Mobile Smartphone Applications for Body Position Mea Review of Goniometric Tools

PM and R 6, 1038-1043 DOI: 10.1016/j.pmrj.2014.05.003

Citation Report

#	Article	IF	CITATIONS
1	Goniometer-apps in hand surgery and their applicability in daily clinical practice. Safety in Health, 2015, 1, .	0.7	14
2	Performance Evaluation of Smartphone Inertial Sensors Measurement for Range of Motion. Sensors, 2015, 15, 23168-23187.	2.1	93
3	Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception. BioMed Research International, 2015, 2015, 1-15.	0.9	60
4	Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones. JMIR Rehabilitation and Assistive Technologies, 2015, 2, e4.	1.1	3
6	Is the smartphone app accurate enough?. Knee, 2015, 22, 145-146.	0.8	0
7	The Increasing Importance of Photographic-Based Apps for Goniometry. Telemedicine Journal and E-Health, 2015, 21, 1042-1043.	1.6	3
8	Smartphone-Based System for Sensorimotor Control Assessment, Monitoring, Improving and Training at Home. Lecture Notes in Computer Science, 2015, , 141-151.	1.0	2
9	The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Computer Methods and Programs in Biomedicine, 2015, 122, 393-408.	2.6	114
10	Reliability and Validity Measurement of Sagittal Lumbosacral Quiet Standing Posture with a Smartphone Application in a Mixed Population of 183 College Students and Personnel. Advances in Orthopedics, 2016, 2016, 1-9.	0.4	11
11	A realisation of ethical concerns with smartphone personal health monitoring apps. ACM SIGCAS Computers and Society, 2016, 45, 313-317.	0.1	4
12	Can eHealth Technology Enhance the Patient-Provider Relationship in Rehabilitation?. Archives of Physical Medicine and Rehabilitation, 2016, 97, 1403-1406.	0.5	21
13	Reliability of knee joint position sense measurement: a comparison between goniometry and image capture methods. European Journal of Physiotherapy, 2016, 18, 95-102.	0.7	4
14	Le goniomètre médical au fil du temps. Kinesitherapie, 2016, 16, 48-61.	0.0	2
15	Intrarater Agreement of Elbow Extension Range of Motion in the Upper Limb Neurodynamic Test 1 Using a Smartphone Application. Archives of Physical Medicine and Rehabilitation, 2016, 97, 1880-1886.	0.5	8
16	Accuracy and Precision of an Accelerometer-Based Smartphone App Designed to Monitor and Record Angular Movement over Time. Telemedicine Journal and E-Health, 2016, 22, 302-309.	1.6	27
17	Evaluation of knee range of motion: Correlation between measurements using a universal goniometer and a smartphone goniometric application. Journal of Bodywork and Movement Therapies, 2017, 21, 699-703.	0.5	47
18	Improving Exercise Performance with an Accelerometer-Based Smartphone App. American Journal of Physical Medicine and Rehabilitation, 2017, 96, 307-314.	0.7	7
19	Validity and reliability of smartphone applications for clinical assessment of the neuromusculoskeletal system. Expert Review of Medical Devices, 2017, 14, 481-493.	1.4	12

#	Article	IF	CITATIONS
20	An iPhone application for upper arm posture and movement measurements. Applied Ergonomics, 2017, 65, 492-500.	1.7	45
21	DrGoniometer: a reliable smartphone app for joint angle measurement. British Journal of Sports Medicine, 2017, 51, 1703-1704.	3.1	14
22	Using a Motion Sensor-Equipped Smartphone to Facilitate CT-Guided Puncture. CardioVascular and Interventional Radiology, 2017, 40, 609-615.	0.9	12
23	Trueness and Minimal Detectable Change of Smartphone Inclinometer Measurements of Shoulder Range of Motion. Telemedicine Journal and E-Health, 2017, 23, 503-506.	1.6	15
24	Validity of a smartphone protractor to measure sagittal parameters in adult spinal deformity. Spine Journal, 2017, 17, 1559-1564.	0.6	6
25	Web-based cattle behavior service for researchers based on the smartphone inertial central. Procedia Computer Science, 2017, 110, 110-116.	1.2	23
26	Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?. Journal of Experimental Orthopaedics, 2017, 4, 29.	0.8	19
27	Universal Goniometer and smartphone app for evaluation of elbow joint motion: Reproducibility analysis. , 2017, , .		2
28	Cost-Effective Mobile-Based Healthcare System for Managing Total Joint Arthroplasty Follow-Up. Healthcare Informatics Research, 2017, 23, 67.	1.0	16
29	The CJOrtho app: A mobile clinical and educational tool for orthopedics. Orthopaedics and Traumatology: Surgery and Research, 2018, 104, 523-527.	0.9	9
30	Smartphone applications for the evaluation of pathologic shoulder range of motion and shoulder scores—a comparative study. JSES Open Access, 2018, 2, 109-114.	0.9	34
31	IMPLEMENTATION OF A SMARTPHONE AS A WIRELESS ACCELEROMETER PLATFORM FOR QUANTIFYING HEMIPLEGIC GAIT DISPARITY IN A FUNCTIONALLY AUTONOMOUS CONTEXT. Journal of Mechanics in Medicine and Biology, 2018, 18, 1850005.	0.3	8
32	Smartphone Usage Patterns by Canadian Neurosurgery Residents: A National Cross-Sectional Survey. World Neurosurgery, 2018, 111, e465-e470.	0.7	16
33	Validité et reproductibilité des applications téléphoniques pour évaluer les amplitudes de mouvement en pratique cliniqueÂ: revue de littérature. Kinesitherapie, 2018, 18, 13-24.	0.0	1
34	Viability of Hand and Wrist Photogoniometry. Hand, 2018, 13, 301-304.	0.7	9
35	Smartphone-based accelerometry is a valid tool for measuring dynamic changes in knee extension range of motion. Knee, 2018, 25, 66-72.	0.8	19
36	L'orthopédie mobile, outil d'évaluation et d'éducationÂ: l'application CJOrtho ®. Revue De Orthopedique Et Traumatologique, 2018, 104, 370-374.	e Chirurgie 0.0	² 0
	Cloud services integration for farm animals if M behavior studies based on smarthbones as activity		

.3 21

#	Article	IF	CITATIONS
38	Concurrent validity and reliability of an iPhone app for the measurement of ankle dorsiflexion and inter-limb asymmetries. Journal of Sports Sciences, 2019, 37, 249-253.	1.0	23
39	The validity and reliability of DrGoniometer, a smartphone application, for measuring forearm supination. Journal of Hand Therapy, 2019, 32, 110-117.	0.7	15
40	GPS-independent navigation using smartphone sensors. SN Applied Sciences, 2019, 1, 1.	1.5	1
41	Harnessing smartphone technology and three dimensional printing to create a mobile rehabilitation system, mRehab: assessment of usability and consistency in measurement. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 127.	2.4	17
42	Reliability and validity of clinically accessible smartphone applications to measure joint range of motion: A systematic review. PLoS ONE, 2019, 14, e0215806.	1.1	85
43	Dot the l's and Cross the T's: Comment on "A Systematic Review of Mobile Health Applications in Rehabilitationâ€: Archives of Physical Medicine and Rehabilitation, 2019, 100, 782.	0.5	0
44	Mobile Health Apps Are Used for Many Rehabilitation Purposes. Archives of Physical Medicine and Rehabilitation, 2019, 100, 782-783.	0.5	0
45	Smartphone applications validated for joint angle measurement: a systematic review. International Journal of Rehabilitation Research, 2019, 42, 11-19.	0.7	18
46	Smartphone Applications for Assessing Ankle Range of Motion in Clinical Practice. Foot & Ankle Orthopaedics, 2019, 4, 247301141987477.	0.1	12
47	Commercial Postural Devices: A Review. Sensors, 2019, 19, 5128.	2.1	31
48	Intra-rater and inter-rater reliability of cervical active range of movement in young asymptomatic adults using inertial sensors. Expert Review of Medical Devices, 2019, 16, 1071-1077.	1.4	13
49	The decline step-down test measuring the maximum pain-free flexion angle: A reliable and valid performance test in patients with patellofemoral pain. Physical Therapy in Sport, 2019, 36, 43-50.	0.8	7
50	Measurement of knee joint range of motion with a digital goniometer: A reliability study. Physiotherapy Research International, 2019, 24, e1765.	0.7	25
51	Use of Mobile Applications to Collect Data in Sport, Health, and Exercise Science: A Narrative Review. Journal of Strength and Conditioning Research, 2019, 33, 1167-1177.	1.0	61
52	Psychometric Properties of the iHandy Level Smartphone Application for Measuring Lumbar Spine Range of Motion and Lordosis: A Systematic Review of the Literature. Journal of Sport Rehabilitation, 2020, 29, 352-359.	0.4	5
53	Manuscript Clarification for "Use of Mobile Applications to Collect Data in Sport, Health, and Exercise Science: A Narrative Review― Journal of Strength and Conditioning Research, 2020, 34, e246-e246.	1.0	1
54	Proposal of an Alternative to the AMA Guidelines for the Evaluation of the Cervical ROM. Designs, 2020, 4, 43.	1.3	0
55	Validity and reliability of smartphone-based Goniometer-Pro app for measuring the thoracic kyphosis. Musculoskeletal Science and Practice, 2020, 49, 1022 <u>16.</u>	0.6	11

#	Article	IF	CITATIONS
56	Use of Mobile Applications to Collect Data in Sport, Health, and Exercise Science: A Narrative Review. Journal of Strength and Conditioning Research, 2020, 34, e276-e276.	1.0	1
57	Accuracy and repeatability of smartphone sensors for measuring shank-to-vertical angle. Prosthetics and Orthotics International, 2020, 44, 172-179.	0.5	4
58	Concurrent criterion validity of the iPodâ,,¢ in the measurement of shoulder range of motion: A cross-sectional study. Physiotherapy Practice and Research, 2020, 41, 23-34.	0.1	0
59	A systematic review into the assessment of medical apps: motivations, challenges, recommendations and methodological aspect. Health and Technology, 2020, 10, 1045-1061.	2.1	26
60	A review of computational approaches for evaluation of rehabilitation exercises. Computers in Biology and Medicine, 2020, 119, 103687.	3.9	54
61	Can human posture and range of motion be measured automatically by smart mobile applications?. Medical Hypotheses, 2020, 142, 109741.	0.8	9
62	Positioning immobile critically ill patients who are at risk of pressure injuries using a purposeâ€designed positioning device and usual care equipment: An observational feasibility study. International Wound Journal, 2020, 17, 1028-1038.	1.3	5
63	Kinemetrie. , 2021, , 1-17.		0
64	Measuring Cervical Range of Motion with Gyroscope/Accelerometer Eyeglasses (JINS MEME) in Persons with and without Neck Pain. The Journal of the International Society of Physical and Rehabilitation Medicine, 2021, 4, 141-145.	0.1	1
65	Camera-Based Monitoring of Neck Movements for Cervical Rehabilitation Mobile Applications. Sensors, 2021, 21, 2237.	2.1	5
66	Validity and reliability of smartphones in measuring joint position sense among asymptomatic individuals and patients with knee osteoarthritis: A cross-sectional study. Knee, 2021, 29, 313-322.	0.8	8
68	Validity and Intrarater Reliability Using a Smartphone Clinometer Application to Measure Active Cervical Range of Motion Including Rotation Measurements in Supine. Journal of Sport Rehabilitation, 2021, 30, 680-684.	0.4	5
69	Validity and reliability of smartphone-based pelvic rotation evaluations of children with cerebral palsy while sitting, standing, and standing on one leg. Journal of Pediatric Rehabilitation Medicine, 2021, 14, 295-299.	0.3	1
70	Reliability and concurrent validity of Iphone®level application for measuring lower limb active flexion and extension range of motions in physical education students. Fizieskoe Vospitanie Studentov, 2021, 25, 164-171.	0.9	0
71	Reliability of visual inspection and palpation to assess relative flexibility of the shoulder. Journal of Bodywork and Movement Therapies, 2021, 28, 570-575.	0.5	0
72	Impact of bed height on the biomechanics of healthcare professionals during chest compressions on the neonate: a descriptive pilot study. BMJ Open, 2021, 11, e047666.	0.8	0
74	Edge Computing for Cattle Behavior Analysis. , 2020, , .		10
75	Test-Retest and Intrarater Reliability of Assessing Tibial Rotation Range of Motion by Two Devices. International Journal of Athletic Therapy and Training, 2020, 25, 263-269.	0.1	2

#	Article	IF	CITATIONS
76	Effect of Hip Flexion and Internal Rotation on the Hip Abductor Muscle Activity During Side-Lying Hip Abduction in Subjects With Gluteus Medius Weakness. Physical Therapy Korea, 2016, 23, 57-67.	0.1	1
77	The reliability of the nonradiologic measures of thoracic spine rotation in healthy adults. Physical Therapy Rehabilitation Science, 2017, 6, 65-70.	0.1	9
78	Interrater Reliability of mHealth App Rating Measures: Analysis of Top Depression and Smoking Cessation Apps. JMIR MHealth and UHealth, 2016, 4, e15.	1.8	95
79	Comparison between two mobile applications measuring shoulder elevation angle–A validity and feasibility study. Medical Engineering and Physics, 2021, 98, 1-7.	0.8	2
80	Reliability and concurrent validity of the Goniometer-Pro App vs a Universal Goniometer in determining passive flexion of knee. Journal of Novel Physiotherapy and Physical Rehabilitation, 0, , 071-076.	0.1	0
81	A review on measuring cervical range of motion using an inertial measurement unit. Journal of Korean Medicine, 2017, 38, 56-71.	0.1	Ο
82	Reliability and Concurrent Validity of the Goniometer-Pro App vs a Universal Goniometer in determining Passive Flexion of Knee. International Journal of Computer Applications, 2017, 173, 30-34.	0.2	3
83	La chirurgie orthopédique et traumatologique connectée. De nouvelles perspectives. , 2018, , 23-32.		Ο
84	THE EFFECTS OF AN AQUATIC MANUAL THERAPY TECHNIQUE, AQUASTRETCHâ,,¢ ON RECREATIONAL ATHLETES WITH LOWER EXTREMITY INJURIES. International Journal of Sports Physical Therapy, 2018, 13, 214-228.	0.5	1
85	Effects of Orofacial Muscles Exercise Program on Swallowing Function and Satisfaction in Sub-Acute Stroke Patients with Dysphagia. Medico-Legal Update, 2019, 19, 623.	0.9	5
86	A Mobile App to Replace the Goniometer? A Pilot Study Focusing on the Measurement of Knee Range of Movement. Journal of Sports Science, 2019, 7, .	0.1	0
87	Reliability of a Smartphone Compared With an Inertial Sensor to Measure Shoulder Mobility: Cross-Sectional Study. JMIR MHealth and UHealth, 2019, 7, e13640.	1.8	5
89	Goniometry Apps: Do They Measure Up? Exploring the Accuracy of Mobile Device Apps. Gerontology & Geriatrics Studies, 2019, 5, .	0.1	2
90	The Intra- and Inter-Rater Reliability of a Hip Rotation Range-of-Motion Measurement Using a Smartphone Application in Academy Football (Soccer) Players. Sports, 2021, 9, 148.	0.7	2
91	THE EFFECTS OF AN AQUATIC MANUAL THERAPY TECHNIQUE, AQUASTRETCHâ,,¢ ON RECREATIONAL ATHLETES WITH LOWER EXTREMITY INJURIES. International Journal of Sports Physical Therapy, 2018, 13, 214-228.	0.5	0
92	Reliability and validity varies among smartphone apps for range of motion measurements of the lower extremity: a systematic review. Biomedizinische Technik, 2021, 66, 537-555.	0.9	3
93	Riana – A Diagnostic Device for Measurement of Joint Range. , 2020, , .		0
94	Pocketable Labs for Everyone: Synchronized Multi-Sensor Data Streaming and Recording on Smartphones with the Lab Streaming Layer. Sensors, 2021, 21, 8135.	2.1	13

#	Article	IF	CITATIONS
95	Reliability and concurrent validity of mobile health technology for patient self-monitoring in physical rehabilitation. JSES International, 2022, 6, 506-511.	0.7	2
96	Is there a relationship between back squat depth, ankle flexibility, and Achilles tendon stiffness?. Sports Biomechanics, 2022, 21, 782-795.	0.8	9
97	Hip Joint Abnormalities During Midstance in Osteoarthritic Patients Current Health Sciences Journal, 2021, 47, 361-366.	0.2	0
98	Complexity of Gait Angle Measurements at the Ankle Joint During Midstance in Patients with Osteoarthritis Current Health Sciences Journal, 2021, 47, 398-404.	0.2	0
99	First Polish mobile application for patients undergoing total hip arthroplasty. Reumatologia, 2022, 60, 224-228.	0.5	0
100	Reliability and Validity of the Clinometerâ,,¢ Smartphone Application for Measuring Knee Flexion. International Journal of Athletic Therapy and Training, 2023, 28, 97-103.	0.1	3
101	Test–retest of the Subjective Visual Vertical Test performed using a mobile application with the smartphone anchored to a turntable. European Archives of Oto-Rhino-Laryngology, 0, , .	0.8	0
102	Follow-up after arthroplasty surgery. Bone and Joint Journal, 2022, 104-B, 1104-1109.	1.9	6
103	Smartphone Application Measurement Methods and Their Validity and Reliability of Joint Range of Motion Measurements: A Systematic Review. Rigakuryoho Kagaku, 2022, 37, 611-626.	0.0	0
104	Kinemetrie. , 2023, , 47-63.		0
105	Landing Technique and Ankle-dorsiflexion Range of Motion are not Associated with the History of Lower Limb Injuries among Youth Basketball Athletes. International Journal of Sports Physical Therapy, 2023, 18, .	0.5	1
106	Evaluation of Range of Motion of the Tibiofemoral Joint. , 2023, , 411-418.		0