Ultrahigh dose-rate FLASH irradiation increases the dif and tumor tissue in mice

Science Translational Medicine

6, 245ra93

DOI: 10.1126/scitranslmed.3008973

Citation Report

#	Article	IF	CITATIONS
4	Comparison study of in vivo dose response to laser-driven versus conventional electron beam. Radiation and Environmental Biophysics, 2015, 54, 155-166.	1.4	27
5	Safety of high-dose-rate stereotactic body radiotherapy. Radiation Oncology, 2015, 10, 27.	2.7	16
6	Radiosensitisation by Poly(ADP-ribose) Polymerase Inhibition. Cancer Drug Discovery and Development, 2015, , 275-297.	0.4	0
7	Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable Complete Remissions. Clinical Cancer Research, 2015, 21, 3727-3739.	7.0	373
8	Complement Is a Central Mediator of Radiotherapy-Induced Tumor-Specific Immunity and Clinical Response. Immunity, 2015, 42, 767-777.	14.3	135
9	Lowâ€dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. International Journal of Cancer, 2016, 139, 2157-2168.	5.1	68
10	Assessing dose rate distributions in VMAT plans. Physics in Medicine and Biology, 2016, 61, 3208-3221.	3.0	4
11	Potential of FLASH irradiation to minimize the incidence of radio-induced damage and fibrosis to normal lung in a mouse model. Journal of Thoracic Oncology, 2016, 11, S5.	1.1	0
12	Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells. Radiation and Environmental Biophysics, 2016, 55, 381-391.	1.4	10
13	Assessment of the quality of very high-energy electron radiotherapy planning. Radiotherapy and Oncology, 2016, 119, 154-158.	0.6	34
14	Dose rate mapping of VMAT treatments. Physics in Medicine and Biology, 2016, 61, 4048-4060.	3.0	5
15	High doseâ€perâ€pulse electron beam dosimetry — A model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical Physics, 2017, 44, 1157-1167.	3.0	141
16	Permeability of Brain Tumor Vessels Induced by Uniform or Spatially Microfractionated Synchrotron Radiation Therapies. International Journal of Radiation Oncology Biology Physics, 2017, 98, 1174-1182.	0.8	41
18	Preclinical radiotherapy at the Australian Synchrotron's Imaging and Medical Beamline: instrumentation, dosimetry and a small-animal feasibility study. Journal of Synchrotron Radiation, 2017, 24, 854-865.	2.4	33
19	Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherapy and Oncology, 2017, 124, 365-369.	0.6	410
20	Antioxidant Supplementation: A Linchpin in Radiation-Induced Enteritis. Technology in Cancer Research and Treatment, 2017, 16, 676-691.	1.9	14
21	Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro. Scientific Reports, 2017, 7, 44077.	3.3	25
23	An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation. Journal of Instrumentation, 2017, 12, C03038-C03038.	1.2	3

#	Article	IF	CITATIONS
24	High doseâ€perâ€pulse electron beam dosimetry: Usability and doseâ€rate independence of EBT3 Gafchromic films. Medical Physics, 2017, 44, 725-735.	3.0	115
25	Thermal limits on MV xâ€ray production by bremsstrahlung targets in the context of novel linear accelerators. Medical Physics, 2017, 44, 6610-6620.	3.0	11
26	A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse. Physics in Medicine and Biology, 2017, 62, 8634-8654.	3.0	40
27	Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro. Journal of Radiation Research, 2017, 58, 894-897.	1.6	18
28	Faster and safer? FLASH ultra-high dose rate in radiotherapy. British Journal of Radiology, 2018, 91, 20170628.	2.2	132
29	Localized Synchrotron Irradiation of Mouse Skin Induces Persistent Systemic Genotoxic and Immune Responses. Cancer Research, 2017, 77, 6389-6399.	0.9	29
30	Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. International Journal of Radiation Oncology Biology Physics, 2017, 97, 195-203.	0.8	177
31	Mechanisms of Normal Tissue Injury From Irradiation. Seminars in Radiation Oncology, 2017, 27, 316-324.	2.2	76
32	Expanding the therapeutic index of radiation therapy by normal tissue protection. British Journal of Radiology, 2019, 92, 20180008.	2.2	41
33	Synergistically Enhancing the Therapeutic Effect of Radiation Therapy with Radiation Activatable and Reactive Oxygen Species-Releasing Nanostructures. ACS Nano, 2018, 12, 4946-4958.	14.6	101
34	The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. British Journal of Radiology, 2018, 91, 20170762.	2.2	57
35	Salvage treatment using carbon ion radiation in patients with locoregionally recurrent nasopharyngeal carcinoma: Initial results. Cancer, 2018, 124, 2427-2437.	4.1	69
36	High doseâ€perâ€pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Medical Physics, 2018, 45, 863-874.	3.0	143
37	Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Physics in Medicine and Biology, 2018, 63, 02TR01.	3.0	163
38	A New Standard DNA Damage (SDD) Data Format. Radiation Research, 2018, 191, 76.	1.5	49
39	Radiation, inflammation and the immune response in cancer. Mammalian Genome, 2018, 29, 843-865.	2.2	131
40	X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology, 2018, 129, 582-588.	0.6	250
41	Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System. International Journal of Radiation Oncology Biology Physics, 2018, 102, 619-626.	0.8	187

#	Article	IF	CITATIONS
42	Effects of Synchrotron X-Ray Micro-beam Irradiation on Normal Mouse Ear Pinnae. International Journal of Radiation Oncology Biology Physics, 2018, 101, 680-689.	0.8	18
43	"Radiobiology of Proton Therapy†Results of an international expert workshop. Radiotherapy and Oncology, 2018, 128, 56-67.	0.6	85
44	Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device. PLoS ONE, 2018, 13, e0199312.	2.5	14
45	The Role of Nrf2 in the Response to Normal Tissue Radiation Injury. Radiation Research, 2018, 190, 99.	1.5	46
46	The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis. International Journal of Molecular Sciences, 2018, 19, 778.	4.1	129
47	Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Scientific Reports, 2018, 8, 12044.	3.3	90
48	The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clinical Cancer Research, 2019, 25, 35-42.	7.0	430
49	Ultrahigh Dose-rate Radiotherapy: Next Steps for FLASH-RT. Clinical Cancer Research, 2019, 25, 3-5.	7.0	63
50	A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Physics in Medicine and Biology, 2019, 64, 185005.	3.0	117
51	Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer. Radiotherapy and Oncology, 2019, 139, 56-61.	0.6	39
52	Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and Oncology, 2019, 139, 18-22.	0.6	406
53	A Plasma Focus device as ultra-high dose rate pulsed radiation source. Part II: X-ray pulses characterization. Radiation Physics and Chemistry, 2019, 164, 108360.	2.8	5
54	Laserâ€driven radiation: Biomarkers for molecular imaging of high doseâ€rate effects. Medical Physics, 2019, 46, e726-e734.	3.0	6
55	FLASH radiotherapy: Newsflash or flash in the pan?. Medical Physics, 2019, 46, 4287-4290.	3.0	31
56	Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiotherapy and Oncology, 2019, 139, 4-10.	0.6	166
57	Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiotherapy and Oncology, 2019, 139, 46-50.	0.6	144
58	Ultra-High-Dose-Rate FLASH Irradiation May Spare Hypoxic Stem Cell Niches in Normal Tissues. International Journal of Radiation Oncology Biology Physics, 2019, 105, 190-192.	0.8	60
59	Towards FLASH proton therapy: the impact of treatment planning and machine characteristics on achievable dose rates. Acta OncolÃ ³ gica, 2019, 58, 1463-1469.	1.8	119

#	Article	IF	CITATIONS
60	Reconstructing 3D proton dose distribution using ionoacoustics. Physics in Medicine and Biology, 2019, 64, 225005.	3.0	10
61	The CD73/Ado System—A New Player in RT Induced Adverse Late Effects. Cancers, 2019, 11, 1578.	3.7	16
62	Synchrotron Microbeam Radiation Therapy as a New Approach for the Treatment of Radioresistant Melanoma: Potential Underlying Mechanisms. International Journal of Radiation Oncology Biology Physics, 2019, 105, 1126-1136.	0.8	36
63	Charged particle beams to cure cancer: Strengths and challenges. Seminars in Oncology, 2019, 46, 219-225.	2.2	27
64	On the capabilities of conventional xâ€ray tubes to deliver ultraâ€high (FLASH) dose rates. Medical Physics, 2019, 46, 5690-5695.	3.0	43
65	Polo-like kinase 1 inhibitor BI6727 sensitizes 9L gliosarcoma cells to ionizing irradiation. Biomedical Physics and Engineering Express, 2019, 5, 067003.	1.2	1
67	Time-resolved dosimetry of pulsed electron beams in very high dose-rate, FLASH irradiation for radiotherapy preclinical studies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 944, 162537.	1.6	35
68	Reducing Radiation Damage in Soft Matter with Femtosecond-Timed Single-Electron Packets. Nano Letters, 2019, 19, 6687-6694.	9.1	51
69	Re: Differential impact of FLASH versus conventional dose rate irradiation: Spitz et al.,. Radiotherapy and Oncology, 2019, 139, 62-63.	0.6	21
70	Response to letter regarding "An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responsesâ€ Radiotherapy and Oncology, 2019, 139, 64-65.	0.6	12
71	FLASH radiotherapy International Workshop. Radiotherapy and Oncology, 2019, 139, 1-3.	0.6	34
72	Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles. Physica Medica, 2019, 65, 21-28.	0.7	7
74	Report of the <scp>AAPM TG</scp> â€256 on the relative biological effectiveness of proton beams in radiation therapy. Medical Physics, 2019, 46, e53-e78.	3.0	189
75	Clinical translation of FLASH radiotherapy: Why and how?. Radiotherapy and Oncology, 2019, 139, 11-17.	0.6	294
76	Dual cardiac and respiratory gated thoracic imaging via adaptive gantry velocity and projection rate modulation on a linear accelerator: A Proofâ€of oncept Simulation Study. Medical Physics, 2019, 46, 4116-4126.	3.0	8
77	PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiotherapy and Oncology, 2019, 139, 28-33.	0.6	110
78	Conical beam geometry intensity-modulated radiation therapy. Physics in Medicine and Biology, 2019, 64, 125014.	3.0	4
79	Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiotherapy and Oncology, 2019, 139, 34-39.	0.6	92

ARTICLE IF CITATIONS # Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. 80 326 7.1 Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10943-10951. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clinical 1.4 324 Oncology, 2019, 31, 407-415 An integrated physico-chemical approach for explaining the differential impact of FLASH versus 82 conventional dose rate irradiation on cancer and normal tissue responses. Radiotherapy and 0.6 189 Oncology, 2019, 139, 23-27. Cured in a FLASH: Reducing Normal Tissue Toxicities Using Ultra-High-Dose Rates. International Journal of Radiation Oncology Biology Physics, 2019, 104, 257-260. Salvage Carbon-Ion Radiation Therapy For Locoregionally Recurrent Head and Neck Malignancies. 84 3.3 24 Scientific Reports, 2019, 9, 4259. Biological effects in normal cells exposed to FLASH dose rate protons. Radiotherapy and Oncology, 2019, 139, 51-55. 183 Simulation and experimental validation of a prototype electron beam linear accelerator for 86 0.7 35 preclinical studies. Physica Medica, 2019, 60, 50-57. SABR-COMET: harbinger of a new cancer treatment paradigm. Lancet, The, 2019, 393, 2013-2014. 13.7 87 14 Applied nuclear physics at the new high-energy particle accelerator facilities. Physics Reports, 2019, 88 25.6 46 800, 1-37. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiotherapy and Oncology, 2019, 139, 40-45. Shaping of a laser-accelerated proton beam for radiobiology applications via genetic algorithm. 91 4 0.7 Physica Medica, 2019, 67, 123-131. Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic 3.3 models of lymphopenia and gastrointestinal syndrome. Scientific Reports, 2019, 9, 17180. Optics Design and Beam Dynamics simulation for a VHEE Radiobiology beam line at PRAE accelerator. 93 0.4 3 Journal of Physics: Conference Series, 2019, 1350, 012200. All the fun of the FAIR: fundamental physics at the facility for antiproton and ion research. Physica 94 2.5 79 Scripta, 2019, 94, 033001. Spatially fractionated proton minibeams. British Journal of Radiology, 2019, 92, 20180466. 95 2.2 28 Radiation Track Structure: How the Spatial Distribution of Energy Deposition Drives Biological 96 33 Response. Clinical Oncology, 2020, 32, 75-83. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE 97 3.7 13 Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 147-160. Proton RBE dependence on dose in the setting of hypofractionation. British Journal of Radiology, 98 2.2 2020, 93, 20190291.

#	Article	IF	CITATIONS
99	A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. Radiation and Environmental Biophysics, 2020, 59, 111-120.	1.4	15
100	Technical advances in x-ray microbeam radiation therapy. Physics in Medicine and Biology, 2020, 65, 02TR01.	3.0	38
101	FLASH radiotherapy: ultra-high dose rates to spare healthy tissue. International Journal of Radiation Biology, 2020, 96, 419-423.	1.8	42
102	The FLASH effect depends on oxygen concentration. British Journal of Radiology, 2020, 93, 20190702.	2.2	133
103	FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clinical Cancer Research, 2020, 26, 1497-1506.	7.0	148
104	Bringing FLASH to the Clinic: Treatment Planning Considerations for Ultrahigh Dose-Rate Proton Beams. International Journal of Radiation Oncology Biology Physics, 2020, 106, 621-629.	0.8	87
105	Proton beam therapy: perspectives on the National Health Service England clinical service and research programme. British Journal of Radiology, 2020, 93, 20190873.	2.2	25
106	Hadrontherapy Interactions in Molecular and Cellular Biology. International Journal of Molecular Sciences, 2020, 21, 133.	4.1	16
107	Minibeam radiation therapy: A micro―and nanoâ€dosimetry Monte Carlo study. Medical Physics, 2020, 47, 1379-1390.	3.0	10
108	LhARA: The Laser-hybrid Accelerator for Radiobiological Applications. Frontiers in Physics, 2020, 8, .	2.1	19
109	Heavy charged particle beam therapy and related new radiotherapy technologies: The clinical potential, physics and technical developments required to deliver benefit for patients with cancer. British Journal of Radiology, 2020, 93, 20200247.	2.2	16
110	Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy. Medical Physics, 2020, 47, 6388-6395.	3.0	49
111	Oxygen depletion in FLASH ultraâ€highâ€doseâ€rate radiotherapy: A molecular dynamics simulation. Medical Physics, 2020, 47, 6551-6561.	3.0	38
112	A framework for defining FLASH dose rate for pencil beam scanning. Medical Physics, 2020, 47, 6396-6404.	3.0	75
113	Response to Ling et al. regarding "An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses― Radiotherapy and Oncology, 2020, 147, 241-242.	0.6	2
114	Feasibility of quasi-prompt PET-based range verification in proton therapy. Physics in Medicine and Biology, 2020, 65, 245013.	3.0	17
115	Past, present and future of proton therapy for head and neck cancer. Oral Oncology, 2020, 110, 104879.	1.5	22
116	External beam radiation therapy with kilovoltage x-rays. Physica Medica, 2020, 79, 103-112.	0.7	14

#	Article	IF	CITATIONS
117	Dosimetry for New Radiation Therapy Approaches Using High Energy Electron Accelerators. Frontiers in Physics, 2020, 8, .	2.1	5
118	The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 2020, 80, 134-150.	0.7	71
119	Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain?. British Journal of Radiology, 2020, 93, 20200245.	2.2	6
120	High-Energy Charged Particles for Spatially Fractionated Radiation Therapy. Frontiers in Physics, 2020, 8, .	2.1	1
121	Implementation of ultra-high dose-rate electron beam from 6-MeV C-band linear accelerator for preclinical study. Journal of Instrumentation, 2020, 15, P09013-P09013.	1.2	4
122	Exploiting the full potential of proton therapy: An update on the specifics and innovations towards spatial or temporal optimisation of dose delivery. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2020, 24, 691-698.	1.4	4
123	Perspectives on the generation of electron beams from plasma-based accelerators and their near and long term applications. Physics of Plasmas, 2020, 27, .	1.9	50
124	History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & FLASH radiotherapy. British Journal of Radiology, 2020, 93, 20200217.	2.2	24
125	In Regard to van Marlen etÂal. International Journal of Radiation Oncology Biology Physics, 2020, 107, 1012-1013.	0.8	6
126	BriXS, a new X-ray inverse Compton source for medical applications. Physica Medica, 2020, 77, 127-137.	0.7	16
127	Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes. Scientific Reports, 2020, 10, 17307.	3.3	36
128	Carbon Ion Radiobiology. Cancers, 2020, 12, 3022.	3.7	104
129	In Vitro Comparison of Passive and Active Clinical Proton Beams. International Journal of Molecular Sciences, 2020, 21, 5650.	4.1	8
130	Technical challenges for FLASH proton therapy. Physica Medica, 2020, 78, 71-82.	0.7	82
131	Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. Frontiers in Physics, 2020, 8, .	2.1	76
132	FLASH-Radiotherapy: A Potential Innovation Driver in Radiation Therapy. Journal of the Korean Physical Society, 2020, 77, 357-362.	0.7	1
133	FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. International Journal of Molecular Sciences, 2020, 21, 6492.	4.1	132
134	Transforming an IORT Linac Into a FLASH Research Machine: Procedure and Dosimetric Characterization. Frontiers in Physics, 2020, 8, .	2.1	25

	CITATION	Report	
#	Article	IF	CITATIONS
135	In-vivo and in-vitro impact of high-dose rate radiotherapy using flattening-filter-free beams on the anti-tumor immune response. Clinical and Translational Radiation Oncology, 2020, 24, 116-122.	1.7	7
136	Extracellular Vesicle–Derived miR-124 Resolves Radiation-Induced Brain Injury. Cancer Research, 2020, 80, 4266-4277.	0.9	27
137	Challenges in dosimetry of particle beams with ultra-high pulse dose rates. Journal of Physics: Conference Series, 2020, 1662, 012028.	0.4	11
138	FLASH Radiotherapy With Electrons: Issues Related to the Production, Monitoring, and Dosimetric Characterization of the Beam. Frontiers in Physics, 2020, 8, .	2.1	42
139	Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Scientific Reports, 2020, 10, 21600.	3.3	119
140	Mapping the Future of Particle Radiobiology in Europe: The INSPIRE Project. Frontiers in Physics, 2020, 8, .	2.1	9
141	Immunomodulatory Effects of Radiotherapy. International Journal of Molecular Sciences, 2020, 21, 8151.	4.1	34
142	Beam Monitors for Tomorrow: The Challenges of Electron and Photon FLASH RT. Frontiers in Physics, 2020, 8, .	2.1	12
143	Novel Radiation Therapy Paradigms and Immunomodulation: Heresies and Hope. Seminars in Radiation Oncology, 2020, 30, 194-200.	2.2	12
144	Optimizing Radiation Therapy to Boost Systemic Immune Responses in Breast Cancer: A Critical Review for Breast Radiation Oncologists. International Journal of Radiation Oncology Biology Physics, 2020, 108, 227-241.	0.8	24
145	Characterization of a new scintillation imaging system for proton pencil beam dose rate measurements. Physics in Medicine and Biology, 2020, 65, 165014.	3.0	14
146	Combining Radiation with Immunotherapy: The University of Pennsylvania Experience. Seminars in Radiation Oncology, 2020, 30, 173-180.	2.2	6
147	Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies. Medical Physics, 2020, 47, 4348-4355.	3.0	65
148	Radiation Damage to Tumor Vasculature Initiates a Program That Promotes Tumor Recurrences. International Journal of Radiation Oncology Biology Physics, 2020, 108, 734-744.	0.8	26
149	A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiotherapy and Oncology, 2020, 153, 303-310.	0.6	103
150	The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Scientific Reports, 2020, 10, 9089.	3.3	62
151	Organoids as Complex In Vitro Models for Studying Radiation-Induced Cell Recruitment. Cellular and Molecular Bioengineering, 2020, 13, 341-357.	2.1	7
152	X-ray induced acoustic computed tomography. Photoacoustics, 2020, 19, 100177.	7.8	33

#	Article	IF	CITATIONS
153	Shortening delivery times for intensity-modulated proton therapy by reducing the number of proton spots: an experimental verification. Physics in Medicine and Biology, 2020, 65, 095008.	3.0	17
154	A Quantitative Analysis of the Role of Oxygen Tension in FLASH Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 539-547.	0.8	84
155	Stereotactic body radiotherapy in patients with early-stage non-small cell lung cancer: Does beam-on time matter?. Japanese Journal of Clinical Oncology, 2020, 50, 1182-1187.	1.3	4
156	An ionizing radiation acoustic imaging (iRAI) technique for realâ€ŧime dosimetric measurements for FLASH radiotherapy. Medical Physics, 2020, 47, 5090-5101.	3.0	19
157	Emerging Concepts and Novel Strategies in Radiation Therapy for Laryngeal Cancer Management. Cancers, 2020, 12, 1651.	3.7	26
158	Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers, 2020, 12, 1671.	3.7	74
159	Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer?. International Journal of Molecular Sciences, 2020, 21, 4767.	4.1	7
160	To the Editors. Radiotherapy and Oncology, 2020, 147, 240.	0.6	1
161	Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers, 2020, 12, 527.	3.7	24
163	Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?. Frontiers in Oncology, 2019, 9, 1563.	2.8	302
164	FLASH-radiotherapy: A new perspective in immunotherapy era?. Radiotherapy and Oncology, 2020, 145, 137.	0.6	3
165	Design, Implementation, and inÂVivo Validation of a Novel Proton FLASH Radiation Therapy System. International Journal of Radiation Oncology Biology Physics, 2020, 106, 440-448.	0.8	274
166	FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. British Journal of Radiology, 2020, 93, 20190807.	2.2	50
167	Minimum dose rate estimation for pulsed FLASH radiotherapy: A dimensional analysis. Medical Physics, 2020, 47, 3243-3249.	3.0	25
168	Taking Care with FLASH Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 239-242.	0.8	25
169	Use of radiochromic films for the absolute dose evaluation in high dose-rate proton beams. Journal of Instrumentation, 2020, 15, C04029-C04029.	1.2	6
170	Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 766-778.	0.8	70
171	Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. Radiation Medicine and Protection, 2020, 1, 35-40.	0.8	45

#	Article	IF	CITATIONS
172	Monte Carlo simulations and dose measurements of 2D range-modulators for scanned particle therapy. Zeitschrift Fur Medizinische Physik, 2021, 31, 203-214.	1.5	16
173	The impact of proton therapy on cardiotoxicity following radiation treatment. Journal of Thrombosis and Thrombolysis, 2021, 51, 877-883.	2.1	8
174	Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis. International Journal of Radiation Oncology Biology Physics, 2021, 109, 819-829.	0.8	66
175	Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clinical Cancer Research, 2021, 27, 775-784.	7.0	144
176	Ion collection efficiency of ionization chambers in ultraâ€high doseâ€perâ€pulse electron beams. Medical Physics, 2021, 48, 819-830.	3.0	37
178	Current delivery limitations of proton PBS for FLASH. Radiotherapy and Oncology, 2021, 155, 212-218.	0.6	35
179	Technical Note: FLASH radiotherapy monitor chamber signal conditioning. Medical Physics, 2021, 48, 791-795.	3.0	2
180	Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1440-1453.	0.8	42
181	Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC. Nuclear Engineering and Technology, 2021, 53, 1289-1296.	2.3	12
182	South East European International Institute for Sustainable Technologies (SEEIIST). Frontiers in Physics, 2021, 8, .	2.1	6
183	Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy. Physics in Medicine and Biology, 2021, 66, 025004.	3.0	36
184	Evaluation of Two-Voltage and Three-Voltage Linear Methods for Deriving Ion Recombination Correction Factors in Proton FLASH Irradiation. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 263-270.	3.7	7
185	Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 252-262.	3.7	17
186	ROAD: ROtational direct Aperture optimization with a Decoupled ring-collimator for FLASH radiotherapy. Physics in Medicine and Biology, 2021, 66, 035020.	3.0	8
187	Proton FLASH: passive scattering or pencil beam scanning?. Physics in Medicine and Biology, 2021, 66, 03NT01.	3.0	12
188	Computer Tools to Analyze Lung CT Changes after Radiotherapy. Applied Sciences (Switzerland), 2021, 11, 1582.	2.5	6
189	Monitoring electron energies during FLASH irradiations. Physics in Medicine and Biology, 2021, 66, 045015.	3.0	7
190	Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results. Biomedicines, 2021, 9, 181.	3.2	25

#	Article	IF	CITATIONS
191	X-change symposium: status and future of modern radiation oncology—from technology to biology. Radiation Oncology, 2021, 16, 27.	2.7	1
192	Determining the parameter space for effective oxygen depletion for FLASH radiation therapy. Physics in Medicine and Biology, 2021, 66, 055020.	3.0	24
193	Advanced Technologies for Applied Particle Accelerators and Examples of Their Use (Review). Technical Physics, 2021, 66, 161-195.	0.7	30
194	Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Scientific Reports, 2021, 11, 3341.	3.3	22
195	Perspectives for microbeam irradiation at the SYRMEP beamline. Journal of Synchrotron Radiation, 2021, 28, 410-418.	2.4	4
196	Considerations for shoot-through FLASH proton therapy. Physics in Medicine and Biology, 2021, 66, 06NT01.	3.0	24
197	Dosimetric characterisation and application to radiation biology of a kHz laser-driven electron beam. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	8
198	Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiation Research, 2021, 195, 403-411.	1.5	3
199	Technical Note: Singleâ€pulse beam characterization for FLASHâ€RT using optical imaging in a water tank. Medical Physics, 2021, 48, 2673-2681.	3.0	12
200	FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers, 2021, 13, 1012.	3.7	109
201	FLASH Irradiation with Proton Beams: Beam Characteristics and Their Implications for Beam Diagnostics. Applied Sciences (Switzerland), 2021, 11, 2170.	2.5	9
202	Monte Carlo Comparison of Proton and Helium-ion Minibeam Generation Techniques. Frontiers in Physics, 2021, 9, .	2.1	8
203	An automated optimization strategy to design collimator geometry for small field radiation therapy systems. Physics in Medicine and Biology, 2021, 66, 075016.	3.0	2
204	Radiotherapy in the Era of ImmunotherapyÂWith a Focus on Non-Small-Cell Lung Cancer: Time to Revisit Ancient Dogmas?. Frontiers in Oncology, 2021, 11, 662236.	2.8	19
205	Al ₂ O ₃ :C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Physics in Medicine and Biology, 2021, 66, 085003.	3.0	30
206	Proton linac-based therapy facility for ultra-high dose rate (FLASH) treatment. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	3.4	13
207	Biology of Radiation-Induced Lung Injury. Seminars in Radiation Oncology, 2021, 31, 155-161.	2.2	32
208	Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers, 2021, 13, 1859.	3.7	22

#	Article	IF	CITATIONS
209	Radiobiology Experiments With Ultra-high Dose Rate Laser-Driven Protons: Methodology and State-of-the-Art. Frontiers in Physics, 2021, 9, .	2.1	30
210	Association of Cancer Stem Cell Radio-Resistance Under Ultra-High Dose Rate FLASH Irradiation With Lysosome-Mediated Autophagy. Frontiers in Cell and Developmental Biology, 2021, 9, 672693.	3.7	15
211	Ultra-High Dose Rate FLASH Irradiation Induced Radio-Resistance of Normal Fibroblast Cells Can Be Enhanced by Hypoxia and Mitochondrial Dysfunction Resulting From Loss of Cytochrome C. Frontiers in Cell and Developmental Biology, 2021, 9, 672929.	3.7	17
212	Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Translational Lung Cancer Research, 2021, 10, 1930-1949.	2.8	10
213	Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research. Physics in Medicine and Biology, 2021, 66, 095006.	3.0	16
214	Commissioning of a clinical pencil beam scanning proton therapy unit for ultraâ€high dose rates (FLASH). Medical Physics, 2021, 48, 4017-4026.	3.0	36
215	Compact <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>S</mml:mi></mml:math> -band linear accelerator system for ultrafast, ultrahigh dose-rate radiotherapy. Physical Review Accelerators and Beams, 2021, 24, .	1.6	18
216	Letter in Response toÂDoyen et al., "Early Toxicities After High Dose Rate Proton Therapy in Cancer Treatments― Frontiers in Oncology, 2021, 11, 687593.	2.8	0
217	Commissioning of an ultraâ€high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Medical Physics, 2021, 48, 3134-3142.	3.0	51
218	Establishment and Initial Experience of Clinical FLASH Radiotherapy in Canine Cancer Patients. Frontiers in Oncology, 2021, 11, 658004.	2.8	45
219	FLASH Radiotherapy: History and Future. Frontiers in Oncology, 2021, 11, 644400.	2.8	63
220	Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiotherapy and Oncology, 2021, 158, 7-12.	0.6	26
221	Characteristics of very highâ€energy electron beams for the irradiation of deepâ€seated targets. Medical Physics, 2021, 48, 3958-3967.	3.0	14
222	First theoretical determination of relative biological effectiveness of very high energy electrons. Scientific Reports, 2021, 11, 11242.	3.3	6
223	Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Frontiers in Immunology, 2021, 12, 680503.	4.8	31
224	Linear accelerator for security, industrial and medical applications with rapid beam parameter variation. Radiation Physics and Chemistry, 2021, 183, 109398.	2.8	15
225	Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A Mechanistic Model for FLASH-Dose-Rate Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 110, 574-586.	0.8	19
226	SDDRO-joint: simultaneous dose and dose rate optimization with the joint use of transmission beams and Bragg peaks for FLASH proton therapy. Physics in Medicine and Biology, 2021, 66, 125011.	3.0	19

# 227	ARTICLE Characterization of a highâ€resolution 2D transmission ion chamber for independent validation of proton pencil beam scanning of conventional and FLASH dose delivery. Medical Physics, 2021, 48,	IF 3.0	CITATIONS
228	3948-3957. Faraday cup for commissioning and quality assurance for proton pencil beam scanning beams at	3.0	10
	conventional and ultra-high dose rates. Physics in Medicine and Biology, 2021, 66, 124001.		
229	Towards high spatial resolution tissue-equivalent dosimetry for microbeam radiation therapy using organic semiconductors. Journal of Synchrotron Radiation, 2021, 28, 1444-1454.	2.4	7
230	FLASH Radiotherapy. Radioisotopes, 2021, 70, 279-289.	0.2	1
231	Future Directions in the Use of SAbR for the Treatment of Oligometastatic Cancers. Seminars in Radiation Oncology, 2021, 31, 253-262.	2.2	5
232	Quantitative Assessment of 3D Dose Rate for Proton Pencil Beam Scanning FLASH Radiotherapy and Its Application for Lung Hypofractionation Treatment Planning. Cancers, 2021, 13, 3549.	3.7	33
233	Spreadâ€out Bragg peak proton FLASH irradiation using a clinical synchrocyclotron: Proof of concept and ion chamber characterization. Medical Physics, 2021, 48, 4472-4484.	3.0	36
234	Technological Advances in Charged-Particle Therapy. Cancer Research and Treatment, 2021, 53, 635-640.	3.0	7
235	Impact of high-dose rate radiotherapy on B and natural killer (NK) cell polarization in peripheral blood mononuclear cells (PBMCs) via inducing non-small cell lung cancer (NSCLC)-derived exosomes. Translational Cancer Research, 2021, 10, 3538-3547.	1.0	5
236	FLASH Dose Rate Helium Ion Beams: First In Vitro Investigations. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1011-1022.	0.8	34
237	Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC. International Journal of Radiation Oncology Biology Physics, 2021, 110, 872-882.	0.8	46
238	Cancer Cells Can Exhibit a Sparing FLASH Effect at Low Doses Under Normoxic In Vitro-Conditions. Frontiers in Oncology, 2021, 11, 686142.	2.8	22
239	Multicellular Spheroids as InÂVitro Models of Oxygen Depletion During FLASH Irradiation. International Journal of Radiation Oncology Biology Physics, 2021, 110, 833-844.	0.8	26
240	FLASH Proton Radiotherapy Spares Normal Epithelial and Mesenchymal Tissues While Preserving Sarcoma Response. Cancer Research, 2021, 81, 4808-4821.	0.9	77
241	Models for Translational Proton Radiobiology—From Bench to Bedside and Back. Cancers, 2021, 13, 4216.	3.7	11
242	A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clinical Oncology, 2021, 33, 705-712.	1.4	11
243	Radiation shielding and safety implications following linac conversion to an electron FLASHâ€RT unit. Medical Physics, 2021, 48, 5396-5405.	3.0	12
244	FLASH radiotherapy with carbon ion beams. Medical Physics, 2022, 49, 1974-1992.	3.0	43

#	Article	IF	CITATIONS
245	Optical Filter-Embedded Fiber-Optic Radiation Sensor for Ultra-High Dose Rate Electron Beam Dosimetry. Sensors, 2021, 21, 5840.	3.8	5
246	Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity. Scientific Reports, 2021, 11, 17104.	3.3	4
247	Demonstration of the FLASH Effect Within the Spread-out Bragg Peak After Abdominal Irradiation of Mice. International Journal of Particle Therapy, 2022, 8, 68-75.	1.8	17
248	Comparison of FLASH Proton Entrance and the Spread-Out Bragg Peak Dose Regions in the Sparing of Mouse Intestinal Crypts and in a Pancreatic Tumor Model. Cancers, 2021, 13, 4244.	3.7	48
249	Model studies of the role of oxygen in the FLASH effect. Medical Physics, 2022, 49, 2068-2081.	3.0	37
250	Irradiation at Ultra-High (FLASH) Dose Rates Reduces Acute Normal Tissue Toxicity in the Mouse Gastrointestinal System. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1250-1261.	0.8	53
251	Development of a DNA damage model that accommodates different cellular oxygen concentrations and radiation qualities. Medical Physics, 2021, 48, 5511-5521.	3.0	5
252	Characterization of an xâ€ray tubeâ€based ultrahigh doseâ€rate system for in vitro irradiations. Medical Physics, 2021, 48, 7399-7409.	3.0	9
253	May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiotherapy and Oncology, 2021, 162, 68-75.	0.6	62
254	Modeling of cellular response after FLASH irradiation: a quantitative analysis based on the radiolytic oxygen depletion hypothesis. Physics in Medicine and Biology, 2021, 66, 185009.	3.0	13
255	FLASH Radiotherapy: a Promising Direction in the Fight Against Cancer. Vestnik Rentgenologii I Radiologii, 2021, 102, 240-246.	0.2	0
256	FLASH radiotherapy with photon beams. Medical Physics, 2022, 49, 2055-2067.	3.0	28
257	Radiobiology of the FLASH effect. Medical Physics, 2022, 49, 1993-2013.	3.0	72
258	Review of Conventional and High Dose Rate Brain Radiation (FLASH): Neurobehavioural, Neurocognitive and Assessment Issues in Rodent Models. Clinical Oncology, 2021, 33, e482-e491.	1.4	6
259	Proton therapy for prostate cancer: current state and future perspectives. British Journal of Radiology, 2022, 95, 20210670.	2.2	5
260	Dosimetric impact of FFF over FF beam using VMAT for brain neoplasms treated with radiotherapy. Polish Journal of Medical Physics and Engineering, 2021, 27, 191-199.	0.6	2
261	Quantification of Oxygen Depletion During FLASH Irradiation In Vitro and In Vivo. International Journal of Radiation Oncology Biology Physics, 2021, 111, 240-248.	0.8	93
262	Novel technologies for Linac-based radiotherapy. , 2021, , .		1

#	Article	IF	CITATIONS
263	Re: "A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy.―Ahmed Alanazi, Jintana Meesungnoem and Jean-Paul Gerin. Radiat Res 2021; 195:149–62. Radiation Research, 2021, 196, 447-448.	1.5	4
264	Characterized the Adipogenic Capacity of Adipose-Derived Stem Cell, Extracellular Matrix, and Microenvironment With Fat Components Grafting. Frontiers in Cell and Developmental Biology, 2021, 9, 723057.	3.7	6
265	The LD50 for Low-Energy Ultrashort-Pulsed Laser Driven Electron Beam Whole-Body Irradiation of Wistar Rats. Radiation Research, 2021, 196, 658-667.	1.5	4
266	A simulation study of ionizing radiation acoustic imaging (iRAI) as a realâ€ŧime dosimetric technique for ultraâ€high dose rate radiotherapy (UHDRâ€RT). Medical Physics, 2021, 48, 6137-6151.	3.0	7
267	Can Rational Combination of Ultra-high Dose Rate FLASH Radiotherapy with Immunotherapy Provide a Novel Approach to Cancer Treatment?. Clinical Oncology, 2021, 33, 713-722.	1.4	29
268	Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers, 2021, 13, 4942.	3.7	29
269	Discovery and Optimization of Orally Bioavailable Phthalazone and Cinnolone Carboxylic Acid Derivatives as S1P2 Antagonists against Fibrotic Diseases. Journal of Medicinal Chemistry, 2021, 64, 14557-14586.	6.4	8
270	Canine Comparative Oncology for Translational Radiation Research. International Journal of Radiation Biology, 2021, , 1-16.	1.8	7
271	Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nature Reviews Physics, 2021, 3, 777-790.	26.6	47
272	Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clinical Oncology, 2021, 33, e469-e481.	1.4	2
273	Transient hypoxia in water irradiated by swift carbon ions at ultra-high dose rates: implication for FLASH carbon-ion therapy. Canadian Journal of Chemistry, 2021, 99, 842-849.	1.1	4
274	Early Toxicities After High Dose Rate Proton Therapy in Cancer Treatments. Frontiers in Oncology, 2020, 10, 613089.	2.8	4
275	Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms. Frontiers in Oncology, 2020, 10, 613669.	2.8	19
276	We are ready for clinical implementation of Carbon Ion Radiotherapy in the United States. Journal of Applied Clinical Medical Physics, 2020, 21, 6-9.	1.9	18
277	Radio-Immunology of Ablative Radiation. , 2019, , 15-29.		3
278	The Era of Modern Radiation Therapy: Innovations to Spare Normal Tissues. , 2019, , 1-15.		1
279	Novel Therapies for Glioblastoma. Current Neurology and Neuroscience Reports, 2020, 20, 19.	4.2	50
280	Ultra-high dose-rate (FLASH) radiotherapy: Generation of early, transient, strongly acidic spikes in the irradiated tumor environment. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2020, 24, 332-334.	1.4	11

#	Article	IF	CITATIONS
281	Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?. Radiotherapy and Oncology, 2020, 149, 55-62.	0.6	84
282	Significant changes in yields of 7-hydroxy-coumarin-3-carboxylic acid produced under FLASH radiotherapy conditions. RSC Advances, 2020, 10, 38709-38714.	3.6	18
283	Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine and Biology, 2020, 65, 23TR03.	3.0	135
284	High quality proton portal imaging using deep learning for proton radiation therapy: a phantom study. Biomedical Physics and Engineering Express, 2020, 6, 035029.	1.2	5
287	Linear energy transfer dependence of transient yields in water irradiated by 150 keV – 500 MeV protons in the limit of low dose rates. Canadian Journal of Chemistry, 2020, 98, 427-433.	1.1	10
288	Correction for Ion Recombination in a Built-in Monitor Chamber of a Clinical Linear Accelerator at Ultra-High Dose Rates. Radiation Research, 2020, 194, 580-586.	1.5	23
289	Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment. Radiation Research, 2020, 194, 587-593.	1.5	35
290	Radiotherapy Using High-Intensity Pulsed Radiation Beams (FLASH): A Radiation-Chemical Perspective. Radiation Research, 2020, 194, 607-617.	1.5	57
291	Proton Irradiation Platforms for Preclinical Studies of High-Dose-Rate (FLASH) Effects at RARAF. Radiation Research, 2020, 194, 646-655.	1.5	11
292	Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiation Research, 2020, 194, 636-645.	1.5	43
293	FLASH Investigations Using Protons: Design of Delivery System, Preclinical Setup and Confirmation of FLASH Effect with Protons in Animal Systems. Radiation Research, 2020, 194, 656-664.	1.5	45
294	FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation. Radiation Research, 2020, 194, 618-624.	1.5	64
295	All Irradiations that are Ultra-High Dose Rate may not be FLASH: The Critical Importance of Beam Parameter Characterization and In Vivo Validation of the FLASH Effect. Radiation Research, 2020, 194, 571-572.	1.5	48
296	A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy. Radiation Research, 2020, 195, 149-162.	1.5	24
297	Optimization of Alanine Measurements for Fast and Accurate Dosimetry in FLASH Radiation Therapy. Radiation Research, 2020, 194, 573-579.	1.5	16
298	pMB FLASH - Status and Perspectives of Combining Proton Minibeam with FLASH Radiotherapy. , 2019, , 14-23.		4
299	Calorimeter for Real-Time Dosimetry of Pulsed Ultra-High Dose Rate Electron Beams. Frontiers in Physics, 2020, 8, .	2.1	17
300	Preclinical Challenges in Proton Minibeam Radiotherapy: Physics and Biomedical Aspects. Frontiers in Physics, 2020, 8, .	2.1	7

#	Article	IF	CITATIONS
301	Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy. Radiation Oncology Journal, 2016, 34, 239-249.	1.5	45
302	Dosimetric Optimization of a Laser-Driven Irradiation Facility Using the G4-ELIMED Application. Applied Sciences (Switzerland), 2021, 11, 9823.	2.5	2
303	Generation of ultrafast, transient, highly acidic pH spikes in the radiolysis of water at very high dose rates: relevance for FLASH radiotherapy. Canadian Journal of Chemistry, 2022, 100, 272-279.	1.1	6
304	The current status of preclinical proton FLASH radiation and future directions. Medical Physics, 2022, 49, 2039-2054.	3.0	40
305	Hyper-radiosensitivity in tumor cells following exposure to low dose pulsed x-rays emitted from a kilojoule plasma focus device. Journal of Applied Physics, 2021, 130, .	2.5	4
306	Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology. Cancer and Metastasis Reviews, 2021, 40, 879-889.	5.9	2
307	Implementation and validation of a beam urrent transformer on a medical pulsed electron beam LINAC for FLASHâ€RT beam monitoring. Journal of Applied Clinical Medical Physics, 2021, 22, 165-171.	1.9	28
308	Dosimetry and radioprotection evaluations of very high energy electron beams. Scientific Reports, 2021, 11, 20184.	3.3	2
309	Dose Rate and Dose Painting. Journal of Nuclear Medicine & Radiation Therapy, 2015, 06, .	0.2	0
311	Gender differences in DNA damage/repair after laser-generated ultrafast electron beam irradiation. International Journal of Radiology & Radiation Therapy, 2018, 5, .	0.1	2
313	Ion Acceleration: TNSA and Beyond. Springer Proceedings in Physics, 2019, , 143-164.	0.2	4
314	Evaluating the Reproducibility of Mouse Anatomy under Rotation in a Custom Immobilization Device for Conformal FLASH Radiotherapy. Radiation Research, 2020, 194, 600-606.	1.5	2
315	Initial Steps Towards a Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons at FLASH Dose Rates. Radiation Research, 2020, 194, 594-599.	1.5	11
316	VHEE beam dosimetry at CERN Linear Electron Accelerator for Research under ultra-high dose rate conditions. Biomedical Physics and Engineering Express, 2021, 7, 015012.	1.2	16
317	DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. Journal of Radiation Research, 2022, 63, 255-260.	1.6	15
318	Research Progress of Ultra-High Dose Rate Radiotherapy (FLASH-RT). World Journal of Cancer Research, 2020, 10, 41-46.	0.1	1
319	A Computational Model for Oxygen Depletion Hypothesis in FLASH Effect. Radiation Research, 2021, 197,	1.5	2
320	Non-conventional Ultra-High Dose Rate (FLASH) Microbeam Radiotherapy Provides Superior Normal Tissue Sparing in Rat Lung Compared to Non-conventional Ultra-High Dose Rate (FLASH) Radiotherapy. Cureus, 2021, 13, e19317.	0.5	4

#	Article	IF	CITATIONS
321	The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. International Journal of Radiation Biology, 2022, 98, 439-451.	1.8	24
322	Treatment Planning System for Electron FLASH Radiotherapy: Open-source for Clinical Implementation. International Journal of Radiation Oncology Biology Physics, 2021, , .	0.8	7
323	History of Radiation Therapy Technology. Progress in Medical Physics, 2020, 31, 124-134.	0.3	23
325	Nanoparticle dose enhancement of synchrotron radiation in PRESAGE dosimeters. Journal of Synchrotron Radiation, 2020, 27, 1590-1600.	2.4	4
326	Possible improvement of proton energy filter for radiotherapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 977, 164296.	1.6	1
327	Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiation Research, 2020, 194, 625-635.	1.5	7
328	First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiotherapy and Oncology, 2022, 166, 44-50.	0.6	40
329	Ultra-High Dose Rate (FLASH) Carbon Ion Irradiation:ÂDosimetry and First Cell Experiments. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1012-1022.	0.8	39
330	Simultaneous dose and dose rate optimization (SDDRO) of the FLASH effect for pencilâ€beamâ€scanning proton therapy. Medical Physics, 2022, 49, 2014-2025.	3.0	22
331	Oxygen Depletion in Proton Spot Scanning: A Tool for Exploring the Conditions Needed for FLASH. Radiation, 2021, 1, 290-304.	1.4	2
332	Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Medical Physics, 2022, 49, 497-509.	3.0	16
333	A Novel Proton Pencil Beam Scanning FLASH RT Delivery Method Enables Optimal OAR Sparing and Ultra-High Dose Rate Delivery: A Comprehensive Dosimetry Study for Lung Tumors. Cancers, 2021, 13, 5790.	3.7	22
334	Development of a dosimeter prototype with machine learning based 3-D dose reconstruction capabilities. Biomedical Physics and Engineering Express, 2022, 8, 015009.	1.2	1
335	Radiosensitizing Fe-Au Nanocapsules (Hybridosomes®) increase survival of GL261 brain tumor-bearing mice treated by radiotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 40, 102499.	3.3	5
336	Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. International Journal of Radiation Biology, 2022, 98, 506-516.	1.8	40
338	Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiotherapy and Oncology, 2022, 174, 87-91.	0.6	39
339	In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH. Radiotherapy and Oncology, 2022, 167, 109-115.	0.6	52
340	Dose-dependent Changes After Proton and Photon Irradiation in a Zebrafish Model. Anticancer Research, 2020, 40, 6123-6135.	1.1	0

#	Article	IF	CITATIONS
341	Real-time dosimetry of ultrahigh dose-rate x-ray beams using scintillation detectors. , 2021, , .		1
342	Development of dosimetric procedures for experimental ultra-high dose rate irradiation at a clinical linear accelerator. Journal of Physics: Conference Series, 2022, 2167, 012003.	0.4	2
343	A quantitative FLASH effectiveness model to reveal potentials and pitfalls of high dose rate proton therapy. Medical Physics, 2022, 49, 2026-2038.	3.0	18
344	Treatment Planning Study for Microbeam Radiotherapy Using Clinical Patient Data. Cancers, 2022, 14, 685.	3.7	5
345	Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Medical Physics, 2022, 49, 1902-1910.	3.0	29
346	Time structure of pencil beam scanning proton FLASH beams measured with scintillator detectors and compared with log files. Medical Physics, 2022, 49, 1932-1943.	3.0	13
347	Pulsed low dose-rate radiotherapy: radiobiology and dosimetry. Physics in Medicine and Biology, 2022, 67, 03TR01.	3.0	5
348	Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies. Medical Physics, 2022, 49, 1831-1838.	3.0	19
349	FLASH Radiotherapy Using Single-Energy Proton PBS Transmission Beams for Hypofractionation Liver Cancer: Dose and Dose Rate Quantification. Frontiers in Oncology, 2021, 11, 813063.	2.8	14
350	Ultraâ€high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Medical Physics, 2022, 49, 2082-2095.	3.0	66
351	A Universal Range Shifter and Range Compensator Can Enable Proton Pencil Beam Scanning Single-Energy Bragg Peak FLASH-RT Treatment Using Current Commercially Available Proton Systems. International Journal of Radiation Oncology Biology Physics, 2022, 113, 203-213.	0.8	30
352	A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline. Scientific Reports, 2022, 12, 1484.	3.3	23
353	Three discipline collaborative radiation therapy (3DCRT) special debate: FLASH radiotherapy needs ongoing basic and animal research before implementing it to a large clinical scale. Journal of Applied Clinical Medical Physics, 2022, 23, e13547.	1.9	2
354	On the Transient Radiolytic Oxygen Depletion in the Ultra-High (FLASH) Dose-Rate Radiolysis of Water in a Cell-Like Environment: Effect of e–aq and •OH Competing Scavengers. Radiation Research, 2022, 197,	1.5	6
355	Quantifying the DNA-damaging Effects of FLASH Irradiation With Plasmid DNA. International Journal of Radiation Oncology Biology Physics, 2022, 113, 437-447.	0.8	12
356	CPU-GPU coupling independent reaction times method in NASIC and application in water radiolysis by FLASH irradiation. Biomedical Physics and Engineering Express, 2022, 8, 025015.	1.2	3
357	<i>In vitro</i> assays for investigating the FLASH effect. Expert Reviews in Molecular Medicine, 2022, 24, e10.	3.9	13
358	Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Reviews in Molecular Medicine, 2022, 24, e15.	3.9	21

#	Article	lF	CITATIONS
359	Glial activation positron emission tomography imaging in radiation treatment of breast cancer brain metastases. Physics and Imaging in Radiation Oncology, 2022, 21, 115-122.	2.9	3
360	Non-Targeted Effects of Synchrotron Radiation: Lessons from Experiments at the Australian and European Synchrotrons. Applied Sciences (Switzerland), 2022, 12, 2079.	2.5	1
361	The Therapeutic Potential of FLASH-RT for Pancreatic Cancer. Cancers, 2022, 14, 1167.	3.7	8
362	FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by oxygen tension, dose, and dose rate. British Journal of Radiology, 2022, 95, 20211150.	2.2	19
363	Hadron Therapy Achievements and Challenges: The CNAO Experience. Physics, 2022, 4, 229-257.	1.4	4
364	Non-Cancer Effects following Ionizing Irradiation Involving the Eye and Orbit. Cancers, 2022, 14, 1194.	3.7	6
365	A Comprehensive Analysis of the Relationship Between Dose Rate and Biological Effects in Preclinical and Clinical Studies, From Brachytherapy to Flattening Filter Free Radiation Therapy and FLASH Irradiation. International Journal of Radiation Oncology Biology Physics, 2022, 113, 985-995.	0.8	5
366	Development, Monte Carlo simulations and experimental evaluation of a 3D range-modulator for a complex target in scanned proton therapy. Biomedical Physics and Engineering Express, 2022, 8, 035006.	1.2	5
367	Tumour irradiation in mice with a laser-accelerated proton beam. Nature Physics, 2022, 18, 316-322.	16.7	62
368	Technical note: Proton beam dosimetry at ultraâ€high dose rates (FLASH): Evaluation of GAFchromicâ"¢ (EBT3, EBTâ€XD) and OrthoChromic (OCâ€1) film performances. Medical Physics, 2022, 49, 2732-2745.	3.0	18
369	Response of diamond detectors in ultra-high dose-per-pulse electron beams for dosimetry at FLASH radiotherapy. Physics in Medicine and Biology, 2022, 67, 075002.	3.0	17
370	Design optimization of an electron-to-photon conversion target for ultra-high dose rate x-ray (FLASH) experiments at TRIUMF. Physics in Medicine and Biology, 2022, 67, 105003.	3.0	9
371	The Impact of Sub-Millisecond Damage Fixation Kinetics on the In Vitro Sparing Effect at Ultra-High Dose Rate in UNIVERSE. International Journal of Molecular Sciences, 2022, 23, 2954.	4.1	6
372	Radiation responses of cancer and normal cells to split dose fractions with uniform and grid fields: increasing the therapeutic ratio. International Journal of Radiation Biology, 2022, , 1-8.	1.8	0
373	FLASH: Current status and the transition to clinical use. Medical Physics, 2022, 49, 1972-1973.	3.0	5
374	Ultrafast Tracking of Oxygen Dynamics During Proton FLASH. International Journal of Radiation Oncology Biology Physics, 2022, 113, 624-634.	0.8	18
375	Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons. Radiation Research, 2022, 197, .	1.5	13
376	A highâ€resolution dose calculation engine for Xâ€ray microbeams radiation therapy. Medical Physics, 2022, 49, 3999-4017.	3.0	4

#	Article	IF	CITATIONS
377	Ready for translational research. Nature Physics, 2022, 18, 237-238.	16.7	3
378	Individual pulse monitoring and dose control system for pre-clinical implementation of FLASH-RT. Physics in Medicine and Biology, 2022, 67, 095003.	3.0	10
379	Heat management of a compact xâ€ray source for microbeam radiotherapy and FLASH treatments. Medical Physics, 2022, , .	3.0	4
380	3D computational model of oxygen depletion kinetics in brain vasculature during FLASH RT and its implications for in vivo oximetry experiments. Medical Physics, 2022, 49, 3914-3925.	3.0	5
381	Neoadjuvant Therapy for Primary Resectable Retroperitoneal Sarcomas—Looking Forward. Cancers, 2022, 14, 1831.	3.7	8
382	A deep learning approach to transform two orthogonal X-ray images to volumetric images for image-guided proton therapy. , 2022, , .		0
383	Characterization of the PTB ultra-high pulse dose rate reference electron beam. Physics in Medicine and Biology, 2022, 67, 085013.	3.0	6
384	Using orthogonal 2D kV images for target localization via central matching networks. , 2022, , .		0
385	Clinical and technical challenges of cancer reirradiation: Words of wisdom. Critical Reviews in Oncology/Hematology, 2022, 174, 103655.	4.4	6
386	Focused proton beam generating pseudo Bragg peak for FLASH therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1032, 166618.	1.6	1
387	A 60ÂMeV proton beam-line dedicated to research and development programs. Applied Radiation and Isotopes, 2022, 184, 110190.	1.5	3
388	Recent advances in radiation therapy and photodynamic therapy. Applied Physics Reviews, 2021, 8, .	11.3	29
389	Abdominopelvic FLASH Irradiation Improves PD-1 Immune Checkpoint Inhibition in Preclinical Models of Ovarian Cancer. Molecular Cancer Therapeutics, 2022, 21, 371-381.	4.1	31
390	FLASH ultra-high dose rates in radiotherapy: preclinical and radiobiological evidence. International Journal of Radiation Biology, 2022, 98, 127-135.	1.8	14
391	FLASH radiotherapy: Research process from basic experimentation to clinical application. Precision Radiation Oncology, 2021, 5, 259-266.	1.1	5
392	Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy. Frontiers in Oncology, 2021, 11, 780025.	2.8	7
393	Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiation Research, 2020, 194, 625-635.	1.5	34
394	Radiotherapy on-chip: Microfluidics for Translational Radiation Oncology. Lab on A Chip, 2022, , .	6.0	5

#	Article	IF	CITATIONS
395	Radiation dose-rate is a neglected critical parameter in dose–response of insects. Scientific Reports, 2022, 12, 6242.	3.3	6
396	Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds. Advances in Radiation Oncology, 2022, 7, 100954.	1.2	5
397	Development of an ultraâ€ŧhin parallel plate ionization chamber for dosimetry in FLASH radiotherapy. Medical Physics, 2022, 49, 4705-4714.	3.0	27
398	Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers, 2022, 14, 2004.	3.7	6
399	Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs. Clinical Cancer Research, 2022, 28, 3814-3823.	7.0	42
400	Ultraâ€high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Medical Physics, 2022, 49, 4912-4932.	3.0	51
401	Ultraâ€high dose rate radiation production and delivery systems intended for FLASH. Medical Physics, 2022, 49, 4875-4911.	3.0	11
402	Image guidance for FLASH radiotherapy. Medical Physics, 2022, 49, 4109-4122.	3.0	10
403	Determination of the ion collection efficiency of the Razor Nano Chamber for ultraâ€high doseâ€rate electron beams. Medical Physics, 2022, 49, 4731-4742.	3.0	8
404	Development of a portable hypoxia chamber for ultra-high dose rate laser-driven proton radiobiology applications. Radiation Oncology, 2022, 17, 77.	2.7	5
406	Technical note: Characterization and practical applications of a novel plastic scintillator for online dosimetry for an ultrahigh dose rate (FLASH). Medical Physics, 2022, 49, 4682-4692.	3.0	11
407	Radioprotective effect of Xâ€ray abdominal FLASH irradiation: Adaptation to oxidative damage and inflammatory response may be benefiting factors. Medical Physics, 2022, 49, 4812-4822.	3.0	18
408	Lead-doped scintillator dosimeters for detection of ultrahigh dose-rate x-rays. Physics in Medicine and Biology, 2022, 67, 105007.	3.0	2
409	The effect of non-ionizing excitations on the diffusion of ion species and inter-track correlations in FLASH ultra-high dose rate radiotherapy. Physics in Medicine and Biology, 2022, 67, 105005.	3.0	11
410	First Human Cell Experiments With FLASH Carbon Ions. Anticancer Research, 2022, 42, 2469-2477.	1.1	10
411	Prospect of radiotherapy technology development in the era of immunotherapy. Journal of the National Cancer Center, 2022, 2, 106-112.	7.4	3
412	Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron, 2022, 110, 2215-2241.	8.1	8
413	FLASH with carbon ions: Tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiotherapy and Oncology, 2022, 175, 185-190.	0.6	36

#	Article	IF	Citations
414	Pencil beam scanning proton FLASH maintains tumor control while normal tissue damage is reduced in a mouse model. Radiotherapy and Oncology, 2022, 175, 178-184.	0.6	23
415	Modeling the impact of spatial oxygen heterogeneity on radiolytic oxygen depletion during FLASH radiotherapy. Physics in Medicine and Biology, 2022, 67, 115017.	3.0	8
416	A 2D strip ionization chamber array with high spatiotemporal resolution for proton pencil beam scanning FLASH radiotherapy. Medical Physics, 2022, 49, 5464-5475.	3.0	16
417	Design of static and dynamic ridge filters for FLASH–IMPT: A simulation study. Medical Physics, 2022, 49, 5387-5399.	3.0	10
418	Oxygen Monitoring in Model Solutions and In Vivo in Mice During Proton Irradiation at Conventional and FLASH Dose Rates. Radiation Research, 2022, 198, .	1.5	9
419	Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo. Radiotherapy and Oncology, 2022, 173, 49-54.	0.6	26
420	Modification of the Langendorff system of the isolated beating heart for experimental radiotherapy at a synchrotron: 4000â€Gy in a heart beat. Journal of Synchrotron Radiation, 2022, 29, 1027-1032.	2.4	3
421	Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams. Medical Physics, 2022, 49, 5513-5522.	3.0	15
422	The Development of Flash Radiotherapy for Treatment of Oncologic Diseases. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2022, 77, 1-10.	0.4	1
423	Nontarget and Out-of-Field Doses from Electron Beam Radiotherapy. Life, 2022, 12, 858.	2.4	3
424	Proton Irradiations at Ultra-High Dose Rate vs. Conventional Dose Rate: Strong Impact on Hydrogen Peroxide Yield. Radiation Research, 2022, 198, .	1.5	13
425	Radiation Chemical Yields of 7-Hydroxy-Coumarin-3-Carboxylic Acid for Proton- and Carbon-Ion Beams at Ultra-High Dose Rates: Potential Roles in FLASH Effects. Radiation Research, 2022, 198, .	1.5	9
426	Compact and very high dose-rate plasma focus radiation sources for medical applications. Radiation Physics and Chemistry, 2022, 200, 110296.	2.8	4
427	Technical aspects of proton minibeam radiation therapy: Minibeam generation and delivery. Physica Medica, 2022, 100, 64-71.	0.7	6
428	FLASH radiotherapy: an emerging approach in radiation therapy. Reports of Practical Oncology and Radiotherapy, 2022, 27, 343-351.	0.6	13
429	Treatment-integrated imaging, radiomics, and personalised radiotherapy: the future is at hand. Reports of Practical Oncology and Radiotherapy, 0, , .	0.6	1
430	Ultrahigh dose rate pencil beam scanning proton dosimetry using ion chambers and a calorimeter in support of first inâ€human FLASH clinical trial. Medical Physics, 2022, 49, 6171-6182.	3.0	13
431	Shining a FLASHlight on Ultrahigh Dose-Rate Radiation and Possible Late Toxicity. Clinical Cancer Research, 0, , OF1-OF3.	7.0	4

#	Article	IF	CITATIONS
432	Normal Tissue Sparing by FLASH as a Function of Single-Fraction Dose: A Quantitative Analysis. International Journal of Radiation Oncology Biology Physics, 2022, 114, 1032-1044.	0.8	29
433	Comparable Long-Term Tumor Control for Hypofractionated FLASH Versus Conventional Radiation Therapy in an Immunocompetent Rat Glioma Model. Advances in Radiation Oncology, 2022, 7, 101011.	1.2	4
434	Practical considerations of single-fraction stereotactic ablative radiotherapy to the lung. Lung Cancer, 2022, 170, 185-193.	2.0	4
435	A compact multiplexer for linear accelerator systems. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, 167170.	1.6	1
436	Radiation-induced cardiac side-effects: The lung as target for interacting damage and intervention. Frontiers in Oncology, 0, 12, .	2.8	2
437	Long-term anti-tumor effects following both conventional radiotherapy and FLASH in fully immunocompetent animals with glioblastoma. Scientific Reports, 2022, 12, .	3.3	15
438	Compact Embedded Detection Electronics for Accurate Dose Measurements of MV Pulsed X-rays and Electrons. , 2022, , .		3
440	Intra-Operative Electron Radiation Therapy: An Update of the Evidence Collected in 40 Years to Search for Models for Electron-FLASH Studies. Cancers, 2022, 14, 3693.	3.7	5
441	Electron ultraâ€high dose rate FLASH irradiation study using a clinical linac: Linac modification, dosimetry, and radiobiological outcome. Medical Physics, 2022, 49, 6728-6738.	3.0	4
442	Use of singleâ€energy proton pencil beam scanning Bragg peak for intensityâ€modulated proton therapy FLASH treatment planning in liverâ€hypofractionated radiation therapy. Medical Physics, 2022, 49, 6560-6574.	3.0	14
443	Mechanistic modelling of oxygen enhancement ratio of radiation via Monte Carlo simulation-based DNA damage calculation. Physics in Medicine and Biology, 2022, 67, 175009.	3.0	2
444	Real-time optical oximetry during FLASH radiotherapy using a phosphorescent nanoprobe. Radiotherapy and Oncology, 2022, 176, 239-243.	0.6	3
445	Trade-off in healthy tissue sparing of FLASH and fractionation in stereotactic proton therapy of lung lesions with transmission beams. Radiotherapy and Oncology, 2022, 175, 231-237.	0.6	5
446	Optimization of FLASH proton beams using a trackâ€repeating algorithm. Medical Physics, 0, , .	3.0	1
447	COMPARISON OF OSL AND TL DOSEMETERS WITH DATA COLLECTED AT THE MT25 CYCLIC ELECTRON ACCELERATOR. Radiation Protection Dosimetry, 2022, 198, 670-674.	0.8	0
448	Monte Carlo optimization of a GRID collimator for preclinical megavoltage ultra-high dose rate spatially-fractionated radiation therapy. Physics in Medicine and Biology, 2022, 67, 185001.	3.0	2
449	Treatment planning considerations for the development of FLASH proton therapy. Radiotherapy and Oncology, 2022, 175, 222-230.	0.6	10
450	The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for lateâ€reacting tissues. Medical Physics, 2022, 49, 7672-7682.	3.0	7

#	Article	IF	Citations
451	Dose rate and dose robustness for proton transmission FLASH-RT treatment in lung cancer. Frontiers in Oncology, 0, 12, .	2.8	7
452	Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiotherapy and Oncology, 2022, 175, 238-247.	0.6	11
453	Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiotherapy and Oncology, 2022, 175, 169-177.	0.6	7
454	Radical recombination and antioxidants: a hypothesis on the FLASH effect mechanism. International Journal of Radiation Biology, 2023, 99, 620-628.	1.8	4
455	Radiation target: Moving from theory to practice. , 2022, 1, 100024.		0
456	New setup for basic radiobiology studies using a 3 MV TandetronTM: Design and developments. Nuclear Instruments & Methods in Physics Research B, 2022, 528, 45-53.	1.4	2
457	A model for pumping optimization in edge-pumped disk amplifiers. Optics and Laser Technology, 2022, 156, 108524.	4.6	1
459	A new solution for UHDP and UHDR (Flash) measurements: Theory and conceptual design of ALLS chamber. Physica Medica, 2022, 102, 9-18.	0.7	17
460	Mechanisms of Action of Radiotherapy and Immunotherapy in Lung Cancer: Implications for Clinical Practice. Medical Radiology, 2022, , .	0.1	1
461	Metal Coating Enhancement of Optical Fiber Distributed Radiation Sensors Based on Optical Frequency Domain Reflectometry Technology. SSRN Electronic Journal, 0, , .	0.4	0
462	Cancer therapies inducing DNA damage. , 2022, , 205-225.		0
463	Using Relativistic Self-Trapping Regime of a High-Intensity Laser Pulse for High-Energy Electron Radiotherapy. Plasma Physics Reports, 2022, 48, 591-598.	0.9	2
464	Multi-beam gun design for an S-band klystron. AIP Advances, 2022, 12, .	1.3	1
465	Design and validation of a dosimetric comparison scheme tailored for ultra-high dose-rate electron beams to support multicenter FLASH preclinical studies. Radiotherapy and Oncology, 2022, 175, 203-209.	0.6	10
466	Changes in Radical Levels as a Cause for the FLASH effect: Impact of beam structure parameters at ultra-high dose rates on oxygen depletion in water. Radiotherapy and Oncology, 2022, 175, 193-196.	0.6	9
467	FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases (FAST-01): Protocol for the First Prospective Feasibility Study. JMIR Research Protocols, 0, 12, e41812.	1.0	20
468	Pencil-beam Delivery Pattern Optimization Increases Dose Rate for Stereotactic FLASH Proton Therapy. International Journal of Radiation Oncology Biology Physics, 2023, 115, 759-767.	0.8	4
469	Absorbed-dose-to-water measurement using alanine in ultra-high-pulse-dose-rate electron beams. Physics in Medicine and Biology, 0, , .	3.0	6

#	Article	IF	Citations
470	Evaluating the Suitability of 3D Bioprinted Samples for Experimental Radiotherapy: A Pilot Study. International Journal of Molecular Sciences, 2022, 23, 9951.	4.1	5
471	Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. International Journal of Molecular Sciences, 2022, 23, 10211.	4.1	10
472	Mechanisms of FLASH effect. Frontiers in Oncology, 0, 12, .	2.8	10
473	Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682.	3.2	1
474	Radiobiological Aspects of FLASH Radiotherapy. Biomolecules, 2022, 12, 1376.	4.0	13
475	A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. Journal of Applied Clinical Medical Physics, 2022, 23, .	1.9	24
476	Experimental characterization and Monte Carlo simulation of scintillator detectors in online electron FLASH radiotherapy dosimetry. Journal of Instrumentation, 2022, 17, P09005.	1.2	1
477	Metal coating enhancement of optical fiber distributed radiation sensors based on optical frequency domain reflectometry technology. Optical Fiber Technology, 2022, 73, 103063.	2.7	2
478	FLASH radiotherapy: A promising new method for radiotherapy (Review). Oncology Letters, 2022, 24, .	1.8	6
479	Online charge measurement for petawatt laser-driven ion acceleration. Review of Scientific Instruments, 2022, 93, 103301.	1.3	4
480	Longitudinally Heterogeneous Tumor Dose Optimizes Proton Broadbeam, Interlaced Minibeam, and FLASH Therapy. Cancers, 2022, 14, 5162.	3.7	2
481	FLASH X-ray spares intestinal crypts from pyroptosis initiated by cGAS-STING activation upon radioimmunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
482	Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases. JAMA Oncology, 2023, 9, 62.	7.1	81
483	The First FLASH Clinical Trial—The Journey of a Thousand Miles Begins With 1 Step. JAMA Oncology, 0, , .	7.1	1
484	A review of the impact of FLASH radiotherapy on the central nervous system and glioma. Radiation Medicine and Protection, 2022, 3, 208-212.	0.8	0
485	A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. Radiation and Environmental Biophysics, 2022, 61, 545-559.	1.4	13
486	A mechanistic consideration of oxygen enhancement ratio, oxygen transport and their relevancies for normal tissue sparing under FLASH irradiation. , 2022, 1, .		1
487	The Microbeam Insert at the White Beam Beamline P61A at the Synchrotron PETRA III/DESY: A New Tool for High Dose Rate Irradiation Research. Cancers, 2022, 14, 5137.	3.7	0

		CITATION REPORT		
#	Article	I	IF	CITATIONS
488	Radiation-Induced Rescue Effect: Insights from Microbeam Experiments. Biology, 2022, 11, 15	48. :	2.8	2
489	Towards clinical translation of FLASH radiotherapy. Nature Reviews Clinical Oncology, 2022, 1 791-803.	9,	27.6	69
490	Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH―Effect. Interna Journal of Molecular Sciences, 2022, 23, 12109.	tional ,	4.1	7
492	To FLASH or to Fractionate? That is the question. Zeitschrift Fur Medizinische Physik, 2022, 32	, 387-390.	1.5	0
493	Spatialâ€ŧemporal modulation in radiation therapy. Precision Radiation Oncology, 2022, 6, 27	6-278.	1.1	1
494	Proton beam range verification by means of ionoacoustic measurements at clinically relevant ousing a correlation-based evaluation. Frontiers in Oncology, 0, 12, .	loses	2.8	8
495	Point scintillator dosimetry in ultra-high dose rate electron "FLASH―radiation therapy: A f characterization. Physica Medica, 2022, 103, 127-137.	irst	0.7	5
496	Diamond-based sensors for in vitro cellular radiobiology: Simultaneous detection of cell exocytactivity and ionizing radiation. Biosensors and Bioelectronics, 2022, , 114876.	tic	10.1	0
497	Numerical modeling of air-vented parallel plate ionization chambers for ultra-high dose rate applications. Physica Medica, 2022, 103, 147-156.	I	0.7	2
498	Failure Mode and Effects Analysis for Experimental Use of FLASH on a Clinical Accelerator. Prac Radiation Oncology, 2023, 13, 153-165.	tical	2.1	3
499	Radical Production with Pulsed Beams: Understanding the Transition to FLASH. International Jo of Molecular Sciences, 2022, 23, 13484.	ournal	4.1	7
500	GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications. Physics in Medicine and Biology, 2023, 68, 044001.		3.0	3
501	Practice-oriented solutions integrating intraoperative electron irradiation and personalized pro therapy for recurrent or unresectable cancers: Proof of concept and potential for dual FLASH e Frontiers in Oncology, 0, 12, .		2.8	1
502	A new calculation method for the free electron fraction of an ionization chamber in the ultra-high-dose-per-pulse regimen. Physica Medica, 2022, 103, 175-180.		0.7	8
504	Comparison of intratumor and local immune response between MV X-ray FLASH and convention radiotherapies. Clinical and Translational Radiation Oncology, 2023, 38, 138-146.	onal	1.7	4
505	Charge collection efficiency, underlying recombination mechanisms, and the role of electrode distance of vented ionization chambers under ultra-high dose-per-pulse conditions. Physica Me 2022, 104, 10-17.	edica,	0.7	8
506	Ultra-high dose rate dosimetry for pre-clinical experiments with mm-small proton fields. Physic Medica, 2022, 104, 101-111.	а	0.7	10
507	Ultrahigh-Dose-Rate Proton Irradiation Elicits Reduced Toxicity in Zebrafish Embryos. Advances Radiation Oncology, 2023, 8, 101124.	; in	1.2	3

#	Article	IF	CITATIONS
508	Reduction of recombination effects in large plane parallel beam monitors for FLASH radiotherapy with scanned ion beams. Physica Medica, 2022, 104, 136-144.	0.7	3
509	FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiation Physics and Chemistry, 2023, 205, 110733.	2.8	13
510	A Radiation Biological Analysis of the Oxygen Effect as a Possible Mechanism in FLASH. Advances in Experimental Medicine and Biology, 2022, , 315-321.	1.6	2
511	Physical Challenges of FLASH Radiotherapy. Nuclear Physics News, 2022, 32, 28-31.	0.4	1
513	A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supply. Frontiers in Oncology, 0, 12, .	2.8	2
514	Good Timing Matters: The Spatially Fractionated High Dose Rate Boost Should Come First. Cancers, 2022, 14, 5964.	3.7	2
515	Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model. International Journal of Radiation Oncology Biology Physics, 2023, 116, 655-665.	0.8	11
516	Flash-Effect in Radiotherapy of Tumors and the Problems of its Radiobiological Substantiation. Journal of Oncology Diagnostic Radiology and Radiotherapy, 2022, 5, 9-17. <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.2</td><td>1</td></mml:math>	0.2	1
517	altimg="si900.svg"> <mml:mtext>FLASH</mml:mtext> <mml:mi mathvariant="bold-script">l<mml:mi mathvariant="bold-script">a</mml:mi><mml:mi mathvariant="bold-script">b<mml:mtext>@PITZ</mml:mtext>: New R&D platform with unique capabilities for electron FLASH and VHEE radiation therapy and radiation</mml:mi </mml:mi 	0.7	10
518	biology under preparation at PITZ. Physica Medica, 2022, 104, 174-187. Reinventing Radiobiology in the Light of FLASH Radiotherapy. Annual Review of Cancer Biology, 2023, 7, 1-21.	4.5	23
519	Characterization of Ultra-High-Dose Rate Electron Beams with ElectronFlash Linac. Applied Sciences (Switzerland), 2023, 13, 631.	2.5	8
520	Radiation-Induced Immunoediting of Cancer. , 2023, , 1-20.		0
521	Dual beamâ€current transformer design for monitoring and reporting of electron ultraâ€high dose rate (FLASH) beam parameters. Journal of Applied Clinical Medical Physics, 2023, 24, .	1.9	14
522	Autotaxin facilitates selective LPA receptor signaling. Cell Chemical Biology, 2023, 30, 69-84.e14.	5.2	11
523	lon recombination correction factors and detector comparison in a very-high dose rate proton scanning beam. Physica Medica, 2023, 106, 102518.	0.7	1
524	Out-of-field measurements and simulations of a proton pencil beam in a wide range of dose rates using a Timepix3 detector: Dose rate, flux and LET. Physica Medica, 2023, 106, 102529.	0.7	7
525	Design of an X-ray irradiator based on a standard imaging X-ray tube with FLASH dose-rate capabilities for preclinical research. Radiation Physics and Chemistry, 2023, 206, 110760.	2.8	1
526	Flash Method of Proton Therapy. Physics of Particles and Nuclei Letters, 2022, 19, 834-844.	0.4	0

#	Article	IF	CITATIONS
527	Development of a compact linear accelerator to generate ultrahigh dose rate highâ€energy Xâ€rays for FLASH radiotherapy applications. Medical Physics, 2023, 50, 1680-1698.	3.0	1
528	Effects of Microbeam Irradiation on Rodent Esophageal Smooth Muscle Contraction. Cells, 2023, 12, 176.	4.1	1
529	Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm, 2023, 4, .	7.2	16
530	Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates. Physics in Medicine and Biology, 2023, 68, 045017.	3.0	6
531	Proposal of a VHEE Linac for FLASH radiotherapy. Journal of Physics: Conference Series, 2023, 2420, 012087.	0.4	1
532	Effects of Flash Radiotherapy on Blood Lymphocytes in Humans and Small Laboratory Animals. Radiation Research, 2023, 199, .	1.5	4
533	TURBO: A novel beam delivery system enabling rapid depth scanning for charged particle therapy. Journal of Physics: Conference Series, 2023, 2420, 012094.	0.4	2
534	Slow extraction modelling for NIMMS hadron therapy synchrotrons. Journal of Physics: Conference Series, 2023, 2420, 012101.	0.4	0
535	3D range-modulators for proton therapy: near field simulations with FLUKA and comparison with film measurements. Journal of Physics: Conference Series, 2023, 2431, 012081.	0.4	2
536	æ¿€å‰åŠé€Ÿè^åæŸè,¿ç~æ²»ç−−ç"究现状ä,Žå±•望. Chinese Science Bulletin, 2023, , .	0.7	1
537	Investigating the potential contribution of inter-track interactions within ultra-high dose-rate proton therapy. Physics in Medicine and Biology, 2023, 68, 055006.	3.0	3
538	Impact of respiratory motion on proton pencil beam scanning FLASH radiotherapy: an in silico and phantom measurement study. Physics in Medicine and Biology, 2023, 68, 085008.	3.0	2
539	Comparison of the dosimetric response of two Sr salts irradiated with 60Co Î ³ -rays and synchrotron X-rays at ultra-high dose rate. Radiation Physics and Chemistry, 2023, 208, 110923.	2.8	1
540	Advances in Proton Therapy for the Management of Head and Neck Tumors. Surgical Oncology Clinics of North America, 2023, , .	1.5	0
541	Comparison of Gonadal Toxicity of Single-Fraction Ultra-High Dose Rate and Conventional Radiation in Mice. Advances in Radiation Oncology, 2023, 8, 101201.	1.2	1
542	Delivery of proton FLASH at the TRIUMF Proton Therapy Research Centre. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1052, 168243.	1.6	1
543	Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. International Review of Cell and Molecular Biology, 2023, , 37-68.	3.2	3
544	Electron and ion acceleration from femtosecond laser-plasma peeler scheme. Plasma Physics and Controlled Fusion, 2023, 65, 034005.	2.1	1

#	Article	IF	CITATIONS
545	Ultra-high Dose-rate Carbon-ion Scanning Beam With a Compact Medical Synchrotron Contributing to Further Development of FLASH Irradiation. Anticancer Research, 2023, 43, 581-589.	1.1	2
546	Alanine response to low energy synchrotron x-ray radiation. Physics in Medicine and Biology, 2023, 68, 065011.	3.0	1
547	Induction of DNA strand breaks and oxidative base damages in plasmid DNA by ultra-high dose rate proton irradiation. International Journal of Radiation Biology, 2023, 99, 1405-1412.	1.8	4
548	Proton FLASH effects on mouse skin at different oxygen tensions. Physics in Medicine and Biology, 2023, 68, 055010.	3.0	6
549	Absolute dosimetry for FLASH proton pencil beam scanning radiotherapy. Scientific Reports, 2023, 13, .	3.3	15
550	On the potential biological impact of radiation-induced acoustic emissions during ultra-high dose rate electron radiotherapy: a preliminary study. Physics in Medicine and Biology, 2023, 68, 05LT01.	3.0	1
551	Noise Considerations for Tomographic Reconstruction of Single-Projection Digital Holographic Interferometry-Based Radiation Dosimetry. Photonics, 2023, 10, 188.	2.0	1
552	Monte Carlo simulation of shielding designs for a cabinet form factor preclinical MVâ€energy photon FLASH radiotherapy system. Medical Physics, 0, , .	3.0	3
553	Treatment planning consideration for very high-energy electron FLASH radiotherapy. Physica Medica, 2023, 107, 102539.	0.7	4
554	Flash radiotherapy-gateway to promised land or another mirage. Oral Oncology, 2023, 139, 106342.	1.5	0
555	Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers. , 2022, , .		13
556	RF Design and Measurements of a C-Band Prototype Structure for an Ultra-High Dose-Rate Medical Linac. Instruments, 2023, 7, 10.	1.8	2
557	First Characterization of Novel Silicon Carbide Detectors with Ultra-High Dose Rate Electron Beams for FLASH Radiotherapy. Applied Sciences (Switzerland), 2023, 13, 2986.	2.5	5
558	Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy. International Journal of Particle Therapy, 2023, 9, 279-289.	1.8	2
559	Technical note: Measurement of the bunch structure of a clinical proton beam using a SiPM coupled to a plastic scintillator with an optical fiber. Medical Physics, 0, , .	3.0	1
560	Dosimetric response of Gafchromicâ"¢ EBTâ€XD film to therapeutic protons. Precision Radiation Oncology, 2023, 7, 15-26.	1.1	5
561	Do We Preserve Tumor Control Probability (TCP) in FLASH Radiotherapy? A Model-Based Analysis. International Journal of Molecular Sciences, 2023, 24, 5118.	4.1	1
562	Modeling of scavenging systems in water radiolysis with Geant4-DNA. Physica Medica, 2023, 108, 102549.	0.7	8

#	Article	IF	CITATIONS
563	Feasibility study of hybrid inverse planning with transmission beams and singleâ€energy spreadâ€out Bragg peaks for proton FLASH radiotherapy. Medical Physics, 2023, 50, 3687-3700.	3.0	3
564	Commissioning a 250 MeV research beamline for proton FLASH radiotherapy preclinical experiments. Medical Physics, 2023, 50, 4623-4636.	3.0	3
565	Non-Surgical Definitive Treatment for Operable Breast Cancer: Current Status and Future Prospects. Cancers, 2023, 15, 1864.	3.7	2
566	Modeling the impact of tissue oxygen profiles and oxygen depletion parameter uncertainties on biological response and therapeutic benefit of FLASH. Medical Physics, 2024, 51, 670-681.	3.0	1
567	Assessment of Cystamine's Radioprotective/Antioxidant Ability under High-Dose-Rate Irradiation: A Monte Carlo Multi-Track Chemistry Simulation Study. Antioxidants, 2023, 12, 776.	5.1	2
568	Fractionated FLASH radiation in xenografted lung tumors induced FLASH effect at a split dose of 2 Gy. International Journal of Radiation Biology, 2023, 99, 1542-1549.	1.8	1
569	FLASH Radiotherapy in a Value-Based Health Care Environment—Reply. JAMA Oncology, 0, , .	7.1	0
570	Is singlet oxygen involved in FLASHâ€RT?. Journal of Applied Clinical Medical Physics, 2023, 24, .	1.9	0
571	The CMAM facility for proton-therapy pre-clinical studies: biomaterial irradiation experiments. Journal of Instrumentation, 2023, 18, C03025.	1.2	0
573	Independent Reproduction of the FLASH Effect on the Gastrointestinal Tract: A Multi-Institutional Comparative Study. Cancers, 2023, 15, 2121.	3.7	8
574	Advances in Radiation Therapy for Malignant Pleural Mesothelioma. Medical Radiology, 2023, , .	0.1	0
575	Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations. Journal of Physics Communications, 2023, 7, 042001.	1.2	4
576	Emerging technologies for cancer therapy using accelerated particles. Progress in Particle and Nuclear Physics, 2023, 131, 104046.	14.4	6
577	Radiation-Chemical Oxygen Depletion Depends on Chemical Environment and Dose Rate: Implications for the FLASH Effect. International Journal of Radiation Oncology Biology Physics, 2023, 117, 214-222.	0.8	2
578	Comet Assay Profiling of FLASH-Induced Damage: Mechanistic Insights into the Effects of FLASH Irradiation. International Journal of Molecular Sciences, 2023, 24, 7195.	4.1	2
579	Absence of Tissue-Sparing Effects in Partial Proton FLASH Irradiation in Murine Intestine. Cancers, 2023, 15, 2269.	3.7	3
580	Relationship between the tumor microenvironment and the efficacy of the combination of radiotherapy and immunotherapy. International Review of Cell and Molecular Biology, 2023, , .	3.2	1
581	Transformative Technology for FLASH Radiation Therapy. Applied Sciences (Switzerland), 2023, 13, 5021.	2.5	7

#	Article	IF	CITATIONS
582	Radiation Biology of Lung Cancer. Medical Radiology, 2023, , .	0.1	0
583	In situ correction of recombination effects in ultra-high dose rate irradiations with protons. Physics in Medicine and Biology, 2023, 68, 105013.	3.0	0
584	Recent developments in absolute dosimetry for FLASH radiotherapy. British Journal of Radiology, 2023, 96, .	2.2	5
585	Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials. International Journal of Radiation Oncology Biology Physics, 2023, 117, 482-492.	0.8	1
586	Single Ultra-High Dose Rate Proton Transmission Beam for Whole Breast FLASH-Irradiation: Quantification of FLASH-Dose and Relation with Beam Parameters. Cancers, 2023, 15, 2579.	3.7	2
587	The first PET glimpse of a proton FLASH beam. Physics in Medicine and Biology, 2023, 68, 125001.	3.0	7
588	Secondary radiation dose modeling in passive scattering and pencil beam scanning very high energy electron (VHEE) radiation therapy. Medical Physics, 2023, 50, 4491-4504.	3.0	1
589	FLASH radiotherapy. , 2023, , 329-342.		0
590	Laser-driven ion accelerator. , 2023, , 343-352.		0
591	A Novel Anthropomorphic Phantom Composed of Tissue-Equivalent Materials for Use in Experimental Radiotherapy: Design, Dosimetry and Biological Pilot Study. Biomimetics, 2023, 8, 230.	3.3	1
592	Characterization of a diode dosimeter for UHDR FLASH radiotherapy. Medical Physics, 0, , .	3.0	2
593	Effect of Conventional and Ultrahigh Dose Rate FLASH Irradiations on Preclinical Tumor Models: A Systematic Analysis. International Journal of Radiation Oncology Biology Physics, 2023, 117, 1007-1017.	0.8	3
594	Emerging evidence for adapting radiotherapy to immunotherapy. Nature Reviews Clinical Oncology, 2023, 20, 543-557.	27.6	36
595	A method to implement inter-track interactions in Monte Carlo simulations with TOPAS-nBio and their influence on simulated radical yields following water radiolysis. Physics in Medicine and Biology, 2023, 68, 135017.	3.0	2
596	Measurement of the time structure of FLASH beams using prompt gamma rays and secondary neutrons as surrogates. Physics in Medicine and Biology, 0, , .	3.0	3
597	Ultra-high dose-rate proton FLASH improves tumor control. Radiotherapy and Oncology, 2023, 186, 109741.	0.6	3
598	X-ray source arrays for volumetric imaging during radiotherapy treatment. Scientific Reports, 2023, 13,	3.3	0
599	FLASH Radiation Therapy: Review of the Literature and Considerations for Future Research and Proton Therapy FLASH Trials. Applied Radiation Oncology, 0, , 16-21.	0.5	9

#	Article	IF	CITATIONS
600	Radiotherapeutic Management of Oligometastatic Disease in Low- and Middle-Income Countries: The Current State of Affairs and Perspectives on Future Implementation. Applied Radiation Oncology, 0, , 11-15.	0.5	1
601	Technological Basis for Clinical Trials in FLASH Radiation Therapy: A Review. Applied Radiation Oncology, 0, , 6-14.	0.5	13
602	Investigation of TL and OSL detectors in ultra-high dose rate electron beams. Physics in Medicine and Biology, 2023, 68, 145007.	3.0	2
603	Modeling ultra-high dose rate electron and proton FLASH effect with the physicochemical approach. Physics in Medicine and Biology, 0, , .	3.0	0
604	FLASH Effects Induced by Orthovoltage X-Rays. International Journal of Radiation Oncology Biology Physics, 2023, 117, 1018-1027.	0.8	3
605	Pulsed-beam transmission electron microscopy and radiation damage. Micron, 2023, 172, 103501.	2.2	1
606	Flash Radiotherapy: Innovative Cancer Treatment. Encyclopedia, 2023, 3, 808-823.	4.5	4
607	An interactive murine single-cell atlas of the lung responses to radiation injury. Nature Communications, 2023, 14, .	12.8	7
608	Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. International Journal of Radiation Oncology Biology Physics, 2023, 116, 1202-1217.	0.8	7
609	Multiple Stroboscopic Detection of Long-Lived Nuclear Magnetization for Glutathione Oxidation Kinetics. Journal of Physical Chemistry Letters, 2023, 14, 4247-4251.	4.6	0
610	A stochastic reaction–diffusion modeling investigation of FLASH ultra-high dose rate response in different tissues. Frontiers in Physics, 0, 11, .	2.1	1
611	Radiobiologie in de radiotherapie. Medische Beeldvorming En Radiotherapie, 2023, , 231-262.	0.0	0
612	The current status of FLASH particle therapy: a systematic review. Physical and Engineering Sciences in Medicine, 2023, 46, 529-560.	2.4	5
613	Dose rate assessment of spot-scanning very high energy electrons radiotherapy driven by laser plasma acceleration. Journal of Applied Physics, 2023, 133, .	2.5	1
614	Implementation of novel measurementâ€based patientâ€specific QA for pencil beam scanning proton FLASH radiotherapy. Medical Physics, 2023, 50, 4533-4545.	3.0	1
615	An integrated Monte Carlo track-structure simulation framework for modeling inter and intra-track effects on homogenous chemistry. Physics in Medicine and Biology, 2023, 68, 125008.	3.0	2
616	An insight into hypothesized biological mechanisms contributing to the Flash effect. Frontiers in Physics, 0, 11, .	2.1	2
617	Detailed Monte arlo characterization of a Faraday cup for proton therapy. Medical Physics, 0, , .	3.0	1

#	Article	IF	Citations
618	Increased flexibility and efficiency of a double-scattering FLASH proton beamline configuration for in vivo SOBP radiotherapy treatments. Physics in Medicine and Biology, 2023, 68, 15NT01.	3.0	0
619	Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic. Cancers, 2023, 15, 3377.	3.7	1
620	Passive SOBP generation from a static proton pencil beam using 3D-printed range modulators for FLASH experiments. Frontiers in Physics, 0, 11, .	2.1	3
621	Considerations and current status of treatment planning for proton FLASH radiotherapy. Chinese Science Bulletin, 2023, , .	0.7	1
622	3Dâ€conformal veryâ€high energy electron therapy as candidate modality for FLASHâ€RT: A treatment planning study for glioblastoma and lung cancer. Medical Physics, 2023, 50, 5745-5756.	3.0	2
623	Luminescence imaging of water irradiated by protons under FLASH radiation therapy conditions. Physics in Medicine and Biology, 2023, 68, 15NT02.	3.0	1
624	FLASH instead of proton arc therapy is a more promising advancement for the next generation proton radiotherapy. Journal of Applied Clinical Medical Physics, 2023, 24, .	1.9	3
626	FLASH dose rate calculation based on log files in proton pencil beam scanning therapy. Medical Physics, 0, , .	3.0	0
627	Definition of dose rate for FLASH pencilâ€beam scanning proton therapy: A comparative study. Medical Physics, 0, , .	3.0	0
628	Construction and dosimetric characterization of a motorized scanningâ€slit system for electron FLASH experiments. Medical Physics, 2024, 51, 1396-1404.	3.0	0
629	Dosimetric characterization of a rotating anode xâ€ray tube for FLASH radiotherapy research. Medical Physics, 2024, 51, 1474-1483.	3.0	2
630	Mean dose rate in ultra-high dose rate electron irradiation is a significant predictor for O ₂ consumption and H ₂ O ₂ yield. Physics in Medicine and Biology, 2023, 68, 165014.	3.0	2
631	A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams. Physics in Medicine and Biology, 2023, 68, 175011.	3.0	4
632	Effects of the Oxygen depletion in FLASH irradiation investigated through Geant4-DNA toolkit. Radiation Physics and Chemistry, 2023, , 111184.	2.8	0
634	Enabling ultra-high dose rate electron beams at a clinical linear accelerator for isocentric treatments. Radiotherapy and Oncology, 2023, 187, 109822.	0.6	4
635	First evidence of in vivo effect of FLASH radiotherapy with helium ions in zebrafish embryos. Radiotherapy and Oncology, 2023, 187, 109820.	0.6	3
636	Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer. Cancers, 2023, 15, 3828.	3.7	4
637	Approaches to therapy for ovarian cancer yesterday, today, tomorrow. Onkologiya Zhurnal Imeni P A Gertsena, 2023, 12, 67.	0.2	0

#	Article	IF	CITATIONS
638	Impact of Multiple Beams on the FLASH Effect in Soft Tissue and Skin in Mice. International Journal of Radiation Oncology Biology Physics, 2024, 118, 253-261.	0.8	1
639	Effects of UHDR and Conventional Irradiation on Behavioral and Cognitive Performance and the Percentage of Ly6G+ CD45+ Cells in the Hippocampus. International Journal of Molecular Sciences, 2023, 24, 12497.	4.1	0
640	Intertrack interaction at ultra-high dose rates and its role in the FLASH effect. Frontiers in Physics, 0, 11, .	2.1	1
641	Proton and Electron Ultrahigh-Dose-Rate Isodose Irradiations Produce Differences in Reactive Oxygen Species Yields. International Journal of Radiation Oncology Biology Physics, 2024, 118, 262-267.	0.8	0
642	The dose-related plateau effect of surviving fraction in normal tissue during the ultra-high-dose-rate radiotherapy. Physics in Medicine and Biology, 2023, 68, 185004.	3.0	1
643	2. The Biological Effects of Electron and Current Research Trend. Japanese Journal of Radiological Technology, 2023, 79, 857-862.	0.1	0
644	Characterisation of the UK high energy proton research beamline for high and ultra-high dose rate (FLASH) irradiation. Biomedical Physics and Engineering Express, 2023, 9, 055032.	1.2	0
645	Self-generated magnetic collimation mechanism driven by ultra-intense LG laser. Physics of Plasmas, 2023, 30, .	1.9	0
646	Implications of "flash―radiotherapy for biodosimetry. Radiation Protection Dosimetry, 2023, 199, 1450-1459.	0.8	0
647	Pencil Beam Scanning Bragg Peak FLASH Technique for Ultra-High Dose Rate Intensity-Modulated Proton Therapy in Early-Stage Breast Cancer Treatment. Cancers, 2023, 15, 4560.	3.7	2
648	Early and Transient Formation of Highly Acidic pH Spikes in Water Radiolysis under the Combined Effect of High Dose Rate and High Linear Energy Transfer. Radiation, 2023, 3, 165-182.	1.4	0
649	Evaluation of intensityâ€modulated electron FLASH radiotherapy in a clinical setting using veterinary cases. Medical Physics, 2023, 50, 6569-6579.	3.0	0
650	FLASH Radiotherapy and the Use of Radiation Dosimeters. Cancers, 2023, 15, 3883.	3.7	3
651	Investigation of scan path optimization in improving proton pencil beam scanning continuous delivery. Physics in Medicine and Biology, 2023, 68, 195023.	3.0	0
652	Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics, 2023, 15, 2044.	4.5	7
653	FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. Radiotherapy and Oncology, 2023, 188, 109906.	0.6	2
654	Evaluation of ion chamber response for applications in electron FLASH radiotherapy. Medical Physics, 2024, 51, 494-508.	3.0	2
655	Harnessing progress in radiotherapy for global cancer control. Nature Cancer, 2023, 4, 1228-1238.	13.2	5

ARTICLE

656

657	Radiationâ€induced rhinosinusitis: Mechanism research and clinical progress review. World Journal of Otorhinolaryngology - Head and Neck Surgery, 0, , .	1.6	0
658	Monitoring beam charge during FLASH irradiations. Frontiers in Physics, 0, 11, .	2.1	0
659	Diamond detectors for dose and instantaneous doseâ€rate measurements for ultraâ€high doseâ€rate scanned helium ion beams. Medical Physics, 2024, 51, 1450-1459.	3.0	1
660	Optimal timing for local ablative treatment of bone oligometastases in non-small cell lung cancer. Journal of Bone Oncology, 2023, 42, 100496.	2.4	0
661	Procedural technique development in radiation oncology. , 2023, , 77-80.		0
662	Advanced and emerging radiation therapy approaches for intrahepatic cholangiocarcinoma. Hepatoma Research, 0, , .	1.5	0
663	Toward faster, safer proton therapy. Physics Today, 2023, 76, 15-17.	0.3	0
664	Evaluation of single-fraction high dose FLASH radiotherapy in a cohort of canine oral cancer patients. Frontiers in Oncology, 0, 13, .	2.8	4
665	DNA damage and repair dependencies of ionising radiation modalities. Bioscience Reports, 2023, 43, .	2.4	3
666	Monocrystalline diamond detector for online monitoring during synchrotron microbeam radiotherapy. Journal of Synchrotron Radiation, 2023, 30, .	2.4	0
667	Direct Measurements of FLASH-Induced Changes in Intracellular Oxygenation. International Journal of Radiation Oncology Biology Physics, 2024, 118, 781-789.	0.8	0
668	Very highâ€energy electron dose calculation using the Fermiâ€Eyges theory of multiple scattering and a simplified pencil beam model. Medical Physics, 2023, 50, 8009-8022.	3.0	0
669	Initial experience with an electron FLASH research extension (FLEX) for the Clinac system. Journal of Applied Clinical Medical Physics, 2024, 25, .	1.9	2
670	A human lung alveolus-on-a-chip model of acute radiation-induced lung injury. Nature Communications, 2023, 14, .	12.8	8
671	Pulse parameter optimizer: an efficient tool for achieving prescribed dose and dose rate with electron FLASH platforms. Physics in Medicine and Biology, 2023, 68, 19NT01.	3.0	1
672	Basic Concepts of Radiation Biology. , 2023, , 25-81.		0
673	Design of a rapid-cycling synchrotron for flash proton therapy. Nuclear Science and Techniques/Hewuli, 2023, 34, .	3.4	0

Ð'ÐįлÐįв радŇ–Ð°Ň†Ň–Ð¹Đ¹⁄2Đ¾Đ3Đ¾ Đ¾ĐįŇ€Đ¾Đ¹¼Ň–Đ½ĐµĐ½Đ½D½N•Đ½D° ĐįаҀаĐ¼ĐµŇ,Ň€Đ₂ĐįĐ¾Đ»ĐµĐ³Ň~Đ

#	Article	IF	CITATIONS
674	Optically stimulated luminescence system as an alternative for radiochromic film for 2D reference dosimetry in UHDR electron beams. Physica Medica, 2023, 114, 103147.	0.7	Ο
675	How flash-RT can change the way we treat cancer. AIP Conference Proceedings, 2023, , .	0.4	Ο
676	Shoot-through proton FLASH irradiation lowers linear energy transfer in organs at risk for neurological tumors and is robust against density variations. Physics in Medicine and Biology, 2023, 68, 215020.	3.0	1
677	Lung Organotypic Slices Enable Rapid Quantification of Acute Radiotherapy Induced Toxicity. Cells, 2023, 12, 2435.	4.1	1
678	Quality Assurance in SBRT. , 2023, , 55-68.		0
679	Flash Therapy for Cancer: A Potentially New Radiotherapy Methodology. Cureus, 2023, , .	0.5	Ο
680	A Critical Analysis of Possible Mechanisms for the Oxygen Effect in Radiation Therapy with FLASH. Advances in Experimental Medicine and Biology, 2023, , 127-133.	1.6	2
681	Development and benchmarking of a dose rate engine for rasterâ€scanned FLASH helium ions. Medical Physics, 0, , .	3.0	0
682	The clinical prospect of FLASH radiotherapy. Radiation Medicine and Protection, 2023, , .	0.8	0
685	New insights on clinical perspectives of FLASH radiotherapy: from low- to very high electron energy. Frontiers in Oncology, 0, 13, .	2.8	1
686	Human enteroids as a tool to study conventional and ultra-high dose rate radiation. Integrative Biology (United Kingdom), 2023, 15, .	1.3	0
687	Key changes in the future clinical application of ultra-high dose rate radiotherapy. Frontiers in Oncology, 0, 13, .	2.8	0
688	The first probe of a FLASH proton beam by PET. Physics in Medicine and Biology, 2023, 68, 235004.	3.0	2
689	Architecture, flexibility and performance of a special electron linac dedicated to Flash radiotherapy research: electronFlash with a triode gun of the centro pisano flash radiotherapy (CPFR). Frontiers in Physics, 0, 11, .	2.1	2
690	Realization and dosimetric characterization of a mini-beam/flash electron beam. Frontiers in Physics, O, 11, .	2.1	0
691	The dresden platform is a research hub for ultra-high dose rate radiobiology. Scientific Reports, 2023, 13, .	3.3	Ο
692	Monte Carlo modelling of a prototype small-body portable graphite calorimeter for ultra-high dose rate proton beams. Physics and Imaging in Radiation Oncology, 2023, 28, 100506.	2.9	1
693	Proton Beam Therapy and Photon-Based Magnetic Resonance Image-Guided Radiation Therapy: The Next Frontiers of Radiation Therapy for Hepatocellular Carcinoma. Technology in Cancer Research and Treatment, 2023, 22, .	1.9	0

#	Article	IF	CITATIONS
694	FLASH radiotherapy using high-energy X-rays: Current status of PARTER platform in FLASH research. Radiotherapy and Oncology, 2024, 190, 109967.	0.6	0
695	Predicting Radiation-Induced Lung Injury in Patients With Lung Cancer: Challenges and Opportunities. International Journal of Radiation Oncology Biology Physics, 2024, 118, 639-649.	0.8	0
696	FLASH Radiotherapy: A FLASHing Idea to Preserve Neurocognitive Function. Brain Tumor Research and Treatment, 2023, 11, 223.	1.0	0
697	Radiation Therapy for Pancreatic Cancer: Current and Evolving Paradigms. , 2023, , 37-55.		0
698	Across the stages: a multiscale extension of the generalized stochastic microdosimetric model (MS-GSM2) to include the ultra-high dose rate. Frontiers in Physics, 0, 11, .	2.1	1
699	Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses. International Journal of Radiation Oncology Biology Physics, 2024, 118, 1110-1122.	0.8	Ο
700	FLASH radiotherapy and the associated dosimetric challenges. Journal of Physics: Conference Series, 2023, 2630, 012010.	0.4	0
701	Optimization of the resolution of a streaking setup. Physical Review Accelerators and Beams, 2023, 26,	1.6	Ο
702	High Doseâ€Rate MeV Electron Beam from a Tightlyâ€Focused Femtosecond IR Laser in Ambient Air. Laser and Photonics Reviews, 2024, 18, .	8.7	0
703	Simulation study of a novel small animal FLASH irradiator (SAFI) with integrated inverse-geometry CT based on circularly distributed kV X-ray sources. Scientific Reports, 2023, 13, .	3.3	0
704	Design and simulation of an S-band compact multi-beam klystron. AIP Advances, 2023, 13, .	1.3	0
705	Camouflaged Nanoreactors Mediated Radiotherapy-Adjuvant Chemodynamic Synergistic Therapy. ACS Nano, 2023, 17, 24170-24186.	14.6	2
706	The synchronous detection technique for the accurate monitoring of high-energy pulsed X-rays. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1059, 168954.	1.6	1
707	A Novel Platform for Evaluating Dose Rate Effects on Oxidative Damage to Peptides: Toward a High-Throughput Method to Characterize the Mechanisms Underlying the FLASH Effect. Radiation Research, 2023, , .	1.5	0
708	Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Seminars in Cancer Biology, 2024, 98, 19-30.	9.6	0
709	Diamond-based detection systems for tomorrow's precision dosimetry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1059, 168974.	1.6	1
710	High-Dose Ionizing Radiation Impairs Healthy Dendrite Growth in C. elegans. Advances in Radiation Oncology, 2024, 9, 101415.	1.2	0
711	Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation. Physics in Medicine and Biology, 0, , .	3.0	0

#	Article	IF	CITATIONS
712	Radiobiology experiments with a laser driven x-ray source: Exploring the UHDR regime. EPJ Web of Conferences, 2023, 290, 08001.	0.3	0
713	Preliminary study of low-pressure ionization chamber for online dose monitoring in FLASH carbon ion radiotherapy. Physics in Medicine and Biology, 0, , .	3.0	0
714	C. elegans: A potent model for high-throughput screening experiments investigating the FLASH effect. Clinical and Translational Radiation Oncology, 2024, 45, 100712.	1.7	0
715	Hypofractionation in Glioblastoma: An Overview of Palliative, Definitive, and Exploratory Uses. Cancers, 2023, 15, 5650.	3.7	0
716	Oxygen supplementation in anesthesia can block FLASH effect and anti-tumor immunity in conventional proton therapy. Communications Medicine, 2023, 3, .	4.2	0
717	FLASH radiotherapy sparing effect on the circulating lymphocytes in pencil beam scanning proton therapy: impact of hypofractionation and dose rate. Physics in Medicine and Biology, 2024, 69, 025006.	3.0	1
718	Multiâ€institutional consensus on machine QA for isochronous cyclotronâ€based systems delivering ultraâ€high dose rate (FLASH) pencil beam scanning proton therapy in transmission mode. Medical Physics, 2024, 51, 786-798.	3.0	0
719	Preclinical Ultra-High Dose Rate (FLASH) Proton Radiation Therapy System for Small Animal Studies. Advances in Radiation Oncology, 2024, 9, 101425.	1.2	Ο
720	Effect of Linear Energy Transfer on Cystamine's Radioprotective Activity: A Study Using the Fricke Dosimeter with 6–500 MeV per Nucleon Carbon Ions—Implication for Carbon Ion Hadrontherapy. Molecules, 2023, 28, 8144.	3.8	0
721	Simulation study of protoacoustics as a realâ€ŧime inâ€line dosimetry tool for FLASH proton therapy. Medical Physics, 0, , .	3.0	0
722	Technical note: Commissioning of a linear accelerator producing ultraâ€high dose rate electrons. Medical Physics, 2024, 51, 1415-1420.	3.0	0
723	Dosimetric characterization of a novel UHDR megavoltage X-ray source for FLASH radiobiological experiments. Scientific Reports, 2024, 14, .	3.3	0
724	Computational model of radiation oxygen effect with Monte Carlo simulation: effects of antioxidants and peroxyl radicals. International Journal of Radiation Biology, 2024, 100, 595-608.	1.8	0
725	Feasibility of Synchrotron-Based Ultra-High Dose Rate (UHDR) Proton Irradiation with Pencil Beam Scanning for FLASH Research. Cancers, 2024, 16, 221.	3.7	0
726	Feasibility study of multipleâ€energy Bragg peak proton FLASH on a superconducting gantry with large momentum acceptance. Medical Physics, 2024, 51, 2164-2174.	3.0	0
727	The Effects of Particle LET and Fluence on the Complexity and Frequency of Clustered DNA Damage. Dna, 2024, 4, 34-51.	1.3	0
728	Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiological Physics and Technology, 2024, 17, 11-23.	1.9	0
729	A review of the clinical introduction of 4D particle therapy research concepts. Physics and Imaging in Radiation Oncology, 2024, 29, 100535.	2.9	1

ARTICLE IF CITATIONS # Technical note: A small animal irradiation platform for investigating the dependence of the FLASH 730 3.0 0 effect on electron beam parameters. Medical Physics, 2024, 51, 1421-1432. Streamlined pinâ€ridgeâ€filter design for singleâ€energy proton FLASH planning. Medical Physics, 2024, 51, 2955-2966. Proton-FLASH: effects of ultra-high dose rate irradiation on an in-vivo mouse ear model. Scientific 732 3.3 0 Reports, 2024, 14, . Molecular mechanisms of sensitivity and resistance to radiotherapy. Clinical and Experimental Metastasis, 0, , . A readout system for highly sensitive diamond detectors for FLASH dosimetry. Physics and Imaging in 735 2.9 0 Radiation Óncology, 2024, 29, 100538. Conceptual design of a 714-MHz RFQ for compact proton injectors and development of a new tuning algorithm on its aluminium prototype. Nuclear Science and Techniques/Hewuli, 2024, 35, . 3.4 Design and Test of C-band Linac Prototypes for Electron FLASH Radiotherapy. Journal of Physics: 737 0.4 0 Conference Series, 2024, 2687, 092005. Comparison of measurements and simulation results of dose for the flash radiation therapy beamline 0.4 at PITZ. Journal of Physics: Conference Series, 2024, 2687, 092015. Overview of FLASHlab@PITZ: the new R&D platform for FLASH radiation therapy and radiation 739 0.4 0 biology. Journal of Physics: Conference Series, 2024, 2687, 092006. A spatial measure-valued model for radiation-induced DNA damage kinetics and repair under 740 1.9 protracted irradiation condition. Journal of Mathematical Biology, 2024, 88, . Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film 741 0 3.0dosimetry, and Monte Carlo simulations. Physics in Medicine and Biology, 2024, 69, 055003. Neurotoxicity-sparing radiotherapy for brain metastases in breast cancer: a narrative review. 2.8 Frontiers in Óncology, 0, 13, . Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. 745 3.3 0 Scientific Reports, 2024, 14, . Reconfiguring a Plane-Parallel Transmission Ionization Chamber to Extend the Operating Range into 746 1.5 the Ultra-High Dose-per-pulse Regime. Radiation Research, 2024, 201, . Commissioning and initial validation of Eclipse eMC algorithm for the electron FLASH research 747 1.9 0 extension (FLEX) system for preâ€clinical studies. Journal of Applied Clinical Medical Physics, 0, , . Radiobiology of proton therapy and its clinical implications., 0,,. 748 Differential Remodeling of the Oxylipin Pool After FLASH Versus Conventional Dose-Rate Irradiation 749 0.8 0 In Vitro and In Vivo. International Journal of Radiation Oncology Biology Physics, 2024, , . Delivery of High-Intensity Proton Beam for the Study of Flash-Effect in Radiotherapy., 2023, 29-39.

~				
(пт	ATIO	NIV	FD(דסר
	ALIO			

#	Article	IF	CITATIONS
751	FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Letters, 2024, 587, 216651.	7.2	0
752	FLASH Proton Radiation Therapy Mitigates Inflammatory and Fibrotic Pathways and Preserves Cardiac Function in a Preclinical Mouse Model of Radiation-Induced Heart Disease. International Journal of Radiation Oncology Biology Physics, 2024, , .	0.8	0
753	Pencil Beam Scanning Proton Bragg Peak Conformal FLASH in Prostate Cancer Stereotactic Body Radiotherapy. Cancers, 2024, 16, 798.	3.7	0
754	FLASH Radiotherapy: Expectations, Challenges, and Current Knowledge. International Journal of Molecular Sciences, 2024, 25, 2546.	4.1	0
755	Preliminary study on the correlation between accelerated current and dose in water for an electron-based LINAC. Frontiers in Physics, 0, 12, .	2.1	0
756	Test beam results of a fluorescence-based monitor for ultra-high dose rates. Journal of Instrumentation, 2024, 19, C02043.	1.2	0
757	Digital twins in dosimetry and radiotherapy, a survey and some applications. Radiation Physics and Chemistry, 2024, 218, 111649.	2.8	0
758	FLASH Radiation Therapy — Key physical irradiation parameters and beam characteristics. Journal of Instrumentation, 2024, 19, P02035.	1.2	0
759	Treatment planning with high-resolution 3D dose maps in preclinical and translational synchrotron microbeam radiation therapy. Physics and Imaging in Radiation Oncology, 2024, 30, 100565.	2.9	0
760	A prototype scintillator realâ€time beam monitor for ultraâ€high dose rate radiotherapy. Medical Physics, 2024, 51, 2905-2923.	3.0	0
761	First use of silicon carbide detectors with graphene-enhanced contacts for medical dosimetry. Scientific Reports, 2024, 14, .	3.3	0
762	Design, optimization, and testing of ridge filters for proton FLASH radiotherapy at TRIUMF: The HEDGEHOG. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1063, 169284.	1.6	0
763	Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiotherapy and Oncology, 2024, 194, 110197.	0.6	0
764	The AsiDNAâ,"¢ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest. NAR Cancer, 2024, 6, .	3.1	0
765	Methodology for small animals targeted irradiations at conventional and ultra-high dose rates 65ÂMeV proton beam. Physica Medica, 2024, 120, 103332.	0.7	0
766	Investigation into the Uniformization of Proton Beams for FLASH Therapy. Applied Sciences (Switzerland), 2024, 14, 2660.	2.5	0
767	FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach. Radiation Oncology, 2024, 19, .	2.7	0
768	A comprehensive investigation of the performance of a commercial scintillator system for applications in electron FLASH radiotherapy. Medical Physics, 0, , .	3.0	0