Preliminary evaluation of mulberry leaf-derived surfaction oil-aqueous system: EOR application

Fuel 117, 749-755 DOI: 10.1016/j.fuel.2013.08.081

Citation Report

#	Article	IF	CITATIONS
1	Nanofluid in Hydrophilic State for EOR Implication Through Carbonate Reservoir. Journal of Dispersion Science and Technology, 2014, 35, 1537-1542.	2.4	24
2	Effect of Natural Leaf-derived Surfactants on Wettability Alteration and Interfacial Tension Reduction in Water-oil System: EOR Application. Journal of the Japan Petroleum Institute, 2015, 58, 245-251.	0.6	20
3	Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications. Mathematical Problems in Engineering, 2015, 2015, 1-9.	1.1	41
4	Heavy-Oil-Recovery Enhancement With Choline Chloride/Ethylene Glycol-Based Deep Eutectic Solvent. SPE Journal, 2015, 20, 79-87.	3.1	25
5	Experimental Investigation of <i>Matricaria chamomilla</i> Extract Effect on Oil-Water Interfacial Tension: Usable for Chemical Enhanced Oil Recovery. Petroleum Science and Technology, 2015, 33, 901-907.	1.5	37
6	Feasibility study of new natural leaf-derived surfactants on the IFT in an oil–aqueous system: experimental investigation. Journal of Petroleum Exploration and Production, 2015, 5, 375-382.	2.4	32
7	Effects of Interfacial Tension, Emulsification, and Surfactant Concentration on Oil Recovery in Surfactant Flooding Process for High Temperature and High Salinity Reservoirs. Energy & Fuels, 2015, 29, 6165-6176.	5.1	132
8	Telaah Surfaktan untuk Proses Enhanced Oil Recovery (EOR) dan Profil Adsorpsi Surfaktan A-Olefin Sulfonates (AOS). Jurnal Kimia Sains Dan Aplikasi, 2016, 19, 27.	0.4	1
9	Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles. Petroleum Science, 2016, 13, 725-736.	4.9	60
10	Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir. European Physical Journal Plus, 2016, 131, 1.	2.6	23
11	Adsorption of a nonionic surfactant onto a silica surface. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1455-1460.	2.3	11
12	A predictive model of chemical flooding for enhanced oil recovery purposes: Application of least square support vector machine. Petroleum, 2016, 2, 177-182.	2.8	35
13	Experimental investigation the effect of nanoparticles on the oil-water relative permeability. European Physical Journal Plus, 2016, 131, 1.	2.6	16
14	Toward mechanistic understanding of natural surfactant flooding in enhanced oil recovery processes: The role of salinity, surfactant concentration and rock type. Journal of Molecular Liquids, 2016, 222, 632-639.	4.9	104
15	The effects of interfacial tension, injection rate, and permeability on oil recovery in dilute surfactant flooding. Petroleum Science and Technology, 2016, 34, 1490-1495.	1.5	6
16	Effect of Degree of Branching on the Mechanism of Hyperbranched Polymer To Establish the Residual Resistance Factor in High-Permeability Porous Media. Energy & Fuels, 2016, 30, 5576-5584.	5.1	23
17	"Peeling Off―Mechanism of Asphaltenes from Solid/Liquid Interface in the Presence of a Highly Charged Amphiphilic Macromolecule. Energy & Fuels, 2016, 30, 9250-9259.	5.1	14
18	Synthesis and Properties of 4,4′â€Di(<i>n</i> â€Tetradecyl) Diphenyl Methane Disulfonate Salt. Journal of Surfactants and Detergents, 2016, 19, 693-699.	2.1	3

#	Article	IF	CITATIONS
19	Novel bio-based surfactant for chemical enhanced oil recovery in montmorillonite rich reservoirs: Adsorption behavior, interaction impact, and oil recovery studies. Chemical Engineering Research and Design, 2016, 109, 18-31.	5.6	34
20	Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery. Applied Surface Science, 2016, 372, 42-51.	6.1	254
21	A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. Journal of Surfactants and Detergents, 2016, 19, 223-236.	2.1	245
22	A RBF model for predicting the pool boiling behavior of nanofluids over a horizontal rod heater. International Journal of Thermal Sciences, 2016, 99, 180-194.	4.9	57
23	Application of Dispersed Particle Gel to Inhibit Surfactant Adsorption on Sand. Journal of Surfactants and Detergents, 2017, 20, 863-871.	2.1	2
24	Improvement of the Selection Method of Surfactants and Their Mixtures for Chemical Enhanced Oil Recovery. Chemical Engineering Communications, 2017, 204, 440-444.	2.6	8
25	Experiment on Measurement of Interfacial Tension for Subsurface Conditions of Light Oil from Thailand. MATEC Web of Conferences, 2017, 95, 18007.	0.2	4
26	Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding. Journal of Molecular Liquids, 2017, 248, 153-162.	4.9	146
27	Chemical Alteration of Wettability of Sandstones with Polysorbate 80. Experimental and Molecular Dynamics Study. Energy & Fuels, 2017, 31, 11918-11924.	5.1	14
28	Experimental Study of Nanofluids Applied in EOR Processes. Journal of Surfactants and Detergents, 2017, 20, 1095-1104.	2.1	33
29	Spotlight on the use of new natural surfactants in colloidal gas aphron (CGA) fluids: A mechanistic study. European Physical Journal Plus, 2017, 132, 1.	2.6	3
30	Adsorption behavior and conformational changes of acrylpimaric acid polyglycol esters at the air-water interface. Polymer, 2017, 132, 235-242.	3.8	6
31	Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy & Fuels, 2017, 31, 7701-7720.	5.1	444
32	A natural dye in water-based drilling fluids: Swelling inhibitive characteristic and side effects. Petroleum, 2017, 3, 355-366.	2.8	35
33	Systematic investigation of the synergistic effects of novel biosurfactant ethoxylated phytosterol-alcohol systems on the interfacial tension of a water/model oil system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 292-296.	4.7	23
34	Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration. Journal of Nanomaterials, 2017, 2017, 1-15.	2.7	111
35	A Zwitterionic Surfactant Bearing Unsaturated Tail for Enhanced Oil Recovery in Highâ€Temperature Highâ€Salinity Reservoirs. Journal of Surfactants and Detergents, 2018, 21, 165-174.	2.1	54
36	Molecular dynamics simulations of aggregation behavior of sodium dodecyl sulfate on SiO ₂ and CaCO ₃ surfaces. Surface and Interface Analysis, 2018, 50, 284-289.	1.8	14

#	Article	IF	Citations
37	Synthesis of ZnO nanoparticles for oil–water interfacial tension reduction in enhanced oil recovery. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	63
38	Analysis of the interaction between polymer and surfactant in aqueous solutions for chemical-enhanced oil recovery. Particulate Science and Technology, 2018, 36, 887-890.	2.1	9
39	Synergistic Mechanism of Hydrolyzed Polyacrylamide Enhanced Branched-Preformed Particle Gel for Enhanced Oil Recovery in Mature Oilfields. Energy & Fuels, 2018, 32, 11093-11104.	5.1	18
40	Enhanced Oil Recovery. Polymers and Polymeric Composites, 2018, , 1-33.	0.6	0
41	Enhanced Oil Recovery Potential of Alkyl Alcohol Polyoxyethylene Ether Sulfonate Surfactants in High-Temperature and High-Salinity Reservoirs. Energy & Fuels, 2018, 32, 12128-12140.	5.1	36
42	Thermodynamic analysis of adsorption of a naturally derived surfactant onto shale sandstone reservoirs. European Physical Journal Plus, 2018, 133, 1.	2.6	16
43	The great improvement of the surfactant interfacial activity via the intermolecular interaction with the additional appropriate salt. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 142-148.	4.7	19
44	Effects of Polyether Surfactants on Dynamic Interfacial Tension of Betaine Solutions against Crude Oil. Journal of Surfactants and Detergents, 2018, 21, 389-398.	2.1	3
45	Chemical Flooding. , 2018, , 187-205.		8
46	A Stochastic Optimization Approach for Profit Maximization Using Alkaline-Surfactant-Polymer Flooding in Complex Reservoirs. , 2018, , .		8
47	Synthesis of an Alkyl Polyoxyethylene Ether Sulfonate Surfactant and Its Application in Surfactant Flooding. Journal of Surfactants and Detergents, 2018, 21, 687-697.	2.1	15
48	Effect of using Zyziphus Spina Christi or Cedr Extract (CE) as a natural surfactant on oil mobility control by foam flooding. Journal of Molecular Liquids, 2019, 293, 111573.	4.9	36
49	Development of a novel biosurfactant for enhanced oil recovery and its influence on the rheological properties of polymer. Fuel, 2019, 257, 116067.	6.4	39
50	Combination of a new natural surfactant and smart water injection for enhanced oil recovery in carbonate rock: Synergic impacts of active ions and natural surfactant concentration. Journal of Petroleum Science and Engineering, 2019, 176, 1-10.	4.2	64
51	Enhanced Oil Recovery. Polymers and Polymeric Composites, 2019, , 1045-1077.	0.6	0
52	Investigating the effect of [C8Py][Cl] and [C18Py][Cl] ionic liquids on the water/oil interfacial tension by considering Taguchi method. Journal of Petroleum Exploration and Production, 2019, 9, 2933-2941.	2.4	47
53	Effect of Interfacial Tension on Internal Waves Based on Boussinesq Equations in Two-Layer Fluids. Journal of Coastal Research, 2019, 35, 445.	0.3	6
54	Application of Natural Surfactants for Enhanced Oil Recovery – Critical Review. IOP Conference Series: Earth and Environmental Science, 0, 221, 012039.	0.3	14

CITATION REPORT

#	Article	IF	CITATIONS
55	Role of Ionic Headgroups on the Thermal, Rheological, and Foaming Properties of Novel Betaine-Based Polyoxyethylene Zwitterionic Surfactants for Enhanced Oil Recovery. Processes, 2019, 7, 908.	2.8	11
56	Phytochemical investigation and evaluation of antimicrobial activities of stem bark of Morella salicifolia. Bulletin of the Chemical Society of Ethiopia, 2019, 33, 293.	1.1	5
57	Saltâ€Induced Constructions of Geminiâ€like Surfactants at the Interface and Their Effects on the Interfacial Tension of a Water/Model Oil System. Journal of Surfactants and Detergents, 2019, 22, 189-196.	2.1	3
58	A biosurfactant for inhibiting clay hydration in aqueous solutions: Applications to petroleum industry. Canadian Journal of Chemical Engineering, 2019, 97, 384-394.	1.7	23
59	Role of chemical additives and their rheological properties in enhanced oil recovery. Reviews in Chemical Engineering, 2020, 36, 789-830.	4.4	17
60	Effects of Tragacanth Gum as a natural polymeric surfactant and soluble ions on chemical smart water injection into oil reservoirs. Journal of Molecular Structure, 2020, 1200, 127078.	3.6	42
61	Systematic investigation of the effects of surfactant/salt intermolecular interaction on the interfacial tension of a water/oil system. Journal of Dispersion Science and Technology, 2020, 41, 1291-1298.	2.4	2
62	Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant. Journal of Petroleum Science and Engineering, 2020, 189, 106901.	4.2	89
63	A Review on Wettability Alteration in Carbonate Rocks: Wettability Modifiers. Energy & Fuels, 2020, 34, 31-54.	5.1	87
64	Effects of graphene oxide/TiO2 nanocomposite, graphene oxide nanosheets and Cedr extraction solution on IFT reduction and ultimate oil recovery from a carbonate rock. Petroleum, 2022, 8, 476-482.	2.8	42
65	Potential Materials for Enhanced Oil Production from Northern oilfield, Thailand. IOP Conference Series: Materials Science and Engineering, 2020, 842, 012015.	0.6	1
66	Characterization and evaluation of a natural surfactant extracted from Soapwort plant for alkali-surfactant-polymer (ASP) slug injection into sandstone oil reservoirs. Journal of Molecular Liquids, 2020, 318, 114369.	4.9	46
67	Experimental investigation of the effect of Vitagnus plant extract on enhanced oil recovery process using interfacial tension (IFT) reduction and wettability alteration mechanisms. Journal of Petroleum Exploration and Production, 2020, 10, 2895-2905.	2.4	32
68	Molecular Interactions between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion. Symmetry, 2020, 12, 1767.	2.2	31
69	An experimental investigation on the use of saponin as a non-ionic surfactant for chemical enhanced oil recovery (EOR) in sandstone and carbonate oil reservoirs: IFT, wettability alteration, and oil recovery. Chemical Engineering Research and Design, 2020, 160, 417-425.	5.6	54
70	Esterification of polioxy-based surfactant utilizing azeotrope technique for chemical flooding application. AIP Conference Proceedings, 2020, , .	0.4	2
71	Partitioning behaviour of novel surfactant mixture for high reservoir temperature and high salinity conditions. Energy, 2020, 198, 117319.	8.8	34
72	Inversion Algorithm of Fiber Bragg Grating for Nanofluid Flooding Monitoring. Sensors, 2020, 20, 1014.	3.8	4

CITATION REPORT

#	Article	IF	CITATIONS
73	Synthesis and properties of zwitterionic gemini surfactants for enhancing oil recovery. Journal of Molecular Liquids, 2020, 311, 113179.	4.9	23
74	Synergic Impacts of Two Non-ionic Natural Surfactants and Low Salinity Water on Interfacial Tension Reduction, Wettability Alteration and Oil Recovery: Experimental Study on Oil Wet Carbonate Core Samples. Natural Resources Research, 2020, 29, 4003-4016.	4.7	19
75	A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. Journal of Molecular Liquids, 2021, 321, 114888.	4.9	72
76	Interfacial, Emulsifying, and Rheological Properties of an Additive of a Natural Surfactant and Polymer and Its Performance Assessment for Application in Enhanced Oil Recovery. Energy & Fuels, 2021, 35, 4823-4834.	5.1	17
77	Synthesis of Sodium Ligno Sulfonate (SLS) Surfactant from Black Liquor Waste and The Potential Test for EOR in Ledok Field Cepu. IOP Conference Series: Materials Science and Engineering, 2021, 1053, 012075.	0.6	0
78	Parametric Review of Surfactant Flooding at the Tertiary Stage to Achieve the Accuracy for Proposing the Screening Criteria. Recent Innovations in Chemical Engineering, 2021, 14, 104-119.	0.4	0
79	Investigating the impact of a walnut-extracted surfactant on oil-water interfacial tension reduction and wettability alteration in carbonate rocks. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	2.3	2
80	Chemical computational approaches for optimization of effective surfactants in enhanced oil recovery. ChemistrySelect, 2023, 8, 2143-2172.	1.5	3
81	Double-Chain Single-Head modification of extracted saponin from Anabasis Setifera plant and its effects on chemical enhanced oil recovery process by surfactant-alkali slug injection into carbonate oil reservoirs. Journal of Petroleum Science and Engineering, 2021, 201, 108438.	4.2	27
82	Adsorption of Saponin Natural Surfactant on Carbonate Rock and Comparison to Synthetic Surfactants: An Enhanced Oil Recovery Prospective. Energy & Fuels, 2021, 35, 11193-11202.	5.1	27
83	A Review on Biosurfactant Applications in the Petroleum Industry. International Journal of Chemical Engineering, 2021, 2021, 1-10.	2.4	12
84	On surface interactions of environmental friendly surfactant/oil/rock/low salinity system: IFT, wettability, and foamability. Journal of Petroleum Science and Engineering, 2022, 208, 109370.	4.2	9
85	Components of Paraffin-Base and Naphthenic-Base Crude Oil and Their Effects on Interfacial Performance. Open Journal of Yangtze Oil and Gas, 2019, 04, 270-284.	0.4	1
86	RECUPERAÇÃO AVANÇADA DE PETRÓLEO: AVALIAÇÃO DE UM AGENTE QUELANTE EM SOLUÇÕES MICEL DE TENSOATIVO ANIÔNICO NA PRESENÇA DE SAIS. , 0, , .	ARES	0
87	A comprehensive review on the use of eco-friendly surfactants in oil industry. , 2022, , 357-399.		4
88	A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems. Energies, 2021, 14, 8310.	3.1	4
89	Wettability Alteration, Interfacial Tension (Ift) Reduction and Enhanced Oil Recovery (Eor) from Carbonate Reservoirs by Natural Surfactant (Tribulus Terrestris Extract) - Tio2 Nanoparticles Flooding. SSRN Electronic Journal, 0, , .	0.4	1
90	Enhanced Oil Recovery from the Methyl Ester Sulfonate Derived from Flaxseed Oil: Interfacial, Adsorption and Rock Wetting Characteristics. ChemistrySelect, 2022, 7, .	1.5	12

CITATION REPORT

#	Article	IF	CITATIONS
91	A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery. Journal of Molecular Liquids, 2022, 353, 118791.	4.9	42
92	Experimental investigation of the effect of a quinoa-derived saponin-based green natural surfactant on enhanced oil recovery. Fuel, 2022, 318, 123652.	6.4	35
93	Thermodynamic study of interfacial tension between oil and aqueous phases composed of ionic liquids and brine. Journal of the Indian Chemical Society, 2022, 99, 100508.	2.8	2
94	Application of a novel natural surfactant extracted from Avena Sativa for enhanced oil recovery during low salinity water flooding: Synergism of natural surfactant with different salts. Journal of Molecular Liquids, 2022, 362, 119693.	4.9	20
95	Evaluation the role of natural surfactants from Tanacetum and Tarragon plants in EOR applications. Journal of Molecular Liquids, 2022, 361, 119576.	4.9	14
96	Synergistic Efficiency of Zinc Oxide/Montmorillonite Nanocomposites and a New Derived Saponin in Liquid/Liquid/Solid Interface-Included Systems: Application in Nanotechnology-Assisted Enhanced Oil Recovery. ACS Omega, 2022, 7, 24951-24972.	3.5	15
97	The self-nitrogen-doped carbon quantum dots derived from Morus alba L. leaves for the rapid determination of tetracycline. Industrial Crops and Products, 2022, 188, 115705.	5.2	8
98	CO2-responsive surfactant for oil-in-water emulsification and demulsification from molecular perspectives. Fuel, 2023, 331, 125773.	6.4	7
99	A Critical Overview of ASP and Future Perspectives of NASP in EOR of Hydrocarbon Reservoirs: Potential Application, Prospects, Challenges and Governing Mechanisms. Nanomaterials, 2022, 12, 4007.	4.1	5
100	Red beet plant as a novel source of natural surfactant combined with â€~Smart Water' for EOR purposes in carbonate reservoirs. Journal of Molecular Liquids, 2023, 370, 121051.	4.9	15
101	Identification of novel applications of chemical compounds to change the wettability of reservoir rock: A critical review. Journal of Molecular Liquids, 2023, 371, 121059.	4.9	10
102	Citric acid-based N-alkyl amides for enhanced oil recovery application in the carbonate reservoir: Sustainable laboratory-scale synthesis and recovery performance. Fuel, 2023, 338, 127362.	6.4	2
103	Thermodynamic Modeling of Saponin Adsorption Behavior on Sandstone Rocks: An Experimental Study. Arabian Journal for Science and Engineering, 2023, 48, 9461-9476.	3.0	2
104	Efficiency of the Green Surfactant Derived from Avena sativa Plant in the Presence of Different Salts for EOR Purposes. , 2023, 2023, 1-11.		6
105	The effects of a novel Bio-based surfactant derived from the Acacia concinna plant on chemical enhanced oil recovery in the presence of various salts and a synthesized HSPAM polymer. Journal of Molecular Liquids, 2023, 386, 122474.	4.9	3
106	Synergism of a Novel Bio-Based Surfactant Derived from Pisum sativum and Formation Brine for Chemical Enhanced Oil Recovery in Carbonate Oil Reservoirs. Processes, 2023, 11, 1361.	2.8	5
107	Review of the Application of Natural Surfactants in Enhanced Oil Recovery: State-of-the-Art and Perspectives. Energy & Fuels, 2023, 37, 10061-10086.	5.1	15
108	Investigation of the Passiflora Plant as a Promising Natural Surfactant for Enhanced Oil Recovery: Insights into Crude Oil–Water–Rock Interaction. Energy & Fuels, 2023, 37, 11881-11892.	5.1	5

#	Article	IF	CITATIONS
109	A micromodel investigation on the flooding of glycolipid biosurfactants for enhanced oil recovery. , 2023, 230, 212219.		1
110	Characterization and Evaluation of the Rheological Behavior of a Natural Surfactant (<i>Acacia) Tj ETQq1 1 0.784</i>	314 rgBT ,	Overlock I
111	Ecofriendly Natural Surfactants in the Oil and Gas Industry: A Comprehensive Review. ACS Omega, 2023, 8, 41004-41021.	3.5	0
112	Application of a new anionic surfactant based on sesame oil by Alkali-Surfactant (AS) injection in chemical enhanced oil Recovery: Characterization, mechanisms and performance. Journal of Molecular Liquids, 2024, 395, 123800.	4.9	0
113	Experimental and numerical modeling of a novel surfactant flooding: Core scale to reservoir models. Chemical Engineering Research and Design, 2024, 204, 32-52.	5.6	0