Recovery of Electrical Energy in Microbial Fuel Cells

Environmental Science and Technology Letters 1, 137-141 DOI: 10.1021/ez4000324

Citation Report

#	Article	IF	CITATIONS
1	Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain <i>Bacillus subtilis moh3</i> . Environmental Technology (United Kingdom), 2014, 35, 2194-2203.	1.2	31
2	Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. Bioresource Technology, 2014, 164, 270-275.	4.8	40
3	Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy and Environmental Science, 2014, 7, 911-924.	15.6	746
4	A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-Organic Strength Solutions. Environmental Science & Technology, 2014, 48, 12833-12841.	4.6	183
5	A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment. Bioresource Technology, 2014, 167, 310-315.	4.8	79
6	Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresource Technology, 2014, 171, 461-468.	4.8	145
7	Evaluation of normalized energy recovery (NER) in microbial fuel cells affected by reactor dimensions and substrates. Bioresource Technology, 2014, 157, 77-83.	4.8	63
8	A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system. Bioresource Technology, 2014, 166, 630-634.	4.8	90
10	Operating a two-stage microbial fuel cell–constructed wetland for fuller wastewater treatment and more efficient electricity generation. Water Science and Technology, 2015, 72, 421-428.	1.2	20
11	Multitask Lasso Model for Investigating Multimodule Design Factors, Operational Factors, and Covariates in Tubular Microbial Fuel Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 3231-3238.	3.2	14
12	Regeneration of spent NOx scrubber liquor using a dual-chamber microbial fuel cell. Journal of Chemical Technology and Biotechnology, 2015, 90, 1692-1698.	1.6	5
13	A novel approach to recycle bacterial culture waste for fermentation reuse via a microbial fuel cell-membrane bioreactor system. Bioprocess and Biosystems Engineering, 2015, 38, 1795-1802.	1.7	9
14	Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 2015, 266, 74-81.	6.6	208
15	Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination. Desalination, 2015, 360, 28-34.	4.0	102
16	Energy Balance Affected by Electrolyte Recirculation and Operating Modes in Microbial Fuel Cells. Water Environment Research, 2015, 87, 252-257.	1.3	14
17	Assessment of Microbial Fuel Cell Configurations and Power Densities. Environmental Science and Technology Letters, 2015, 2, 206-214.	3.9	423
18	Separators used in microbial electrochemical technologies: Current status and future prospects. Bioresource Technology, 2015, 195, 170-179.	4.8	124
19	Power generation response to readily biodegradable COD in single-chamber microbial fuel cells. Bioresource Technology, 2015, 186, 136-140.	4.8	22

#	Article	IF	CITATIONS
20	Sediment microbial fuel cells for wastewater treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2015, 1, 279-284.	1.2	49
21	Wastewater treatment and microbial communities in an integrated photo-bioelectrochemical system affected by different wastewater algal inocula. Algal Research, 2015, 12, 446-454.	2.4	32
22	A review of a recently emerged technology: Constructed wetland – Microbial fuel cells. Water Research, 2015, 85, 38-45.	5.3	285
23	Environmental Mineralogy: New Challenges, New Materials. Elements, 2015, 11, 247-252.	0.5	10
24	Evaluation of different cell-immobilization strategies for simultaneous distillery wastewater treatment and electricity generation in microbial fuel cells. Fuel, 2015, 144, 1-8.	3.4	41
25	COD removal characteristics in air-cathode microbial fuel cells. Bioresource Technology, 2015, 176, 23-31.	4.8	209
26	Improvement of microbial fuel cell cathodes using cost-effective polyvinylidene fluoride. Journal of Power Sources, 2015, 273, 566-573.	4.0	17
27	A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects. Energies, 2016, 9, 111.	1.6	66
28	Sacrificing power for more cost-effective treatment: A techno-economic approach for engineering microbial fuel cells. Chemosphere, 2016, 161, 10-18.	4.2	38
29	Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance. Chemical Engineering Journal, 2016, 291, 317-324.	6.6	27
30	Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chemical Society Reviews, 2016, 45, 2847-2870.	18.7	186
31	Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production. Water Research, 2016, 98, 183-189.	5.3	78
32	Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Materials Horizons, 2016, 3, 382-401.	6.4	322
33	Unique catalytic properties of a butoxy chain-containing ruthenated porphyrin towards oxidation of uric acid and reduction of dioxygen for visible light-enhanced fuel cells. Electrochimica Acta, 2016, 212, 113-121.	2.6	5
34	Enhanced boron removal by electricity generation in a microbial fuel cell. Desalination, 2016, 398, 165-170.	4.0	11
35	Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output. Environmental Science and Pollution Research, 2016, 23, 20368-20377.	2.7	16
36	Coupling microbial fuel cells with a membrane photobioreactor for wastewater treatment and bioenergy production. Bioprocess and Biosystems Engineering, 2016, 39, 1703-1710.	1.7	19
37	Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge. ACS Sustainable Chemistry and Engineering, 2016, 4, 4913-4921.	3.2	106

#	Article	IF	CITATIONS
38	Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber. Scientific Reports, 2016, 6, 26514.	1.6	43
39	New insights in Microbial Fuel Cells: novel solid phase anolyte. Scientific Reports, 2016, 6, 29091.	1.6	26
40	Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering. Scientific Reports, 2016, 6, 18862.	1.6	18
41	Urine and aluminum as a source for hydrogen and clean energy. International Journal of Hydrogen Energy, 2016, 41, 11909-11913.	3.8	26
42	An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresource Technology, 2016, 218, 115-122.	4.8	161
43	Bioelectrochemical system for landfill leachate treatment – challenges, opportunities, and recommendations. Geosystem Engineering, 2016, 19, 337-345.	0.7	7
44	Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment. Separation and Purification Technology, 2016, 169, 241-246.	3.9	31
45	Microorganisms meet solid minerals: interactions and biotechnological applications. Applied Microbiology and Biotechnology, 2016, 100, 6935-6946.	1.7	32
46	Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives. Bioresource Technology, 2016, 201, 347-354.	4.8	116
47	Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environmental Science: Water Research and Technology, 2016, 2, 274-281.	1.2	200
48	Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresource Technology, 2016, 208, 58-63.	4.8	58
49	Integrated experimental investigation and mathematical modeling of a membrane bioelectrochemical reactor with an external membrane module. Chemical Engineering Journal, 2016, 287, 321-328.	6.6	27
50	The integrated processes for wastewater treatment based on the principle of microbial fuel cells: A review. Critical Reviews in Environmental Science and Technology, 2016, 46, 60-91.	6.6	144
51	Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. Science of the Total Environment, 2017, 584-585, 355-362.	3.9	89
52	Development of Microbial Fuel Cells Needs To Go beyond "Power Density― ACS Energy Letters, 2017, 2, 700-702.	8.8	47
53	Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere, 2017, 176, 378-388.	4.2	151
54	Constructed wetland integrated microbial fuel cell system: looking back, moving forward. Water Science and Technology, 2017, 76, 471-477.	1.2	37
55	Resource recovery by osmotic bioelectrochemical systems towards sustainable wastewater treatment. Environmental Science: Water Research and Technology, 2017, 3, 583-592.	1.2	20

#	ARTICLE	IF	Citations
56	Energy capture and nutrients removal enhancement through a stacked constructed wetland incorporated with microbial fuel cell. Water Science and Technology, 2017, 76, 28-34.	1.2	34
57	High Power Output Microbial Fuel Cell using Nitrogen and Iron Coâ€Doped Carbon Nanospheres as Oxygenâ€Reduction Catalyst. Energy Technology, 2017, 5, 1712-1719.	1.8	6
58	Electron harvest and treatment of amendment free municipal wastewater using microbial anodes: A case study. Journal of Power Sources, 2017, 356, 319-323.	4.0	6
59	Nickel cobaltite@nanocarbon hybrid materials as efficient cathode catalyst for oxygen reduction in microbial fuel cells. Journal of Materials Science, 2017, 52, 7539-7545.	1.7	10
60	Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms. Journal of Power Sources, 2017, 356, 566-571.	4.0	40
61	Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell. Environmental Science and Pollution Research, 2017, 24, 26040-26048.	2.7	15
62	Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry, 2017, 118, 154-160.	2.4	30
63	An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochemical Engineering Journal, 2017, 118, 20-24.	1.8	26
64	Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 2017, 224, 265-275.	4.8	138
65	Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell. Iranian Journal of Biotechnology, 2017, 15, 216-223.	0.3	46
66	Effect of Heteropolyacid and Heteropolyacid Salt on the Performance of Nanometer Proton Membrane Microbial Fuel Cell. International Journal of Electrochemical Science, 2017, , 699-709.	0.5	8
67	Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Scientific Reports, 2018, 8, 3281.	1.6	55
68	Effects of anode spacing and flow rate on energy recovery of flat-panel air-cathode microbial fuel cells using domestic wastewater. Bioresource Technology, 2018, 258, 57-63.	4.8	25
69	Significant advantages of sulfur-doped graphene in neutral media as electrocatalyst for oxygen reduction comparing with Pt/C. IOP Conference Series: Earth and Environmental Science, 2018, 121, 022011.	0.2	3
70	Electrochemical biotechnologies minimizing the required electrode assemblies. Current Opinion in Biotechnology, 2018, 50, 182-188.	3.3	29
71	Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells. Waste Management and Research, 2018, 36, 259-268.	2.2	3
72	Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems. Science of the Total Environment, 2018, 636, 881-890.	3.9	55
73	One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 2018, 141, 1-8.	5.3	261

#	Article	IF	CITATIONS
74	Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells. Applied Energy, 2018, 219, 199-206.	5.1	37
75	Disclosing the synergistic mechanisms of azo dye degradation and bioelectricity generation in a microbial fuel cell. Chemical Engineering Journal, 2018, 344, 236-245.	6.6	64
76	Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry, 2018, 119, 142-149.	2.4	37
77	Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. Journal of Environmental Management, 2018, 207, 116-123.	3.8	45
78	Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench- and 45 L-scale. Science of the Total Environment, 2018, 624, 34-39.	3.9	35
79	Efficiently "pumping out―value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives. Water Research, 2018, 131, 62-73.	5.3	117
80	Algal Fuel Cell. , 0, , .		3
81	Influence of reactor's hydrodynamics on the performance of microbial fuel cells. Journal of Water Process Engineering, 2018, 26, 281-288.	2.6	37
82	Application of microbial fuel cell technology for wastewater treatment and electricity generation under Nordic countries climate conditions: Study of performance and microbial communities. Bioresource Technology, 2018, 270, 1-10.	4.8	16
83	PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 2018, 392, 150-158.	4.0	106
84	Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. Journal of Membrane Science, 2018, 564, 508-522.	4.1	63
85	"NEW―resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	39
86	Porous Co3O4 decorated nitrogen-doped graphene electrocatalysts for efficient bioelectricity generation in MFCs. International Journal of Hydrogen Energy, 2018, 43, 10311-10321.	3.8	19
87	Microbial Fuel Cells as a Platform Technology for Sustainable Wastewater Treatment. , 2018, , 375-398.		7
88	Coupled Systems Based on Microbial Fuel Cells. , 2018, , 423-431.		0
89	Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC). Environmental Science and Pollution Research, 2019, 26, 26829-26843.	2.7	25
90	Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnology Advances, 2019, 37, 107420.	6.0	71
91	Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell. Ionics, 2019, 25, 5907-5918.	1.2	18

#	Article	IF	CITATIONS
92	Performance and inorganic fouling of a submergible 255†L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresource Technology, 2019, 294, 122227.	4.8	118
93	TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. Bioresource Technology Reports, 2019, 7, 100303.	1.5	20
94	Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochimica Acta, 2019, 310, 173-183.	2.6	58
95	Towards concurrent pollutants removal and high energy harvesting in a pilot-scale CW-MFC: Insight into the cathode conditions and electrodes connection. Chemical Engineering Journal, 2019, 373, 150-160.	6.6	120
96	SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells. Biochemical Engineering Journal, 2019, 148, 29-36.	1.8	33
97	Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochimica Acta, 2019, 307, 241-252.	2.6	38
98	Pollutant removal and bioelectricity generation from urban river sediment using a macrophyte cathode sediment microbial fuel cell (mSMFC). Bioelectrochemistry, 2019, 128, 241-251.	2.4	45
99	A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. Journal of Cleaner Production, 2019, 221, 598-621.	4.6	363
100	Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal From Wastewater. Frontiers in Energy Research, 2019, 7, .	1.2	105
101	Applications of Nanoscale Polypyrrole Proton Exchange Membrane in Microbial Fuel Cells. International Journal of Electrochemical Science, 2019, 14, 470-480.	0.5	16
102	Application of a direct current circuit to pick up and to store bioelectricity produced by microbial fuel cells. Revista Colombiana De Quimica, 2019, 48, 26-35.	0.2	2
103	Modern and Emerging Methods of Wastewater Treatment. Ecowise, 2019, , 223-247.	0.1	4
104	Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 2019, 101, 60-81.	8.2	473
105	Supported ionic liquid membrane based on [bmim][PF6] can be a promising separator to replace Nafion in microbial fuel cells and improve energy recovery: A comparative process evaluation. Journal of Membrane Science, 2019, 570-571, 215-225.	4.1	39
106	Constructed Wetland Coupled Microbial Fuel Cell Technology. , 2019, , 1021-1036.		19
107	Demystifying terms for understanding bioelectrochemical systems towards sustainable wastewater treatment. Current Opinion in Electrochemistry, 2020, 19, 14-19.	2.5	32
108	Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Materials Chemistry and Physics, 2020, 239, 122025.	2.0	127
109	Microbial fuel cells directly powering a microcomputer. Journal of Power Sources, 2020, 446, 227328.	4.0	53

#	Article	IF	CITATIONS
110	Boosting Microbial Fuel Cell Performance by Combining with an External Supercapacitor: An Electrochemical Study. ChemElectroChem, 2020, 7, 893-903.	1.7	16
111	Resource recovery from wastewater by bioelectrochemical systems. , 2020, , 183-200.		1
112	Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 2020, 45, 25240-25248.	3.8	12
113	Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge immobilized beads with activated carbon. Chemical Engineering Research and Design, 2020, 143, 285-292.	2.7	24
114	Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater. Applied Biochemistry and Biotechnology, 2020, 192, 1060-1075.	1.4	13
115	Enhanced bioelectrochemical treatment of petroleum refinery wastewater with Labaneh whey as co-substrate. Scientific Reports, 2020, 10, 19665.	1.6	32
116	Treatment of mixed dairy and dye wastewater in anode of microbial fuel cell with simultaneous electricity generation. Environmental Science and Pollution Research, 2020, 27, 43711-43723.	2.7	16
117	The reaction of wastewater treatment and power generation of single chamber microbial fuel cell against substrate concentration and anode distributions. Journal of Environmental Health Science & Engineering, 2020, 18, 793-807.	1.4	15
118	TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. Ionics, 2020, 26, 6195-6205.	1.2	10
119	Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development. Renewable and Sustainable Energy Reviews, 2020, 134, 110367.	8.2	40
120	Directions of membrane separator development for microbial fuel cells: A retrospective analysis using frequent itemset mining and descriptive statistical approach. Journal of Power Sources, 2020, 478, 229014.	4.0	12
121	High voltage generation from wastewater by microbial fuel cells equipped with a newly designed low voltage booster multiplier (LVBM). Scientific Reports, 2020, 10, 18985.	1.6	38
122	Up-flow constructed wetland-microbial fuel cell: Influence of floating plant, aeration and circuit connection on wastewater treatment performance and bioelectricity generation. Journal of Water Process Engineering, 2020, 36, 101371.	2.6	49
123	Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 2020, 353, 136530.	2.6	10
124	Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 2020, 270, 118857.	10.8	196
125	Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system. Bioprocess and Biosystems Engineering, 2020, 43, 2075-2084.	1.7	19
126	Boosting Microbial Fuel Cell Performance by Combining with an External Supercapacitor: An Electrochemical Study. ChemElectroChem, 2020, 7, 877-877.	1.7	3
127	A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid. Bioresource Technology, 2020, 304, 122992.	4.8	34

#	Article	IF	CITATIONS
128	Construction of innovative 3D-weaved carbon mesh anode network to boost electron transfer and microbial activity in bioelectrochemical system. Water Research, 2020, 172, 115493.	5.3	28
129	Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview. Membranes, 2020, 10, 16.	1.4	31
130	Controlling Voltage Reversal in Microbial Fuel Cells. Trends in Biotechnology, 2020, 38, 667-678.	4.9	70
131	Effect of Using a Ceramic Separator on the Performance of Hydroponic Constructed Wetland-Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	17
132	A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. Journal of Cleaner Production, 2020, 264, 121446.	4.6	113
133	The application of microalgae in removing organic micropollutants in wastewater. Critical Reviews in Environmental Science and Technology, 2021, 51, 1187-1220.	6.6	50
134	Impact of Wastewater Concentration and Feed Frequency on Ammonia Inhibition in Microbial Fuel Cells. Biofuels, 2021, 12, 655-661.	1.4	4
135	Bioelectrochemical treatment of municipal solid waste landfill mature leachate and dairy wastewater as co-substrates. Environmental Science and Pollution Research, 2021, 28, 24639-24649.	2.7	19
136	A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. International Journal of Hydrogen Energy, 2021, 46, 3056-3089.	3.8	87
137	Combined microalgal photobioreactor/microbial fuel cell system: Performance analysis under different process conditions. Environmental Research, 2021, 192, 110263.	3.7	28
138	Stretched 1000-L microbial fuel cell. Journal of Power Sources, 2021, 483, 229130.	4.0	53
139	Biofilm structure, dynamics, and ecology of an upscaled biocathode wastewater microbial fuel cell. Biotechnology and Bioengineering, 2021, 118, 1305-1316.	1.7	5
140	Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	4
141	Enhancing the performance of a microbial electrochemical system with carbon-based dynamic membrane as both anode electrode and filtration media. Environmental Science: Water Research and Technology, 2021, 7, 870-878.	1.2	8
142	Bioenergy and Valuables Recovery During Wastewater Treatment Using Bio-Electrochemical Systems. , 2021, , 259-259.		0
143	Effects of a Hydraulic Series Connection and Flow Direction on Electricity Generation in a Stack Connected with Different Volume MFCs. Applied Sciences (Switzerland), 2021, 11, 1019.	1.3	4
144	Bioelectrochemical Greywater Treatment for Non-Potable Reuse and Energy Recovery. Water (Switzerland), 2021, 13, 295.	1.2	8
145	Microbial fuel cell technology for bio-electrochemical conversion of waste to energy. , 2021, , 287-314.		Ο

#	Article	IF	CITATIONS
146	A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. Journal of Environmental Chemical Engineering, 2021, 9, 105011.	3.3	45
148	Bioâ€electrochemical evaluation of twoâ€stage constructed wetland microbial fuel cells with high strength raw domestic wastewater and simultaneous energy recovery. Water and Environment Journal, 2021, 35, 1239.	1.0	7
149	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2313-2330.	3.6	13
150	Microbial fuel cells: Devices for real wastewater treatment, rather than electricity production. Science of the Total Environment, 2021, 775, 145904.	3.9	25
151	Preparation of Sulfonated Polytriazoles with a Phosphaphenanthrene Unit via Click Polymerization: Fabrication of Membranes and Properties Thereof. ACS Applied Polymer Materials, 2021, 3, 4127-4138.	2.0	14
152	Enhanced recalcitrant pollutant degradation using hydroxyl radicals generated using ozone and bioelectricity-driven cathodic hydrogen peroxide production: Bio-E-Peroxone process. Science of the Total Environment, 2021, 776, 144819.	3.9	6
153	Biotreatment of sulfonated dyestuffs with energy recovery in microbial fuel cell: Influencing parameters, kinetics, degradation pathways, mechanisms, and phytotoxicity assessment. Journal of Environmental Chemical Engineering, 2021, 9, 105525.	3.3	9
154	Nanoadsorbants for the Removal of Heavy Metals from Contaminated Water: Current Scenario and Future Directions. Processes, 2021, 9, 1379.	1.3	19
155	Recent advancements in azo dye decolorization in bio-electrochemical systems (BESs): Insights into decolorization mechanism and practical application. Water Research, 2021, 203, 117512.	5.3	51
156	Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater. Science of the Total Environment, 2021, 788, 147652.	3.9	10
157	Circulation of anodic effluent to the cathode chamber for subsequent treatment of wastewater in photosynthetic microbial fuel cell with generation of bioelectricity and algal biomass. Chemosphere, 2021, 278, 130455.	4.2	11
158	Microbial Fuel Cells, Concept, and Applications. , 2022, , 875-909.		0
159	Comparative Performance Analysis of Constructed Wetland-Microbial Fuel Cells Operated under Batch and Continuous Mode for Treating Wastewater with RO Concentrate. Journal of Environmental Engineering, ASCE, 2021, 147, 04021049.	0.7	2
160	Synthesizing developments in the usage of solid organic matter in microbial fuel cells: A review. Chemical Engineering Journal Advances, 2021, 8, 100140.	2.4	9
161	Efficient degradation of refractory pollutant in a microbial fuel cell with novel hybrid photocatalytic air-cathode: Intimate coupling of microbial and photocatalytic processes. Bioresource Technology, 2021, 340, 125717.	4.8	19
162	A novel bio-electro-Fenton process for eliminating sodium dodecyl sulphate from wastewater using dual chamber microbial fuel cell. Bioresource Technology, 2021, 341, 125850.	4.8	37
163	Constructed sediment microbial fuel cell for treatment of fat, oil, grease (FOG) trap effluent: Role of anode and cathode chamber amendment, electrode selection, and scalability. Chemosphere, 2022, 286, 131619.	4.2	17
164	Up-flow constructed wetland-microbial fuel cell for azo dye, saline, nitrate remediation and bioelectricity generation: From waste to energy approach. Bioresource Technology, 2018, 266, 97-108.	4.8	67

# 165	ARTICLE Effect of COD and HRT Changes in Submerged Microbial Fuel Cells on Nitrogen Removal at the Level of Domestic Wastewater, Daehan Hwan'gyeong Gonghag Hoeii, 2018, 40, 314-319.	IF 0.4	CITATIONS
166	Microbial Fuel Cells, Concept, and Applications. , 2020, , 1-35.		0
167	Bioelectrogenesis from ceramic membrane-based algal-microbial fuel cells treating dairy industry wastewater. Sustainable Energy Technologies and Assessments, 2021, 48, 101653.	1.7	8
168	Quinones contained in wastewater as redox mediators for the synergistic removal of azo dye in microbial fuel cells. Journal of Environmental Management, 2022, 301, 113924.	3.8	9
169	Microbial Fuel Cells: The Microbial Route for Bioelectricity. , 2020, , 375-398.		0
170	Electricity-Driven Microbial Factory for Value-Added Resources Recovery from Waste Streams. , 2020, , 119-138.		1
171	MICROBIAL FUEL CELL – AN ALTERNATIVE ENERGY SOURCE FOR T&T. , 2020, , .		0
172	Sequential algal biofuel production through whole biomass conversion. , 2022, , 385-404.		4
173	Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor. Environmental Research, 2022, 205, 112416.	3.7	20
174	Enhanced Microbial Electrochemical Systems Performance by Optimizing the "Anode-Collector― Collection Mode: From Enhancement Mechanism to Construction Strategy. ACS ES&T Engineering, 2022, 2, 263-270.	3.7	9
175	Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. Journal of Power Sources, 2022, 520, 230875.	4.0	30
176	Current and voltage data logging from microbial fuel cells usingÂarduinoÂbased sensors. International Robotics & Automation Journal, 2021, 7, 90-93.	0.3	0
177	Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Science of the Total Environment, 2022, 817, 153055.	3.9	40
178	Caffeine-containing wastewater treatment and bioelectricity generation in up-flow constructed wetland-microbial fuel cell: Influence of caffeine concentration, operating conditions, toxicity assessment, and degradation pathway. Journal of Water Process Engineering, 2022, 46, 102623.	2.6	12
179	Metal-free catalyst for efficient pH-universal oxygen reduction electrocatalysis in microbial fuel cell. Journal of Electroanalytical Chemistry, 2022, 911, 116233.	1.9	4
180	Pilot-scale Microbial Fuel Cells (MFCs): A meta-analysis study to inform full-scale design principles for optimum wastewater treatment. Journal of Cleaner Production, 2022, 346, 131227.	4.6	38
181	Comparative investigation of solenoid magnetic field direction on the performance of osmotic microbial fuel cell. Materials Today Chemistry, 2022, 24, 100778.	1.7	8
182	Usage and disposal strategies of environmental micropollutants. , 2022, , 339-363.		0

#	Article	IF	CITATIONS
183	High Electrical Energy Harvesting Performance of an Integrated Mfc and Low Voltage Booster-Rectifier (Lvbr) System Treating Domestic Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
184	Iron-gelatin aerogel derivative as high-performance oxygen reduction reaction electrocatalysts in microbial fuel cells. International Journal of Hydrogen Energy, 2022, 47, 17982-17991.	3.8	5
185	Performance of pilot-scale constructed wetland osmotic microbial fuel cell under different gravel conditions. Environmental Science and Pollution Research, 2022, 29, 66757-66767.	2.7	7
186	Experimental Study of Power Generation and COD Removal Efficiency by Air Cathode Microbial Fuel Cell Using Shewanella baltica 20. Energies, 2022, 15, 4152.	1.6	12
187	Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Advances, 2022, 12, 17104-17137.	1.7	45
188	High electrical energy harvesting performance of an integrated microbial fuel cell and low voltage booster-rectifier system treating domestic wastewater. Bioresource Technology, 2022, 359, 127455.	4.8	5
189	Broadâ€ranging review: configurations, membrane types, governing equations, and influencing factors on microbial desalination cell technology. Journal of Chemical Technology and Biotechnology, 2022, 97, 3241-3270.	1.6	8
190	Ultrafiltration membrane bioâ€fuel cell as an energyâ€efficient advanced wastewater treatment system. International Journal of Energy Research, 2022, 46, 20216-20227.	2.2	6
191	3D Hierarchical Co ₈ FeS ₈ FeCo ₂ O ₄ /N-CNTs@CF with an Enhanced Microorganisms–Anode Interface for Improving Microbial Fuel Cell Performance. ACS Applied Materials & Interfaces, 2022, 14, 35809-35821.	4.0	20
192	Solarâ€Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. ChemSusChem, 2022, 15, .	3.6	9
194	Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices. Bioresource Technology, 2022, 363, 127935.	4.8	16
195	Use of bio-electrochemical system for industry effluents and resource recovery. , 2022, , 109-130.		0
196	Boosting wastewater bioelectricity recovery via solvent mediation and zinc fencing: Dual regulation for catalyst spatial structure and active sites. Chemical Engineering Journal, 2023, 453, 139276.	6.6	2
197	Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology. Energies, 2022, 15, 6928.	1.6	7
198	Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review. Green Energy and Environment, 2023, 8, 1043-1070.	4.7	19
199	Reduction in particle size of vermiculite and production of the low-cost earthen membrane to achieve enhancement in the microbial fuel cell performance. Journal of Environmental Chemical Engineering, 2022, 10, 108787.	3.3	7
200	Scalable architecture of low-cost household microbial fuel cell for domestic wastewater treatment and simultaneous energy recovery. Science of the Total Environment, 2023, 857, 159671.	3.9	7
201	Enhanced electricity generation and storage by nitrogen-doped hierarchically porous carbon modification of the capacitive bioanode in microbial fuel cells. Science of the Total Environment, 2023, 858, 159688.	3.9	6

#	Article	IF	CITATIONS
202	Toxicity monitoring signals analysis of selenite using microbial fuel cells. Science of the Total Environment, 2023, 862, 160801.	3.9	1
203	Insights into the promotion of urine-diverting toilets based on the fertilizer efficiency of artificial phosphate ore recovered from source-separated urine. Resources, Conservation and Recycling, 2023, 190, 106807.	5.3	3
204	Emerging Technologies for Treatment of Wastewaters. , 2022, , 859-918.		0
205	Impact of feedstock dilution on the performance of urine-fed ceramic and membrane-less microbial fuel cell cascades designs. Journal of Power Sources, 2023, 561, 232708.	4.0	1
206	Novel carbon-ceramic composite membranes with high cation exchange properties for use in microbial fuel cell and electricity generation. International Journal of Hydrogen Energy, 2023, 48, 25512-25526.	3.8	3
207	Effect of bio-electrochemical systems on the removal of organic and inorganic membrane fouling from anaerobic membrane bioreactors. Separation and Purification Technology, 2023, 312, 123395.	3.9	3
208	An Intelligent Approach for Electricity Generation: Microbial Fuel Cell. , 2022, , .		0
209	Performance improvement of the osmotic microbial fuel cell by the pre-treatment of anaerobic sewage sludge using solenoid magnetic field. Environmental Technology (United Kingdom), 0, , 1-11.	1.2	0
210	Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery. Environmental Science and Pollution Research, 2023, 30, 59877-59890.	2.7	4
215	Microbial fuel cells: exploring electrochemical, biological and applied aspects. , 2023, , 23-54.		0
218	Biofuels from microalgae: Growing conditions, cultivation strategies, and techno-commercial challenges. , 2024, , 305-340.		0
220	Production of chemicals and energy. , 2024, , 321-396.		0