Gut microbiota controls adipose tissue expansion, gut b novel insights into molecular targets and interventions

Beneficial Microbes 5, 3-17 DOI: 10.3920/bm2012.0065

Citation Report

#	Article	IF	CITATIONS
1	The Gastrointestinal Microbiome and Musculoskeletal Diseases: A Beneficial Role for Probiotics and Prebiotics. Pathogens, 2013, 2, 606-626.	1.2	46
2	Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e92193.	1.1	451
3	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	1.2	81
4	Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Autonomic Neuroscience: Basic and Clinical, 2014, 181, 94-106.	1.4	41
5	The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress and Chaperones, 2014, 19, 447-464.	1.2	91
6	Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes and Metabolism, 2014, 40, 246-257.	1.4	104
7	Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Autonomic Neuroscience: Basic and Clinical, 2014, 182, 70-82.	1.4	9
8	Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Research and Clinical Practice, 2014, 106, 312-318.	1.1	78
9	Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression. Nutrition Research, 2014, 34, 789-796.	1.3	27
10	Toll-Like Receptor 2 Activation by β2→1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length–Dependent Manner. Journal of Nutrition, 2014, 144, 1002-1008.	1.3	93
11	Gut microbiota and GLP-1. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 189-196.	2.6	192
13	Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 2015, 28, 42-66.	2.1	251
14	The anti-obesity effects of <i>Lactobacillus casei</i> strain Shirota versus Orlistat on high fat diet-induced obese rats. Food and Nutrition Research, 2015, 59, 29273.	1.2	81
15	In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit. Beneficial Microbes, 2015, 6, 829-839.	1.0	10
16	Resistant starches for the management of metabolic diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 559-565.	1.3	84
17	Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World Journal of Diabetes, 2015, 6, 403.	1.3	18
18	Does Whole Grain Consumption Alter Gut Microbiota and Satiety?. Healthcare (Switzerland), 2015, 3, 364-392.	1.0	29
19	Changes in Intake of Fruits and Vegetables and Weight Change in United States Men and Women Followed for Up to 24 Years: Analysis from Three Prospective Cohort Studies. PLoS Medicine, 2015, 12, e1001878	3.9	290

#	Article	IF	Citations
20	Le microbiote intestinal : un nouvel acteur de la nutrition ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 6S22-6S29.	0.2	0
22	Gut microbiota and obesity: Involvement of the adipose tissue. Journal of Functional Foods, 2015, 14, 407-423.	1.6	32
23	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	2.9	220
24	The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiology Reviews, 2015, 39, 567-591.	3.9	362
25	Diet and the Gut Microbiota $\hat{a} {\in} ``$ How the Gut. , 2015, , 225-245.		6
26	Prevention of cardiovascular disease in rheumatoid arthritis. Autoimmunity Reviews, 2015, 14, 952-969.	2.5	69
28	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	5.8	144
29	<i>Lactobacillus rhamnosus</i> CNCM I-3690 and the commensal bacterium <i>Faecalibacterium prausnitzii</i> A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes, 2015, 6, 1-9.	4.3	143
30	Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proceedings of the Nutrition Society, 2015, 74, 258-267.	0.4	19
31	Dietary Polyphenols Promote Growth of the Gut Bacterium <i>Akkermansia muciniphila</i> and Attenuate High-Fat Diet–Induced Metabolic Syndrome. Diabetes, 2015, 64, 2847-2858.	0.3	526
32	The human gut microbiota and virome: Potential therapeutic implications. Digestive and Liver Disease, 2015, 47, 1007-1012.	0.4	226
33	Gut microbiota, the immune system, and diet influence the neonatal gut–brain axis. Pediatric Research, 2015, 77, 127-135.	1.1	126
34	Multidisciplinary Approach to Obesity. , 2015, , .		8
35	Potential Nutrigenomic Approaches to Reduce the High Incidence of Obesity in Qatar. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	2
36	The Microbial Hypothesis: Contributions of Adenovirus Infection and Metabolic Endotoxaemia to the Pathogenesis of Obesity. International Journal of Chronic Diseases, 2016, 2016, 1-11.	1.9	6
37	Gut Microbiota and Metabolism. , 2016, , 391-401.		5
38	The Role of Gut Microflora and the Cholinergic Anti-inflammatory Neuroendocrine System in Diabetes Mellitus. Frontiers in Endocrinology, 2016, 7, 55.	1.5	20
39	CST, an Herbal Formula, Exerts Anti-Obesity Effects through Brain-Gut-Adipose Tissue Axis Modulation in High-Fat Diet Fed Mice. Molecules, 2016, 21, 1522.	1.7	26

#	Article	IF	CITATIONS
40	Disparate Metabolic Responses in Mice Fed a High-Fat Diet Supplemented with Maize-Derived Non-Digestible Feruloylated Oligo- and Polysaccharides Are Linked to Changes in the Gut Microbiota. PLoS ONE, 2016, 11, e0146144.	1.1	43
41	Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats. PLoS ONE, 2016, 11, e0164614.	1.1	41
43	Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutrition Research Reviews, 2016, 29, 234-248.	2.1	160
44	Bioâ€banking gut microbiome samples. EMBO Reports, 2016, 17, 929-930.	2.0	9
45	Exercise and Prebiotics Produce Stress Resistance. International Review of Neurobiology, 2016, 131, 165-191.	0.9	9
46	Correlation between diet and gut bacteria in a population of young adults. International Journal of Food Sciences and Nutrition, 2016, 67, 470-478.	1.3	41
47	Dairy products and the French paradox: Could alkaline phosphatases play a role?. Medical Hypotheses, 2016, 92, 7-11.	0.8	13
49	Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. American Journal of Physiology - Renal Physiology, 2016, 310, F857-F871.	1.3	208
50	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	7.8	26
51	Combination of the anthocyanidins malvidin and peonidin attenuates lipopolysaccharide-mediated inflammatory gene expression in primary human adipocytes. Nutrition Research, 2016, 36, 1353-1360.	1.3	18
52	Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Scientific Reports, 2016, 6, 37589.	1.6	437
53	Oligofructose as an adjunct in treatment of diabetes in NOD mice. Scientific Reports, 2016, 6, 37627.	1.6	19
54	Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials, 2016, 17, 347.	0.7	40
55	Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Scientific Reports, 2016, 6, 31849.	1.6	16
56	Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota. Beneficial Microbes, 2016, 7, 237-246.	1.0	39
57	Treatment of insulin resistance: straight from the gut. Drug Discovery Today, 2016, 21, 1284-1290.	3.2	11
58	Adipose tissue microbiota in humans: an open issue. International Journal of Obesity, 2016, 40, 1643-1648.	1.6	17
59	A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. Journal of Nutritional Biochemistry, 2016, 31, 150-165.	1.9	87

#	Article	IF	CITATIONS
60	Antibiotic administration and the development of obesity in children. International Journal of Antimicrobial Agents, 2016, 47, 171-177.	1.1	46
61	Contribution of Alcoholic and Nonalcoholic Fatty Liver Disease toÂthe Burden of Liver-Related Morbidity and Mortality. Gastroenterology, 2016, 150, 1778-1785.	0.6	251
62	Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides. Food and Function, 2016, 7, 250-261.	2.1	7
63	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	1.5	125
64	A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Critical Reviews in Food Science and Nutrition, 2017, 57, 1593-1602.	5.4	21
65	Chronic supplementation with dietary proanthocyanidins protects from dietâ€induced intestinal alterations in obese rats. Molecular Nutrition and Food Research, 2017, 61, 1601039.	1.5	54
66	The Gut Microbiome and Metabolic Health. Current Nutrition Reports, 2017, 6, 16-23.	2.1	10
67	Gut microbiota changes and chronic hepatitis C virus infection. Expert Review of Gastroenterology and Hepatology, 2017, 11, 813-819.	1.4	83
68	Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. MBio, 2017, 8, .	1.8	164
69	Remote Sensing Between Liver and Intestine: Importance of Microbial Metabolites. Current Pharmacology Reports, 2017, 3, 101-113.	1.5	49
70	Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. European Journal of Pharmacology, 2017, 815, 266-273.	1.7	14
71	Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA Journal, 2017, 8, 357-376.	3.3	67
73	Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Scientific Reports, 2017, 7, 5621.	1.6	51
74	Consumption of kiwifruit capsules increases <i>Faecalibacterium prausnitzii</i> abundance in functionally constipated individuals: a randomised controlled human trial. Journal of Nutritional Science, 2017, 6, e52.	0.7	34
75	Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Scientific Reports, 2017, 7, 4716.	1.6	63
76	Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Molecular Metabolism, 2017, 6, 86-100.	3.0	84
77	From obesity through immunity to type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2017, 37, 407-418.	0.3	5
78	Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clinical Nutrition, 2017, 36, 917-938.	2.3	141

# 79	ARTICLE Infections. Advances in Clinical Chemistry, 2017, 80, 227-251.	IF 1.8	CITATIONS
80	18. MicrObesity in pregnancy: the inside story. , 2017, , .		0
82	A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. International Journal of Molecular Sciences, 2017, 18, 1934.	1.8	155
83	Microbiota of the Gastrointestinal Tract in Infancy. , 2017, , 27-35.		3
84	Dietary Pea Fiber Supplementation Improves Glycemia and Induces Changes in the Composition of Gut Microbiota, Serum Short Chain Fatty Acid Profile and Expression of Mucins in Glucose Intolerant Rats. Nutrients, 2017, 9, 1236.	1.7	53
85	Obesity and Metabolic Syndrome. , 2017, , 1-26.		2
86	Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome. Annals of Translational Medicine, 2017, 5, 30-30.	0.7	45
87	ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats. Oncotarget, 2017, 8, 27693-27703.	0.8	24
88	Effects of Probiotic and Prebiotic Supplementation on Leptin, Adiponectin, and Glycemic Parameters in Non-alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Middle East Journal of Digestive Diseases, 2017, 9, 150-157.	0.2	61
89	Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease. , 2018, , 119-144.		1
90	Effects of synbiotic supplementation on metabolic parameters and apelin in women with polycystic ovary syndrome: a randomised double-blind placebo-controlled trial. British Journal of Nutrition, 2018, 119, 398-406.	1.2	35
91	Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathogens and Disease, 2018, 76, .	0.8	86
92	Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochemical Pharmacology, 2018, 152, 315-326.	2.0	32
93	Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp. Microbial Biotechnology, 2018, 11, 551-565.	2.0	36
94	Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. Journal of Nutritional Biochemistry, 2018, 56, 142-151.	1.9	72
95	Insulin resistance in obesity: an overview of fundamental alterations. Eating and Weight Disorders, 2018, 23, 149-157.	1.2	218
97	Diet and microbiota linked in health and disease. Food and Function, 2018, 9, 688-704.	2.1	148
98	Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 2018, 50, 421-428.	0.4	377

#	Article	IF	CITATIONS
99	The association of fruit and vegetable consumption with changes in weight and body mass index in Chinese adults: a cohort study. Public Health, 2018, 157, 121-126.	1.4	23
100	(-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biology, 2018, 14, 588-599.	3.9	109
101	Connection Between Fiber, Colonic Microbiota, and Health Across the Human Life Cycle. , 2018, , 67-93.		1
102	Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System. Frontiers in Neuroscience, 2018, 12, 725.	1.4	39
103	Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS ONE, 2018, 13, e0198716.	1.1	35
104	SREBP-1c-Dependent Metabolic Remodeling of White Adipose Tissue by Caloric Restriction. International Journal of Molecular Sciences, 2018, 19, 3335.	1.8	26
105	Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Frontiers in Immunology, 2018, 9, 2240.	2.2	99
106	Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. Journal of Functional Foods, 2018, 47, 56-65.	1.6	51
107	Functional Relationship Between the Gut and Other Tissues/Organs of the Body. , 2018, , 1009-1028.		0
108	Gut Microbes: The Miniscule Laborers in the Human Body. , 2018, , 1-31.		1
109	Role of prebiotics in regulation of microbiota and prevention of obesity. Food Research International, 2018, 113, 183-188.	2.9	77
110	Lack of liver steatosis in germ-free mice following hypercaloric diets. European Journal of Nutrition, 2019, 58, 1933-1945.	1.8	28
111	Gene–Environment Interactions on Body Fat Distribution. International Journal of Molecular Sciences, 2019, 20, 3690.	1.8	29
112	Microbiome and type 1 diabetes. EBioMedicine, 2019, 46, 512-521.	2.7	111
113	Probiotics can really cure an autoimmune disease?. Gene Reports, 2019, 15, 100364.	0.4	26
114	The Microbiome in the Prostate: Prostatitis and Prostate Cancer. , 2019, , 125-135.		0
115	Dietary interventions, intestinal microenvironment, and obesity: a systematic review. Nutrition Reviews, 2019, 77, 601-613.	2.6	6
116	Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice. Journal of Nutrition, 2019, 149, 747-754.	1.3	99

#	Article	IF	CITATIONS
117	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	1.3	39
118	Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. Journal of Nutritional Biochemistry, 2019, 68, 16-32.	1.9	17
119	Grape Seed Proanthocyanidins Target the Enteroendocrine System in Cafeteriaâ€Đietâ€Fed Rats. Molecular Nutrition and Food Research, 2019, 63, e1800912.	1.5	17
120	Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. European Journal of Pharmacology, 2019, 854, 272-281.	1.7	11
121	ECEIM consensus statement on equine metabolic syndrome. Journal of Veterinary Internal Medicine, 2019, 33, 335-349.	0.6	151
122	JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. Journal of Diabetes Research, 2019, 2019, 1-12.	1.0	38
123	The Microbiome and Metabolome in Metabolic Syndrome. , 2019, , 215-225.		0
124	Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular Metabolism, 2019, 22, 96-109.	3.0	102
125	Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients, 2019, 11, 317.	1.7	18
126	Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. Journal of Functional Foods, 2019, 54, 536-551.	1.6	80
127	Effects of <i>Lactobacillus plantarum</i> PMO 08 Alone and Combined with Chia Seeds on Metabolic Syndrome and Parameters Related to Gut Health in High-Fat Diet-Induced Obese Mice. Journal of Medicinal Food, 2019, 22, 1199-1207.	0.8	17
128	Effect of Short-Term Dietary Intervention and Probiotic Mix Supplementation on the Gut Microbiota of Elderly Obese Women. Nutrients, 2019, 11, 3011.	1.7	47
129	Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring. Molecular Nutrition and Food Research, 2019, 63, e1800399.	1.5	18
130	Regulation of Adaptive Thermogenesis and Browning by Prebiotics and Postbiotics. Frontiers in Physiology, 2018, 9, 1908.	1.3	50
131	Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E319-E332.	1.8	58
132	Probiotics importance and their immunomodulatory properties. Journal of Cellular Physiology, 2019, 234, 8008-8018.	2.0	136
133	SIRT3 Deficiency Promotes Highâ€Fat Dietâ€Induced Nonalcoholic Fatty Liver Disease in Correlation with Impaired Intestinal Permeability through Gut Microbial Dysbiosis. Molecular Nutrition and Food Research, 2019, 63, e1800612.	1.5	63
134	Pubertal exposure to the endocrine disruptor mono-2-ethylhexyl ester at body burden level caused cholesterol imbalance in mice. Environmental Pollution, 2019, 244, 657-666.	3.7	30

#	Article	IF	CITATIONS
135	The potential of insects as food sources – a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3642-3652.	5.4	59
136	Microbiota, Fiber, and NAFLD: Is There Any Connection?. Nutrients, 2020, 12, 3100.	1.7	34
137	Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients, 2020, 12, 3451.	1.7	5
138	State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals, 2020, 10, 2199.	1.0	18
139	Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. International Journal of Molecular Sciences, 2020, 21, 9005.	1.8	24
140	Obesity and the increased risk for COVID-19: mechanisms and nutritional management. Nutrition Research Reviews, 2021, 34, 209-221.	2.1	14
141	Role of Small Intestinal Bacterial Overgrowth (SIBO) and Inflammation in Obese Children. Frontiers in Pediatrics, 2020, 8, 369.	0.9	9
142	Allicinâ€induced hostâ€gut microbe interactions improves energy homeostasis. FASEB Journal, 2020, 34, 10682-10698.	0.2	27
143	High-Fat Diet Induces Disruption of the Tight Junction-Mediated Paracellular Barrier in the Proximal Small Intestine Before the Onset of Type 2 Diabetes and Endotoxemia. Digestive Diseases and Sciences, 2021, 66, 3359-3374.	1.1	52
144	Prebiotics and type 2 diabetes: targeting the gut microbiota for improved glycaemic control?. Practical Diabetes, 2020, 37, 133-137.	0.1	6
145	Probiotics, Prebiotics, Synbiotics, Postbiotics, and Obesity: Current Evidence, Controversies, and Perspectives. Current Obesity Reports, 2020, 9, 179-192.	3.5	103
146	Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. Npj Biofilms and Microbiomes, 2020, 6, 12.	2.9	57
147	The FiberTAG project: Tagging dietary fibre intake by measuring biomarkers related to the gut microbiota and their interest for health. Nutrition Bulletin, 2020, 45, 59-65.	0.8	10
148	The mutual interplay of gut microbiota, diet and human disease. FEBS Journal, 2020, 287, 833-855.	2.2	176
149	Adipokines and Adipose Tissue-Related Metabolites, Nuts and Cardiovascular Disease. Metabolites, 2020, 10, 32.	1.3	22
150	Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes. Gut Microbes, 2020, 11, 1188-1202.	4.3	66
151	Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. Journal of Functional Foods, 2020, 69, 103939.	1.6	68
152	Cultivation of the Next-Generation Probiotic Akkermansia muciniphila, Methods of Its Safe Delivery to the Intestine, and Factors Contributing to Its Growth In Vivo. Current Microbiology, 2020, 77, 1363-1372.	1.0	11

#	Article	IF	CITATIONS
153	Gut–organ axis: a microbial outreach and networking. Letters in Applied Microbiology, 2021, 72, 636-668.	1.0	115
154	Intérêt des prébiotiques et des probiotiques. , 2021, , 673-677.		0
155	Carbohydrates to Prevent and Treat Obesity in a Murine Model of Diet-Induced Obesity. Obesity Facts, 2021, 14, 370-381.	1.6	3
156	Gut Microbiota Community Shift with Severity of Coronary Artery Disease. Engineering, 2021, 7, 1715-1724.	3.2	4
157	Diabetic Gastroenteropathy, Soothe the Symptoms or Unravel a Cure?. Current Diabetes Reviews, 2021, 17, .	0.6	0
158	The Role of the Gut Microbiota in the Gut–Brain Axis in Obesity: Mechanisms and Future Implications. International Journal of Molecular Sciences, 2021, 22, 2993.	1.8	26
159	Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International, 2021, 142, 110189.	2.9	184
160	Effect of oligofructose on resistance to postoperative high-fat diet-induced damage of metabolism in diabetic rats after sleeve gastrectomy. World Journal of Diabetes, 2021, 12, 453-465.	1.3	2
161	Intestinal barrier function in obesity with or without metabolic syndrome: a systematic review protocol. BMJ Open, 2021, 11, e043959.	0.8	7
162	The role of the vaginal microbiome in distinguishing female chronic pelvic pain caused by endometriosis/adenomyosis. Annals of Translational Medicine, 2021, 9, 771-771.	0.7	13
163	Triggers of Exacerbation in Chronic Urticaria and Recurrent Angioedema—Prevalence and Relevance. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2160-2168.	2.0	11
164	Developing a model for estimating the activity of colonic microbes after intestinal surgeries. PLoS ONE, 2021, 16, e0253542.	1.1	2
165	The interplay of obesity, gut microbiome and diet in the immune check point inhibitors therapy era. Seminars in Cancer Biology, 2021, 73, 356-376.	4.3	32
166	GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora. Biomedicine and Pharmacotherapy, 2021, 141, 111896.	2.5	28
167	A blend of 3 mushrooms dose-dependently increases butyrate production by the gut microbiota. Beneficial Microbes, 2021, 12, 601-612.	1.0	9
168	Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197, 108721.	2.0	27
169	Microbial metabolites and the vagal afferent pathway in the control of food intake. Physiology and Behavior, 2021, 240, 113555.	1.0	7
170	Shared metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive Disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110351.	2.5	21

#	Article	IF	CITATIONS
171	Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. Journal of Nutritional Biochemistry, 2022, 99, 108840.	1.9	80
172	Contribution of adipogenesis to healthy adipose tissue expansion in obesity. Journal of Clinical Investigation, 2019, 129, 4022-4031.	3.9	326
173	Oral Administration of Faecalibacterium prausnitzii Decreased the Incidence of Severe Diarrhea and Related Mortality Rate and Increased Weight Gain in Preweaned Dairy Heifers. PLoS ONE, 2015, 10, e0145485.	1.1	75
174	Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats. PLoS ONE, 2017, 12, e0172260.	1.1	17
175	Calcitonin gene-related peptide: neuroendocrine communication between the pancreas, gut, and brain in regulation of blood glucose. Annals of Translational Medicine, 2017, 5, 419-419.	0.7	15
176	Psychobiotics and Brain-Gut Microbiota Axis. Iranian Journal of Medical Microbiology, 2019, 13, 1-13.	0.1	1
177	Breath volatile organic compounds for the gut-fatty liver axis: promise, peril, and path forward. World Journal of Gastroenterology, 2014, 20, 9017-25.	1.4	7
180	Fulfilling the Promise of Microbiomics to Revolutionize Medicine. Journal of Microbiology & Experimentation, 2015, 2, .	0.1	0
181	Obesity and Metabolic Syndrome in Children: What's New?. Endocrinology&Metabolism International Journal, 2017, 4, .	0.1	0
183	Relationship of clinical efficacy of glucose lowering agents, gut microbiota, diet, and patient's genotype in diabetes mellitus type 2. Reviews on Clinical Pharmacology and Drug Therapy, 2018, 16, 11-18.	0.2	0
184	Effects of dietary ESTAQUA® yeast culture supplementation on growth, immunity, intestinal microbiota and disease-resistance against Vibrio harveyi in hybrid grouper (♀Epinephelus) Tj ETQq0 0 0 rgBT /	Overtock :	10af 50 337
185	The Emerging Role of Metabolism in Brain-Heart Axis: New Challenge for the Therapy and Prevention of Alzheimer Disease. May Thioredoxin Interacting Protein (TXNIP) Play a Role?. Biomolecules, 2021, 11, 1652.	1.8	6
186	Natural Selection, The Microbiome, and Public Health. Yale Journal of Biology and Medicine, 2018, 91, 445-455.	0.2	14
187	The effect of saturated and unsaturated fatty acids on the production of outer membrane vesicles from and. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, 155-162.	0.6	8
188	Synbiotic Supplementation Improves Metabolic Factors and Obesity Values in Women with Polycystic Ovary Syndrome Independent of Affecting Apelin Levels: A Randomized Double-Blind Placebo - Controlled Clinical Trial. International Journal of Fertility & Sterility, 2021, 15, 51-59.	0.2	3
190	The Crosstalk between Gut Microbiota, Intestinal Immunological Niche and Visceral Adipose Tissue as a New Model for the Pathogenesis of Metabolic and Inflammatory Diseases: The Paradigm of Type 2 Diabetes Mellitus. Current Medicinal Chemistry, 2022, 29, 3189-3201.	1.2	7
192	Potentialities of nanomaterials for the management and treatment of metabolic syndrome: A new insight. Materials Today Advances, 2022, 13, 100198.	2.5	25
193	Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Frontiers in Endocrinology, 2021, 12, 833544.	1.5	28

#	Article	IF	Citations
195	Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals, 2022, 12, 348.	1.0	8
196	Effects of Lactobacillus paracasei N1115 on dyslipidaemia: A randomized controlled study. Journal of Functional Foods, 2022, 89, 104956.	1.6	2
198	Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins, 2022, 14, 176.	1.5	22
199	Identification of novel susceptibility factors related to CP/CPPSâ€like symptoms: Evidence from a multicenter caseâ€control study. Prostate, 2022, 82, 772-782.	1.2	5
200	Role of the Microbiome in the Pathogenesis of COVID-19. Frontiers in Cellular and Infection Microbiology, 2022, 12, 736397.	1.8	17
201	WT1 in Adipose Tissue: From Development to Adult Physiology. Frontiers in Cell and Developmental Biology, 2022, 10, 854120.	1.8	4
202	Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. Toxics, 2022, 10, 138.	1.6	8
203	Obesity and gut–microbiota–brain axis: A narrative review. Journal of Clinical Laboratory Analysis, 2022, 36, e24420.	0.9	51
206	Exercise protects intestinal epithelial barrier from high fat diet- induced permeabilization through SESN2/AMPKα1/HIF-1α signaling. Journal of Nutritional Biochemistry, 2022, , 109059.	1.9	6
210	Cyanidin and delphinidin restore colon physiology in high fat diet-fed mice: Involvement of TLR-4 and redox-regulated signaling. Free Radical Biology and Medicine, 2022, 188, 71-82.	1.3	5
211	Gut microbiome and type 2 diabetes. Progress in Molecular Biology and Translational Science, 2022, , 175-185.	0.9	1
212	Gut microbiota in women with gestational diabetes mellitus has potential impact on metabolism in pregnant mice and their offspring. Frontiers in Microbiology, 0, 13, .	1.5	5
213	Dietary influence on human microbiome. , 2022, , 59-80.		0
214	Entomophagy and the Nexus Between Human and Planetary Health. Climate Change Management, 2022, , 29-44.	0.6	0
215	Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens, 2022, 11, 1050.	1.2	13
216	Obesity: The Impact on Host Systems Affecting Mobility and Navigation through the Environment. European Medical Journal (Chelmsford, England), 0, , 63-70.	3.0	1
217	The effect of probiotic and synbiotic supplementation on appetite-regulating hormones and desire to eat: A systematic review and meta-analysis of clinical trials. Pharmacological Research, 2023, 187, 106614.	3.1	8
218	Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Current Gastroenterology Reports, 2023, 25, 31-44.	1.1	13

#	Article	IF	CITATIONS
219	Microbiota and hepatitis C virus in the era of direct-acting antiviral agents. Microbial Pathogenesis, 2023, 175, 105968.	1.3	1
220	Body Composition of Young Women and the Consumption of Selected Nutrients. Nutrients, 2023, 15, 129.	1.7	2
221	Management of diabesity: Current concepts. World Journal of Diabetes, 0, 14, 396-411.	1.3	10
222	Progress in Understanding Metabolic Syndrome and Knowledge of Its Complex Pathophysiology. International Journal of Diabetology, 2023, 4, 134-159.	0.9	1
224	Colonization and development of the gut microbiome in calves. Journal of Animal Science and Biotechnology, 2023, 14, .	2.1	8
236	The Microbiome and Chronic Pain Syndromes. , 2023, , 26-38.		0

0

237 Gut Microbiome: Perspectives and Challenges in Human Health. , 2023, , 65-87.