Broadly Neutralizing HIV Antibodies Define a Glycan-D Conformation of gp41 on Cleaved Envelope Trimers

Immunity 40, 657-668 DOI: 10.1016/j.immuni.2014.04.009

Citation Report

#	Article	IF	CITATIONS
1	Trial, Error, and Breakthrough: A Review of HIV Vaccine Development. Journal of AIDS & Clinical Research, 2014, 05, .	0.5	5
2	The role of N-glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents. Retrovirology, 2014, 11, 107.	0.9	8
3	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	3.3	324
4	Immunologic Basis for Long HCDR3s in Broadly Neutralizing Antibodies Against HIV-1. Frontiers in Immunology, 2014, 5, 250.	2.2	102
5	Mass Spectrometry Approach and ELISA Reveal the Effect of Codon Optimization on N-Linked Glycosylation of HIV-1 gp120. Journal of Proteome Research, 2014, 13, 5801-5811.	1.8	8
6	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	6.6	323
7	Recent strategies targeting HIV glycans in vaccine design. Nature Chemical Biology, 2014, 10, 990-999.	3.9	95
8	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.	1.5	248
9	Drift of the HIV-1 Envelope Glycoprotein gp120 toward Increased Neutralization Resistance over the Course of the Epidemic: a Comprehensive Study Using the Most Potent and Broadly Neutralizing Monoclonal Antibodies. Journal of Virology, 2014, 88, 13910-13917.	1.5	42
10	Eliciting neutralizing antibodies with gp120 outer domain constructs based on M-group consensus sequence. Virology, 2014, 462-463, 363-376.	1.1	19
11	Cardiomyopathy, mitochondria and Barth syndrome: iPSCs reveal a connection. Nature Medicine, 2014, 20, 585-586.	15.2	8
12	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology, 2014, 11, 41.	0.9	139
13	Antibody B cell responses in HIV-1 infection. Trends in Immunology, 2014, 35, 549-561.	2.9	91
14	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	13.7	702
15	Lessons from babies: inducing HIV-1 broadly neutralizing antibodies. Nature Medicine, 2014, 20, 583-585.	15.2	7
16	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	13.7	400
17	Antibody engineering for increased potency, breadth and half-life. Current Opinion in HIV and AIDS, 2015, 10, 151-159.	1.5	46
18	HIV broadly neutralizing antibody targets. Current Opinion in HIV and AIDS, 2015, 10, 135-143.	1.5	110

#	Article	IF	CITATIONS
19	Rhesus Macaque B-Cell Responses to an HIV-1 Trimer Vaccine Revealed by Unbiased Longitudinal Repertoire Analysis. MBio, 2015, 6, e01375-15.	1.8	31
20	The <scp>HIV</scp> glycan shield as a target for broadly neutralizing antibodies. FEBS Journal, 2015, 282, 4679-4691.	2.2	106
21	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	0.9	156
22	Antibodies for HIV prevention in young women. Current Opinion in HIV and AIDS, 2015, 10, 183-189.	1.5	9
23	Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules, 2015, 5, 2919-2934.	1.8	12
24	Directed Evolution of a Yeast-Displayed HIV-1 SOSIP gp140 Spike Protein toward Improved Expression and Affinity for Conformational Antibodies. PLoS ONE, 2015, 10, e0117227.	1.1	8
25	Effects of the I559P gp41 Change on the Conformation and Function of the Human Immunodeficiency Virus (HIV-1) Membrane Envelope Glycoprotein Trimer. PLoS ONE, 2015, 10, e0122111.	1.1	52
26	Identification of CD4-Binding Site Dependent Plasma Neutralizing Antibodies in an HIV-1 Infected Indian Individual. PLoS ONE, 2015, 10, e0125575.	1.1	13
27	A High Throughput Protein Microarray Approach to Classify HIV Monoclonal Antibodies and Variant Antigens. PLoS ONE, 2015, 10, e0125581.	1.1	14
28	The Broad Neutralizing Antibody Responses after HIV-1 Superinfection Are Not Dominated by Antibodies Directed to Epitopes Common in Single Infection. PLoS Pathogens, 2015, 11, e1004973.	2.1	29
29	Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein. PLoS Pathogens, 2015, 11, e1005035.	2.1	106
30	Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathogens, 2015, 11, e1005110.	2.1	78
31	The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. Advances in Protein Chemistry and Structural Biology, 2015, 99, 15-54.	1.0	20
32	Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.	1.5	125
33	Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Current Opinion in Virology, 2015, 11, 63-69.	2.6	73
34	Reconstitution and characterization of antibody repertoires of HIV-1-infected "elite neutralizersâ€. Antiviral Research, 2015, 118, 1-9.	1.9	12
35	Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Science Translational Medicine, 2015, 7, 319ra206.	5.8	390
36	Immunotherapeutic Approaches for the Control and Eradication of HIV. Immunological Investigations, 2015, 44, 719-730.	1.0	7

#	Article	IF	CITATIONS
37	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	2.9	135
38	HIV-1 Fitness Cost Associated with Escape from the VRC01 Class of CD4 Binding Site Neutralizing Antibodies. Journal of Virology, 2015, 89, 4201-4213.	1.5	121
39	Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes. Journal of Virology, 2015, 89, 2659-2671.	1.5	123
40	Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in Microbiology, 2015, 23, 204-211.	3.5	77
41	Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends in Biochemical Sciences, 2015, 40, 101-107.	3.7	95
42	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	2.1	141
43	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	6.0	191
44	Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein. Science, 2015, 349, 191-195.	6.0	113
45	Glycan-Dependent Neutralizing Antibodies Are Frequently Elicited in Individuals Chronically Infected with HIV-1 Clade B or C. AIDS Research and Human Retroviruses, 2015, 31, 1192-1201.	0.5	5
46	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	5.8	113
47	Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. Journal of Virology, 2015, 89, 7478-7493.	1.5	33
48	Carbohydrate-Based Vaccines. Methods in Molecular Biology, 2015, 1331, v-vi.	0.4	4
49	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	2.1	100
50	Well-Ordered Trimeric HIV-1 Subtype B and C Soluble Spike Mimetics Generated by Negative Selection Display Native-like Properties. PLoS Pathogens, 2015, 11, e1004570.	2.1	106
51	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	1.5	247
52	Recent advance in the structural analysis of HIV-1 envelope protein. Science China Life Sciences, 2015, 58, 420-424.	2.3	1
53	Antibody responses to envelope glycoproteins in HIV-1 infection. Nature Immunology, 2015, 16, 571-576.	7.0	364
54	A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses. AIDS Research and Human Retroviruses, 2015, 31, 1126-1138.	0.5	8

#	Article	IF	CITATIONS
55	Glycan Microheterogeneity at the PGT135 Antibody Recognition Site on HIV-1 gp120 Reveals a Molecular Mechanism for Neutralization Resistance. Journal of Virology, 2015, 89, 6952-6959.	1.5	35
56	Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. Journal of Virology, 2015, 89, 6725-6745.	1.5	24
57	Designing synthetic vaccines for HIV. Expert Review of Vaccines, 2015, 14, 815-831.	2.0	28
58	Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature, 2015, 522, 487-491.	13.7	665
59	The Cellular and Molecular Biology of HIV-1 Broadly Neutralizing Antibodies. , 2015, , 441-461.		0
60	The HIV-1 gp120 CD4-Bound Conformation Is Preferentially Targeted by Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies in Sera from HIV-1-Infected Individuals. Journal of Virology, 2015, 89, 545-551.	1.5	173
61	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	5.8	87
62	Dose–response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nature Communications, 2015, 6, 8443.	5.8	44
63	Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody. Journal of Immunology, 2015, 195, 3759-3768.	0.4	4
64	Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope. Journal of Virology, 2015, 89, 8932-8944.	1.5	88
65	Determination of N-linked Glycosylation in Viral Glycoproteins by Negative Ion Mass Spectrometry and Ion Mobility. Methods in Molecular Biology, 2015, 1331, 93-121.	0.4	11
66	Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. MBio, 2015, 6, .	1.8	25
67	A New Approach to Produce HIV-1 Envelope Trimers. Journal of Biological Chemistry, 2015, 290, 19780-19795.	1.6	22
68	Cleavage-Independent HIV-1 Env Trimers Engineered as Soluble Native Spike Mimetics for Vaccine Design. Cell Reports, 2015, 11, 539-550.	2.9	211
69	Identification of Common Features in Prototype Broadly Neutralizing Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design. Immunity, 2015, 43, 959-973.	6.6	177
70	Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology, 2015, 486, 187-197.	1.1	6
71	Exploring the Potential of Monoclonal Antibody Therapeutics for HIV-1 Eradication. AIDS Research and Human Retroviruses, 2015, 31, 13-24.	0.5	46
72	Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. International Journal of Molecular Sciences, 2016, 17, 1901.	1.8	14

#	Article	IF	CITATIONS
73	Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines, 2016, 4, 2.	2.1	17
74	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	2.1	150
75	Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathogens, 2016, 12, e1005815.	2.1	104
76	Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth. PLoS Pathogens, 2016, 12, e1005989.	2.1	36
77	VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties. Molecular Biology, 2016, 50, 353-361.	0.4	3
78	Passive immunization with <scp>HIV</scp> â€lâ€neutralizing antibodies: is it effective and safe?. Oral Diseases, 2016, 22, 460-462.	1.5	0
79	Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nature Communications, 2016, 7, 12040.	5.8	134
80	Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nature Communications, 2016, 7, 12041.	5.8	146
81	HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. Journal of Virology, 2016, 90, 11132-11144.	1.5	43
82	Clonify: unseeded antibody lineage assignment from next-generation sequencing data. Scientific Reports, 2016, 6, 23901.	1.6	48
83	Probability of N332 glycan occupancy on HIV-1 gp120 modulates sensitivity to broadly neutralizing antibodies. Aids, 2016, 30, 2179-2184.	1.0	3
84	Immunological strategies to target HIV persistence. Current Opinion in HIV and AIDS, 2016, 11, 402-408.	1.5	8
85	Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition. Biochemistry, 2016, 55, 2197-2213.	1.2	23
86	Antibody recognition of HIV and dengue glycoproteins. Glycobiology, 2016, 26, 813-819.	1.3	4
87	Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch. Immunity, 2016, 44, 1215-1226.	6.6	138
88	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	1.5	62
89	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	6.0	310
90	Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. Annual Review of Immunology, 2016, 34, 635-659.	9.5	500

#	Article	IF	CITATIONS
91	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	13.5	230
92	High-Density Array of Well-Ordered HIV-1 Spikes on Synthetic Liposomal Nanoparticles Efficiently Activate B Cells. Cell Reports, 2016, 15, 1986-1999.	2.9	127
93	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	6.6	335
94	Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. Journal of Virology, 2016, 90, 9224-9236.	1.5	25
95	Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization. Journal of Virology, 2016, 90, 8644-8660.	1.5	13
96	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	2.9	216
97	Neutralization resistant HIV-1 primary isolates from antiretroviral naÃ ⁻ ve chronically infected children in India. Virology, 2016, 499, 105-113.	1.1	7
98	A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans. Immunity, 2016, 45, 31-45.	6.6	129
99	Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiology and Molecular Biology Reviews, 2016, 80, 989-1010.	2.9	93
100	Membrane bound modified form of clade B Env, JRCSF is suitable for immunogen design as it is efficiently cleaved and displays all the broadly neutralizing epitopes including V2 and C2 domain-dependent conformational epitopes. Retrovirology, 2016, 13, 81.	0.9	10
101	Broadly Neutralizing Antibodyâ€Guided Carbohydrateâ€Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem, 2016, 11, 357-362.	1.6	11
102	Antigenic landscape of the HIV-1 envelope and new immunological concepts defined by HIV-1 broadly neutralizing antibodies. Current Opinion in Immunology, 2016, 42, 56-64.	2.4	30
103	Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chemical Biology, 2016, 11, 1773-1783.	1.6	110
104	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. Journal of Virology, 2016, 90, 813-828.	1.5	34
105	Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell, 2016, 165, 1621-1631.	13.5	157
106	HIV-1 Neutralizing Antibodies with Limited Hypermutation from an Infant. Cell, 2016, 166, 77-87.	13.5	143
107	Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology, 2016, 13, 8.	0.9	40
108	V1/V2 Neutralizing Epitope is Conserved in Divergent Non-M Groups of HIV-1. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 237-245.	0.9	7

#	Article	IF	CITATIONS
109	A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies. Journal of Virology, 2016, 90, 2127-2134.	1.5	69
110	Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science, 2016, 351, 1043-1048.	6.0	402
111	Conformational Epitope-Specific Broadly Neutralizing Plasma Antibodies Obtained from an HIV-1 Clade C-Infected Elite Neutralizer Mediate Autologous Virus Escape through Mutations in the V1 Loop. Journal of Virology, 2016, 90, 3446-3457.	1.5	29
112	HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. Trends in Immunology, 2016, 37, 221-232.	2.9	96
113	Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology, 2016, 490, 17-26.	1.1	11
114	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	2.9	250
115	Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. Nature Chemistry, 2016, 8, 338-346.	6.6	97
116	Nativeâ€like Env trimers as a platform for <scp>HIV</scp> â€1 vaccine design. Immunological Reviews, 2017, 275, 161-182.	2.8	221
117	Identification and specificity of broadly neutralizing antibodies against <scp>HIV</scp> . Immunological Reviews, 2017, 275, 11-20.	2.8	198
118	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	2.8	131
119	Evolution of B cell analysis and Env trimer redesign. Immunological Reviews, 2017, 275, 183-202.	2.8	31
120	Antibodyomics: bioinformatics technologies for understanding Bâ€cell immunity to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 108-128.	2.8	32
121	Survivors Remorse: antibodyâ€mediated protection against <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 271-284.	2.8	25
122	Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Scientific Reports, 2017, 7, 40800.	1.6	12
123	Lipophilicity is a key factor to increase the antiviral activity of HIV neutralizing antibodies. Colloids and Surfaces B: Biointerfaces, 2017, 152, 311-316.	2.5	7
124	Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. Journal of Virology, 2017, 91, .	1.5	73
125	Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. MBio, 2017, 8, .	1.8	28
126	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	1.5	81

#	Article	IF	CITATIONS
127	Stabilization of a soluble, native-like trimeric form of an efficiently cleaved Indian HIV-1 clade C envelope glycoprotein. Journal of Biological Chemistry, 2017, 292, 8236-8243.	1.6	24
128	Dense Array of Spikes on HIV-1 Virion Particles. Journal of Virology, 2017, 91, .	1.5	53
129	Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. Journal of Biological Chemistry, 2017, 292, 10197-10219.	1.6	29
130	Comprehensive Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host and Microbe, 2017, 21, 777-787.e4.	5.1	88
131	Unconventional Interrogation Yields HIV's Escape Plan. Cell Host and Microbe, 2017, 21, 659-660.	5.1	1
132	Structural principles controlling HIV envelope glycosylation. Current Opinion in Structural Biology, 2017, 44, 125-133.	2.6	99
133	How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Current Opinion in HIV and AIDS, 2017, 12, 229-240.	1.5	66
134	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	5.8	176
135	Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. Journal of Virology, 2017, 91, .	1.5	19
136	Glycans Function as Anchors for Antibodies and Help Drive HIV Broadly Neutralizing Antibody Development. Immunity, 2017, 47, 524-537.e3.	6.6	48
137	Serum glycan-binding IgG antibodies in HIV-1 infection and during the development of broadly neutralizing responses. Aids, 2017, 31, 2199-2209.	1.0	13
138	Clycosylation profiling to evaluate glycoprotein immunogens against HIV-1. Expert Review of Proteomics, 2017, 14, 881-890.	1.3	24
139	Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies. Virology, 2017, 501, 12-24.	1.1	9
140	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	5.9	144
141	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. Journal of Virology, 2017, 91, .	1.5	77
142	Natural infection as a blueprint for rational HIV vaccine design. Human Vaccines and Immunotherapeutics, 2017, 13, 229-236.	1.4	3
143	Neutralizing Monoclonal Antibodies to Fight HIV-1: On the Threshold of Success. Frontiers in Immunology, 2017, 7, 661.	2.2	11
144	Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Frontiers in Immunology, 2017, 8, 1025.	2.2	21

#	Article	IF	CITATIONS
145	Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathogens, 2017, 13, e1006148.	2.1	51
146	Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell–cell fusion. Journal of Biological Chemistry, 2018, 293, 6099-6120.	1.6	12
147	Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. Journal of Virology, 2018, 92, .	1.5	40
148	Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11. Journal of Virology, 2018, 92, .	1.5	16
149	Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency. Journal of Bioinformatics and Computational Biology, 2018, 16, 1840007.	0.3	5
150	Passive immunotherapy of viral infections: 'super-antibodies' enter the fray. Nature Reviews Immunology, 2018, 18, 297-308.	10.6	220
151	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	1.8	23
152	Global site-specific analysis of glycoprotein N-glycan processing. Nature Protocols, 2018, 13, 1196-1212.	5.5	71
153	Structure and Immune Recognition of the HIV Glycan Shield. Annual Review of Biophysics, 2018, 47, 499-523.	4.5	115
154	Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Research, 2018, 243, 75-82.	1.1	12
155	New-Generation High-Potency and Designer Antibodies: Role in HIV-1 Treatment. Annual Review of Medicine, 2018, 69, 409-419.	5.0	28
156	Impact of HIV-1 Envelope Conformation on ADCC Responses. Trends in Microbiology, 2018, 26, 253-265.	3.5	64
157	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	1.6	40
158	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	4.7	75
159	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	2.1	36
160	Structural Rearrangements Maintain the Clycan Shield of an HIV-1 Envelope Trimer After the Loss of a Clycan. Scientific Reports, 2018, 8, 15031.	1.6	17
161	Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nature Communications, 2018, 9, 5288.	5.8	56
162	Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV,the, 2018, 5, e723-e731.	2.1	10

	CHATOWR	LFORT	
#	Article	IF	Citations
163	Recent progress in broadly neutralizing antibodies to HIV. Nature Immunology, 2018, 19, 1179-1188.	7.0	331
164	Identification of a novel broadly HIV-1-neutralizing antibody from a CRF01_AE-infected Chinese donor. Emerging Microbes and Infections, 2018, 7, 1-12.	3.0	7
165	The expanding array of HIV broadly neutralizing antibodies. Retrovirology, 2018, 15, 70.	0.9	38
166	Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nature Communications, 2018, 9, 3693.	5.8	124
167	Harnessing post-translational modifications for next-generation HIV immunogens. Biochemical Society Transactions, 2018, 46, 691-698.	1.6	5
168	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	2.1	28
169	Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity, 2018, 49, 288-300.e8.	6.6	175
170	Glycoengineering HIV-1 Env creates â€~supercharged' and â€~hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathogens, 2018, 14, e1007024.	2.1	22
172	Targeting Glycans on Human Pathogens for Vaccine Design. Current Topics in Microbiology and Immunology, 2018, 428, 129-163.	0.7	5
173	Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathogens, 2018, 14, e1007159.	2.1	46
174	SOSIP Changes Affect Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Conformation and CD4 Engagement. Journal of Virology, 2018, 92, .	1.5	24
175	HIV Broadly Neutralizing Antibodies: VRC01 and Beyond. Advances in Experimental Medicine and Biology, 2018, 1075, 53-72.	0.8	10
176	The Glycoscience of Immunity. Trends in Immunology, 2018, 39, 523-535.	2.9	59
177	Conformation-Dependent Interactions Between HIV-1 Envelope Glycoproteins and Broadly Neutralizing Antibodies. AIDS Research and Human Retroviruses, 2018, 34, 794-803.	0.5	19
178	HIV-1 gp41 Residues Modulate CD4-Induced Conformational Changes in the Envelope Glycoprotein and Evolution of a Relaxed Conformation of gp120. Journal of Virology, 2018, 92, .	1.5	18
179	Production of complex viral glycoproteins in plants as vaccine immunogens. Plant Biotechnology Journal, 2018, 16, 1531-1545.	4.1	65
180	Human Immunodeficiency Virus Vaccines. , 2018, , 400-429.e25.		0
181	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	13.5	106

#	Article	IF	CITATIONS
182	Near full genome characterization of HIVâ€1 unique recombinant forms in Cameroon reveals dominant CRF02_AG and F2 recombination patterns. Journal of the International AIDS Society, 2019, 22, e25362.	1.2	7
183	The Glycosylation Site of Myelin Oligodendrocyte Glycoprotein Affects Autoantibody Recognition in a Large Proportion of Patients. Frontiers in Immunology, 2019, 10, 1189.	2.2	15
184	Antibody responses to the HIV-1 envelope high mannose patch. Advances in Immunology, 2019, 143, 11-73.	1.1	22
185	Harnessing Avidity: Quantifying the Entropic and Energetic Effects of Linker Length and Rigidity for Multivalent Binding of Antibodies to HIV-1. Cell Systems, 2019, 9, 466-474.e7.	2.9	20
186	Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host and Microbe, 2019, 26, 623-637.e8.	5.1	56
187	Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses, 2019, 11, 705.	1.5	30
188	Peptide-Based Vaccination for Antibody Responses Against HIV. Vaccines, 2019, 7, 105.	2.1	17
189	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	2.1	56
190	An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity, 2019, 50, 520-532.e3.	6.6	81
191	Exploitation of glycosylation in enveloped virus pathobiology. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1480-1497.	1.1	383
192	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
193	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	5.1	42
194	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	2.9	35
195	Protein and Glycan Mimicry in HIV Vaccine Design. Journal of Molecular Biology, 2019, 431, 2223-2247.	2.0	91
196	Antibody-Induced Internalization of HIV-1 Env Proteins Limits Surface Expression of the Closed Conformation of Env. Journal of Virology, 2019, 93, .	1.5	32
197	Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. Molecular Therapy - Nucleic Acids, 2019, 15, 36-47.	2.3	79
198	Broadly Neutralizing Antibodies against HIV: Back to Blood. Trends in Molecular Medicine, 2019, 25, 228-240.	3.5	19
199	Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nature Communications, 2019, 10, 763.	5.8	30

#	Article	IF	CITATIONS
200	Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies. Nature Communications, 2019, 10, 654.	5.8	34
201	Glycan Microarrays as Chemical Tools for Identifying Glycan Recognition by Immune Proteins. Frontiers in Chemistry, 2019, 7, 833.	1.8	59
202	Neutralizing antibodies for HIV-1 prevention. Current Opinion in HIV and AIDS, 2019, 14, 318-324.	1.5	34
203	An HIV-1 Broadly Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes the Contemporaneous and Autologous Evolving Viruses. Journal of Virology, 2019, 93, .	1.5	42
204	Translating <i>Nâ€</i> Glycan Analytical Applications into Clinical Strategies for Ovarian Cancer. Proteomics - Clinical Applications, 2019, 13, e1800099.	0.8	14
205	Functional and Protective Role of Neutralizing Antibodies (NAbs) Against Viral Infections. , 2019, , 83-93.		5
206	Systematic Interaction Analysis of Antiâ€Human Immunodeficiency Virus Typeâ€1 Neutralizing Antibodies with High Mannose Glycans Using Fragment Molecular Orbital and Molecular Dynamics Methods. Journal of Computational Chemistry, 2020, 41, 31-42.	1.5	3
207	Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Frontiers of Medicine, 2020, 14, 30-42.	1.5	24
208	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
209	Antibody Neutralization of HIV-1 Crossing the Blood-Brain Barrier. MBio, 2020, 11, .	1.8	9
210	Insights into Antibody-Carbohydrate Recognition from Neoglycoprotein Microarrays. ACS Symposium Series, 2020, , 23-37.	0.5	2
211	DNA adjuvant Amiloride conjunct long immunization interval promote higher antibody responses to HIV-1 gp41 and gp140 immunogens. Vaccine, 2020, 38, 7445-7454.	1.7	0
212	Broadly Neutralizing Antibodies to Highly Antigenically Variable Viruses as Templates for Vaccine Design. Current Topics in Microbiology and Immunology, 2020, 428, 31-87.	0.7	0
213	Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. IScience, 2020, 23, 101711.	1.9	4
214	Automated Design by Structure-Based Stabilization and Consensus Repair to Achieve Prefusion-Closed Envelope Trimers in a Wide Variety of HIV Strains. Cell Reports, 2020, 33, 108432.	2.9	32
215	Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations. Pharmaceutics, 2020, 12, 979.	2.0	12
216	Vaccination Strategies Against Highly Variable Pathogens. Current Topics in Microbiology and Immunology, 2020, , .	0.7	1
217	Probing the Structure of the HIV-1 Envelope Trimer Using Aspartate Scanning Mutagenesis. Journal of Virology, 2020, 94, .	1.5	4

#	Article	IF	CITATIONS
218	Primary HIV-1 and Infectious Molecular Clones Are Differentially Susceptible to Broadly Neutralizing Antibodies. Vaccines, 2020, 8, 782.	2.1	0
219	Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. IScience, 2020, 23, 101836.	1.9	11
220	Predicting Antibody Neutralization Efficacy in Hypermutated Epitopes Using Monte Carlo Simulations. Polymers, 2020, 12, 2392.	2.0	0
221	When two are better than one: Modeling the mechanisms of antibody mixtures. PLoS Computational Biology, 2020, 16, e1007830.	1.5	11
222	Innovations in structure-based antigen design and immune monitoring for next generation vaccines. Current Opinion in Immunology, 2020, 65, 50-56.	2.4	43
223	A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection. PLoS Pathogens, 2020, 16, e1008171.	2.1	4
224	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	1.6	46
225	Development of Antibodies with Broad Neutralization Specificities against HIV-1 after Long Term SHIV Infection in Macaques. Viruses, 2020, 12, 163.	1.5	6
226	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	1.5	57
227	Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opinion on Therapeutic Targets, 2020, 24, 499-509.	1.5	10
228	Loss of Nef-mediated CD3 down-regulation in the HIV-1 lineage increases viral infectivity and spread. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7382-7391.	3.3	8
229	Promise and Progress of an HIV-1 Cure by Adeno-Associated Virus Vector Delivery of Anti-HIV-1 Biologics. Frontiers in Cellular and Infection Microbiology, 2020, 10, 176.	1.8	22
230	VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host and Microbe, 2020, 27, 963-975.e5.	5.1	23
231	Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. Journal of Virology, 2020, 94,	1.5	21
232	Design and characterization of a germ-line targeting soluble, native-like, trimeric HIV-1 Env lacking key glycans from the V1V2-loop. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129733.	1.1	2
233	Highly Mutated Antibodies Capable of Neutralizing N276-Glycan Deficient HIV after a Single Immunization with an Env Trimer. SSRN Electronic Journal, 0, , .	0.4	0
234	HIV vaccinology: 2021 update. Seminars in Immunology, 2021, 51, 101470.	2.7	31
235	A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs, 2021, 13, 1946918.	2.6	11

#	Article	IF	CITATIONS
236	Glycan Cluster Shielding and Antibody Epitopes on Lassa Virus Envelop Protein. Journal of Physical Chemistry B, 2021, 125, 2089-2097.	1.2	6
238	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	2.9	12
239	Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Frontiers in Molecular Biosciences, 2021, 8, 629873.	1.6	71
240	Glycans in Immunologic Health and Disease. Annual Review of Immunology, 2021, 39, 511-536.	9.5	24
241	HIV envelope tail truncation confers resistance to SERINC5 restriction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
242	Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Reports, 2021, 35, 109084.	2.9	7
243	Clycans in Virus-Host Interactions: A Structural Perspective. Frontiers in Molecular Biosciences, 2021, 8, 666756.	1.6	19
244	A diverse collection of B cells responded to HIV infection in infant BG505. Cell Reports Medicine, 2021, 2, 100314.	3.3	6
245	Broadly neutralizing antibody responses in the longitudinal primary HIV-1 infection SPARTAC cohort. Aids, 2021, Publish Ahead of Print, 2073-2084.	1.0	0
246	Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Frontiers in Immunology, 2021, 12, 697683.	2.2	2
247	Differential expression of HIV envelope epitopes on the surface of HIV-Infected macrophages and CD4+ T cells. Antiviral Research, 2021, 191, 105085.	1.9	3
248	Immunogenicity Evaluation of N-Glycans Recognized by HIV Broadly Neutralizing Antibodies. ACS Chemical Biology, 2021, 16, 2016-2025.	1.6	2
249	Antibodies from Rabbits Immunized with HIV-1 Clade B SOSIP Trimers Can Neutralize Multiple Clade B Viruses by Destabilizing the Envelope Glycoprotein. Journal of Virology, 2021, 95, e0009421.	1.5	5
250	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	2.1	18
252	Quantitative analyses reveal distinct sensitivities of the capture of HIV-1 primary viruses and pseudoviruses to broadly neutralizing antibodies. Virology, 2017, 508, 188-198.	1.1	7
253	Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. Chemical Biology, 2017, , 300-357.	0.1	4
257	Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight, 2018, 3, .	2.3	16
258	Glycan-dependent HIV-specific neutralizing antibodies bind to cells of uninfected individuals. Journal of Clinical Investigation, 2019, 129, 4832-4837.	3.9	11

#	Article	IF	CITATIONS
259	Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. Journal of Clinical Investigation, 2020, 130, 5157-5170.	3.9	22
260	The role of N -glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents. Retrovirology, 2014, 11, 107.	0.9	5
261	An Efficiently Cleaved HIV-1 Clade C Env Selectively Binds to Neutralizing Antibodies. PLoS ONE, 2015, 10, e0122443.	1.1	16
262	Characterization of a Large Panel of Rabbit Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing Antibodies against the V3 Loop. PLoS ONE, 2015, 10, e0128823.	1.1	9
263	Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS ONE, 2017, 12, e0170672.	1.1	10
264	Differentiating founder and chronic HIV envelope sequences. PLoS ONE, 2017, 12, e0171572.	1.1	3
265	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS ONE, 2017, 12, e0181886.	1.1	16
266	Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE, 2018, 13, e0193773.	1.1	24
267	Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. PLoS Pathogens, 2016, 12, e1005369.	2.1	241
268	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	2.1	33
269	Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV's Envelope Protein on Viral Replication in Cell Culture. PLoS Pathogens, 2016, 12, e1006114.	2.1	96
270	Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response. PLoS Pathogens, 2017, 13, e1006614.	2.1	58
271	Signal peptide of HIV-1 envelope modulates glycosylation impacting exposure of V1V2 and other epitopes. PLoS Pathogens, 2020, 16, e1009185.	2.1	14
272	Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response. Acta Naturae, 2015, 7, 11-21.	1.7	19
273	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	2.8	123
281	In silico Identification of High-Affinity Ligands of the Hiv-1 Gp120 Protein, Potential Peptidomimetics of Neutralizing Antibody N6. Mathematical Biology and Bioinformatics, 2019, 14, 430-449.	0.1	2
286	A site of vulnerability at V3 crown defined by HIV-1 bNAb M4008_N1. Nature Communications, 2021, 12, 6464.	5.8	2
287	Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response. Acta Naturae, 2015, 7, 11-21.	1.7	12

		CITATION REPORT		
# 288	ARTICLE Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Marine Drugs, 2021, 19	,687.	IF 2.2	Citations 8
289	A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spr 2022, 14, 129.	ead. Viruses,	1.5	4
290	Nanodiscâ€Mediated Conversion of Virustatic Antiviral Antibody to Disrupt Virus Envelope in Cells. Small Methods, 2022, 6, e2101516.	1 Infected	4.6	4
291	Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag la Cell, 2022, 185, 641-653.e17.	ittice.	13.5	50
292	Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native l Nature Communications, 2022, 13, 695.	ke trimer.	5.8	2
294	Analysis of B Cell Receptor Repertoires Reveals Key Signatures of the Systemic B Cell Respor SARS-CoV-2 Infection. Journal of Virology, 2022, 96, JVI0160021.	se after	1.5	24
295	Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycan Reports, 2022, 38, 110611.	s. Cell	2.9	3
296	Highly mutated antibodies capable of neutralizing N276 glycan-deficient HIV after a single immunization with an Env trimer. Cell Reports, 2022, 38, 110485.		2.9	4
297	Structure-guided changes at the V2 apex of HIV-1 clade C trimer enhance elicitation of autol neutralizing and broad V1V2-scaffold antibodies. Cell Reports, 2022, 38, 110436.	ogous	2.9	6
298	Glycans in HIV-1 vaccine design – engaging the shield. Trends in Microbiology, 2022, 30, 8	66-881.	3.5	7
300	Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodi Chemical Biology, 2022, 29, 757-773.	es. Cell	2.5	4
301	Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural and 2. Journal of Biological Chemistry, 2022, 298, 101819.	states 1	1.6	9
302	Dichotomy in Neutralizing Antibody Induction to Peptide-Conjugated Vaccine in Squalene En Contrast With Aluminum Hydroxide Formulation. Frontiers in Immunology, 2022, 13, 84857	nulsion '1.	2.2	1
303	Characterization of Glycosylation-Specific Systemic and Mucosal IgA Antibody Responses to Escherichia coli Mucinase YghJ (SslE). Frontiers in Immunology, 2021, 12, 760135.		2.2	2
304	Conserved topology of virus glycoepitopes presents novel targets for repurposing HIV antibo Scientific Reports, 2022, 12, 2594.	ody 2G12.	1.6	3
305	Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells?. Antib 11, 37.	odies, 2022,	1.2	1
306	Conjugation of a Tollâ€Like Receptor Agonist to Glycans of an HIV Nativeâ€Like Envelope Tr Neutralization Epitopes. ChemBioChem, 2022, 23, .	mer Preserves	1.3	4
310	Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens ta HIV V2-apex broadly neutralizing antibody precursors. Immunity, 2022, 55, 2149-2167.e9.	irgeting	6.6	21

#	Article	IF	CITATIONS
311	Adjuvants influence the maturation of VRC01-like antibodies during immunization. IScience, 2022, 25, 105473.	1.9	0
312	HIV Co-Receptor Usage, Broadly Neutralising Antibodies, and Treatment. European Medical Journal Allergy & Immunology, 0, , 117-125.	0.0	0
313	HIV-1 Vpu restricts Fc-mediated effector functions inÂvivo. Cell Reports, 2022, 41, 111624.	2.9	8
314	Small CD4 mimetics sensitize HIV-1-infected macrophages to antibody-dependent cellular cytotoxicity. Cell Reports, 2023, 42, 111983.	2.9	5
317	Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates. Nature Communications, 2023, 14, .	5.8	14
318	Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnology Advances, 2023, 65, 108143.	6.0	4
319	An Overview of Human Anti-HIV-1 Neutralizing Antibodies against Diverse Epitopes of HIV-1. ACS Omega, 2023, 8, 7252-7261.	1.6	8