RNAi Factors Are Present and Active in Human Cell Nuc

Cell Reports 6, 211-221 DOI: 10.1016/j.celrep.2013.12.013

Citation Report

#	Article	IF	CITATIONS
2	Functions of double-stranded RNA-binding domains in nucleocytoplasmic transport. RNA Biology, 2014, 11, 1226-1232.	1.5	28
3	Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Research, 2014, 42, 6787-6810.	6.5	48
4	The MicroRNA Biology of the Mammalian Nucleus. Molecular Therapy - Nucleic Acids, 2014, 3, e188.	2.3	171
5	siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Research, 2014, 42, 8049-8061.	6.5	137
6	Mechanism and Efficacy of Sub–50-nm Tenfibgen Nanocapsules for Cancer Cell–Directed Delivery of Anti-CK2 RNAi to Primary and Metastatic Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 2014, 13, 2018-2029.	1.9	28
7	Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14888-14893.	3.3	880
8	Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nature Protocols, 2014, 9, 2045-2060.	5.5	173
9	The Varied Roles of Nuclear Argonaute-Small RNA Complexes and Avenues for Therapy. Molecular Therapy - Nucleic Acids, 2014, 3, e203.	2.3	14
10	The role of epigenetic-related codes in neurocomputation: dynamic hardware in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130519.	1.8	11
11	ZNF143 is regulated through alternative 3′UTR isoforms. Biochimie, 2014, 104, 137-146.	1.3	5
12	Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends in Biochemical Sciences, 2014, 39, 420-431.	3.7	61
13	Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nature Structural and Molecular Biology, 2014, 21, 552-559.	3.6	95
14	Renaissance of mammalian endogenous RNAi. FEBS Letters, 2014, 588, 2550-2556.	1.3	47
15	Considerations when investigating IncRNA function in vivo. ELife, 2014, 3, e03058.	2.8	309
16	Reduced Expression of Argonaute 1, Argonaute 2 and TRBP Changes Levels and Intracellular Distribution of RNAi Factors. Scientific Reports, 2015, 5, 12855.	1.6	20
17	Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Frontiers in Genetics, 2015, 6, 192.	1.1	29
18	Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Frontiers in Genetics, 2015, 6, 320.	1.1	22
19	fMiRNA-192 and miRNA-204 Directly Suppress IncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma. PLoS Genetics. 2015, 11. e1005726.	1.5	151

		CITATION REPORT		
#	Article	IF	-	Citations
20	RNA interference approaches for treatment of HIV-1 infection. Genome Medicine, 2015, 7, 50.	3	.6	69
21	Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nature Reviews Molec Cell Biology, 2015, 16, 417-430.	cular 1	6.1	88
22	Knockdown of Nuclear-Retained Long Noncoding RNAs Using Modified DNA Antisense Oligonucleotides. Methods in Molecular Biology, 2015, 1262, 321-331.	0	0.4	31
23	Control of the localization and function of a miRNA silencing component TNRC6A by Argonaut protein. Nucleic Acids Research, 2015, 43, gkv1026.	te 6	.5	25
24	Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene sil protein levels. Nucleic Acids Research, 2015, 43, 7447-7461.	encing 6	.5	52
25	Differential Regulation of Vascular Endothelial Growth Factors by Promoter-targeted shRNAs. Molecular Therapy - Nucleic Acids, 2015, 4, e243.	2	.3	4
26	CLIP: viewing the RNA world from an RNA-protein interactome perspective. Science China Life 2015, 58, 75-88.	Sciences, 2	.3	12
27	Mammalian Argonaute-DNA binding?. Biology Direct, 2015, 10, 27.	1	.9	9
28	DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Research, 2015, 43, D153-D159.	6	.5	683
29	MagRET Nanoparticles: An Iron Oxide Nanocomposite Platform for Gene Silencing from Micro Long Noncoding RNAs. Bioconjugate Chemistry, 2015, 26, 1692-1701.	RNAs to 1	.8	22
30	DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA su mechanisms and therapies for FSHD. Human Molecular Genetics, 2015, 24, 4817-4828.	ggests 1	.4	37
31	New insights into nucleolar structure and function. F1000prime Reports, 2015, 7, 48.	5	.9	65
32	Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Human Molecular Genetics, 2015, 24, 4971-4983.	2 1	.4	43
33	Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qP Nature Protocols, 2015, 10, 1198-1211.	CR. 5	.5	99
34	Live cell imaging of duplex siRNA intracellular trafficking. Nucleic Acids Research, 2015, 43, 46	50-4660. 6	.5	53
35	Argonaute 2 Binds Directly to tRNA Genes and Promotes Gene Repression in <i>cis</i> . Molec Cellular Biology, 2015, 35, 2278-2294.	ular and 1	.1	31
36	HIV Latency and the Noncoding RNA Therapeutic Landscape. Advances in Experimental Medici Biology, 2015, 848, 169-189.	ne and o	9.8	11
37	Modulation of Splicing by Single-Stranded Silencing RNAs. Nucleic Acid Therapeutics, 2015, 25	5, 113-120. 2	.0	20

	CITATION N		
#	Article	IF	CITATIONS
40	The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends in Cell Biology, 2015, 25, 601-610.	3.6	152
41	Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC. Bioconjugate Chemistry, 2015, 26, 2454-2460.	1.8	16
42	miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nature Communications, 2015, 6, 8864.	5.8	268
43	A novel gonad-specific Argonaute 4 serves as a defense against transposons in the black tiger shrimp Penaeus monodon. Fish and Shellfish Immunology, 2015, 42, 280-288.	1.6	12
44	The influence of <scp>Argonaute</scp> proteins on alternative <scp>RNA</scp> splicing. Wiley Interdisciplinary Reviews RNA, 2015, 6, 141-156.	3.2	22
45	Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. BioMed Research International, 2016, 2016, 1-14.	0.9	30
46	MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International Journal of Molecular Sciences, 2016, 17, 1712.	1.8	882
47	Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes, 2016, 7, 119.	1.0	10
48	Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genetics, 2016, 12, e1006095.	1.5	27
49	Argonaute: The executor of small RNA function. Journal of Genetics and Genomics, 2016, 43, 481-494.	1.7	64
50	The intron-enriched HERV-K(HML-10) family suppresses apoptosis, an indicator of malignant transformation. Mobile DNA, 2016, 7, 25.	1.3	23
51	Interference in transcription of overexpressed genes by promoter-proximal downstream sequences. Scientific Reports, 2016, 6, 30735.	1.6	8
52	Cell Type- and Tissue Context-dependent Nuclear Distribution of Human Ago2. Journal of Biological Chemistry, 2016, 291, 2302-2309.	1.6	33
53	Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell Death and Disease, 2016, 7, e2173-e2173.	2.7	98
54	Production of small RNAs by mammalian Dicer. Pflugers Archiv European Journal of Physiology, 2016, 468, 1089-1102.	1.3	41
55	Transcriptional gene silencing in humans. Nucleic Acids Research, 2016, 44, 6505-6517.	6.5	81
56	DICER, DROSHA and DNA damage-response RNAs are necessary for the secondary recruitment of DNA damage response factors. Journal of Cell Science, 2016, 129, 1468-76.	1.2	99
57	The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development (Cambridge), 2016, 143, 3061-3073.	1.2	65

		CITATION RE	PORT	
#	Article		IF	CITATIONS
58	Extracellular miRNA: A Collision of Two Paradigms. Trends in Biochemical Sciences, 201	6, 41, 883-892.	3.7	145
59	Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids 45, gkw883.	Research, 2017,	6.5	138
60	Transcriptional regulation of E-cadherin by small activating RNA: A new double-stranded International Journal of Oncology, 2016, 49, 1620-1628.	I RNA.	1.4	3
61	RNA-Mediated Silencing in Eukaryotes: Evolution of Protein Components and Biologica 513-529.	Roles. , 2016, ,		2
62	Detection of intra-brain cytoplasmic 1 (BC1) long noncoding RNA using graphene oxide beacon detector. Scientific Reports, 2016, 6, 22552.	2-fluorescence	1.6	11
63	HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing. Mo 2016, 63, 420-432.	blecular Cell,	4.5	32
64	The Role of MicroRNAs and Their Targets in Osteoarthritis. Current Rheumatology Repo 56.	orts, 2016, 18,	2.1	92
65	Putative RNA-directed adaptive mutations in cancer evolution. Transcription, 2016, 7, 1	64-187.	1.7	5
66	A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Cell States. Cell Reports, 2016, 17, 1383-1398.	Neural Stem	2.9	57
67	Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions. Jou Biological Chemistry, 2016, 291, 17919-17928.	rnal of	1.6	20
68	Stable association of RNAi machinery is conserved between the cytoplasm and nucleus Rna, 2016, 22, 1085-1098.	of human cells.	1.6	56
69	MicroRNAs in cardiovascular ageing. Journal of Physiology, 2016, 594, 2085-2094.		1.3	44
70	Intracellular and extracellular microRNA: An update on localization and biological role. Histochemistry and Cytochemistry, 2016, 51, 33-49.	Progress in	5.1	189
71	A multiplexed miRNA and transgene expression platform for simultaneous repression a of protein coding sequences. Molecular BioSystems, 2016, 12, 295-312.	nd expression	2.9	17
72	Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Res 524-537.	earch, 2016, 44,	6.5	104
73	KRAS Engages AGO2 to Enhance Cellular Transformation. Cell Reports, 2016, 14, 1448	-1461.	2.9	41
74	Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptio product-related functions. Nature Communications, 2016, 7, 10406.	nal and	5.8	77
75	Activating frataxin expression by repeat-targeted nucleic acids. Nature Communication	s, 2016, 7, 10606.	5.8	72

#	Article	IF	CITATIONS
76	RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Research, 2016, 44, 3351-3363.	6.5	57
77	Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Research, 2016, 44, 863-877.	6.5	355
78	Synthetic SiRNA Delivery: Progress and Prospects. Methods in Molecular Biology, 2016, 1364, 291-310.	0.4	39
79	Nuclear microRNAs in normal hemopoiesis and cancer. Journal of Hematology and Oncology, 2017, 10, 8.	6.9	33
80	c9orf72 Disease-Related Foci Are Each Composed of One Mutant Expanded Repeat RNA. Cell Chemical Biology, 2017, 24, 141-148.	2.5	29
81	Dicer promotes tumorigenesis by translocating to nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells. Cell Death and Disease, 2017, 8, e2628-e2628.	2.7	22
82	Targeting LncRNAs in Cardiovascular Disease. Circulation Research, 2017, 120, 620-623.	2.0	36
83	Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution. Cell Reports, 2017, 19, 630-642.	2.9	74
84	The novel long intergenic noncoding RNA UCC promotes colorectal cancer progression by sponging miR-143. Cell Death and Disease, 2017, 8, e2778-e2778.	2.7	51
85	Long-term regulation of gene expression in muscle cells by systemically delivered siRNA. Journal of Controlled Release, 2017, 256, 101-113.	4.8	6
86	RNA Activation. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
87	Transcriptional and posttranscriptional regulation of HOXA13 by IncRNA HOTTIP facilitates tumorigenesis and metastasis in esophageal squamous carcinoma cells. Oncogene, 2017, 36, 5392-5406.	2.6	123
88	A promoter-proximal transcript targeted by genetic polymorphism controls E-cadherin silencing in human cancers. Nature Communications, 2017, 8, 15622.	5.8	26
89	Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Scientific Reports, 2017, 7, 42853.	1.6	18
90	Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nature Communications, 2017, 8, 1189.	5.8	68
91	DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1. Nature Communications, 2017, 8, 759.	5.8	20
92	A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. International Review of Cell and Molecular Biology, 2017, 334, 99-175.	1.6	58
93	Visualizing nuclear RNAi activity in single living human cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8837-E8846.	3.3	10

#	Article	IF	CITATIONS
94	Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 1148-1158.	0.9	10
95	The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells. Molecular Cell, 2017, 68, 615-625.e9.	4.5	165
96	A long non-coding RNA HOTTIP expression is associated with disease progression and predicts outcome in small cell lung cancer patients. Molecular Cancer, 2017, 16, 162.	7.9	67
97	Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA. Molecular Therapy - Nucleic Acids, 2017, 8, 158-168.	2.3	25
98	Two-Element Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology, 2017, 27, 2357-2364.e5.	1.8	16
99	Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. Cell Reports, 2017, 20, 1543-1552.	2.9	40
100	Reactivity of human AGO2 monoclonal antibody 11A9 with the SWI/SNF complex: A case study for rigorously defining antibody selectivity. Scientific Reports, 2017, 7, 7278.	1.6	9
101	The Therapeutic Targeting of Long Noncoding RNA. Topics in Medicinal Chemistry, 2017, , 207-235.	0.4	2
102	Literature review of baseline information to support the risk assessment of RNAiâ€based GM plants. EFSA Supporting Publications, 2017, 14, 1246E.	0.3	15
103	MicroRNAs in orthopaedic research: Disease associations, potential therapeutic applications, and perspectives. Journal of Orthopaedic Research, 2018, 36, 33-51.	1.2	24
104	Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage. Journal of Cell Biology, 2017, 216, 2373-2389.	2.3	73
105	RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Molecular Therapy, 2017, 25, 2075-2092.	3.7	168
106	Clinical potential of oligonucleotide-based therapeutics in the respiratory system. , 2017, 169, 83-103.		25
107	Transcription and DNA Damage: Holding Hands or Crossing Swords?. Journal of Molecular Biology, 2017, 429, 3215-3229.	2.0	52
108	The Cajal body and the nucleolus: "In a relationship―or "It's complicated�. RNA Biology, 2017, 14, 739-751.	1.5	57
109	Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs. Methods in Molecular Biology, 2017, 1468, 11-18.	0.4	19
110	Non-coding RNAs as drug targets. Nature Reviews Drug Discovery, 2017, 16, 167-179.	21.5	795
111	AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Frontiers in Cellular and Infection Microbiology, 2017, 7, 195.	1.8	19

#	Article	IF	CITATIONS
112	Reduction of Huntington's Disease RNA Foci by CAG Repeat-Targeting Reagents. Frontiers in Cellular Neuroscience, 2017, 11, 82.	1.8	15
113	microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathogens, 2017, 13, e1006508.	2.1	28
114	Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin. Nature Communications, 2018, 9, 1636.	5.8	40
115	The IncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nature Communications, 2018, 9, 237.	5.8	154
116	FEZF1-AS1/miR-107/ZNF312B axis facilitates progression and Warburg effect in pancreatic ductal adenocarcinoma. Cell Death and Disease, 2018, 9, 34.	2.7	48
117	Identification of miR-29b targets using 3-cyanovinylcarbazole containing mimics. Rna, 2018, 24, 597-608.	1.6	5
118	Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Research, 2018, 46, 2012-2029.	6.5	48
119	MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy. Scientific Reports, 2018, 8, 6526.	1.6	123
120	From "Cellular―RNA to "Smart―RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chemical Reviews, 2018, 118, 4365-4403.	23.0	63
121	An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. Journal of Biological Chemistry, 2018, 293, 6844-6858.	1.6	21
122	A novel non-coding RNA within an intron of CDH2 and association of its SNP with non-syndromic cleft lip and palate. Gene, 2018, 658, 123-128.	1.0	13
123	Activating the Chromatin by Noncoding RNAs. Antioxidants and Redox Signaling, 2018, 29, 813-831.	2.5	20
125	Modulating the expression of long non oding <scp>RNA</scp> s for functional studies. EMBO Reports, 2018, 19, .	2.0	57
126	A potential role of extended simple sequence repeats in competing endogenous RNA crosstalk. RNA Biology, 2018, 15, 1399-1409.	1.5	20
127	Expression of TARBP1 protein in human non-small-cell lung cancer and its prognostic significance. Oncology Letters, 2018, 15, 7182-7190.	0.8	4
128	Expansion and Divergence of Argonaute Genes in the Oomycete Genus Phytophthora. Frontiers in Microbiology, 2018, 9, 2841.	1.5	14
129	Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma. Current Pharmaceutical Biotechnology, 2018, 19, 611-621.	0.9	31
130	Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization. Biology Open, 2018, 7, .	0.6	16

#	Article	IF	CITATIONS
131	Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs. Nucleic Acids Research, 2018, 46, 8574-8589.	6.5	25
132	Platforms for Investigating LncRNA Functions. SLAS Technology, 2018, 23, 493-506.	1.0	136
133	LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell, 2018, 174, 549-563.e19.	13.5	473
134	Probing cytoplasmic and nuclear microRNAs in single living cells via plasmonic affinity sandwich assay. Chemical Science, 2018, 9, 7241-7246.	3.7	25
135	Manipulation of Long Non-coding RNAs in Cardiovascular Disease Using Genome Editing Technology. , 0, , 371-388.		1
136	Noncanonical functions of micro <scp>RNA</scp> pathway enzymes – Drosha, <scp>DGCR</scp> 8, Dicer and Ago proteins. FEBS Letters, 2018, 592, 2973-2986.	1.3	88
137	The Nefarious Nexus of Noncoding RNAs in Cancer. International Journal of Molecular Sciences, 2018, 19, 2072.	1.8	55
138	Deciphering the roles of lncRNAs in breast development and disease. Oncotarget, 2018, 9, 20179-20212.	0.8	42
139	Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Scientific Reports, 2018, 8, 7083.	1.6	106
140	Argonaute-miRNA Complexes Silence Target mRNAs in the Nucleus of Mammalian Stem Cells. Molecular Cell, 2018, 71, 1040-1050.e8.	4.5	107
141	The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Biochemistry, 2018, 57, 5247-5256.	1.2	20
142	Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 2018, 9, 402.	1.5	2,975
143	miR-30 Family: A Promising Regulator in Development and Disease. BioMed Research International, 2018, 2018, 1-8.	0.9	816
144	A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5756-E5765.	3.3	35
145	Nuclear re-localization of Dicer in primary mouse embryonic fibroblast nuclei following DNA damage. PLoS Genetics, 2018, 14, e1007151.	1.5	23
146	Constructing RNA Viruses for Long-Term Transcriptional Gene Silencing. Trends in Biotechnology, 2019, 37, 20-28.	4.9	7
147	MicroRNA‑20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Molecular Medicine Reports, 2019, 20, 2285-2293.	1.1	6
148	Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Scientific Reports, 2019, 9, 10332.	1.6	63

#	Article	IF	CITATIONS
149	MALAT1 rs664589 Polymorphism Inhibits Binding to miR-194-5p, Contributing to Colorectal Cancer Risk, Growth, and Metastasis. Cancer Research, 2019, 79, 5432-5441.	0.4	70
150	Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of Dnmt3b in cardiac cells. Scientific Reports, 2019, 9, 9320.	1.6	27
151	Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Nucleic Acid Therapeutics, 2019, 29, 323-334.	2.0	21
153	MicroRNA miR-1002 Enhances NMNAT-Mediated Stress Response by Modulating Alternative Splicing. IScience, 2019, 19, 1048-1064.	1.9	3
154	Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Research Bulletin, 2019, 150, 216-230.	1.4	37
155	The Functions of Long Non-Coding RNA during Embryonic Cardiovascular Development and Its Potential for Diagnosis and Treatment of Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 2019, 6, 21.	0.8	15
156	[ARTICLE WITHDRAWN] Long Noncoding RNA LINC01296 Harbors miR-21a to Regulate Colon Carcinoma Proliferation and Invasion. Oncology Research, 2019, 27, 541-549.	0.6	13
157	Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Scientific Reports, 2019, 9, 6460.	1.6	49
158	Interplay between small RNA pathways shapes chromatin landscapes in C. elegans. Nucleic Acids Research, 2019, 47, 5603-5616.	6.5	20
159	Guidelines for Experiments Using Antisense Oligonucleotides and Double-Stranded RNAs. Nucleic Acid Therapeutics, 2019, 29, 116-122.	2.0	36
160	MicroRNAs as markers to monitor endothelinâ€1 signalling and potential treatment in renal disease: Carcinoma â^' proteinuric damage â^' toxicity. Biology of the Cell, 2019, 111, 169-186.	0.7	6
161	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.0	5
162	Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients. Molecular Therapy - Nucleic Acids, 2019, 14, 593-608.	2.3	44
163	New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers, 2019, 11, 216.	1.7	214
164	The role of small and long non-coding RNAs in cardiac pathologies. Non-coding RNA Investigation, 2019, 3, 21-21.	0.6	0
165	Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biology Methods and Protocols, 2019, 4, bpz017.	1.0	16
166	The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells, 2019, 8, 1465.	1.8	251
167	SMYD3 promotes the epithelial–mesenchymal transition in breast cancer. Nucleic Acids Research, 2019, 47, 1278-1293.	6.5	63

#	Article	IF	CITATIONS
168	Ago HITS-CLIP expands microRNA-mRNA interactions in nucleus and cytoplasm of gastric cancer cells. BMC Cancer, 2019, 19, 29.	1.1	12
169	Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cellular and Molecular Life Sciences, 2019, 76, 441-451.	2.4	287
170	Subcellular Heterogeneity of the microRNA Machinery. Trends in Genetics, 2019, 35, 15-28.	2.9	47
171	RNA therapeutics: Identification of novel targets leading to drug discovery. Journal of Cellular Biochemistry, 2020, 121, 898-929.	1.2	29
172	Synaptic Dysfunction in Human Neurons With Autism-Associated Deletions in PTCHD1-AS. Biological Psychiatry, 2020, 87, 139-149.	0.7	57
173	Antisense-Mediated Transcript Knockdown Triggers Premature Transcription Termination. Molecular Cell, 2020, 77, 1044-1054.e3.	4.5	100
174	Identification of ncRNA-Mediated Functions of Nucleus-Localized miR-320 in Cardiomyocytes. Molecular Therapy - Nucleic Acids, 2020, 19, 132-143.	2.3	14
175	Cell Type Impacts Accessibility of mRNA to Silencing by RNA Interference. Molecular Therapy - Nucleic Acids, 2020, 21, 384-393.	2.3	20
176	miR-15a-5p inhibits metastasis and lipid metabolism by suppressing histone acetylation in lung cancer. Free Radical Biology and Medicine, 2020, 161, 150-162.	1.3	30
177	Altering Intracellular Localization of the RNA Interference Factors by Influenza A Virus Non-structural Protein 1. Frontiers in Microbiology, 2020, 11, 590904.	1.5	3
178	microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Frontiers in Oncology, 2020, 10, 581007.	1.3	122
179	Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers, 2020, 12, 3455.	1.7	26
180	Advances in oligonucleotide drug delivery. Nature Reviews Drug Discovery, 2020, 19, 673-694.	21.5	1,036
181	Function of Dicer with regard to Energy Homeostasis Regulation, Structural Modification, and Cellular Distribution. International Journal of Endocrinology, 2020, 2020, 1-7.	0.6	2
182	The CXCR4-Dependent LASP1-Ago2 Interaction in Triple-Negative Breast Cancer. Cancers, 2020, 12, 2455.	1.7	12
183	Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. Journal of Experimental and Clinical Cancer Research, 2020, 39, 187.	3.5	34
184	miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides. Scientific Reports, 2020, 10, 14557.	1.6	12
185	Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers, 2020, 12, 3695.	1.7	11

#	Article	IF	CITATIONS
187	DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis. Nucleic Acids Research, 2020, 48, 7135-7153.	6.5	15
188	Long non-coding RNAs in hepatocellular carcinoma: Ordering of the complicated lncRNA regulatory network and novel strategies for HCC clinical diagnosis and treatment. Pharmacological Research, 2020, 158, 104848.	3.1	30
189	The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs. Molecular Neurobiology, 2020, 57, 2996-3013.	1.9	19
190	Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function. Communications Biology, 2020, 3, 265.	2.0	32
191	MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology, 2020, 16, 506-519.	4.9	92
192	An essential role for Argonaute 2 in EGFR-KRAS signaling in pancreatic cancer development. Nature Communications, 2020, 11, 2817.	5.8	29
193	Argonaute binding within 3′-untranslated regions poorly predicts gene repression. Nucleic Acids Research, 2020, 48, 7439-7453.	6.5	31
194	Mutual Regulation of RNA Silencing and the IFN Response as an Antiviral Defense System in Mammalian Cells. International Journal of Molecular Sciences, 2020, 21, 1348.	1.8	13
195	Transcriptional memory in skeletal muscle. Don't forget (to) exercise. Journal of Cellular Physiology, 2020, 235, 5476-5489.	2.0	9
196	Effect of 2′-5′/3′-5′ phosphodiester linkage heterogeneity on RNA interference. Nucleic Acids Research 2020, 48, 4643-4657.	'6.5	15
197	Spirits in the Material World: Enhancer RNAs in Transcriptional Regulation. Trends in Biochemical Sciences, 2021, 46, 138-153.	3.7	39
198	In Vitro Silencing of IncRNA Expression Using siRNAs. Methods in Molecular Biology, 2021, 2348, 141-156.	0.4	3
199	Manganese exposure in juvenile C57BL/6 mice increases glial inflammatory responses in the substantia nigra following infection with H1N1 influenza virus. PLoS ONE, 2021, 16, e0245171.	1.1	6
202	Argonaute Proteins Take Center Stage in Cancers. Cancers, 2021, 13, 788.	1.7	14
203	Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis. Cellular and Molecular Biology Letters, 2021, 26, 4.	2.7	8
204	Breast Cancer and the Other Non-Coding RNAs. International Journal of Molecular Sciences, 2021, 22, 3280.	1.8	17
205	Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 660853.	1.8	20
206	Small RNA sequencing reveals distinct nuclear microRNAs in pig granulosa cells during ovarian follicle growth. Journal of Ovarian Research, 2021, 14, 54.	1.3	8

#	Article	IF	Citations
207	miRNA interplay: mechanisms and consequences in cancer. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	230
208	Guanidinylated Cyclic Synthetic Polypeptides Can Effectively Deliver siRNA by Mimicking the Biofunctions of Both Cell-Penetrating Peptides and Nuclear Localization Signal Peptides. ACS Macro Letters, 2021, 10, 767-773.	2.3	5
209	Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing. Rna, 2021, 27, 1004-1016.	1.6	10
210	AGO2 localizes to cytokinetic protrusions in a p38-dependent manner and is needed for accurate cell division. Communications Biology, 2021, 4, 726.	2.0	6
211	MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. Biochemistry (Moscow), 2021, 86, 785-799.	0.7	21
212	Argonaute binding within human nuclear RNA and its impact on alternative splicing. Rna, 2021, 27, 991-1003.	1.6	23
214	L2S-MirLoc: A Lightweight Two Stage MiRNA Sub-Cellular Localization Prediction Framework. , 2021, , .		2
215	MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules, 2021, 11, 1074.	1.8	9
216	lncRNA TUG1 as a ceRNA promotes PM exposure-induced airway hyper-reactivity. Journal of Hazardous Materials, 2021, 416, 125878.	6.5	20
217	Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. , 2022, 230, 107967.		40
218	A quantitative map of human primary microRNA processing sites. Molecular Cell, 2021, 81, 3422-3439.e11.	4.5	42
221	Long Non-coding RNA Aerrie Controls DNA Damage Repair via YBX1 to Maintain Endothelial Cell Function. Frontiers in Cell and Developmental Biology, 2020, 8, 619079.	1.8	20
222	Knockdown of Nuclear IncRNAs by Locked Nucleic Acid (LNA) Gapmers in Nephron Progenitor Cells. Methods in Molecular Biology, 2020, 2161, 29-36.	0.4	3
223	Loading of Argonaute Protein with Small Duplex RNA in Cellular Extracts. Methods in Molecular Biology, 2016, 1421, 53-67.	0.4	1
224	Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. Advances in Experimental Medicine and Biology, 2017, 983, 1-20.	0.8	15
225	RNA-Mediated Gene Activation: Identifying a Candidate RNA for Preclinical Development. Advances in Experimental Medicine and Biology, 2017, 983, 161-171.	0.8	3
226	Enhancing Angiogenesis in Mice by VEGF-Targeting Small Activating RNAs. Advances in Experimental Medicine and Biology, 2017, 983, 195-205.	0.8	1
227	Endogenous miRNAa: miRNA-Mediated Gene Upregulation. Advances in Experimental Medicine and Biology, 2017, 983, 65-79.	0.8	13

#	Article	IF	Citations
228	RNAa Induced by TATA Box-Targeting MicroRNAs. Advances in Experimental Medicine and Biology, 2017, 983, 91-111.	0.8	7
229	miRNA-Mediated RNAa by Targeting Enhancers. Advances in Experimental Medicine and Biology, 2017, 983, 113-125.	0.8	16
230	Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays in Biochemistry, 2020, 64, 721-735.	2.1	29
233	HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis. Journal of Clinical Investigation, 2017, 128, 625-643.	3.9	56
234	Mammalian Argonaute-DNA binding?. Biology Direct, 2014, 10, 27.	1.9	5
235	Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	44
236	Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS ONE, 2017, 12, e0183587.	1.1	7
237	Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis. PLoS Pathogens, 2018, 14, e1006802.	2.1	26
238	Inducing gene expression by targeting promoter sequences using small activating RNAs. Journal of Biological Methods, 2015, 2, e14.	1.0	22
239	Beyond the 3′UTR binding-microRNA-induced protein truncation via DNA binding. Oncotarget, 2018, 9, 32855-32867.	0.8	17
240	AGO unchained Canonical and non-canonical roles of Argonaute proteins in mammals. Frontiers in Bioscience - Landmark, 2020, 25, 1-42.	3.0	11
241	Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World Journal of Virology, 2015, 4, 219.	1.3	16
242	Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Letters, 2021, 595, 2953-2977.	1.3	25
243	Novel Insights Into MALAT1 Function as a MicroRNA Sponge in NSCLC. Frontiers in Oncology, 2021, 11, 758653.	1.3	19
247	Dynamics of MicroRNA Biogenesis. Biological and Medical Physics Series, 2019, , 211-249.	0.3	1
251	MicroRNAs and small interfering RNAs as tools for the directed regulation of cellular processes for cancer therapy. Bulletin of Siberian Medicine, 2020, 19, 160-171.	0.1	0
252	Nuclear role for human Argonaute-1 as an estrogen-dependent transcription coactivator. Journal of Cell Biology, 2020, 219, .	2.3	5
253	Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health. Immunologic Research, 2021, , 1.	1.3	5

#	Article	IF	CITATIONS
254	Identification of nuclear export signal in KLLN suggests potential role in proteasomal degradation in cancer cells. Oncotarget, 2020, 11, 4625-4636.	0.8	3
255	DDX21 interacts with nuclear AGO2 and regulates the alternative splicing of <i>SMN2</i> . Bioscience, Biotechnology and Biochemistry, 2021, 85, 272-279.	0.6	6
257	PACSâ€1 contains distinct motifs for nuclearâ€cytoplasmic transport and interacts with the RNAâ€binding protein PTBP1 in the nucleus and cytosol. FEBS Letters, 2022, 596, 232-248.	1.3	3
258	Localization and translocation of mature miRNAs. Zdorovʹe Rebenka, 2021, 16, 498-507.	0.0	0
259	miR-30b-5p inhibits osteoblast differentiation through targeting BCL6. Cell Cycle, 2022, , 1-11.	1.3	2
260	A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Molecular Cancer, 2022, 21, 17.	7.9	10
261	Dicer dependent tRNA derived small RNAs promote nascent RNA silencing. Nucleic Acids Research, 2022, 50, 1734-1752.	6.5	32
263	Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes, 2022, 13, 414.	1.0	3
264	Regulatory miRNAs in Cardiovascular and Alzheimer's Disease: A Focus on Copper. International Journal of Molecular Sciences, 2022, 23, 3327.	1.8	3
266	AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Science Alliance, 2022, 5, e202101277.	1.3	9
267	Single-molecule imaging of microRNA-mediated gene silencing in cells. Nature Communications, 2022, 13, 1435.	5.8	24
268	Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS ONE, 2022, 17, e0265948.	1.1	10
269	Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nature Reviews Cardiology, 2022, 19, 620-638.	6.1	40
270	Targeting chromatin: Transcriptional gene activation (saRNA). , 2022, , 3-16.		0
271	Argonaute and TNRC6, partners in RNAi. , 2022, , 17-36.		0
272	Nuclear microRNAs release paused Pol II via the DDX21-CDK9 complex. Cell Reports, 2022, 39, 110673.	2.9	7
273	Function and Therapeutic Implications of tRNA Derived Small RNAs. Frontiers in Molecular Biosciences, 2022, 9, 888424.	1.6	10
274	Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 4493.	1.8	9

		_	
CITAT	ION	Drnc	NDT
CITAT	IUN	REPU	ואנ

#	Article	IF	CITATIONS
283	Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). International Journal of Molecular Medicine, 2022, 50, .	1.8	6
286	The Multiplicity of Argonaute Complexes in Mammalian Cells. Journal of Pharmacology and Experimental Therapeutics, 2023, 384, 1-9.	1.3	6
287	MicroRNAs: master regulators in host–parasitic protist interactions. Open Biology, 2022, 12, .	1.5	10
289	Nucleusâ€specific RNAi nanoplatform for targeted regulation of nuclear IncRNA function and effective cancer therapy. Exploration, 2022, 2, .	5.4	7
290	The Role of miRNAs in Metabolic Diseases. Current Medicinal Chemistry, 2023, 30, 1922-1944.	1.2	12
292	Function of microRNAs in the cytoplasm. , 2022, , 91-107.		Ο
293	MicroRNA turnover and nuclear function. , 2022, , 109-140.		1
294	Unconventional functions of miRNAs. , 2022, , 181-214.		0
295	MicroRNA-mediated transcriptional and posttranscriptional regulation. , 2022, , 141-152.		0
296	Widespread association of the Argonaute protein AGO2 with meiotic chromatin suggests a distinct nuclear function in mammalian male reproduction. Genome Research, 2022, 32, 1655-1668.	2.4	7
297	RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases. Molecular Aspects of Medicine, 2023, 91, 101148.	2.7	5
298	Small Interfering RNAs Targeting a Chromatin-Associated RNA Induce Its Transcriptional Silencing in Human Cells. Molecular and Cellular Biology, 2022, 42, .	1.1	5
299	pH-responsive nanoparticles based on POEOMA-b-PDPA block copolymers for RNA encapsulation, protection and cell delivery. , 2023, 145, 213267.		3
300	The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis, 2023, 374, 74-86.	0.4	9
301	RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. Rna, 2023, 29, 415-422.	1.6	8
302	Emerging roles of tRNA-derived fragments in cancer. Molecular Cancer, 2023, 22, .	7.9	19
303	Intracellular Compartmentalization: A key determinant of microRNA functions. MicroRNA (Shariqah,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf

304	Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes and Diseases, 2024, 11, 597-613.	1.5	1	
-----	---	-----	---	--

#	ARTICLE	IF	CITATIONS
308	Non-coding RNAs. , 2023, , 89-138.		0
324	An update on the therapeutic role of RNAi in NAFLD/NASH. Progress in Molecular Biology and Translational Science, 2024, , 45-67.	0.9	0