of Molecular Structure, 2019, 1178, 590-598.	1.8	16
714	Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chemistry - A European Journal, 2019, 25, 5128-5144.	1.7	232
715	Photoswitchable Hostâ€Guest Systems Incorporating Hemithioindigo and Spiropyran Units. ChemPhotoChem, 2019, 3, 304-317.	1.5	20
716	Metalâ€Organic Frameworks as Hosts for Fluorinated Azobenzenes: A Path towards Quantitative Photoswitching with Visible Light. Chemistry - A European Journal, 2019, 25, 3606-3616.	1.7	44
717	Mechanistic Interplay between Light Switching and Guest Binding in Photochromic [Pd ₂ Dithienylethene ₄] Coordination Cages. Journal of the American Chemical Society, 2019, 141, 2097-2103.	6.6	132
718	A Redox Strategy for Light-Driven, Out-of-Equilibrium Isomerizations and Application to Catalytic C–C Bond Cleavage Reactions. Journal of the American Chemical Society, 2019, 141, 1457-1462.	6.6	167
719	Reversible Laser Threshold Modulation in Dithienylethene Conjugated Polymer Blends: A Concept for <i>q</i> -Switching in Organic DFB Lasers. ACS Photonics, 2019, 6, 558-564.	3.2	5
720	Photochromic Ionic Liquids Containing Cationic Spiropyran Derivatives. ChemPhotoChem, 2019, 3, 28-30.	1.5	17
721	Third-order nonlinear optical properties of the "clicked―closed-ring spiropyrans. Dyes and Pigments, 2019, 162, 451-458.	2.0	11
722	Direct Imaging of Photoswitching Molecular Conformations Using Individual Metal Atom Markers. ACS Nano, 2019, 13, 87-96.	7.3	22
723	Switchable Plasmonic Nanocomposites. Advanced Optical Materials, 2019, 7, 1801101.	3.6	30
724	A mild and sequentially Pd/Cu-catalyzed domino synthesis of acidochromic Indolo[3,2-a]carbazoles – Free bases of apocyanine dyes. Dyes and Pigments, 2020, 173, 107890.	2.0	2
725	Fluorescent probes based on benzothiazole-spiropyran derivatives for pH monitoring in vitro and in vivo. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 225, 117506.	2.0	23
726	High tri-stimulus response photochromic cotton fabrics based on spiropyran dye by thiol-ene click chemistry. Cellulose, 2020, 27, 493-510.	2.4	41
727	Polymeric Photoacids Based on Naphthols—Design Criteria, Photostability, and Lightâ€Mediated Release. Chemistry - A European Journal, 2020, 26, 2365-2379.	1.7	10
728	Multi-Responsive Ibuprofen-Imprinted Core–Shell Nanocarriers for Specific Drug Recognition and Controlled Release. ACS Applied Nano Materials, 2020, 3, 1147-1152.	2.4	12
729	The Many Ways to Assemble Nanoparticles Using Light. Advanced Materials, 2020, 32, e1905866.	11.1	70

ARTICLE IF CITATIONS # Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and 730 5.153 authentication security documents. Carbohydrate Polymers, 2020, 230, 115603. Photophysics Modulation in Photoswitchable Metal–Organic Frameworks. Chemical Reviews, 2020, 23.0 120, 8790-8813. Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: 732 7.8 34 Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 2.0 24 118041. Tunable Fluorescence and Room-Temperature Phosphorescence from Multiresponsive Pure Organic 734 1.8 27 Copolymers. Industrial & amp; Engineering Chemistry Research, 2020, 59, 1578-1583. Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on $\hat{a} \in$ "off ratio. Chemical Science, 2020, 11, 1404-1410. 3.7 Chemistry of photoswitching molecules in the confined nanospace of aqueous molecular vessels. 736 1.6 11 Dalton Transactions, 2020, 49, 1716-1720. Self-reporting mechanochromic coating: a glassfiber reinforced polymer composite that predicts 6.4 impact induced damage. Materials Horizons, 2020, 7, 598-604. Recent progress in the development of molecular-scale electronics based on photoswitchable 738 2.7 111 molecules. Journal of Materials Chemistry C, 2020, 8, 821-848. Novel Photoactive Spirooxazine Based Switch@MOF Composite Materials. ChemPhotoChem, 2020, 4, 1.5 195-206. Merocyanines in a Halogen-Bonded Network Involving Inorganic Building Blocks. Crystal Growth and 740 1.4 10 Design, 2020, 20, 608-616. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chemical 741 325 Reviews, 2020, 120, 310-433. Reconfigurable Surfaces Based on Photocontrolled Dynamic Bonds. Advanced Functional Materials, 742 7.8 27 2020, 30, 1907605. Self-plasticized, lumogallion-based fluorescent optical sensor for the determination of aluminium (III) 743 2.6 with ultra-low detection limits. Analytica Chimica Acta, 2020, 1101, 141-148. Enhanced radiosensitivity of LNCaP prostate cancer cell line by gold-photoactive nanoparticles 744 1.3 18 modified with folic acid. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101602. Spectroscopic study of the pH dependence of the optical properties of a water-soluble molecular 745 photo-switch. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117576. Multi-responsive hydrogel actuator with photo-switchable color changing behaviors. Dyes and 746 2.0 37 Pigments, 2020, 174, 108042. Directing the solid-state photochromic and luminescent behaviors of spiromolecules with Dawson 747 and Anderson polyoxometalate units. Journal of Materials Chemistry C, 2020, 8, 637-649.

#	Article	IF	CITATIONS
748	Light-induced capacitance switching in spiropyran-based capacitors. Sensors and Actuators A: Physical, 2020, 302, 111804.	2.0	3
749	Computational study of [(phenanthroline)2FeII/III–(terephthalate)–CoIII/II(phenanthroline)2]3+ binuclear complex. Structural Chemistry, 2020, 31, 809-821.	1.0	1
750	Advanced Photoresponsive Materials Using the Metal–Organic Framework Approach. Advanced Materials, 2020, 32, e1905227.	11.1	184
751	Monolithic Spiropyran-Based Porous Polysilsesquioxanes with Stimulus-Responsive Properties. ACS Applied Materials & Interfaces, 2020, 12, 47754-47762.	4.0	18
752	Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nature Communications, 2020, 11, 5055.	5.8	29
753	A hydrogen peroxide activatable nanoprobe for light-controlled "double-check―multi-colour fluorescence imaging. Nanoscale, 2020, 12, 22527-22533.	2.8	15
754	Replacement of the Hetarene Moiety of Molecule in the Synthesis of Indoline Spiropyran with Cationic Fragment. Doklady Chemistry, 2020, 492, 76-83.	0.2	5
755	Solvent-free and anticounterfeiting fluorescent inks based on epoxy-functionalized polyacrylic nanoparticles modified with Rhodamine B for cellulosic substrates. Journal of Industrial and Engineering Chemistry, 2020, 92, 287-296.	2.9	16
756	Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano, 2020, 14, 14417-14492.	7.3	314
757	Molecular Switches and Motors Powered by Orthogonal Stimuli. European Journal of Organic Chemistry, 2020, 2020, 7254-7283.	1.2	21
758	Polymeric nanoparticles based on CDs with photoreversible dual-color fluorescence modulation. Journal of Materials Chemistry C, 2020, 8, 15697-15704.	2.7	8
759	Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution. Nanoscale, 2020, 12, 17203-17212.	2.8	4
760	Design principles of dual-functional molecular switches in solid-state tunnel junctions. Applied Physics Letters, 2020, 117, .	1.5	20
761	N-isopropylacrylamide and spiropyran copolymer-grafted fluorescent carbon nanoparticles with dual responses to light and temperature stimuli. Polymer Journal, 2020, 52, 1289-1298.	1.3	2
762	Structure and Photochromic Properties of New Spiropyrans of Indoline Series Containing Free Carboxylic Groups. Journal of Surface Investigation, 2020, 14, 534-539.	0.1	3
763	From chromic switchable hydrazones to smart materials. Materials Chemistry and Physics, 2020, 254, 123456.	2.0	64
764	Novel Photo- and Ionochromic Benzothiazole-Substituted Spirobipyrans. Doklady Chemistry, 2020, 494, 141-144.	0.2	1
765	Using Visible Light to Tune Boronic Acid–Ester Equilibria. Journal of the American Chemical Society, 2020, 142, 19969-19979.	6.6	41

#	Article	IF	CITATIONS
766	Photoactivated Refractive Index Anisotropy in Fluorescent Thiophene Derivatives. Journal of Physical Chemistry C, 2020, 124, 25465-25472.	1.5	1
767	Controlling the S ₁ Energy Profile by Tuning Excited-State Aromaticity. Journal of the American Chemical Society, 2020, 142, 14985-14992.	6.6	48
768	A sunlight-responsive metal–organic framework system for sustainable water desalination. Nature Sustainability, 2020, 3, 1052-1058.	11.5	131
769	Photoplasticization Behavior and Photoinduced Pressure-Sensitive Adhesion Properties of Various Polymers Containing an Azobenzene-Doped Liquid Crystal. Bulletin of the Chemical Society of Japan, 2020, 93, 1588-1594.	2.0	7
770	Photoswitching Molecular Junctions: Platforms and Electrical Properties. ChemPhysChem, 2020, 21, 2368-2383.	1.0	17
771	Dual Emission: Classes, Mechanisms, and Conditions. Angewandte Chemie - International Edition, 2021, 60, 22624-22638.	7.2	158
772	Lightâ€Ðriven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors. Small, 2020, 16, e2002135.	5.2	34
773	Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. Langmuir, 2020, 36, 10639-10656.	1.6	43
774	Immobilization of UiO-67 with photochromic spiropyrans: a quantum chemical study. Journal of Molecular Modeling, 2020, 26, 212.	0.8	2
775	Noncommutative Switching of Double Spiropyrans. Journal of Physical Chemistry A, 2020, 124, 6458-6467.	1.1	6
776	The photo-/thermo-chromism of spiropyran in alkanes as a temperature abuse indicator in the cold chain of vaccines. New Journal of Chemistry, 2020, 44, 15350-15353.	1.4	10
777	Thermodynamics and kinetics of protonated merocyanine photoacids in water. Chemical Science, 2020, 11, 8457-8468.	3.7	53
778	Photochromism for optically functionalized organic field-effect transistors: a comprehensive review. Journal of Materials Chemistry C, 2020, 8, 10956-10974.	2.7	48
779	Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Frontiers in Materials, 2020, 7, .	1.2	40
780	Optical properties of 3-substituted indoles. RSC Advances, 2020, 10, 28213-28224.	1.7	17
781	Photofunctions of Dye-Clay Hybrids: Recent Developments. Structure and Bonding, 2020, , 251-320.	1.0	7
782	Optimization of FRET Behavior in Photoswitchable [2]Rotaxanes Containing Bifluorophoric Naphthalimide Donor and Merocyanine Acceptor with Sensor Approaches toward Sulfite Detection. Chemistry of Materials, 2020, 32, 9371-9389.	3.2	23
783	Supramolecular chiroptical switches. Chemical Society Reviews, 2020, 49, 9095-9120.	18.7	213

#	Article	IF	CITATIONS
784	Photostimulated Spiropyran for Instantaneous Visualization of Thermal Field Distribution and Flow Pattern. Journal of the American Chemical Society, 2020, 142, 20066-20070.	6.6	22
785	Photoactive Molecules within MOFs. Structure and Bonding, 2020, , 105-153.	1.0	2
786	Arene Substitution Design for Controlled Conformational Changes of Dibenzocycloocta-1,5-dienes. Journal of the American Chemical Society, 2020, 142, 16651-16660.	6.6	11
787	Stabilization of the Closedâ€Ring Isomer of Spiropyran by Amide Naphthotube in Water and Its Application in Nakedâ€Eye Detection of Toxic Paraoxon. ChemPhysChem, 2020, 21, 2249-2253.	1.0	5
788	Hydrazones as New Molecular Tools. CheM, 2020, 6, 2162-2173.	5.8	82
789	A Mechanochemical Reaction Cascade for Controlling Loadâ€Strengthening of a Mechanochromic Polymer. Angewandte Chemie, 2020, 132, 22164-22169.	1.6	9
790	Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nature Communications, 2020, 11, 4731.	5.8	20
791	Synthesis and photoswitchable amphiphilicity and self-assembly properties of photochromic spiropyran derivatives. Journal of Materials Chemistry C, 2020, 8, 13676-13685.	2.7	32
792	Photochromic nanocellulose composite films with excellent anti-UV capacity. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
793	Molecular Photoswitching in Confined Spaces. Accounts of Chemical Research, 2020, 53, 2600-2610.	7.6	86
794	Spiropyranâ€Functionalized Polymer–Carbon Nanotube Hybrids for Dynamic Optical Memory Devices and UV Sensors. Advanced Electronic Materials, 2020, 6, 2000717.	2.6	18
795	Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013.	6.6	118
796	Trisaminocyclopropenium Cations as Small-Molecule Organic Fluorophores: Design Guidelines and Bioimaging Applications. Journal of Organic Chemistry, 2020, 85, 13997-14011.	1.7	12
797	Highly Efficient Förster Resonance Energy Transfer Modulations of Dual-AIEgens between a Tetraphenylethylene Donor and a Merocyanine Acceptor in Photo-Switchable [2]Rotaxanes and Reversible Photo-Patterning Applications. ACS Applied Materials & Interfaces, 2020, 12, 47921-47938.	4.0	43
798	Enhancement of Mechano-Sensitivity for Spiropyran-Linked Poly(dimethylsiloxane) via Solvent Swelling. Macromolecules, 2020, 53, 7954-7961.	2.2	16
799	Fusion of aggregation-induced emission and photochromics for promising photoresponsive smart materials. Materials Chemistry Frontiers, 2020, 4, 3153-3175.	3.2	65
800	Polymeric nano-carriers for on-demand delivery of genes <i>via</i> specific responses to stimuli. Journal of Materials Chemistry B, 2020, 8, 9621-9641.	2.9	22
801	A Mechanochemical Reaction Cascade for Controlling Loadâ€Strengthening of a Mechanochromic Polymer. Angewandte Chemie - International Edition, 2020, 59, 21980-21985.	7.2	43

# 802	ARTICLE Tunable Long-Range Interactions between Self-Trapped Beams driven by the Thermal Response of Photoresponsive Hydrogels. Chemistry of Materials, 2020, 32, 10594-10600.	IF 3.2	CITATIONS 4
803	Design, synthesis and applications of responsive macrocycles. Communications Chemistry, 2020, 3, .	2.0	45
804	Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Science Robotics, 2020, 5, .	9.9	163
805	Rational design of [<i>e</i>]-fusion induced high-performance DHP/CPD based photoswitches. Physical Chemistry Chemical Physics, 2020, 22, 26255-26264.	1.3	2
806	Lightâ€Fuelled Selfâ€Assembly of Cyclic Peptides into Supramolecular Tubules. ChemSystemsChem, 2020, 2, e2000012.	1.1	19
807	Manipulating the fluorescence lifetime at the sub-cellular scale via photo-switchable barcoding. Nature Communications, 2020, 11, 2460.	5.8	49
808	Light-gated cation-selective transport in metal–organic framework membranes. Journal of Materials Chemistry A, 2020, 8, 11399-11405.	5.2	54
809	Light-switchable anchors on magnetized biomorphic microcarriers. Journal of Materials Chemistry B, 2020, 8, 4831-4835.	2.9	4
810	Tuning Aqueous Supramolecular Polymerization by an Acidâ€Responsive Conformational Switch. Chemistry - A European Journal, 2020, 26, 10005-10013.	1.7	9
811	Light and latex: advances in the photochemistry of polymer colloids. Polymer Chemistry, 2020, 11, 3498-3524.	1.9	22
812	Intelligent Environmental Sensing: Fabrication of Switchable, Reusable, and Highly Sensitive Gas Sensors with Spiropyran-Grafted Anodic Aluminum Oxide Templates. Journal of Physical Chemistry C, 2020, 124, 11870-11876.	1.5	12
813	Effect of Structure and Intramolecular Distances on Photoswitchable Magnetic Resonance Imaging Contrast Agents. Journal of Organic Chemistry, 2020, 85, 7333-7341.	1.7	2
814	Phototropic Aggregation and Light-Guided Long-Distance Collective Transport of Colloidal Particles. Langmuir, 2020, 36, 6819-6827.	1.6	10
815	Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydrate Polymers, 2020, 245, 116507.	5.1	43
816	Driving Smart Molecular Systems by Artificial Molecular Machines. Advanced Intelligent Systems, 2020, 2, 1900169.	3.3	17
817	Localization of Spiropyran Activation. Langmuir, 2020, 36, 5847-5854.	1.6	7
818	Photoinduced Forward and Backward Pedalo-Type Motion of a Molecular Switch. Journal of Physical Chemistry Letters, 2020, 11, 4741-4746.	2.1	3
819	The "labile―chemical bond: A perspective on mechanochemistry in polymers. Polymer, 2020, 202, 122639.	1.8	34

#	Article	IF	CITATIONS
820	One-Pot Aldol Cascade for the Preparation of Isospiropyrans, Flavylium Salts, and bis-Spiropyrans. Journal of Organic Chemistry, 2020, 85, 8013-8020.	1.7	2
821	Epoxide and oxetane based liquid crystals for advanced functional materials. Soft Matter, 2020, 16, 5116-5119.	1.2	14
822	Differences in the optical properties of photochromic lenses between cold and warm temperatures. PLoS ONE, 2020, 15, e0234066.	1.1	3
823	Efficient Photomodulation of Visible Eu(III) and Invisible Yb(III) Luminescences using DTE Photochromic Ligands for Optical Encryption. Advanced Functional Materials, 2020, 30, 2002943.	7.8	40
824	Direct synthesis of variously substituted negative photochromes of hydroxytricyanopyrrole (HTCP) series. Synthetic Communications, 2020, 50, 2413-2421.	1.1	4
825	Solid-state photochromic molecular switches based on axially chiral and helical spiropyrans. Dyes and Pigments, 2020, 181, 108597.	2.0	25
826	Surface Plasmon-Enhanced Switching Kinetics of Molecular Photochromic Films on Gold Nanohole Arrays. Nano Letters, 2020, 20, 5243-5250.	4.5	11
827	An engineer's introduction to mechanophores. Soft Matter, 2020, 16, 6230-6252.	1.2	47
828	A multiphysics model of photo-sensitive hydrogels in response to light-thermo-pH-salt coupled stimuli for biomedical applications. Bioelectrochemistry, 2020, 135, 107584.	2.4	12
829	Swelling mechanism in smart polymers responsive to mechano-chemical stimuli. Journal of the Mechanics and Physics of Solids, 2020, 143, 104011.	2.3	20
830	Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nature Materials, 2020, 19, 900-909.	13.3	186
831	Structural and Electronic Characterization of a Photoresponsive Lanthanum(III) Complex Incorporated into Electrospun Fibers for Phosphate Ester Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 28607-28615.	4.0	8
832	Guiding Charge Transport in Semiconducting Carbon Nanotube Networks by Local Optical Switching. ACS Applied Materials & Interfaces, 2020, 12, 28392-28403.	4.0	11
833	Solid-state photochromism and acidochromism multifunctional materials constructed by tetraphenylethene and spiropyran. Journal of Materials Science, 2020, 55, 12826-12835.	1.7	21
834	A Photoisomerizationâ€Activated Intramolecular Chargeâ€Transfer Process for Broadbandâ€Tunable Singleâ€Mode Microlasers. Angewandte Chemie - International Edition, 2020, 59, 15992-15996.	7.2	31
835	A bacterial infection-microenvironment activated nanoplatform based on spiropyran-conjugated glycoclusters for imaging and eliminating of the biofilm. Chemical Engineering Journal, 2020, 399, 125787.	6.6	30
836	A Photoisomerizationâ€Activated Intramolecular Chargeâ€Transfer Process for Broadbandâ€Tunable Singleâ€Mode Microlasers. Angewandte Chemie, 2020, 132, 16126-16130.	1.6	3
837	Photoinduced Strainâ€Assisted Synthesis of a Stiffâ€Stilbene Polymer by Ringâ€Opening Metathesis Polymerization. Chemistry - A European Journal, 2020, 26, 14828-14832.	1.7	7

#	Article	IF	CITATIONS
838	Tunable solid-state photochromism based on proton and anion-controlled structural transformation of pyridinium-based organic small molecules. Monatshefte Für Chemie, 2020, 151, 757-763.	0.9	0
839	Polymer mechanochemistry-enabled pericyclic reactions. Polymer Chemistry, 2020, 11, 2274-2299.	1.9	75
840	Benzothiazolyl substituted spiropyrans with ion-driven photochromic transformation. Dyes and Pigments, 2020, 178, 108337.	2.0	16
841	Nonadiabatic Dynamics Simulations on Early-Time Photochemistry of Spirobenzopyran. Journal of Physical Chemistry A, 2020, 124, 2547-2559.	1.1	16
842	Stiff‣tilbene Photoswitches: From Fundamental Studies to Emergent Applications. Angewandte Chemie - International Edition, 2020, 59, 13192-13202.	7.2	106
843	Stiff‣tilbene Photoswitches: From Fundamental Studies to Emergent Applications. Angewandte Chemie, 2020, 132, 13292-13302.	1.6	19
844	Solid-state photoswitching molecules: structural design for isomerization in condensed phase. Materials Today Advances, 2020, 6, 100058.	2.5	83
845	Switching the recognition ability of a photoswitchable receptor towards phosphorylated anions. Chemical Communications, 2020, 56, 4172-4175.	2.2	15
846	Highly Stretchable Tough Elastomers Crosslinked by Spiropyran Mechanophores for Strainâ€Induced Colorimetric Sensing. Macromolecular Chemistry and Physics, 2020, 221, 2000190.	1.1	23
847	Self-assembling behaviour of new functional photosensitive cinnamoyl-based reactive mesogens. Liquid Crystals, 2020, 47, 2276-2291.	0.9	19
848	Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine–quinolizinium conjugates. Beilstein Journal of Organic Chemistry, 2020, 16, 904-916.	1.3	3
849	Encapsulins—Bacterial Protein Nanocompartments: Structure, Properties, and Application. Biomolecules, 2020, 10, 966.	1.8	29
850	Earth-Abundant d-Block Metal Nanocatalysis for Coupling Reactions in Polyols. Molecular Catalysis, 2020, , 249-280.	1.3	2
851	Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety. Journal of Molecular Structure, 2020, 1221, 128808.	1.8	10
852	Substituent Effect Induces Emission Modulation of Stilbene Photoswitches by Spatial Tuning of the N/B Electronic Constraints. Organic Letters, 2020, 22, 5758-5762.	2.4	16
853	Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances, 2020, 8, 100088.	2.5	67
854	Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromolecular Rapid Communications, 2020, 41, 2000305.	2.0	8
855	Multi-Stimuli Responsive FRET Processes of Bifluorophoric AlEgens in an Amphiphilic Copolymer and Its Application to Cyanide Detection in Aqueous Media. ACS Applied Materials & Interfaces, 2020, 12, 10959-10972.	4.0	81

#	Article	IF	CITATIONS
856	Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3953-3959.	3.3	12
857	Silicon Microcantilever Sensors to Detect the Reversible Conformational Change of a Molecular Switch, Spiropyan. Sensors, 2020, 20, 854.	2.1	11
858	Cell adhesion control by photoinduced LCST shift of PNIPAAm-based brush scaffolds. Journal of Materials Chemistry B, 2020, 8, 2393-2399.	2.9	16
859	A Lightâ€Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity. Angewandte Chemie, 2020, 132, 7806-7811.	1.6	7
860	Functionalization of amine-cured epoxy resins by boronic acids based on dynamic dioxazaborocane formation. Polymer Chemistry, 2020, 11, 5356-5364.	1.9	23
861	Why thermal isomerization of the chromic switch spiropyran-merocyanine is enhance in polar protic solvents. A computational study of the reaction mechanism. Physica Scripta, 2020, 95, 055402.	1.2	7
862	Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chemical Science, 2020, 11, 2085-2092.	3.7	23
863	Wide-range line shape control of Fano-like resonances in all-dielectric multilayer structures based on enhanced light absorption in photochromic waveguide layers. Journal of Applied Physics, 2020, 127, 073103.	1.1	3
864	Mechanical switching of current–voltage characteristics in spiropyran single-molecule junctions. Nanoscale, 2020, 12, 7527-7531.	2.8	19
865	A Lightâ€Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity. Angewandte Chemie - International Edition, 2020, 59, 7732-7737.	7.2	96
866	Progressive Readout Platform Based on Photoswitchable Polyacrylic Nanofibers Containing Spiropyran in Photopatterning with Instant Responsivity to Acid–Base Vapors. Macromolecules, 2020, 53, 1613-1622.	2.2	48
867	Rewritable Spiropyran/Polyacrylonitrile Hybrid Nanofiber Membrane Prepared by Electrospinning. Nano, 2020, 15, 2050013.	0.5	7
868	Spiropyran Sulfonates for Photo- and pH-Responsive Air–Water Interfaces and Aqueous Foam. Langmuir, 2020, 36, 6871-6879.	1.6	36
869	Highly Efficient Synthesis of Hindered 3-Azoindoles via Metal-Free C–H Functionalization of Indoles. Synthesis, 2020, 52, 574-580.	1.2	4
870	Photoswitchable spiropyran-capped hybrid nanoparticles based on UV-emissive and dual-emissive upconverting nanocrystals for bioimaging. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112303.	2.0	11
871	Mechanism of the photo triggered ring-opening reaction of spiropyran derivatives (SP-X1-7; X1-7 = H,) Tj ETQq1 1 Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112410.	0.784314 2.0	ł rgBT /Overi 7
872	Heat Stroke in Cell Tissues Related to Sulfur Dioxide Level Is Precisely Monitored by Light-Controlled Fluorescent Probes. Journal of the American Chemical Society, 2020, 142, 3262-3268.	6.6	164
873	Photochromic microcapsules by coacervation and in situ polymerization methods for product-marking applications. Iranian Polymer Journal (English Edition), 2020, 29, 117-132.	1.3	14

#	Article	IF	CITATIONS
874	Chemo- and biosensing applications of spiropyran and its derivatives - A review. Analytica Chimica Acta, 2020, 1110, 199-223.	2.6	90
875	Planarizationâ€Induced Activation Wavelength Redâ€Shift and Thermal Halfâ€Life Acceleration in Hydrazone Photoswitches. ChemistryOpen, 2020, 9, 191-194.	0.9	12
876	Synthesis of spiropyran with methacrylate at the benzopyran moiety and control of the water repellency and cell adhesion of its polymer film. Journal of Materials Chemistry B, 2020, 8, 1489-1495.	2.9	12
877	Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage. Journal of the American Chemical Society, 2020, 142, 9792-9802.	6.6	75
878	Photochromic Radical Complexes That Show Heterolytic Bond Dissociation. Journal of the American Chemical Society, 2020, 142, 10132-10142.	6.6	24
879	An Arylazopyrazoleâ€Based Nâ€Heterocyclic Carbene as a Photoswitch on Gold Surfaces: Lightâ€Switchable Wettability, Work Function, and Conductance. Angewandte Chemie - International Edition, 2020, 59, 13651-13656.	7.2	58
880	Photo-dynamic and fluorescent zinc complex based on spiropyran ligand. Journal of Molecular Structure, 2020, 1211, 128105.	1.8	12
881	Advances in intrinsic self-healing polyurethanes and related composites. RSC Advances, 2020, 10, 13766-13782.	1.7	72
882	Photochromic Cotton Fabric Prepared by Spiropyran-ternimated Water Polyurethane Coating. Fibers and Polymers, 2020, 21, 733-742.	1.1	17
883	Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 2020, 142, 8447-8453.	6.6	190
884	Three-component spiropyran synthesis via tandem alkylation-condensation. Tetrahedron, 2020, 76, 131219.	1.0	8
885	Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C. Journal of the American Chemical Society, 2020, 142, 8688-8695.	6.6	121
886	Synthesis and fine-tuning of thermal stability of the negative nitrile-rich photochromes of hydroxytricyanopyrrole (HTCP) series. Research on Chemical Intermediates, 2020, 46, 3477-3490.	1.3	4
887	Mechanochromic Microfibers Stabilized by Polymer Blending. ACS Applied Polymer Materials, 2020, 2, 2055-2062.	2.0	8
888	Synthesis, photo and acidochromic properties of spiropyran-containing methanofullerenes. RSC Advances, 2020, 10, 15888-15892.	1.7	10
889	Ein auf Arylazopyrazol basierendes Nâ€heterocyclisches Carben als Photoschalter auf GoldoberflĀ e hen: Lichtschaltbare Benetzbarkeit, Austrittsarbeit und Leitwert. Angewandte Chemie, 2020, 132, 13754-13759.	1.6	9
890	Reversible Photoswitching in Poly(2â€oxazoline) Nanoreactors. Chemistry - A European Journal, 2020, 26, 11776-11781.	1.7	7
891	Spectroscopic Study of the E / Z Photoisomerization of a New Cyrhetrenyl Acylhydrazone: A Potential Photoswitch and Photosensitizer â€. Photochemistry and Photobiology, 2021, 97, 61-70.	1.3	8

#	ARTICLE	IF	Citations
892	Photochromism of tetrahydroindolizines. Part XXV: Mechanochemical synthesis, distinctive photophysical tuning and computational studies of novel tetrahydroindolizines photochromes. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 113016.	2.0	4
893	Learning from Spiropyrans: How to Make Further Developments of <scp>Donorâ€Acceptor</scp> Stenhouse Adducts. Chinese Journal of Chemistry, 2021, 39, 985-998.	2.6	16
894	Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. Journal of Molecular Structure, 2021, 1229, 129615.	1.8	18
895	Light-driven bimorph soft actuators: design, fabrication, and properties. Materials Horizons, 2021, 8, 728-757.	6.4	135
896	Duale Emission: Klassen, Mechanismen und Bedingungen. Angewandte Chemie, 2021, 133, 22804-22820.	1.6	10
897	Behavior of chromogenic pigments and influence of binder in organic smart coatings. Dyes and Pigments, 2021, 184, 108879.	2.0	15
898	Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers. Journal of Colloid and Interface Science, 2021, 582, 1075-1084.	5.0	31
899	Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chemical Engineering Journal, 2021, 406, 126794.	6.6	50
900	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
901	Tuning the Photophysical Properties of Spirolactam Rhodamine Photoswitches. Israel Journal of Chemistry, 2021, 61, 244-252.	1.0	11
902	Strainâ€promoted azideâ€alkyne cycloaddition polymerization as a route toward tailored functional polymers. Journal of Polymer Science, 2021, 59, 29-33.	2.0	1
903	Photochromic films prepared by solid state processing of disentangled ultrahigh molecular weight polyethylene and photochromic dyes composites. Journal of Applied Polymer Science, 2021, 138, 50188.	1.3	5
904	Photoresponsive porous materials. Nanoscale Advances, 2021, 3, 24-40.	2.2	62
905	Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties. Bioorganic and Medicinal Chemistry Letters, 2021, 31, 127709.	1.0	13
906	Stimuliâ€Responsive Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005941.	7.8	234
907	From Molecules to Polymers—Harnessing Inter―and Intramolecular Interactions to Create Mechanochromic Materials. Macromolecular Rapid Communications, 2021, 42, e2000573.	2.0	70
908	Enhancement of Solid‧tate Reversible Photochromism by Incorporation of Rigid Steric Hindrance Groups. Advanced Optical Materials, 2021, 9, .	3.6	21
909	Selfâ€Regulating Contact Lenses with the Patterning of a Photochromic Layer Based on Wettability Contrast. Advanced Materials Interfaces, 2021, 8, 2001443.	1.9	5

#	Article	IF	CITATIONS
910	Polymerâ€Based Mechanochromic Composite Material Using Encapsulated Systems. Macromolecular Rapid Communications, 2021, 42, e2000549.	2.0	10
911	Substituent Effects Control Spiropyran–Merocyanine Equilibria and Mechanochromic Utility. Macromolecular Rapid Communications, 2021, 42, e2000597.	2.0	21
912	Application of stimuli-responsive materials for extraction purposes. Journal of Chromatography A, 2021, 1636, 461764.	1.8	8
913	Photoswitchable Metal–Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. Langmuir, 2021, 37, 2-15.	1.6	29
914	Aggregation-mediated photo-responsive luminescence of cyanostilbene based cruciform AlEgens. Journal of Materials Chemistry C, 2021, 9, 975-981.	2.7	12
915	Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder. Journal of Environmental Chemical Engineering, 2021, 9, 104655.	3.3	11
916	Highly fatigue-resistant photochromism of wool surface printed with spiropyran/chitosan microcapsules. Progress in Organic Coatings, 2021, 151, 106080.	1.9	13
917	Well-controlled spiropyran functionalized polystyrenes via a combination of anionic polymerization and hydrosilylation for photoinduced solvatochromism. Polymer, 2021, 213, 123311.	1.8	2
918	Lightâ€Responsive Dynamic DNAâ€Origamiâ€Based Plasmonic Assemblies. Angewandte Chemie - International Edition, 2021, 60, 5859-5863.	7.2	75
919	Light-driven artificial neuron models based on photoswitchable systems. Dyes and Pigments, 2021, 187, 109086.	2.0	7
920	Towards Responsive <scp>Singleâ€Molecule</scp> Device. Chinese Journal of Chemistry, 2021, 39, 421-439.	2.6	7
921	Temporal Changes in Interparticle Interactions Drive the Formation of Transiently Stable Nanoparticle Precipitates. Langmuir, 2021, 37, 1843-1849.	1.6	16
922	Photoresponsive frameworks: energy transfer in the spotlight. Faraday Discussions, 2021, 231, 266-280.	1.6	11
923	Remote Control of Near Infrared Emission with Lanthanide Complexes. ChemPhotoChem, 2021, 5, 393-405.	1.5	7
924	Photoisomerization-mechanism-associated excited-state hydrogen transfer in 2′-hydroxychalcone revealed by on-the-fly trajectory surface-hopping molecular dynamics simulation. Physical Chemistry Chemical Physics, 2021, 23, 4300-4310.	1.3	2
925	Dual-mode security anticounterfeiting and encoding by electrospinning of highly photoluminescent spiropyran nanofibers. Journal of Materials Chemistry C, 2021, 9, 9571-9583.	2.7	27
926	Application of stimuli-responsive FRET behavior toward cyanide detection in a photo-switchable [2]pseudorotaxane polymer containing the BODIPY donor and the merocyanine acceptor. Journal of Materials Chemistry C, 2021, 9, 2321-2333.	2.7	15
927	Photoswitchable Molecular Glue for Carbon Nanotubes Reversibly Controls Electronic Mobility with Light. ACS Applied Electronic Materials, 2021, 3, 309-315.	2.0	8

#	Article	IF	CITATIONS
928	Synthesis, optical properties and inÂvitro cell viability of novel spiropyrans and their photostationary states. Tetrahedron, 2021, 80, 131854.	1.0	17
929	Tailoring effects of the chain length and terminal substituent on the photochromism of solid-state spiropyrans. Organic and Biomolecular Chemistry, 2021, 19, 8722-8726.	1.5	6
930	Selfâ€assembled magnetic nanomaterials: Versatile theranostics nanoplatforms for cancer. Aggregate, 2021, 2, e18.	5.2	16
931	Molecular-Gated Drug Delivery Systems Using Light-Triggered Hydrophobic-to-Hydrophilic Switches. ACS Applied Bio Materials, 2021, 4, 1624-1631.	2.3	10
932	An AIE-active dual fluorescent switch with negative photochromism for information display and encryption. New Journal of Chemistry, 2021, 45, 9872-9881.	1.4	8
933	Acid-catalysed liquid-to-solid transitioning of arylazoisoxazole photoswitches. Chemical Science, 2021, 12, 11338-11346.	3.7	15
934	Responsive Nanostructured Polymer Particles. Polymers, 2021, 13, 273.	2.0	7
935	Highâ€Performance Photochromic Hydrogels for Rewritable Information Record. Macromolecular Rapid Communications, 2021, 42, e2000701.	2.0	16
936	Responsive organoboranes with dynamic conformation of octacyclophane-type scaffolds: synthesis, AIE and temperature-dependent dual emissions. Journal of Materials Chemistry C, 2021, 9, 13851-13859.	2.7	8
937	Synthesis and characterization of photochromic triethylene glycol-containing spiropyrans and their assembly in solution. Organic Chemistry Frontiers, 2021, 8, 3047-3058.	2.3	7
938	Photochromism. , 2021, , 263-281.		0
939	Fluidic Platforms Incorporating Photo-Responsive Soft-Polymers Based on Spiropyran: From Green Synthesis to Precision Flow Control. Frontiers in Materials, 2021, 7, .	1.2	2
940	A new color in green chemistry: Photochromic molecular switches as components of multifunctional catalytic systems. , 2021, , 241-282.		2
941	Redesigning donor–acceptor Stenhouse adduct photoswitches through a joint experimental and computational study. Chemical Science, 2021, 12, 2916-2924.	3.7	18
942	Photoreversible Loading and Unloading of Q–Silsesquioxane Dynamic Network Sponges. Advanced Functional Materials, 2021, 31, 2010114.	7.8	4
943	Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Organic Chemistry Frontiers, 2021, 8, 3760-3769.	2.3	7
944	Photoactivatable 1,2-dioxetane chemiluminophores. Results in Chemistry, 2021, 3, 100106.	0.9	7
945	Photochromism of neutral spiropyran in the crystalline state at room temperature. Journal of Materials Chemistry C, 0, , .	2.7	38

	CITATION	Report	
#	Article	IF	CITATIONS
946	Solid-state reversible optical switch based on two dendritic molecules with dual sensitivity of mechanochromism and photochromism. Materials Chemistry Frontiers, 2021, 5, 3918-3926.	3.2	16
947	Two-colour photoswitching in photoresponsive inorganic thin films. Materials Advances, 2021, 2, 2328-2333.	2.6	3
948	Multidimensional Information Encryption and Storage: When the Input Is Light. Research, 2021, 2021, 7897849.	2.8	38
949	Carbon Spacer Strategy: Control the Photoswitching Behavior of Donor–Acceptor Stenhouse Adducts. Langmuir, 2021, 37, 802-809.	1.6	9
950	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
951	Recent near-infrared light-activated nanomedicine toward precision cancer therapy. Journal of Materials Chemistry B, 2021, 9, 7076-7099.	2.9	21
952	Design of phase-transition molecular solar thermal energy storage compounds: compact molecules with high energy densities. Chemical Communications, 2021, 57, 9458-9461.	2.2	31
953	A simple strategy to overcome concentration dependence of photoswitching properties in donor–acceptor Stenhouse adducts. Physical Chemistry Chemical Physics, 2021, 23, 2775-2779.	1.3	7
954	Photo ontrollable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives. Angewandte Chemie, 2021, 133, 7732-7736.	1.6	5
955	Heterometallic Actinideâ€Containing Photoresponsive Metalâ€Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angewandte Chemie - International Edition, 2021, 60, 8072-8080.	7.2	51
956	Lightâ€Responsive Dynamic DNAâ€Origamiâ€Based Plasmonic Assemblies. Angewandte Chemie, 2021, 133, 5923-5927.	1.6	10
957	Smart Nanomaterials for Biomedical Applications—A Review. Nanomaterials, 2021, 11, 396.	1.9	60
958	Near infrared to ultraviolet upconversion nanocomposite for controlling the permittivity of polyspiropyran shell. Polymer Testing, 2021, 94, 107042.	2.3	7
959	Heterometallic Actinideâ€Containing Photoresponsive Metalâ€Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angewandte Chemie, 2021, 133, 8152-8160.	1.6	9
960	Photo ontrollable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives. Angewandte Chemie - International Edition, 2021, 60, 7654-7658.	7.2	37
961	Photoswitching, Colloidal Stability, and Reversible Self-Assembly of Gold Nanoparticles Covered with Thiolated Donor–Acceptor Stenhouse Adducts. Journal of Physical Chemistry C, 2021, 125, 5306-5314.	1.5	8
962	Novel photochromic inhibitor for mitotic kinesin Eg5 which forms multiple isomerization states. Journal of Biochemistry, 2021, 170, 229-237.	0.9	6
963	Compartmentalization and Photoregulating Pathways for Incompatible Tandem Catalysis. Journal of the American Chemical Society, 2021, 143, 4705-4713.	6.6	41

#	Article	IF	CITATIONS
964	Photochromic Modulation of Cys-loop Ligand-gated Ion Channels. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 354-371.	0.2	2
965	Visible Light Stimulated Bistable Photo-Switching in Defect Engineered Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 11706-11710.	1.9	9
967	Noncontact Metal–Spiropyran–Metal Nanostructured Substrates with Ag and Au@SiO ₂ Nanoparticles Deposited in Nanohole Arrays for Surface-Enhanced Fluorescence and Trace Detection of Metal Ions. ACS Applied Nano Materials, 2021, 4, 3780-3789.	2.4	12
968	Re-usable colorimetric polymeric gel for visual and facile detection of multiple metal ions. Reactive and Functional Polymers, 2021, 160, 104824.	2.0	4
969	Light―and Chemicalâ€&timuliâ€Induced Isomerization of Donorâ^'Acceptor Stenhouse Adducts. ChemPhotoChem, 2021, 5, 559-564.	1.5	3
970	Photoisomerization dynamics of spiropyran: A surface-hopping investigation. Journal of Chemical Physics, 2021, 154, 124312.	1.2	3
971	Structurally photo-active metal–organic frameworks: Incorporation methods, response tuning, and potential applications. Chemical Physics Reviews, 2021, 2, .	2.6	9
972	Synthesis, Photophysical and Electrochemical Properties of 1-, 2-, and 6-(2-Benzofuryl)azulenes. Bulletin of the Chemical Society of Japan, 2021, 94, 1000-1009.	2.0	6
973	How accurately do mechanophores report on bond scission in soft polymer materials?. Journal of Polymer Science, 2021, 59, 1188-1199.	2.0	8
974	Magneto-responsive photochromic acrylic copolymer nanoparticles: An investigation into the mutual interactions and photoisomerization kinetics. Polymer, 2021, 218, 123524.	1.8	2
975	Extending the Lifetimes of Charge Transfer States Generated by Photoinduced Heterolysis of Photochromic Radical Complexes. Asian Journal of Organic Chemistry, 2021, 10, 891-900.	1.3	3
977	Metal Ion Mediated Instant <i>Z</i> → <i>E</i> Isomerization of Azobenzene Macrocycles in the Absence of Light. Journal of Organic Chemistry, 2021, 86, 6314-6321.	1.7	6
978	Dynamically Controlled Electronic Behavior of Stimuliâ€Responsive Materials: Exploring Dimensionality and Connectivity. Advanced Energy Materials, 2022, 12, 2100441.	10.2	32
979	Electrochemical Ring-Opening and -Closing of a Spiropyran. Journal of Physical Chemistry A, 2021, 125, 3355-3361.	1.1	12
980	Cyclopentadienone Derivative Dimers as Tunable Photoswitches. Chemistry - A European Journal, 2021, 27, 7882-7886.	1.7	0
981	Experimental and Theoretical Characterization of Ultrafast Water-Soluble Photochromic Photoacids. Journal of Physical Chemistry B, 2021, 125, 4120-4131.	1.2	11
982	Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter, 2021, 4, 1377-1390.	5.0	57
984	Synthesis and Photochromic Properties of Bis-Spirocyclic Compounds Based on 1,3-Dihydroxy-6-oxo-6H-benzo[c]chromene-2,4-dicarbaldehyde. Russian Journal of General Chemistry, 2021, 91, 626-630.	0.3	1

#	Article	IF	CITATIONS
985	Smart pH-Modulated Two-Way Photoswitch Based on a Polymer-Modified Single Nanochannel. ACS Applied Materials & Interfaces, 2021, 13, 25241-25249.	4.0	21
986	Mesoporous Coatings with Simultaneous Lightâ€Triggered Transition of Water Imbibition and Droplet Coalescence. Advanced Materials Interfaces, 2021, 8, 2100252.	1.9	4
987	Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature. Polymers, 2021, 13, 1633.	2.0	3
988	Fabrication of super-high transparent cellulose films with multifunctional performances via postmodification strategy. Carbohydrate Polymers, 2021, 260, 117760.	5.1	13
989	Designing Force Probes Based on Reversible 6Ï€-Electrocyclizations in Polyenes Using Quantum Chemical Calculations. Journal of Organic Chemistry, 2021, 86, 7477-7489.	1.7	5
990	Programming origami-like soft actuators using visible light. Matter, 2021, 4, 1449-1452.	5.0	2
991	Fluorinated Azobenzenes Switchable with Red Light. Chemistry - A European Journal, 2021, 27, 8094-8099.	1.7	37
992	Azo-Dyes-Grafted Oligosaccharides—From Synthesis to Applications. Molecules, 2021, 26, 3063.	1.7	8
993	New indoline spiropyrans with highly stable merocyanine forms. Mendeleev Communications, 2021, 31, 403-406.	0.6	1
994	New indoline spiropyrans with highly stable merocyanine forms. Mendeleev Communications, 2021, 31, 403-406.	0.6	17
995	Stimuli-Responsive Polymers for Sensing and Reacting to Environmental Conditions. Progress in Polymer Science, 2021, 116, 101386.	11.8	56
996	Solid Multiresponsive Materials Based on Nitrospiropyran-Doped Ionogels. ACS Applied Materials & amp; Interfaces, 2021, 13, 26461-26471.	4.0	21
997	Photochromism and photo-switchable luminescence properties of a methacrylate-based inorganic-organic hybrid compound. Inorganica Chimica Acta, 2021, 519, 120248.	1.2	2
998	Biphotochromic and ionochromic benzoxazolyl-substituted spirobipyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 413, 113259.	2.0	1
999	Chromic Ionic Liquids. ACS Applied Electronic Materials, 2021, 3, 2468-2482.	2.0	19
1000	Synthesis and photochromic behavior of comb-like acrylate polymer nanoparticle containing spiropyran. Dyes and Pigments, 2021, 189, 109237.	2.0	9
1001	Preparation and Properties of Electrospun Sheath-core Modified-PMMA Nanofibers with Photoluminescence and Photochromic Functions. Chemical Research in Chinese Universities, 2021, 37, 549-557.	1.3	1
1002	A photochromic nylon webbing for ultra-violet light sensing. Smart Materials and Structures, 2021, 30, 085015.	1.8	3

#	Article	IF	CITATIONS
1003	Spiropyran dyes. Physical Sciences Reviews, 2021, 6, 341-368.	0.8	5
1004	A Time-Resolved Diffusion Technique for Detection of the Conformational Changes and Molecular Assembly/Disassembly Processes of Biomolecules. Frontiers in Genetics, 2021, 12, 691010.	1.1	3
1005	Rhodamine-Installed Polynorbornenes: Molecular Design, Structure, and Stimuli-Responsive Properties. ACS Omega, 2021, 6, 15017-15028.	1.6	6
1006	Asymmetric Dressing of WSe2 with (Macro)molecular Switches: Fabrication of Quaternary-Responsive Transistors. ACS Nano, 2021, 15, 10668-10677.	7.3	14
1007	Encapsulation and Stabilization of a Donor–Acceptor Stenhouse Adduct Isomer in Water Inside the Blue Box: A Combined Experimental and Theoretical Approach. Journal of Physical Chemistry B, 2021, 125, 7222-7230.	1.2	2
1008	Dual-Responsive Thermally Activated Delayed Fluorescence of Spiropyran Derivatives. CCS Chemistry, 2022, 4, 2080-2089.	4.6	19
1009	Fluorescence Switchable Block Copolymer Particles with Doubly Alternate‣ayered Nanoparticle Arrays. Small, 2021, 17, e2101222.	5.2	16
1010	Visible light-induced hydrogels towards reversible adsorption and desorption based on trivalent chromium in aqueous solution. Reactive and Functional Polymers, 2021, 163, 104886.	2.0	14
1011	Comparative Structural Study and Molecular Docking of Indoline Spiropyrans Containing α-Lipoic Acid Fragment. Doklady Chemistry, 2021, 498, 104-111.	0.2	1
1012	MechanofluorochromismÂwith Aggregation-Induced Emission (AIE) Characteristics: A Perspective Applying Isotropic and Anisotropic Force. Topics in Current Chemistry, 2021, 379, 28.	3.0	10
1013	Quantum Chemical Study of Structure and Energetical Characteristics of Spiropyrans Containing Cationic 3H-Indolium Fragment. Russian Journal of General Chemistry, 2021, 91, 1150-1152.	0.3	2
1014	pH-responsive spiropyran-based copolymers and their application in monitoring and antibacterial coatings. Progress in Organic Coatings, 2021, 156, 106259.	1.9	3
1015	Photochromic Polyamide 6 Based on Spiropyran Synthesized via Hydrolyzed Ring-Opening Polymerization. Polymers, 2021, 13, 2496.	2.0	3
1016	Dynamic Photochromic Polymer Nanoparticles Based on Matrix-Dependent Förster Resonance Energy Transfer and Aggregation-Induced Emission Properties. ACS Applied Materials & Interfaces, 2021, 13, 33574-33583.	4.0	33
1017	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie, 2021, 133, 19555-19561.	1.6	0
1018	β-Amyloid Peptides Manipulate Switching Behaviors of Donor–Acceptor Stenhouse Adducts. Analytical Chemistry, 2021, 93, 9887-9896.	3.2	4
1019	Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews, 2021, 438, 213752.	9.5	17
1020	Wavelength-selective light-matter interactions in polymer science. Matter, 2021, 4, 2172-2229.	5.0	42

#	Article	IF	CITATIONS
1021	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie - International Edition, 2021, 60, 19406-19412.	7.2	24
1022	Stimuli-Responsive Metal–Organic Framework on a Metal–Organic Framework Heterostructure for Efficient Antibiotic Detection and Anticounterfeiting. ACS Applied Materials & Interfaces, 2021, 13, 35689-35699.	4.0	30
1023	DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers, 2021, 13, 3396.	1.7	46
1024	Nearâ€Infrared Lightâ€Triggered Polyprodrug/siRNA Loaded Upconversion Nanoparticles for Multiâ€Modality Imaging and Synergistic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2100938.	3.9	36
1025	Editorial: Photochromic Materials: Design and Applications. Frontiers in Materials, 2021, 8, .	1.2	7
1026	Hydrogenâ€Bonded Dimeric Capsules with Appended Spiropyran Units: Towards Controlled Cargo Release. Chemistry - A European Journal, 2021, 27, 12675-12685.	1.7	10
1027	Synthesis and study of new indoline spiropyran and its derivative with α-lipoic acid exhibiting low cytotoxicity. Russian Chemical Bulletin, 2021, 70, 1388-1393.	0.4	9
1028	Spiropyran-Based Drug Delivery Systems. Frontiers in Chemistry, 2021, 9, 720087.	1.8	32
1029	Structure and Properties of 1,3,3-Trimethyl-6′-chlorospiro[indoline-2,2′-2H-chromene]. Russian Journal of General Chemistry, 2021, 91, 1297-1304.	0.3	9
1030	Spiropyran-based photoswitchable acrylic nanofibers: A stimuli-responsive substrate for light controlled C6 glioma cells attachment/detachment. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111731.	2.5	21
1031	Zero-crosstalk and color-specific photoswitching of dual-emissive polymer nanoparticles for multiple applications. Dyes and Pigments, 2021, 191, 109370.	2.0	9
1032	Bioâ€Organic Chiral Nematic Materials with Adaptive Light Emission and Onâ€Đemand Handedness. Advanced Materials, 2021, 33, e2103329.	11.1	36
1033	Conformational behavior of naphtho-merocyanine dimers on Au(111). Surface Science, 2021, 709, 121837.	0.8	2
1034	Electrochemical Switching of First-Generation Donor-Acceptor Stenhouse Adducts (DASAs): An Alternative Stimulus for Triene Cyclisation. Chemistry, 2021, 3, 728-733.	0.9	3
1035	A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots. Advanced Materials Technologies, 2021, 6, 2100437.	3.0	18
1036	Lightâ€ S witchable Buffers. Angewandte Chemie, 2021, 133, 21905-21908.	1.6	3
1037	Light‧witchable Buffers. Angewandte Chemie - International Edition, 2021, 60, 21737-21740.	7.2	23
1038	Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane. Pure and Applied Chemistry, 2021, .	0.9	2

#	Article	IF	CITATIONS
1039	Photo- and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. Polymer, 2021, 229, 123961.	1.8	15
1040	Influence of Polarity Change and Photophysical Effects on Photosurfactant-Driven Wetting. Langmuir, 2021, 37, 9939-9951.	1.6	7
1041	Light-fueled transient supramolecular assemblies in water as fluorescence modulators. Nature Communications, 2021, 12, 4993.	5.8	56
1042	Contrasting Photochromic and Acidochromic Behaviors of Pyridyl- and Pyrimidylethynylated Mono- and Bis-Benzopyrans. ACS Omega, 2021, 6, 21113-21124.	1.6	4
1043	Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. Journal of the American Chemical Society, 2021, 143, 13333-13341.	6.6	55
1044	Photoregulated Morphological Transformation of Spiropyran Derivatives Achieving the Tunability of Interfacial Hydrophilicity. Langmuir, 2021, 37, 11170-11175.	1.6	6
1045	Highly sensitive photoresponsive polyamide 6 nanofibrous membrane containing embedded spiropyran. Journal of Materials Science, 2021, 56, 18775-18794.	1.7	5
1046	Photomechanical polymer hydrogels based on molecular photoswitches. Journal of Polymer Science, 2021, 59, 2246-2264.	2.0	22
1047	Reversibly Photoswitchable Tristate Fluorescence within a Single Polymeric Nanoparticle. Advanced Optical Materials, 2021, 9, 2101227.	3.6	30
1048	Intrinsically Photopolymerizable Dynamic Polymers Derived from a Natural Small Molecule. ACS Applied Materials & Interfaces, 2021, 13, 44860-44867.	4.0	48
1049	Rational design of photo-chromic molecule for constructing polysiloxane-based fluorescent films and anti-counterfeiting. Materials and Design, 2021, 207, 109867.	3.3	9
1050	Extraction of mechanical work from stimuli-responsive molecular systems and materials. Trends in Chemistry, 2021, 3, 926-942.	4.4	16
1051	Radical-doped asymmetrical naphthalenediimides derivatives: Multiple stimuli chromism and their mechanical grinding toning with organic molecules. Dyes and Pigments, 2021, 193, 109503.	2.0	5
1052	Photoluminescent Nanoinks with Multilevel Security for Quick Authentication of Encoded Optical Tags by Sunlight: Effective Physicochemical Parameters on Responsivity, Printability, and Brightness. ACS Applied Materials & Interfaces, 2021, 13, 44878-44892.	4.0	24
1053	Photoswitchable Composite Polymer Electrolytes Using Spiropyranâ€Immobilized Nanoporous Templates. Chemistry - A European Journal, 2021, 27, 14981-14988.	1.7	5
1054	Heterogeneous Fluorescent Organohydrogel Enables Dynamic Anti ounterfeiting. Advanced Functional Materials, 2021, 31, 2108365.	7.8	114
1055	Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells. Advanced Materials, 2021, 33, e2105765.	11.1	27
1056	Elaboration of multimodal ligands based on BOX units: Toward full zinc release in Zn(II) complexes by external stimulation. Dyes and Pigments, 2021, 193, 109476.	2.0	1

#	Article	IF	CITATIONS
1057	Amino acid derived biopolymers: Recent advances and biomedical applications. International Journal of Biological Macromolecules, 2021, 188, 542-567.	3.6	40
1058	Photo-controlled fluorescence "Double-Check―for human serum albumin and its applications. Sensors and Actuators B: Chemical, 2022, 350, 130814.	4.0	17
1059	Utilisation of photo-thermal energy and bond enthalpy based on optically triggered formation and dissociation of coordination bonds. Nano Energy, 2021, 89, 106401.	8.2	19
1060	A rapid acid vapor detector based on spiropyran-polymer composite. Sensors and Actuators B: Chemical, 2021, 347, 130623.	4.0	10
1061	Mechanochromism, thermochromism, protonation effect and discrimination of CHCl3 from organic solvents in a Et2N-substituted Salicylaldehyde Schiff base. Dyes and Pigments, 2021, 195, 109708.	2.0	23
1062	Synthesis and properties of multi-layer core-shell Tb(BAO)3(NO3)2@SiO2@(PSPEA-PMMA) microsphere with photoluminescence and photochromic functions. Dyes and Pigments, 2021, 195, 109654.	2.0	3
1063	Light drive reversible color switching for rewritable media and encoding. Materials and Design, 2021, 211, 110132.	3.3	2
1064	Photochromic spiropyrane/silicone composite enabling convenient detection of ultraviolet radiation in the sunlight. Materials Letters, 2021, 305, 130792.	1.3	4
1065	Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chemical Engineering Journal, 2021, 425, 131557.	6.6	56
1066	Fast photochromism in solid: Microenvironment in metal-organic frameworks promotes the isomerization of donor-acceptor Stenhouse adducts. Chemical Engineering Journal, 2022, 427, 132037.	6.6	14
1067	Dynamic cell instructive platforms. , 2021, , 171-217.		1
1068	Time-resolved detection of SDS-induced conformational changes in α-synuclein by a micro-stopped-flow system. RSC Advances, 2021, 11, 1086-1097.	1.7	8
1069	Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Physical Chemistry Chemical Physics, 2021, 23, 17939-17944.	1.3	4
1070	Selective release of a potent anticancer agent from a supramolecular hydrogel using green light. RSC Advances, 2021, 11, 8546-8551.	1.7	20
1071	On-Demand Reversible UV-Triggered Interpenetrating Polymer Network-Based Drug Delivery System Using the Spiropyran–Merocyanine Hydrophobicity Switch. ACS Applied Materials & Interfaces, 2021, 13, 3591-3604.	4.0	36
1072	Selfâ€Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. Small, 2021, 17, e2005718.	5.2	76
1073	Solid-state spiropyrans exhibiting photochromic properties based on molecular flexibility. Materials Chemistry Frontiers, 2021, 5, 3119-3124.	3.2	35
1074	Molecular photoswitches in aqueous environments. Chemical Society Reviews, 2021, 50, 12377-12449.	18.7	170

IF

#	ARTICLE

CITATIONS

1075	Photoresponsive pesticidal agents. , 2021, , 297-310.		0
1076	Supramolecular Systems: Metallo-Molecular Machines and Stimuli Responsive Metallo-Macrocycles and Cages. , 2021, , 174-205.		7
1077	Tunable-emission microwire heterojunctions for optical waveguides. Materials Chemistry Frontiers, 0, , .	3.2	0
1078	Multi-photoresponsive triphenylethylene derivatives with photochromism, photodeformation and room temperature phosphorescence. Materials Horizons, 2022, 9, 368-375.	6.4	26
1079	Application of chiral triazole-substituted iodoarenes in the enantioselective construction of spirooxazolines. Chemical Communications, 2021, 57, 8822-8825.	2.2	7
1080	Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators. Advanced Materials, 2017, 29, 1606467.	11.1	305
1081	Tunable Photocontrolled Motions of Anilâ€Poly(ethylene terephthalate) Systems through Excited tate Intramolecular Proton Transfer and <i>Trans–Cis</i> Isomerization. Advanced Materials, 2021, 33, e2005249.	11.1	20
1083	Hydrogenâ€Bonding Donorâ€Acceptor Stenhouse Adducts. ChemPhotoChem, 2020, 4, 407-412.	1.5	23
1084	New Trends in Spiro-compounds Photochromic Metals Sensors: Quantitative Aspects. , 2017, , 3-35.		8
1085	Properties and Applications of Indolinooxazolidines as Photo-, Electro-, and Acidochromic Units. , 2017, , 69-91.		4
1085 1086	Properties and Applications of Indolinooxazolidines as Photo-, Electro-, and Acidochromic Units. , 2017, , 69-91. Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511.		4
	2017,,69-91.	1.6	
1086	2017, , 69-91. Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511. Thermotriggered Catalyst-Free Modification of a Glass Surface with an Orthogonal Agent Possessing	1.6 0.1	4
1086 1087	 2017, , 69-91. Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511. Thermotriggered Catalyst-Free Modification of a Glass Surface with an Orthogonal Agent Possessing Nitrile <i>N</i> Oxide and Masked Ketene Functions. Langmuir, 2016, 32, 309-315. Chapter 11. Self-reporting Polymeric Materials with Mechanochromic Properties. RSC Polymer 		4 16
1086 1087 1088	 2017, , 69-91. Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511. Thermotriggered Catalyst-Free Modification of a Glass Surface with an Orthogonal Agent Possessing Nitrile <i>N</i>-Oxide and Masked Ketene Functions. Langmuir, 2016, 32, 309-315. Chapter 11. Self-reporting Polymeric Materials with Mechanochromic Properties. RSC Polymer Chemistry Series, 2016, , 354-401. A facile way to achieve all-photonic logic functions and photo-printing based on a donor–acceptor 	0.1	4 16 2
1086 1087 1088 1089	2017, , 69-91. Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511. Thermotriggered Catalyst-Free Modification of a Glass Surface with an Orthogonal Agent Possessing Nitrile <i>N</i> Oxide and Masked Ketene Functions. Langmuir, 2016, 32, 309-315. Chapter 11. Self-reporting Polymeric Materials with Mechanochromic Properties. RSC Polymer Chemistry Series, 2016, , 354-401. A facile way to achieve all-photonic logic functions and photo-printing based on a donor–acceptor Stenhouse adduct. New Journal of Chemistry, 2017, 41, 6071-6075.	0.1	4 16 2 20
1086 1087 1088 1089 1090	2017, , 69-91. Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511. Thermotriggered Catalyst-Free Modification of a Glass Surface with an Orthogonal Agent Possessing Nitrile <i>N Nitrile <i>N Nitrile <i>N No. Chapter 11. Self-reporting Polymeric Materials with Mechanochromic Properties. RSC Polymer Chemistry Series, 2016, , 354-401. A facile way to achieve all-photonic logic functions and photo-printing based on a donor–acceptor Stenhouse adduct. New Journal of Chemistry, 2017, 41, 6071-6075. Environmentally responsive photonic polymers. Chemical Communications, 2019, 55, 2880-2891. Temperature and loading rate dependent rupture forces from universal paths in mechanochemistry.</i></i></i>	0.1 1.4 2.2	4 16 2 20 74

#	Article	IF	CITATIONS
1095	Spiropyran doped rewritable cholesteric liquid crystal polymer film for the generation of quick response codes. Optical Materials Express, 2018, 8, 3708.	1.6	6
1096	Simple imaging protocol for autofluorescence elimination and optical sectioning in fluorescence endomicroscopy. Optica, 2019, 6, 972.	4.8	9
1097	Photosensitive nanocomposites: environmental and biological applications. Journal of Composites and Compounds, 2019, 2, 50-60.	0.4	13
1098	Surface-controlled spatially heterogeneous physical properties of a supramolecular gel with homogeneous chemical composition. Chemical Science, 2021, 12, 14260-14269.	3.7	7
1099	Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polymer Chemistry, 2021, 12, 6198-6229.	1.9	17
1100	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	18.7	15
1101	Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomaterialia, 2022, 137, 20-43.	4.1	18
1102	Pushâ€Pull Stiffâ€Stilbene: Protonâ€Gated Visibleâ€Light Photoswitching and Acidâ€Catalyzed Isomerization. Chemistry - A European Journal, 2021, 27, 17346-17350.	1.7	10
1103	Photoactivatable Biomedical Materials Based on Luminogens with Aggregationâ€Induced Emission (AIE) Characteristics. Advanced Healthcare Materials, 2021, 10, e2101177.	3.9	28
1104	Intelligent light-responsive and ionic polymer functionalized polyacrylonitrile as an environmental benign catalyst for selective oxidation of benzyl alcohols. Dyes and Pigments, 2022, 197, 109902.	2.0	7
1105	Lightâ€Driven Spiral Deformation of Supramolecular Helical Microfibers by Localized Photoisomerization. Advanced Optical Materials, 2022, 10, 2101267.	3.6	6
1106	Reversible Adhesion Switching Using Spiropyran Photoisomerization in a High Glass Transition Temperature Polymer. Macromolecules, 2021, 54, 9319-9326.	2.2	15
1107	Photoswitchable Machine-Engineered Plasmonic Nanosystem with High Optical Response for Ultrasensitive Detection of microRNAs and Proteins Adaptively. Analytical Chemistry, 2021, 93, 13935-13944.	3.2	8
1108	Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. Applied Sciences (Switzerland), 2021, 11, 9541.	1.3	5
1109	Sublimation thermodynamics of indoline and benzoxazine based spiropyrans. Thermochimica Acta, 2021, 706, 179075.	1.2	3
1110	Application of a hybrid material formed by layered zinc hydroxide chloride modified with spiropyran in the adsorption of Ca2+ from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127738.	2.3	2
1111	Synthesis and Characterization of Photoresponsive Biopolymers Having Spiropyran and Chitosan Groups. , 2016, , .		1
1113	Development of Chromic Molecule that Can Change Color and Absorption/Fluorescence Wavelengths Largely in Response to External Stimuli. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1066-1075.	0.0	1

		REPORT	
#	Article	IF	CITATIONS
1114	Recent Advances in Hydrazone-Based Switches. Modern Concepts in Material Science, 2019, 1, .	0.1	0
1115	Structural, AC conductivity and dielectric properties of bulk 1,3-Dihydro-1,3,3-trimethylspiro[2H-indole-2,3′-[3H]naphth[2,1-b][1,4]oxazine]. Arab Journal of Nuclear Sciences and Applications, 2019, 52, 196-203.	0.1	0
1116	Synthesis of a 5-Carboxy Indole-Based Spiropyran Fluorophore: Thermal, Electrochemical, Photophysical and Bovine Serum Albumin Interaction Investigations. Chemosensors, 2020, 8, 31.	1.8	7
1117	Coordination-enhanced photochromism in dysprosium dinuclear complexes with photomodulated single-molecule magnet behavior. , 0, 4, 2.		0
1118	Optically induced crossover from weak to strong coupling regime between surface plasmon polaritons and photochromic molecules. Optics Express, 2020, 28, 26509.	1.7	3
1119	Spiropyrans: molecules in motion. Chemistry of Heterocyclic Compounds, 2021, 57, 984-989.	0.6	10
1120	Spiropyran and spironaphthoxazine based opto-chemical probes for instant ion detection with high selectivity and sensitivity to trace amounts of cyanide. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113626.	2.0	23
1121	Preparation and application of multi-wavelength-regulated multi-state photoswitchable fluorescent polymer nanoparticles. Dyes and Pigments, 2022, 197, 109919.	2.0	14
1122	Single wavelength colour tuning of spiropyran and dithienylethene based photochromic coatings. Materials Advances, 2022, 3, 282-289.	2.6	3
1123	OPTICAL AND PHOTOCHEMICAL PROPERTIES OF POLYMERS BASED ON 2-(4-METHACRYOXYSTYRYL)QUINOLINE. Bulletin of Taras Shevchenko National University of Kyiv Chemistry, 2020, , 61-66.	0.1	0
1124	Smart Luminescent Nanocomposites. , 2020, , 401-438.		0
1125	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	23.0	32
1126	Multiple anti-counterfeiting guarantees from simple spiropyran derivatives with solid photochromism and mechanochromism. Cell Reports Physical Science, 2021, 2, 100643.	2.8	23
1127	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173
1128	Hydrogen bond effect of the photoswitching of a spiropyran dyad. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112611.	2.0	2
1129	"The red cageâ€i implementation of pH-responsiveness within a macrobicyclic pyridinium-based molecular host. Organic Chemistry Frontiers, 2021, 9, 81-87.	2.3	2
1130	Chromogenic Materials. , 2022, , 157-191.		3
1131	Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. International Journal of Molecular Sciences, 2021, 22, 12510.	1.8	3

#	Article	IF	CITATIONS
1132	Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chemical Reviews, 2022, 122, 1416-1481.	23.0	95
1133	Switchable Ionic Transportation in the Nanochannels of the MOFs Triggered by Light and pH. Langmuir, 2021, 37, 13952-13960.	1.6	3
1134	Large, Tunable, and Reversible pH Changes by Merocyanine Photoacids. Journal of the American Chemical Society, 2021, 143, 20758-20768.	6.6	43
1135	Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chemical Reviews, 2022, 122, 50-131.	23.0	46
1136	Design of a Spiropyran-Based Smart Adsorbent with Dual Response: Focusing on Highly Efficient Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2021, 13, 55806-55814.	4.0	21
1137	Light-driven dissipative self-assembly of a peptide hydrogel. Chemical Communications, 2021, 57, 13776-13779.	2.2	21
1138	Electronic state of a fluoranthene–urea compound and the kinetics of its emissive tautomer state in the presence of acetate anions. New Journal of Chemistry, 2022, 46, 1741-1750.	1.4	4
1139	Novel polychromogenic fluorine-substituted spiropyrans demonstrating either uni- or bidirectional photochromism as multipurpose molecular switches. Dyes and Pigments, 2022, 199, 110043.	2.0	19
1140	Photoresponsive Metalâ€Organic Frameworks: Tailorable Platforms of Photoswitches for Advanced Functions. ChemNanoMat, 2022, 8, .	1.5	7
1141	Adsorption of a Spiropyran on a Layered Clay Mineral. IOP Conference Series: Earth and Environmental Science, 2022, 950, 012041.	0.2	1
1142	Dynamic Control of Self-Assembly of Amphiphilic Conjugated Alkenes in Water by Reactions. ACS Omega, 2022, 7, 4677-4682.	1.6	1
1143	Multiple functionalities of highly conductive and flexible photo- and thermal-responsive colorimetric cellulose films. Materials Research Letters, 2022, 10, 36-44.	4.1	5
1144	Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. Exploration, 2022, 2, .	5.4	19
1145	Depinning of Multiphase Fluid Using Light and Photo-Responsive Surfactants. ACS Central Science, 2022, 8, 235-245.	5.3	9
1146	Debondable adhesives and their use in recycling. Green Chemistry, 2022, 24, 36-61.	4.6	50
1147	Photoresponsive DNA materials and their applications. Chemical Society Reviews, 2022, 51, 720-760.	18.7	48
1148	Remotely controllable supramolecular rotor mounted inside a porphyrinic cage. CheM, 2022, 8, 543-556.	5.8	24
1149	Photochromic switching of narrow-band lattice resonances. Optics Letters, 2022, 47, 337.	1.7	1

#	Article	IF	Citations
1150	Principal Component Analysis of Surface-Enhanced Raman Scattering Spectra Revealing Isomer-Dependent Electron Transport in Spiropyran Molecular Junctions: Implications for Nanoscale Molecular Electronics. ACS Omega, 2022, 7, 5578-5583.	1.6	15
1151	Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100487.	5.6	76
1152	Acid-, mechano- and photochromic molecular switches based on a spiropyran derivative for rewritable papers. Materials Chemistry Frontiers, 2022, 6, 916-923.	3.2	12
1153	Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. Journal of the American Chemical Society, 2022, 144, 4457-4468.	6.6	37
1154	Disordered Low Molecular Weight Spiropyran Exhibiting Photoregulated Adhesion Ability. Chemistry - A European Journal, 2022, 28, .	1.7	7
1155	Low Pka Spiropyran for Tracking C-Kit DNA G-Quadruplexes and Revealing the Dissipation of ΔÎ^m with Senescence Using an In-Situ Switching Strategy. SSRN Electronic Journal, 0, , .	0.4	0
1156	Fluorescence detection and imaging of intracellular sulphite using a remote light activatable photochromic nanoprobe. Journal of Materials Chemistry B, 2022, 10, 3366-3374.	2.9	7
1157	Photochemical modifications for DNA/RNA oligonucleotides. RSC Advances, 2022, 12, 6484-6507.	1.7	14
1158	Pushing the limits of nanopore transport performance by polymer functionalization. Chemical Communications, 2022, 58, 5188-5204.	2.2	18
1159	Controlling the shape morphology of origami-inspired photoresponsive hydrogels. Soft Matter, 2022, 18, 2193-2202.	1.2	7
1160	Basic-to-acidic reversible pH switching with a merocyanine photoacid. Chemical Communications, 2022, 58, 5610-5613.	2.2	15
1161	Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors. Mikrochimica Acta, 2022, 189, 116.	2.5	17
1162	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
1163	An Eight-State Molecular Sequential Switch Featuring a Dual Single-Bond Rotation Photoreaction. Journal of the American Chemical Society, 2022, 144, 3029-3038.	6.6	16
1164	Smart Photochromic Materials Triggered with Visible Light. European Journal of Organic Chemistry, 2022, 2022, .	1.2	36
1165	A Dual pH―and Lightâ€Responsive Spiropyranâ€Based Surfactant: Investigations on Its Switching Behavior and Remote Control over Emulsion Stability. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
1166	Ein dualâ€responsives pH―und lichtschaltbares Tensid mit einer Spiropyranâ€Einheit: Untersuchungen zum Schaltmechanismus und Anwendung zur Steuerung von EmulsionsstabilitÃæn. Angewandte Chemie, 0, , .	1.6	1
1167	The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing, 2022, 4, 022003.	6.3	23

	_	
	DED	ODT
CITATI	KEP	ORT

#	Article	IF	CITATIONS
1169	Non-Born–Oppenheimer effects in molecular photochemistry: an experimental perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200376.	1.6	4
1170	Optically Controlled Polarization Switching in an Organic Ferroelectric with Light- and Temperature-Triggered Phase Transitions. Chemistry of Materials, 2022, 34, 3067-3075.	3.2	8
1171	Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. Advanced Materials, 2022, 34, e2110488.	11.1	59
1172	Mechanochromophoreâ€Linked Polymeric Materials with Visible Color Changes. Macromolecular Rapid Communications, 2022, 43, e2100866.	2.0	17
1173	Tough, Self-Recoverable, Spiropyran (SP3) Bearing Polymer Beads Incorporated PAM Hydrogels with Sole Mechanochromic Behavior. Gels, 2022, 8, 208.	2.1	10
1174	Photoswitchable Binary Nanopore Conductance and Selective Electronic Detection of Single Biomolecules under Wavelength and Voltage Polarity Control. ACS Nano, 2022, 16, 5537-5544.	7.3	4
1175	Wavelength Orthogonal Photodynamic Networks. Chemistry - A European Journal, 2022, 28, .	1.7	19
1176	2â€Arylâ€1Hâ€benz[<i>de</i>]isoquinolinium Ions: Cationic Dyes Displaying Mechanochromism and Crystallochromism. ChemPhotoChem, 2022, 6, .	1.5	0
1177	Photo-control of Cellular Uptake by the Selective Adsorption of Spiropyran Derivatives on Albumin. Chemistry Letters, 2022, 51, 594-597.	0.7	1
1178	A deep understanding of the self-assembly and colloidal stability of light and pH dual-responsive spiropyran random copolymer micelle-like nano-aggregates. Materials Today Communications, 2022, 31, 103499.	0.9	2
1179	Photochromism of a Spiropyran in Low-Temperature Matrices: Unprecedented Bidirectional Switching between a Merocyanine and an Allene Intermediate. Journal of Physical Chemistry A, 2022, 126, 2222-2233.	1.1	6
1180	Photoâ€Enhancedâ€Coordination Triggered Unprecedented Bistable AIE for Longâ€Term Optical Memories. Advanced Optical Materials, 2022, 10, .	3.6	6
1181	Light responsive nucleic acid for biomedical application. Exploration, 2022, 2, .	5.4	19
1182	A spiropyran with low pKa for tracking DNA G-quadruplexes and revealing the dissipation of î"Î ⁻ m with senescence using an in-situ switching strategy. Sensors and Actuators B: Chemical, 2022, 359, 131618.	4.0	7
1183	Effect of the alkyl linker length on the photoisomerization of hydrazone switches on metal surfaces. Materials Today Chemistry, 2022, 24, 100797.	1.7	4
1184	Tuning the fluid wetting dynamics on gold microstructures using photoactive compounds. Applied Surface Science, 2022, 589, 152924.	3.1	0
1185	Structures of spiropyrans exhibiting photochromic properties in the solid state. Russian Chemical Bulletin, 2021, 70, 2090-2099.	0.4	12
1186	E/Z Molecular Photoswitches Activated by Two-Photon Absorption: Comparison between Different Families. Molecules, 2021, 26, 7379.	1.7	5

#	Article	IF	CITATIONS
1187	Spiropyran Photoisomerization Dynamics in Multiresponsive Hydrogels. Journal of the American Chemical Society, 2022, 144, 219-227.	6.6	39
1188	Towards low-energy-light-driven bistable photoswitches: ortho-fluoroaminoazobenzenes. Photochemical and Photobiological Sciences, 2022, 21, 159-173.	1.6	15
1189	Exploring the influence of polymorphism and chromophore co-ligands on linkage isomer photoswitching in [Pd(bpy4dca)(NO ₂ 2]. CrystEngComm, 2022, 24, 3701-3714.	1.3	4
1190	Renewable Polysaccharide and Biomedical Application of Nanomaterials. Journal of Nanomaterials, 2022, 2022, 1-16.	1.5	10
1191	Facile synthesis of magnetic photo-responsive nanoparticles based on 1,3-diazabicyclo[3.1.0]hex-3-en: An enhanced adsorption of toxic dyes from aqueous solution under sunlight. Journal of Molecular Structure, 2022, 1263, 133130.	1.8	3
1192	Preparação e Caracterização de Merocianinas Derivadas de Espiropirano Ativadas por Foto/Ionocromismo. Research, Society and Development, 2022, 11, e53511528661.	0.0	0
1193	Reversible Transformations of Polymer Topologies through Visible Light and Darkness. Journal of the American Chemical Society, 2022, 144, 6954-6963.	6.6	6
1194	A spiropyran-based photochromic webbing for ultra-violet light damage sensing. , 2022, , .		0
1195	Photo- and thermo-responsive extracellular matrix mimicking nano-coatings prepared from poly(N-isopropylacrylamide)-spiropyran copolymer for effective cell sheet harvesting. Progress in Organic Coatings, 2022, 167, 106847.	1.9	7
1196	Multimodal stimuli-responsive behaviors of photochromic spiropyran-bearing telechelic poly(2-isopropyl-2-oxazoline). Materials Today Chemistry, 2022, 24, 100884.	1.7	3
1197	CHAPTER 2. Mechanophores for Chemical Function. RSC Polymer Chemistry Series, 0, , 36-52.	0.1	0
1199	Toward real-world applications: promoting fast and efficient photoswitching in the solid state. Journal of Materials Chemistry C, 2022, 10, 13700-13716.	2.7	16
1200	Photochromic materials. , 2023, , 356-416.		3
1201	A conjugated photoresponsive dithienylethene–ferrocene system: applications in secret writing and decoding information. Journal of Materials Chemistry C, 2022, 10, 8860-8873.	2.7	5
1202	Smart dielectric materials for next-generation electrical insulation. , 2022, 1, 19-49.		20
1203	Visible light responsive spiropyran derivatives based on dynamic coordination bonds. Chinese Chemical Letters, 2023, 34, 107457.	4.8	4
1204	Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. ACS Applied Materials & Interfaces, 2022, 14, 21330-21339.	4.0	47
1205	Controlling the Isomerization of Photoresponsive Molecules through a Limiting Tautomerization Strategy. Journal of Physical Chemistry B, 2022, 126, 3347-3354.	1.2	4

#	Article	IF	CITATIONS
1206	Designing photochromatic pigments based on clay minerals and spiropyran. Dyes and Pigments, 2022, 204, 110358.	2.0	3
1207	Visible Light-Responsive Microgels Modified with Donor–Acceptor Stenhouse Adducts. Chemistry of Materials, 2022, 34, 4774-4784.	3.2	7
1208	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	7.2	12
1209	Metallicâ€lon Controlled Dynamic Bonds to Coâ€Harvest Isomerization Energy and Bond Enthalpy for Highâ€Energy Output of Flexible Selfâ€Heated Textile. Advanced Science, 2022, 9, e2201657.	5.6	7
1210	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal‒Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0
1211	Multi-responsive chromatic hydrogel exhibiting reversible shape deformations. Dyes and Pigments, 2022, 204, 110364.	2.0	6
1212	Amphiphilic block copolymers: From synthesis including living polymerization methods to applications in drug delivery. European Polymer Journal, 2022, 172, 111224.	2.6	11
1213	Reversible photoswitching of spiropyran in biomolecular interfaces: A combined spectroscopy and computational study. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113958.	2.0	3
1214	Chromogenic properties of heterocyclic compounds: Barochromic effect of indoline spiropyrans in the gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113982.	2.0	7
1215	Near-infrared and pH responsive molecular machine for controlled encapsulation and release of drugs. Polymer Testing, 2022, 112, 107631.	2.3	4
1216	The effect of temperature on the photoacidity of merocyanine photoacids in water. Materials Today Chemistry, 2022, 25, 100918.	1.7	4
1217	Motile behaviour of droplets in lipid systems. Nature Reviews Chemistry, 2022, 6, 377-388.	13.8	11
1218	Open-Form Configurational Isomers of a Tricyanofuran-Type Metastable-State Photoacid. ACS Omega, 0, , .	1.6	0
1219	Controlled Synthesis and Photoresponsive Properties of Spiropyran End-Functionalized Poly(vinyl) Tj ETQq1 1 0.	784314 rg 1.0	BT /Overlock
1220	Programmable and Flexible Fluorochromic Polymer Microarrays for Information Storage. ACS Applied Materials & Interfaces, 2022, 14, 27107-27117.	4.0	9
1221	Micro/nanoarrays and their applications in flexible sensors: A review. Materials Today Nano, 2022, 19, 100224.	2.3	9
1222	Stimuli-Responsive Organic Phase Change Materials: Molecular Designs and Applications in Energy Storage. Accounts of Materials Research, 2022, 3, 634-643.	5.9	20
1223	Tuneable fluorescence and structural colour in PNIPAM microgel assemblies. European Polymer Journal, 2022, 173, 111319.	2.6	1

#	Article	IF	CITATIONS
1226	Spiropyran-based photo- and thermal-responsive smart polymer with controllable wettability. Polymer, 2022, 253, 124995.	1.8	7
1227	Structural Transformation of a Multicompartment Micelle Induced by Photo-Switchable Spiropyran–Merocyanine Transition: Dissipative Particle Dynamics Simulation Approach. Journal of Physical Chemistry B, 2022, 126, 4401-4410.	1.2	4
1228	Applications of Metalâ^'Organic Frameworks in Wastewater Treatment and Gas Separation and Purification. ACS Symposium Series, 0, , 271-337.	0.5	0
1229	A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus. RSC Advances, 2022, 12, 16561-16569.	1.7	3
1230	Control of molecular conductance by pH. Journal of Materials Chemistry C, 2022, 10, 13483-13498.	2.7	4
1231	Synthesis and photochromism of catechol-containing symmetrical azobenzene compounds. Royal Society Open Science, 2022, 9, .	1.1	6
1232	Orthogonal―and Pathâ€Dependent Photo/Acidoswitching in an Eightâ€State Dihydroazuleneâ€Spiropyran Dyad. ChemPhotoChem, 2022, 6, .	1.5	5
1233	Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Applied Materials & Interfaces, 2023, 15, 25248-25274.	4.0	33
1234	Rewritable acidochromic papers based on oxazolidine for anticounterfeiting and photosensing of polarity and pH of aqueous media. Scientific Reports, 2022, 12, .	1.6	10
1235	Visible-Light-Controlled Ternary Chiroptical Switches with High-Performance Circularly Polarized Luminescence for Advanced Optical Information Storage and Anti-Counterfeiting Materials. SSRN Electronic Journal, 0, , .	0.4	0
1236	Switching gas permeation through smart membranes by external stimuli: a review. Journal of Materials Chemistry A, 2022, 10, 16743-16760.	5.2	13
1237	Optical Modulation of Antibiotic Resistance by Photoswitchable Cystobactamids. Chemistry - A European Journal, 2022, 28, .	1.7	6
1238	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie, 0, , .	1.6	1
1239	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1240	Photoswitchable lanthanide-doped core-multishell nanoparticles for tunable triple-mode information encryption and dynamic anti-counterfeiting patterns. Reactive and Functional Polymers, 2022, 178, 105350.	2.0	5
1241	Metalloenzymeâ€Mediated Thiolâ€Yne Addition Towards Photoisomerizable Fluorescent Dyes. Chemistry - A European Journal, 2022, 28, .	1.7	2
1242	A Brief Review on Advances in Rhodamine B Based Chromic Materials and Their Prospects. ACS Applied Electronic Materials, 2022, 4, 3749-3771.	2.0	33
1243	Tuning the selectivity of amino acid recognition with dynamic covalent bond constrained fluorophores in aqueous media. Organic and Biomolecular Chemistry, 0, , .	1.5	3

#	Article	IF	CITATIONS
1244	Coupling of Hydrophobic Graphene Quantum Dots with Photochromic Molecule for Fabrication of Transparent Photo-Responsive Polymeric Films Manifesting Fret Functioning. SSRN Electronic Journal, 0, , .	0.4	0
1245	DFT modeling of indoline spiropyrans with a cationic substituent in the gas phase. Mendeleev Communications, 2022, 32, 467-470.	0.6	3
1246	Photo- and ionochromic properties of new spirobenzochromene-pyranoquinoline. Mendeleev Communications, 2022, 32, 531-533.	0.6	2
1247	Mechanoâ€Responsive Spiropyran Microbeads: A Facile Fabrication Strategy for Selfâ€Reporting Materials. Advanced Materials Technologies, 2023, 8, .	3.0	2
1248	Switching the conductance of a single molecule: Lessons from molecular junctions. MRS Communications, 2022, 12, 495-509.	0.8	6
1249	Molecular‣witchâ€Embedded Solutionâ€Processed Semiconductors. Advanced Materials, 2023, 35, .	11.1	4
1250	Brain Wave‣ike Signal Modulator by Ionic Nanochannel Rectifier Bridges. Small, 2022, 18, .	5.2	4
1251	Reversible, Red-Shifted Photoisomerization in Protonated Azobenzenes. Journal of Organic Chemistry, 2022, 87, 10605-10612.	1.7	13
1252	Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels, 2022, 8, 533.	2.1	14
1253	Linear and Nonlinear Optical Properties of Azobenzene Derivatives Modified with an (Amino)naphthalene Moiety. Journal of Physical Chemistry B, 2022, 126, 6063-6073.	1.2	5
1254	Spiropyran-functionalized photochromic nylon webbings for long-term ultraviolet light sensing. Journal of Applied Physics, 2022, 132, .	1.1	2
1255	Aqueous Supramolecular Coâ€Assembly of Anionic and Cationic Photoresponsive Stiff‣tilbene Amphiphiles. Macromolecular Rapid Communications, 2022, 43, .	2.0	9
1256	On the Computational Design of Azobenzene-Based Multi-State Photoswitches. International Journal of Molecular Sciences, 2022, 23, 8690.	1.8	1
1257	Spontaneous and Continuous Actuators Driven by Fluctuations in Ambient Humidity for Energy-Harvesting Applications. ACS Applied Materials & Interfaces, 2022, 14, 38972-38980.	4.0	9
1258	Delicate and Independent Manipulation of Dynamic Fluorescence Behavior of Polymer Nanoparticles Based on a Core–Shell Strategy. ACS Applied Materials & Interfaces, 2022, 14, 39384-39395.	4.0	10
1259	Components, mechanisms and applications of stimuli-responsive polymer gels. European Polymer Journal, 2022, 177, 111473.	2.6	23
1260	Binary Ligandâ€Mediated Photochromic Tuning of Lanthanideâ€Doped Upconversion Nanoparticle Conjugates. Advanced Optical Materials, 2022, 10, .	3.6	4
1261	Visible-light controlled supramolecular transformations of donor-acceptor Stenhouse adducts amphiphiles at multiple length-scale. Journal of Colloid and Interface Science, 2022, 628, 984-993.	5.0	9

\sim		<u> </u>	
		REPO	דסר
\sim	IIAI	NLFV	ואכ

#	Article	IF	CITATIONS
1262	Visible-light-controlled ternary chiroptical switches with high-performance circularly polarized luminescence for advanced optical information storage and anti-counterfeiting materials. Chemical Engineering Journal, 2022, 450, 138390.	6.6	15
1263	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	13.8	24
1264	Light-responsive nanochannels based on the supramolecular host–guest system. Frontiers in Chemistry, 0, 10, .	1.8	4
1265	Molecular platform based on a spiroindolinonaphthopyran of the diphenyloxazole series for the creation of polychromogenic molecular systems. Dyes and Pigments, 2022, 207, 110703.	2.0	4
1266	Multi-stimuli responsive fluorescence switching behaviours of AIE polymers for acid-base vapour sensing and highly sensitive ferric ion detection. Sensors and Actuators B: Chemical, 2022, 372, 132634.	4.0	10
1267	Washable and stretchable fiber with heat and ultraviolet color conversion. RSC Advances, 2022, 12, 22351-22359.	1.7	3
1268	Light-responsive Pickering emulsions based on azobenzene-modified particles. Soft Matter, 2022, 18, 5770-5781.	1.2	6
1269	Dissipative self-assembly of a proline catalyst for temporal regulation of the aldol reaction. Nanoscale, 2022, 14, 14711-14716.	2.8	3
1270	Visible light activated BINOL-derived chiroptical switches based on boron integrated hydrazone complexes. Chemical Science, 2022, 13, 9713-9718.	3.7	3
1271	A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. Journal of Hazardous Materials, 2023, 441, 129900.	6.5	31
1272	Synthesis and study of interconversions of new indoline spiropyrans based on 4-hydroxy-3,5-diformylbenzoic acid. Russian Chemical Bulletin, 2022, 71, 1710-1719.	0.4	4
1273	Features of Crystallization of Indoline Spiropyran with a Cationic Substituent. Russian Journal of General Chemistry, 2022, 92, 1384-1391.	0.3	1
1274	Electrostatic Assembly of Photochromic TiO ₂ /Phosphomolybdic Acid Composite Nanoparticles for Light-Responsive Rewritable Papers. ACS Applied Nano Materials, 2022, 5, 13218-13226.	2.4	2
1275	Amino Acid Conjugated Spiropyrans: Synthesis and Photoisomerization Studies. ChemistrySelect, 2022, 7, .	0.7	0
1276	Erianin-Loaded Photo-Responsive Dendrimer Mesoporous Silica Nanoparticles: Exploration of a Psoriasis Treatment Method. Molecules, 2022, 27, 6328.	1.7	3
1277	Ring-System-Based Conformational Switches and their Applications in Sensing and Liposomal Drug Delivery. Synthesis, 0, , .	1.2	0
1278	Spiropyran/Merocyanine Amphiphile in Various Solvents: A Joint Experimental–Theoretical Approach to Photophysical Properties and Self-Assembly. International Journal of Molecular Sciences, 2022, 23, 11535.	1.8	1
1279	Photoswitchable Adhesives of Spiropyran Polymers. Chemistry of Materials, 2022, 34, 8289-8296.	3.2	22

#	Article	IF	CITATIONS
1280	Effect of Molecular Structure of Photoswitchable Surfactant on Light-Responsive Shape Transition of Block Copolymer Particles. Macromolecules, 2022, 55, 8355-8364.	2.2	8
1281	The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules, 2022, 27, 6231.	1.7	2
1282	Merocyanine Complexes Coupled with Plasmonic Au Nanoparticles for Inhibiting Tau Aggregation. ACS Applied Nano Materials, 2022, 5, 17613-17621.	2.4	0
1283	Nanoporous Metal–Organic Framework Thin Films with Embedded Fulgide for Light-Modulated Guest Adsorption and Diffusion. Langmuir, 2022, 38, 13103-13108.	1.6	2
1284	Bioinspired Dual-Driven Binary Heterogeneous Nanofluidic Ionic Diodes. Langmuir, 2022, 38, 12450-12456.	1.6	6
1285	Influence of Acid on Ring-Opening, Fluorescence, Aggregation, Electrochemical Oxidation, and C–C Bond Coupling of Spiropyran Derivatives. Journal of the Electrochemical Society, 2022, 169, 106516.	1.3	4
1286	A robust photoswitchable dual-color fluorescent poly (vinyl alcohol) composite hydrogel constructed by photo-responsive FRET effect. Dyes and Pigments, 2023, 208, 110800.	2.0	6
1287	Synthesis of photochromic 3-arylvinyl-3H-naphtho[2,1-b]pyrans: An unexpected one-step annulation to cyclopenta[b]naphtho[1,2-d]furans. Dyes and Pigments, 2022, 207, 110710.	2.0	0
1288	Red-light controlled supramolecular co-assembly transformations of stiff stilbene and donor acceptor stenhouse adduct amphiphiles. Dyes and Pigments, 2023, 208, 110807.	2.0	9
1289	4D printing of light activated shape memory polymers with organic dyes. Molecular Systems Design and Engineering, 2023, 8, 323-329.	1.7	8
1290	A light-gated regulation of the reaction site by a cucurbit[7]uril macrocycle. Chemical Science, 2022, 13, 12440-12444.	3.7	4
1291	Novel Stimuli-Responsive Spiropyran-Based Switch@HOFs Materials Enable Dynamic Anticounterfeiting. ACS Applied Materials & Interfaces, 2022, 14, 48133-48142.	4.0	12
1292	Lightâ€Stimulated Luminescence Control of Lead Halideâ€Based Perovskite Nanocrystals Coupled with Photochromic Molecules via Electron and Energy Transfer. Small, 2022, 18, .	5.2	2
1293	Dual sensitivity of spiropyran-functionalized carbon dots for full color conversions. Science China Chemistry, 2022, 65, 2274-2282.	4.2	13
1294	Photoresponsive Supramolecular Polymers: From Light ontrolled Small Molecules to Smart Materials. Advanced Materials, 2023, 35, .	11.1	51
1295	Spiropyran–Merocyanine Based Photochromic Fluorescent Probes: Design, Synthesis, and Applications. ACS Omega, 2022, 7, 36988-37007.	1.6	16
1296	Colloidosomes as a Protocell Model: Engineering Life‣ike Behaviour through Organic Chemistry. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
1297	Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews, 2022, 122, 17397-17478.	23.0	23

#	Article	IF	Citations
1298	Forceâ€Induced Synergetic Pigmentary and Structural Color Change of Liquid Crystalline Elastomer with Nanoparticleâ€Enhanced Mechanosensitivity. Advanced Science, 2022, 9, .	5.6	22
1299	Strong coupling for bifunctionality in organic systems. Applied Physics Letters, 2022, 121, 181101.	1.5	0
1300	Reversible fluorescence and Förster resonance energy transfer switching behaviours of bistable photo-switchable [<i>c</i> 2] daisy chain rotaxanes and photo-patterning applications. Journal of Materials Chemistry C, 2022, 10, 18241-18257.	2.7	4
1301	Sterically Hindered Stiff-Stilbene Photoswitch Offers Large Motions, 90% Two-Way Photoisomerization, and High Thermal Stability. Journal of Organic Chemistry, 2022, 87, 15762-15770.	1.7	12
1302	Altering the Properties of Spiropyran Switches Using Coordination Cages with Different Symmetries. Journal of the American Chemical Society, 2022, 144, 21244-21254.	6.6	16
1303	Multistimuliâ€responsive Photochromism of Vinyleneâ€linked Bisflavin based on the Aggregation and Redox Properties. Chemistry - A European Journal, 0, , .	1.7	0
1304	Damage-Detectable and Self-Healable Photoluminescent Dual Dynamic Supramolecular Networks. ACS Applied Polymer Materials, 2022, 4, 9103-9115.	2.0	2
1305	Three Complementary Oneâ€Pot Fourâ€Component Reaction Sequences for Rapid, General and Direct Spiropyran Synthesis. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
1306	Coupling of hydrophobic graphene quantum dots with photochromic molecule for fabrication of transparent photo-responsive polymeric films manifesting FRET functioning. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437, 114420.	2.0	3
1307	Optical Patterning in Photoresponsive Azobenzene-Based Waterborne Coatings. , 2023, 1, 403-411.		1
1308	Stimuli-responsive protein fibers for advanced applications. , 2023, , 351-399.		0
1309	Photodegradable and pH responsive nanocapsules encapsulated with upconversion nanoparticles for diagnosis and treatment. European Polymer Journal, 2023, 182, 111715.	2.6	2
1310	Multifunctional switching properties of "wire-like―dinuclear ruthenium bis-alkynyl spiropyran complexes. Dalton Transactions, 2022, 52, 185-200.	1.6	2
1311	Highly efficient light-induced self-assembly of gold nanoparticles promoted by photoexcitation-induced aggregatable ligands. Chemical Communications, 2023, 59, 418-421.	2.2	3
1312	Photochromism of tetrahydroindolizines. Part XXVI: Mechanochemical synthesis, tunable photophysical properties and combined experimental and theoretical studies of novel photochromic tetrahydroindolizines. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437, 114439.	2.0	0
1313	Reversible electrospun fibers containing spiropyran for acid and base vapor sensing. Journal of Materials Research, 2023, 38, 547-556.	1.2	5
1314	Dynamic molecular switches with hysteretic negative differential conductance emulating synaptic behaviour. Nature Materials, 2022, 21, 1403-1411.	13.3	24
1315	Photoresponsive Polymer and Polymer Composite Membranes for Gas Separation. ACS Applied Polymer Materials, 2023, 5, 1-30.	2.0	3

#	Article	IF	CITATIONS
1316	Stimuli-Responsive Membrane Anchor Peptide Nanofoils for Tunable Membrane Association and Lipid Bilayer Fusion. ACS Applied Materials & Interfaces, 2022, 14, 55320-55331.	4.0	2
1317	Thermal and (Thermo-Reversible) Photochemical Cycloisomerization of 1 <i>H</i> -2-Benzo[<i>c</i>]oxocins: From Synthetic Applications to the Development of a New T-Type Molecular Photoswitch. Journal of the American Chemical Society, 2023, 145, 645-657.	6.6	6
1318	Self Cycloaddition of <i>o</i> â€Naphthoquinone Nitrosomethide to (±) <i>Spiro</i> {naphthalene(naphthopyranofurazan)}â€one Oxide: An Insight into its Formation. ChemPlusChem, 2022, 87, .	1.3	2
1319	Rational Understanding of Loading and Release of Doxorubicin by UV-Light- and pH-Responsive Poly(NIPAM- <i>co</i> -SPMA) Micelle-like Aggregates. Molecular Pharmaceutics, 2023, 20, 1490-1499.	2.3	2
1320	Metal–Photoswitch Friendship: From Photochromic Complexes to Functional Materials. Journal of the American Chemical Society, 2022, 144, 23249-23263.	6.6	30
1321	A pH―and Lightâ€Responsive Nanoporous Lyotropic Gyroid Polymer Network. Advanced Materials Interfaces, 0, , 2201761.	1.9	2
1322	Designs and Applications of Multi-stimuli Responsive FRET Processes in AlEgen-Functionalized and Bi-fluorophoric Supramolecular Materials. Topics in Current Chemistry, 2023, 381, .	3.0	7
1323	Preparation of switchable thermo- and photo-responsive polyacrylic nanocapsules containing leuco-dye and spiropyran: Multi-level data encryption and temperature indicator. Journal of Industrial and Engineering Chemistry, 2023, 119, 647-659.	2.9	10
1324	Controlling the LCST-Phase Transition in Azobenzene-Functionalized Poly (N-Isopropylacrlyamide) Hydrogels by Light. Gels, 2023, 9, 75.	2.1	5
1325	Shining a Light on Dissipative Supramolecular Assemblies. Synlett, 2023, 34, 975-982.	1.0	1
1326	Small-molecule photoswitches for fluorescence bioimaging: engineering and applications. Chemical Communications, 2023, 59, 660-669.	2.2	17
1327	Visualizing ion transport in polymers via ion-chromic indicators. ACS Macro Letters, 2023, 12, 86-92.	2.3	0
1328	Photoswitch designs for molecular solar thermal energy storage. Trends in Chemistry, 2023, 5, 577-580.	4.4	4
1329	Two-photon photopolymerization directly initiated by spiropyran photochromic molecules. , 2023, 4, 1.		2
1330	Optical control of alignment and patterning in an azobenzene liquid crystal photoresist. Journal of Materials Chemistry C, 2023, 11, 2177-2185.	2.7	4
1331	A Modern Look at Spiropyrans: From Single Molecules to Smart Materials. Topics in Current Chemistry, 2023, 381, .	3.0	22
1332	Oxazine as an efficient precursor for the development of photochromic spiropyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114541.	2.0	4
1333	Red-light driven photoisomerisation and supramolecular transformation of indigo amphiphiles in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130939.	2.3	8

#	Article	IF	Citations
1334	Comprehensive study of substituent effects on structure and photochromic properties of 1,3-benzoxazine-4-one spiropyrans. Journal of Molecular Structure, 2023, 1277, 134898.	1.8	6
1335	Challenges of Spectrofluorometry Part 3: Sample-Specific Concerns. Spectroscopy (Santa Monica), 2021, , 30-35,62.	0.3	0
1336	Synthesis and structural characterization of new spiropyran containing conjugated vinyl-3Еindolium moiety and its hydrolysis product. Chemistry of Heterocyclic Compounds, 2022, 58, 712-720.	0.6	2
1337	Photochromic and Luminescent Properties of a Salt of a Hybrid Molecule Based on C60 Fullerene and Spiropyran—A Promising Approach to the Creation of Anticancer Drugs. Molecules, 2023, 28, 1107.	1.7	0
1338	Exceptionally flexible quinodimethanes with multiple conformations: polymorph-dependent colour tone and emission of crystals. Materials Chemistry Frontiers, 2023, 7, 1591-1598.	3.2	6
1339	Spiropyran-based polymeric micelles in aqueous solution: light-regulated reversible size alterations and catalytic characteristics. Polymer Chemistry, 2023, 14, 888-897.	1.9	2
1340	Photo―and pHâ€Responsive Hybrid Colloidal Particles. ChemistrySelect, 2023, 8, .	0.7	0
1341	Photo-induced mode change for CO ₂ capture/release on spiropyran in a polar-gradient environment. Chemical Communications, 2023, 59, 4304-4307.	2.2	2
1342	Stimuli-responsive structure–property switchable polymer materials. Molecular Systems Design and Engineering, 2023, 8, 1097-1129.	1.7	17
1343	Photo-responsive metal–organic frameworks – design strategies and emerging applications in photocatalysis and adsorption. Materials Advances, 2023, 4, 1258-1285.	2.6	4
1344	Light-driven textile sensors with potential application of UV detection. RSC Advances, 2023, 13, 5266-5272.	1.7	0
1345	Solid-State Luminescent Molecular Photoswitches. Accounts of Materials Research, 2023, 4, 311-322.	5.9	16
1346	Spiropyran-containing water-soluble and photoreversible copolymers. Polymer, 2023, 272, 125827.	1.8	5
1347	Switchable biomimetic nanochannels for on-demand SO2 detection by light-controlled photochromism. Nature Communications, 2023, 14, .	5.8	7
1348	Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Progress in Polymer Science, 2023, 140, 101665.	11.8	23
1349	Evaluation of tight-binding DFT performance for the description of organic photochromes properties. Journal of Chemical Physics, 2023, 158, 074303.	1.2	3
1350	Designing Multistimuli-Responsive Anisotropic Bilayer Hydrogel Actuators by Integrating LCST Phase Transition and Photochromic Isomerization. Polymers, 2023, 15, 786.	2.0	4
1351	Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. Nano-Micro Letters, 2023, 15, .	14.4	29

		CITATION REPORT		
#	Article		IF	CITATIONS
1352	Dithienyletheneâ€Based Single Molecular Photothermal Linear Actuator. Angewandte Chemie, 2023	3,135,.	1.6	1
1353	Dithienyletheneâ€Based Single Molecular Photothermal Linear Actuator. Angewandte Chemie - International Edition, 2023, 62, .		7.2	6
1354	ESIPTâ€Inspired Dualâ€Mode Photoswitches with Fast Molecular Isomerization in the Solid State. Angewandte Chemie - International Edition, 2023, 62, .		7.2	9
1355	ESIPTâ€Inspired Dualâ€Mode Photoswitches with Fast Molecular Isomerization in the Solid State. Angewandte Chemie, 2023, 135, .		1.6	1
1356	Heterocyclic Hemipiperazines: Waterâ€Compatible Peptideâ€Derived Photoswitches. Chemistry - A Journal, 2023, 29, .	European	1.7	3
1357	A photonic artificial synapse with a reversible multifaceted photochromic compound. Nanoscale Horizons, 2023, 8, 543-549.		4.1	2
1358	Multiscale photoacoustic tomography using reversibly switchable thermochromics. Journal of Biomedical Optics, 2023, 28, .		1.4	2
1359	Binuclear coordination complex of open merocyanine form of photochromic spiropyran with Mn ^{II} (hfac) ₂ having high spin (<i>S</i> = 5) ground state. New Journal of Chemistry, 2023, 47, 5470-5476.		1.4	1
1360	Encapsulins: Structure, Properties, and Biotechnological Applications. Biochemistry (Moscow), 2023 88, 35-49.	¦,	0.7	3
1361	Cast, Dip, Spray, and Print─Covalently Embedded Photochromic Materials from a Versatile Spirop Conjugate. ACS Applied Polymer Materials, 2023, 5, 1696-1706.	vran	2.0	5
1362	Multiplexed stimuli-responsive molecules for high-security anti-counterfeiting applications. Journal of Materials Chemistry C, 2023, 11, 4164-4170.		2.7	2
1363	Tuning Mechanically Interlocked Molecules to Recognize Anions and Cations: A Computational Stud Chemistry - A European Journal, 2023, 29, .	ly.	1.7	2
1364	Photoacidity of Indolinospirobenzopyrans in Water. European Journal of Organic Chemistry, 2023, 2	:6,	1.2	2
1365	A photo-responsive organic electrochemical transistor. Journal of Materials Chemistry C, 2023, 11, 7982-7988.		2.7	2
1366	Stimuli responsive metal organic framework materials towards advanced smart application. Materia Today, 2023, 64, 138-164.	S	8.3	12
1367	Lightâ€Fueled Nonequilibrium and Adaptable Hydrogels for Highly Tunable Autonomous Selfâ€Osci Functions. Advanced Functional Materials, 2023, 33, .	lating	7.8	11
1368	Photoisomerization of AzoBmapolymer induces fast and reversible high-to-low thermal conductivity transitions. Journal of Materials Science, 2023, 58, 5072-5085.		1.7	0
1369	Photoâ€Stimuliâ€Responsive Dualâ€Emitting Luminescence of a Spiropyranâ€Encapsulating Metalâ Framework for Dynamic Information Encryption. Advanced Materials, 2023, 35, .	€"Organic	11.1	39

\sim		<u> </u>	
Сітат	ION	IN E D O	DT
CITAL	ION.	NLFU	

#	Article	IF	CITATIONS
1370	Nonadiabatic Coupling in Trajectory Surface Hopping: How Approximations Impact Excited-State Reaction Dynamics. Journal of Chemical Theory and Computation, 2023, 19, 1827-1842.	2.3	9
1371	Controlling Isomerization of Photoswitches to Modulate 2D Logicâ€inâ€Memory Devices by Organic–Inorganic Interfacial Strategy. Advanced Science, 2023, 10, .	5.6	3
1372	Designing P-type bi-stable overcrowded alkene-based chiroptical photoswitches. Chemical Science, 2023, 14, 4328-4336.	3.7	5
1373	Multifunctional nylon filaments for simultaneous ultra-violet light and strain sensing. European Physical Journal D, 2023, 77, .	0.6	2
1374	Light Responsive Materials: Properties, Design, and Applications. ACS Symposium Series, 0, , 101-127.	0.5	1
1375	Reversible Photocontrol of Microtubule Stability by Spiropyranâ€Conjugated Tauâ€Derived Peptides. ChemBioChem, 2023, 24, .	1.3	5
1376	Synthesis, Structure, and Opticalâ€response Magnetic Property of a Heteroareneâ€azo Functionalized Mn ₁₉ Cluster. Chinese Journal of Chemistry, 2023, 41, 1667-1672.	2.6	4
1377	Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran. Frontiers in Molecular Biosciences, 0, 10, .	1.6	3
1378	Smart nanomaterials in biosensing applications. , 2023, , 207-231.		1
1379	Phenylazothiazoles as Visible-Light Photoswitches. Journal of the American Chemical Society, 2023, 145, 9072-9080.	6.6	13
1380	Photo-Responsive Control of Adsorption and Structure Formation at the Air–Water Interface with Arylazopyrazoles. Langmuir, 0, , .	1.6	0
1381	Phototriggered structures: Latest advances in biomedical applications. Acta Pharmaceutica Sinica B, 2023, 13, 2844-2876.	5.7	1
1382	Valorised polypropylene waste based reversible sensor for copper ion detection in blood and water. Environmental Research, 2023, 228, 115928.	3.7	4
1383	Direct synthesis and optical absorbance studies of the first representatives of 3-ylidenemalononitrile derivatives of 2-oxopyrroles containing a phenol moiety. Tetrahedron Letters, 2023, , 154513.	0.7	0
1384	Mechanical properties and peculiarities of molecular crystals. Chemical Society Reviews, 2023, 52, 3098-3169.	18.7	48
1385	Anion effect on crystal structure of Zn-complexes of spironaphthopyran and their chromogenic properties in solution. Polyhedron, 2023, , 116409.	1.0	0
1386	A light-fueled dissipative aggregation-induced emission system for time-dependent information encryption. Chemical Communications, 2023, 59, 5910-5913.	2.2	8
1417	Advanced stimuli-responsive membranes for smart separation. Chemical Society Reviews, 2023, 52, 4173-4207.	18.7	12

#	Article	IF	CITATIONS
1437	Stimuli-responsive systems for smart drug delivery systems. , 2023, , 389-420.		0
1447	Construction of functional microtubules and artificial motile systems based on peptide design. Polymer Journal, 2023, 55, 1261-1274.	1.3	0
1448	Synthesis of spiropyrans and arylquinones <i>via</i> Ru(<scp>ii</scp>)-catalyzed condition-controlled coupling of 3-aryl-2 <i>H</i> -benzoxazinones with benzoquinones. Chemical Communications, 2023, 59, 11704-11707.	2.2	3
1478	Recent advances in small-molecule fluorescent photoswitches with photochromism in diverse states. Journal of Materials Chemistry C, 2023, 11, 15393-15411.	2.7	7
1481	Visible light-responsive materials: the (photo)chemistry and applications of donor–acceptor Stenhouse adducts in polymer science. Chemical Society Reviews, 2023, 52, 8245-8294.	18.7	6
1491	Development of heat-responsive adhesive materials that are stable during use and quickly deteriorate during dismantling. Polymer Journal, 0, , .	1.3	0
1510	The butterfly effect of photochromes. , 2023, , 509-534.		0
1526	Recent progress in photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches. Polymer Journal, 2024, 56, 269-282.	1.3	0

1565 Light-activated Molecular Switches, Machines and Motors. , 2024, , .

0