Ambient hemolysis and activation of coagulation is diff HeartWare left ventricular assist devices

Journal of Heart and Lung Transplantation 33, 80-87 DOI: 10.1016/j.healun.2013.11.010

Citation Report

#	Article	IF	CITATIONS
1	Epidemiology and Outcomes Associated With Anemia During Long-Term Support With Continuous-Flow Left Ventricular Assist Devices. Journal of Cardiac Failure, 2014, 20, 387-391.	0.7	17
2	Microparticles and left ventricular assist device complications: A causal association?. Journal of Heart and Lung Transplantation, 2014, 33, 468-469.	0.3	7
3	Controlled Lecithin Release from a Hierarchical Architecture on Blood-Contacting Surface to Reduce Hemolysis of Stored Red Blood Cells. ACS Applied Materials & Interfaces, 2014, 6, 9808-9814.	4.0	36
4	Perioperative Blood Product Use: A Comparison Between HeartWare and HeartMate II Devices. Annals of Thoracic Surgery, 2014, 98, 842-849.	0.7	19
5	The vexing problem of thrombosis in long-term mechanical circulatory support. Journal of Heart and Lung Transplantation, 2014, 33, 1-11.	0.3	176
7	Mechanical circulatory support: balancing bleeding and clotting in high-risk patients. Hematology American Society of Hematology Education Program, 2015, 2015, 61-68.	0.9	36
8	Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare <scp>HVAD</scp> Rotary Blood Pumps. Artificial Organs, 2015, 39, 651-659.	1.0	149
9	Circulatory support devices: fundamental aspects and clinical management of bleeding and thrombosis. Journal of Thrombosis and Haemostasis, 2015, 13, 1757-1767.	1.9	64
10	Preclinical Models for Translational Investigations of Left Ventricular Assist Deviceâ€Associated von Willebrand Factor Degradation. Artificial Organs, 2015, 39, 569-575.	1.0	24
11	Readmissions After Continuous Flow Left Ventricular Assist Device Implantation. ASAIO Journal, 2015, 61, 410-416.	0.9	26
12	Low Incidence of Gastrointestinal Bleeding and Pump Thrombosis in Patients Receiving the INCOR LVAD System in the Long-term Follow-up. International Journal of Artificial Organs, 2015, 38, 542-547.	0.7	14
13	Continuous-Flow Left Ventricular Assist Device Thrombosis: A Danger Foreseen is a Danger Avoided. Medical Science Monitor Basic Research, 2015, 21, 141-144.	2.6	29
14	Coagulopathy in Mechanical Circulatory Support: A Fine Balance. Current Cardiology Reports, 2015, 17, 114.	1.3	15
15	Thrombosis in Continuous-Flow Left Ventricular Assist Devices: Pathophysiology, Prevention, and Pharmacologic Management. Pharmacotherapy, 2015, 35, 79-98.	1.2	34
16	Management of anticoagulation and antiplatelet therapy in patients with left ventricular assist devices. Journal of Thrombosis and Thrombolysis, 2015, 39, 337-344.	1.0	36
17	Science for surgeons: Understanding pump thrombogenesis in continuous-flow left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 667-673.	0.4	36
18	Antithrombotic therapy for left ventricular assist devices in adults: a systematic review. Journal of Thrombosis and Haemostasis, 2015, 13, 946-955.	1.9	61
19	Antithrombotic therapy for ventricular assist devices in children: do we really know what to do?. Journal of Thrombosis and Haemostasis, 2015, 13, S343-S350.	1.9	21

#	Article	IF	CITATIONS
20	Pathologic von Willebrand factor degradation with a left ventricular assist device occurs via two distinct mechanisms: Mechanical demolition and enzymatic cleavage. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 281-289.	0.4	96
21	Binary release of ascorbic acid and lecithin from core–shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte. Colloids and Surfaces B: Biointerfaces, 2015, 125, 28-33.	2.5	9
22	HeartMate 3: Facing the challenge of past success. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 683-685.	0.4	7
23	Bleeding and thrombosis in chronic ventricular assist device therapy. Current Opinion in Cardiology, 2016, 31, 299-307.	0.8	39
24	Blood cell microparticles as biomarkers of hemostatic abnormalities in patients with implanted cardiac assist devices. Biomarkers in Medicine, 2016, 10, 1095-1104.	0.6	14
25	Does third generation left ventricular assist device alter heart failure-related microvascular dysfunction?. Acta Cardiologica, 2016, 71, 403-410.	0.3	1
26	Effects of HeartWare ventricular assist device on the von Willebrand factor: results of an academic Belgian center. BMC Cardiovascular Disorders, 2016, 16, 155.	0.7	5
27	Haemolysis as a first sign of thromboembolic event and acute pump thrombosis in patients with the continuous-flow left ventricular assist device HeartMate II. Netherlands Heart Journal, 2016, 24, 134-142.	0.3	29
28	Device-Related Thrombosis in Continuous-Flow Left Ventricular Assist Device Support. Journal of Pharmacy Practice, 2016, 29, 58-66.	0.5	12
29	From bench to bedside: Can the improvements in left ventricular assist device design mitigate adverse events and increase survival?. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 213-217.	0.4	16
30	Left ventricular assist device outcomes based on flow configuration and pre-operative left ventricular dimension: An Interagency Registry for Mechanically Assisted Circulatory Support Analysis. Journal of Heart and Lung Transplantation, 2017, 36, 640-649.	0.3	30
31	Bleeding and thrombosis associated with ventricular assist device therapy. Journal of Heart and Lung Transplantation, 2017, 36, 1164-1173.	0.3	83
32	Comparative analysis of von Willebrand factor profiles after implantation of left ventricular assist device and total artificial heart. Journal of Thrombosis and Haemostasis, 2017, 15, 1620-1624.	1.9	15
33	Comparison of Hemodynamic Performance and Clinical Results with EVAHEART Versus HeartMate II. ASAIO Journal, 2017, 63, 562-567.	0.9	14
34	Surgical Technique for Ventricular Device Exchange: From HeartMate II to HVAD. ASAIO Journal, 2017, 63, 364-366.	0.9	9
35	Unusual Anemias. Medical Clinics of North America, 2017, 101, 417-429.	1.1	7
36	Shear Stressâ€induced Total Blood Trauma in Multiple Species. Artificial Organs, 2017, 41, 934-947.	1.0	55
38	Left Ventricular Assist Device Design Reduces von Willebrand Factor Degradation: A Comparative Study Between the HeartMate II and the EVAHEART Left Ventricular Assist System. Annals of Thoracic Surgery, 2017, 103, 1239-1244.	0.7	47

#	Article	IF	CITATIONS
39	Space and Time Resolved Detection of Platelet Activation and von Willebrand Factor Conformational Changes in Deep Suspensions. International Journal of Biomedical Imaging, 2017, 2017, 1-13.	3.0	2
40	Anticoagulation for Cardiac Prosthetic Devices: Prosthetic Heart Valves, Left Ventricular Assist Devices, and Septal Closure Devices. , 2018, , 253-295.		0
41	Acquired coagulopathy in patients with left ventricular assist devices. Journal of Thrombosis and Haemostasis, 2018, 16, 429-440.	1.9	51
42	Implantable Left Ventricular Assist Device Therapy—Recent Advances and Outcomes. Journal of Cardiothoracic and Vascular Anesthesia, 2018, 32, 2019-2028.	0.6	13
43	Identification of Novel Hemostatic Biomarkers of Adverse Clinical Events in Patients Implanted With a Continuous-Flow Left Ventricular Assist Device. Clinical and Applied Thrombosis/Hemostasis, 2018, 24, 965-972.	0.7	8
44	Experimental measurement and numerical modelling of dye washout for investigation of blood residence time in ventricular assist devices. International Journal of Artificial Organs, 2018, 41, 201-212.	0.7	15
45	Clinical and In Vitro Evidence That Subclinical Hemolysis Contributes to LVAD Thrombosis. Annals of Thoracic Surgery, 2018, 105, 807-814.	0.7	40
46	Perioperative Management of the Patient With a Left Ventricular Assist Device for Noncardiac Surgery. Anesthesia and Analgesia, 2018, 126, 1839-1850.	1.1	15
47	Clinical overview of the HVAD: a centrifugal continuous-flow ventricular assist device with magnetic and hydrodynamic bearings including lateral implantation strategies. Journal of Thoracic Disease, 2018, 10, S1785-S1789.	0.6	13
48	Adult and pediatric mechanical circulation: a guide for the hematologist. Hematology American Society of Hematology Education Program, 2018, 2018, 507-515.	0.9	11
49	Therapeutic Strategy for Gastrointestinal Bleeding in Patients With Left Ventricular Assist Device. Circulation Journal, 2018, 82, 2931-2938.	0.7	26
50	Antithrombotic therapy in ventricular assist device (VAD) management: From ancient beliefs to updated evidence. A narrative review. IJC Heart and Vasculature, 2018, 20, 20-26.	0.6	10
51	In Vitro Hemocompatibility Evaluation of Ventricular Assist Devices in Pediatric Flow Conditions: A Benchmark Study. Artificial Organs, 2018, 42, 1028-1034.	1.0	15
52	Risk of stroke early after implantation of a left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 259-267.e1.	0.4	11
53	Hemostatic complications associated with ventricular assist devices. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 589-598.	1.0	19
54	Do patients with the centrifugal flow HeartMate 3 or HeartWare left ventricular assist device have better outcomes compared to those with axial flow HeartMate II?. Interactive Cardiovascular and Thoracic Surgery, 2019, 29, 844-851.	0.5	10
55	A Novel Toroidal-Flow Left Ventricular Assist Device Minimizes Blood Trauma: Implications of Improved Ventricular Assist Device Hemocompatibility. Annals of Thoracic Surgery, 2019, 107, 1761-1767.	0.7	20
56	Evaluation of in vitro hemolysis and platelet activation of a newly developed maglev LVAD and two clinically used LVADs with human blood. Artificial Organs, 2019, 43, 870-879.	1.0	28

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
57	Acquired von Willebrand factor deficiency is reduced in HeartMate 3 patientsâ€. European Journal of Cardio-thoracic Surgery, 2019, 56, 444-450.	0.6	16
58	Mechanical Circulatory Support Part II; Management of Devices After Implantation, Incl. Complications. Cardiovascular Medicine, 2019, , 307-317.	0.0	0
60	Management of Antiplatelet Therapy During Continuous-Flow Left Ventricular Assist Device Support After Thrombotic Hemorrhagic Events. ASAIO Journal, 2019, 65, 683-689.	0.9	5
61	In vitro comparison of the hemocompatibility of two centrifugal left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 591-599.e4.	0.4	19
62	A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Cardiovascular Engineering and Technology, 2019, 10, 69-79.	0.7	13
63	Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1519-1527.e1.	0.4	24
64	Platelet adhesion emulation: A novel method for estimating the device thrombosis potential of a ventricular assist device. International Journal of Artificial Organs, 2020, 43, 252-257.	0.7	4
65	Clinical implications of LDH isoenzymes in hemolysis and continuousâ€flow left ventricular assist deviceâ€induced thrombosis. Artificial Organs, 2020, 44, 231-238.	1.0	18
66	Hemocompatibility in Mechanical Circulatory Support. , 2020, , 83-89.		1
67	Gastrointestinal Bleeding After HeartMate II or HVAD Implantation: Incidence, Location, Etiology, and Effect on Survival. ASAIO Journal, 2020, 66, 283-290.	0.9	17
68	Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomaterials Science, 2020, 8, 5824-5845.	2.6	29
69	A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device. International Journal of Artificial Organs, 2021, 44, 471-480.	0.7	23
70	Platelet Activation via Shear Stress Exposure Induces a Differing Pattern of Biomarkers of Activation versus Biochemical Agonists. Thrombosis and Haemostasis, 2020, 120, 776-792.	1.8	38
71	Red blood cell mechanical fragility as potential metric for assessing blood damage caused by implantable durable ventricular assist devices: Comparison of two types of centrifugal flow left ventricular assist devices in Pediatric Cardiology, 2020, 56, 101198.	0.2	Ο
72	A Stepwise Approach to Left Ventricular Assist Device Pump Thrombosis. Heart Lung and Circulation, 2021, 30, 567-576.	0.2	2
73	Comparison of Outcomes of Enoxaparin Bridge Therapy in HeartMate II versus HeartWare HVAD Recipients. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 107424842110069.	1.0	2
74	Increased platelet glycoprotein IIb/IIIa activation precedes continuous-flow left ventricular assist device pump thrombosis events. Thrombosis Research, 2021, 201, 143-146.	0.8	2
75	On the Optimization of a Centrifugal Maglev Blood Pump Through Design Variations. Frontiers in Physiology, 2021, 12, 699891.	1.3	28

#	ARTICLE	IF	CITATIONS
76	Aspirin and left ventricular assist devices: rationale and design for the international randomized, placeboâ€controlled, nonâ€inferiority ARIES HM3 trial. European Journal of Heart Failure, 2021, 23, 1226-1237.	2.9	47
77	Pump Thrombosis following HeartMate II Left Ventricular Assist Device Implantation in a Patient with Aspirin and Plavix Resistance. Heart Surgery Forum, 2016, 19, 284.	0.2	2
78	Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation. Oncotarget, 2018, 9, 37229-37251.	0.8	11
79	Pump thrombosis-A riddle wrapped in a mystery inside an enigma. Annals of Cardiothoracic Surgery, 2014, 3, 450-71.	0.6	61
80	Intravenous thrombolytic therapy for patients with ventricular assist device thrombosis: An attempt to avoid reoperation. Annals of Cardiac Anaesthesia, 2016, 19, 192.	0.3	13
81	Ventricular assist device and von Willebrand factor. Japanese Journal of Thrombosis and Hemostasis, 2016, 27, 322-327.	0.1	0
83	Postoperatives VAD-Management. , 2017, , 161-223.		1
84	Coagulation Monitoring. , 2017, , 433-443.		0
85	Patient- and Device-Tailored Antithrombotic Treatment. , 2017, , 427-431.		0
86	Hemorrhage and thrombosis with different LVAD technologies: a matter of flow?. Annals of Cardiothoracic Surgery, 2014, 3, 582-4.	0.6	21
87	High Molecular Weight von Willebrand Factor Multimer Loss and Bleeding in Patients with Short-Term Mechanical Circulatory Support Devices: A Case Series. Journal of Extra-Corporeal Technology, 2018, 50, 77-82.	0.2	6
88	Clinical Application of Left Ventricular Assist Device in the Treatment of End-Stage Heart Failure. Advances in Clinical Medicine, 2022, 12, 2003-2009.	0.0	0
89	The HeartWare Ventricular Assist Device (HVAD): A Single Institutional 10-Year Experience. Thoracic and Cardiovascular Surgeon, 2022, , .	0.4	1
91	Continuous-Flow Ventricular Assist Devices. , 2022, , 79-119.		0
92	Multi-indicator analysis of mechanical blood damage with five clinical ventricular assist devices. Computers in Biology and Medicine, 2022, 151, 106271.	3.9	6
93	Pumb Thrombosis. , 2023, , 1-17.		0
97	Editorial: Recent advances in the design and preclinical evaluation of ventricular assist devices. Frontiers in Physiology, 0, 14, .	1.3	0
99	A New Mathematical Model for Assessment of Bleeding and Thrombotic Risk in Three Different Types of Clinical Ventricular Assist Devices. IFMBE Proceedings, 2024, , 139-152.	0.2	Ο