Factors explaining variability in woody above-ground b tropical forest

Forest Ecology and Management 319, 36-43 DOI: 10.1016/j.foreco.2014.01.024

Citation Report

#	Article	IF	CITATIONS
1	Microsite determinants of variability in seedling and cutting establishment in tropical forest restoration plantations. Restoration Ecology, 2015, 23, 861-871.	1.4	18
2	A long-term evaluation of applied nucleation as a strategy to facilitate forest restoration. , 2015, , 150527150908005.		1
3	Natural establishment of indigenous trees under planted nuclei: A study from a clear-felled pine plantation in an afrotropical rain forest. Forest Ecology and Management, 2015, 345, 21-28.	1.4	28
4	Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation, 2015, 186, 287-295.	1.9	212
5	Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest. Forest Ecology and Management, 2015, 357, 95-103.	1.4	50
6	Factors influencing early secondary succession and ecosystem carbon stocks in Brazilian Atlantic Forest. Biodiversity and Conservation, 2015, 24, 2273-2291.	1.2	33
7	Land use legacy effects on structure and composition of subtropical dry forests in St. Croix, U.S. Virgin Islands. Forest Ecology and Management, 2015, 335, 270-280.	1.4	26
8	Biomass and Soil Carbon Stocks in Wet Montane Forest, Monteverde Region, Costa Rica: Assessments and Challenges for Quantifying Accumulation Rates. International Journal of Forestry Research, 2016, 2016, 1-8.	0.2	4
9	A longâ€ŧerm evaluation of applied nucleation as a strategy to facilitate forest restoration. Ecological Applications, 2016, 26, 104-114.	1.8	31
10	Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecological Applications, 2016, 26, 203-218.	1.8	23
11	Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agriculture, Ecosystems and Environment, 2016, 233, 1-15.	2.5	35
12	Slow recovery of tropical oldâ€field rainforest regrowth and the value and limitations of active restoration. Conservation Biology, 2016, 30, 121-132.	2.4	94
13	Recovery of floristic diversity and basal area in natural forest regeneration and planted plots in a Costa Rican wet forest. Biotropica, 2016, 48, 798-808.	0.8	58
14	Natural regeneration as a tool for largeâ€scale forest restoration in the tropics: prospects and challenges. Biotropica, 2016, 48, 716-730.	0.8	353
15	Effect of initial soil properties on sixâ€year growth of 15 tree species in tropical restoration plantings. Ecology and Evolution, 2016, 6, 8686-8694.	0.8	20
16	Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecology and Evolution, 2016, 6, 7253-7262.	0.8	17
17	Determinants of aboveground carbon offset additionality in plantation forests in a moist tropical forest in western Kenya. Forest Ecology and Management, 2016, 365, 61-68.	1.4	10
18	Nutrient limitation in tropical secondary forests following different management practices. Ecological Applications, 2017, 27, 734-755.	1.8	21

CITATION REPORT

#	Article	IF	CITATIONS
19	Degradation and Recovery in Changing Forest Landscapes: A Multiscale Conceptual Framework. Annual Review of Environment and Resources, 2017, 42, 161-188.	5.6	85
20	Research Directions in Tropical Forest Restoration. Annals of the Missouri Botanical Garden, 2017, 102, 237-250.	1.3	51
21	Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 2017, 3, e1701345.	4.7	360
22	Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. Journal of Applied Ecology, 2017, 54, 1091-1099.	1.9	94
23	Liana cutting for restoring tropical forests: a rare palaeotropical trial. African Journal of Ecology, 2017, 55, 282-297.	0.4	24
24	Determinants of Aboveground Biomass across an Afromontane Landscape Mosaic in Kenya. Remote Sensing, 2017, 9, 827.	1.8	22
25	A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE, 2017, 12, e0171368.	1.1	265
26	Litterfall and nutrient dynamics shift in tropical forest restoration sites after a decade of recovery. Biotropica, 2018, 50, 491-498.	0.8	15
27	Soil properties and neighbouring forest cover affect aboveâ€ground biomass and functional composition during tropical forest restoration. Applied Vegetation Science, 2018, 21, 179-189.	0.9	19
28	Performance of 11 tree species under different management treatments in restoration plantings in a tropical dry forest. Restoration Ecology, 2018, 26, 642-649.	1.4	31
29	Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes. Ecological Applications, 2018, 28, 373-384.	1.8	35
30	Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Science Advances, 2018, 4, eaas9143.	4.7	105
31	Organic Wastes and Tropical Forest Restoration. Tropical Conservation Science, 2018, 11, 194008291878315.	0.6	0
32	Rules of thumb for predicting tropical forest recovery. Applied Vegetation Science, 2018, 21, 669-677.	0.9	31
33	Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecological Indicators, 2019, 102, 208-217.	2.6	35
34	Evaluating the success of direct seeding for tropical forest restoration over ten years. Forest Ecology and Management, 2019, 438, 224-232.	1.4	54
35	Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecological Applications, 2019, 29, e01847.	1.8	51
36	Recovery of Soil Hydraulic Properties for Assisted Passive and Active Restoration: Assessing Historical Land Use and Forest Structure. Water (Switzerland), 2019, 11, 86.	1.2	18

#	Article	IF	CITATIONS
37	Leaf litter stoichiometry affects decomposition rates and nutrient dynamics in tropical forests under restoration in Costa Rica. Restoration Ecology, 2019, 27, 549-558.	1.4	15
38	The recovery rates of secondary savannas in abandoned pastures are poorly explained by environmental and landscape factors. Applied Vegetation Science, 2020, 23, 14-25.	0.9	4
39	Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Scientific Reports, 2020, 10, 12161.	1.6	55
40	Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 369, 838-841.	6.0	68
41	How forest structure varies with elevation in old growth and secondary forest in Costa Rica. Forest Ecology and Management, 2020, 469, 118191.	1.4	26
42	Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. Forest Ecology and Management, 2020, 472, 118236.	1.4	26
43	Influencing Landscape-Scale Revegetation Trajectories through Restoration Interventions. Current Landscape Ecology Reports, 2020, 5, 116-126.	1.1	6
44	Brazil's forest restoration, biomass and carbon stocks: A critical review of the knowledge gaps. Forest Ecology and Management, 2020, 462, 117972.	1.4	16
45	Effects of dispersal―and nicheâ€based factors on tree recruitment in tropical wet forest restoration. Ecological Applications, 2020, 30, e02139.	1.8	18
46	The cost of restoring carbon stocks in Brazil's Atlantic Forest. Land Degradation and Development, 2021, 32, 830-841.	1.8	14
47	Three decades of post-logging tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. Forest Ecology and Management, 2021, 488, 119036.	1.4	24
48	Performance and cost of applied nucleation versus high-diversity plantations for tropical forest restoration. Forest Ecology and Management, 2021, 491, 119088.	1.4	11
49	Early Response of Soil Properties under Different Restoration Strategies in Tropical Hotspot. Land, 2021, 10, 768.	1.2	4
50	Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15â€year study. Journal of Applied Ecology, 2020, 57, 2316-2328.	1.9	56
51	Unearthing the hidden world of roots: Root biomass and architecture differ among species within the same guild. PLoS ONE, 2017, 12, e0185934.	1.1	37
52	EFETIVIDADE NA RESTAURAÇÃO DE FLORESTAS TROPICAIS: COMO O DESEMPENHO DIFERENCIAL DAS ESPÉCIES E O CONTEXTO ECOLÓGICO INFLUENCIAM O ESTABELECIMENTO E OCUPAÇÃO. Nativa, 2021, 9, 442-453.	0.2	1
53	Recovery of Ecosystem Processes: Carbon and Energy Flows in Restored Wetlands, Grasslands, and Forests. , 2016, , 365-394.		1
54	L'impact des facteurs climatiques et topographiques sur la répartition des forêts subtropicales et tempérées humides au Pakistan. Geomorphologie Relief, Processus, Environnement, 2020, 26, 157-172.	0.7	3

CITATION REPORT

#	Article	IF	CITATIONS
55	Can Stand Density and Stem Stratification Be Indicators of Aboveground Biomass in Woody Plant Recruitment in Savannah. Open Journal of Forestry, 2022, 12, 41-59.	0.1	1
56	How are biodiversity and carbon stock recovered during tropical forest restoration? Supporting the ecological paradigms and political context involved. Journal for Nature Conservation, 2022, 65, 126115.	0.8	7
57	Offsetting Destruction: The Important Functional Contribution of Carbon Sequestration in the Restoration of a Tropical Forest in Monteverde, Costa Rica. , 2022, , .		1
58	Rapid ant community reassembly in a <scp>N</scp> eotropical forest: Recovery dynamics and landâ€use legacy. Ecological Applications, 2022, 32, e2559.	1.8	9
59	Biodiversity responses to restoration across the Brazilian Atlantic Forest. Science of the Total Environment, 2022, 821, 153403.	3.9	12
60	Restoration plantations accelerate dead wood accumulation in tropical premontane forests. Forest Ecology and Management, 2022, 508, 120015.	1.4	0
61	Old timber plantations and secondary forests attain levels of plant diversity and structure similar to primary forests in the West African humid tropics. Forest Ecology and Management, 2022, 518, 120271.	1.4	3
62	Trade offs at applying tree nucleation to restore degraded high andean forests in colombia. Restoration Ecology, 0, , .	1.4	1
63	Assisted restoration interventions drive functional recovery of tropical wet forest tree communities. Frontiers in Forests and Global Change, 0, 5, .	1.0	4
64	Restoration interventions mediate tropical tree recruitment dynamics over time. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	7
65	Estimating Above-Ground Biomass from Land Surface Temperature and Evapotranspiration Data at the Temperate Forests of Durango, Mexico. Forests, 2023, 14, 299.	0.9	4
66	Restoring Tropical Forests: Lessons Learned from Case Studies on Three Continents. , 2023, , 63-101.		0

CITATION REPORT