Canine mesenchymal stem cells show antioxidant prop liver injury <i>in vitro</i> and <i>in vivo</i>

Hepatology Research 44, E206-17 DOI: 10.1111/hepr.12204

Citation Report

#	Article	IF	CITATIONS
1	Cell-based Therapy for Acute Organ Injury. Anesthesiology, 2014, 121, 1099-1121.	2.5	127
2	Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice. Scientific Reports, 2015, 5, 16169.	3.3	43
3	Adult Stem Cell Therapy in Chronic Liver Diseases. Hanyang Medical Reviews, 2015, 35, 236.	0.4	2
4	Mesenchymal stem cell therapy for liver fibrosis. Korean Journal of Internal Medicine, 2015, 30, 580-589.	1.7	166
5	Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart. Journal of Nanobiotechnology, 2015, 13, 77.	9.1	18
6	Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB Journal, 2016, 30, 3905-3928.	0.5	67
7	Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells. Cell and Tissue Research, 2017, 368, 301-310.	2.9	7
8	Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Experimental and Molecular Medicine, 2017, 49, e346-e346.	7.7	393
9	A proteomic study of mesenchymal stem cells from equine umbilical cord. Theriogenology, 2017, 100, 8-15.	2.1	7
10	A canine liver fibrosis model to develop a therapy for liver cirrhosis using cultured bone marrow–derived cells. Hepatology Communications, 2017, 1, 691-703.	4.3	19
11	Effects of Redox Modulation on Cell Proliferation, Viability, and Migration in Cultured Rat and Human Tendon Progenitor Cells. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	25
12	Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases. Inflammation and Regeneration, 2017, 37, 16.	3.7	67
13	The application of mesenchymal progenitor stem cells for the reduction of oxidative stress in animals. Turkish Journal of Biology, 2017, 41, 12-19.	0.8	7
14	The distinct roles of mesenchymal stem cells in the initial and progressive stage of hepatocarcinoma. Cell Death and Disease, 2018, 9, 345.	6.3	26
15	Stem cell factor supports migration in canine mesenchymal stem cells. Veterinary Research Communications, 2018, 42, 29-38.	1.6	15
16	Evaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cells. Stem Cell Research and Therapy, 2018, 9, 93.	5.5	43
17	Protective effect of dioscin against thioacetamide-induced acute liver injury via FXR/AMPK signaling pathway in vivo. Biomedicine and Pharmacotherapy, 2018, 97, 481-488.	5.6	46
18	Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Canadian Journal of Gastroenterology and Hepatology, 2018, 2018, 1-19.	1.9	51

TATION REDO

#	Article	IF	CITATIONS
19	Extracellular Vesicles Secreted by Human Adipose-derived Stem Cells (hASCs) Improve Survival Rate of Rats with Acute Liver Failure by Releasing IncRNA H19. EBioMedicine, 2018, 34, 231-242.	6.1	55
20	Amelioration of hepatic function, oxidative stress, and histopathologic damages by Cassia fistula L. fraction in thioacetamide-induced liver toxicity. Environmental Science and Pollution Research, 2019, 26, 29930-29945.	5.3	22
21	Liver regeneration therapy through the hepatic artery-infusion of cultured bone marrow cells in a canine liver fibrosis model. PLoS ONE, 2019, 14, e0210588.	2.5	9
22	Mesenchymal stem cell basic research and applications in dog medicine. Journal of Cellular Physiology, 2019, 234, 16779-16811.	4.1	26
23	Improvement of systemic lupus erythematosus in dogs with canine adipose-derived stem cells. Veterinarni Medicina, 2019, 64, 462-466.	0.6	1
24	Canine Liver Fibrosis Model to Assess the Functions of Infused Autologous Bone Marrow-Derived Cells. Methods in Molecular Biology, 2019, 1905, 201-209.	0.9	0
25	Antler stem cells as a novel stem cell source for reducing liver fibrosis. Cell and Tissue Research, 2020, 379, 195-206.	2.9	14
26	Mesenchymal stem cells to treat liver diseases. Annals of Translational Medicine, 2020, 8, 563-563.	1.7	9
27	Extracellular Vesicles in the Development of the Non-Alcoholic Fatty Liver Disease: An Update. Biomolecules, 2020, 10, 1494.	4.0	20
28	Cardiac tissue remodeling in healthy aging: the road to pathology. American Journal of Physiology - Cell Physiology, 2020, 319, C166-C182.	4.6	24
29	The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Translational Medicine, 2020, 9, 985-1006.	3.3	117
30	Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. Journal of Controlled Release, 2020, 320, 328-336.	9.9	34
31	Mesenchymal stem cells reduce the oxaliplatin-induced sensory neuropathy through the reestablishment of redox homeostasis in the spinal cord. Life Sciences, 2021, 265, 118755.	4.3	13
32	Regulatory Effect of Mesenchymal Stromal Cells on the Development of Liver Fibrosis: Cellular and Molecular Mechanisms and Prospects for Clinical Application. Biology Bulletin Reviews, 2021, 11, 54-66.	0.9	0
33	Anti-inflammatory Effects of Mesenchymal Stem Cells and their Secretomes in Pneumonia. Current Pharmaceutical Biotechnology, 2022, 23, 1153-1167.	1.6	4
35	Post-Thaw Non-Cultured and Post-Thaw Cultured Equine Cord Blood Mesenchymal Stromal Cells Equally Suppress Lymphocyte Proliferation In Vitro. PLoS ONE, 2014, 9, e113615.	2.5	13
36	ASSESSMENT OF CURATIVE EFFECT OF USING STEM CELLS ON THE CONTROL OF PESTICIDE DAMAGING EFFECT ON LIVER. Journal of Environmental Science, 2017, 39, 23-39.	0.0	0
37	Potential Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Zymogen Granules and Rab3D in Parotid Salivary Glands of Senile Albino Rats. Egyptian Dental Journal, 2018, 64, 1327-1343.	0.1	Ο

CITATION REPORT

_

CITATION REPORT

#	ARTICLE	IF	CITATIONS
38	Acute-on-Chronic Liver Failure: Pathophysiological Mechanisms and Management. Frontiers in Medicine, 2021, 8, 752875.	2.6	24
39	Investigation of the protective and therapeutic effects of thiamine in thioacetamide-induced liver injury. , 2022, 77, 1953-1964.		1
40	Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Research and Therapy, 2022, 13, 192.	5.5	21
41	Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Veterinary World, 0, , 1347-1364.	1.7	1
42	Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Research and Therapy, 2022, 13, .	5.5	78
43	Mesenchymal Stem Cells Therapeutic Applications in Gastrointestinal Disorders. , 2022, , 247-278.		1
44	Transplantation of adipose-derived mesenchymal stem cells ameliorates acute hepatic injury caused by nonsteroidal anti-inflammatory drug diclofenac sodium in female rats. Biomedicine and Pharmacotherapy, 2022, 155, 113805.	5.6	2
45	Acute-on-Chronic liver failure – A brief overview. , 2023, 1, 3.		0
46	The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. International Journal of Molecular Sciences, 2023, 24, 15212.	4.1	1