Induction of Antigen-Specific Immunity with a Vaccine Cell Receptor DEC-205

Science Translational Medicine 6, 232ra51 DOI: 10.1126/scitranslmed.3008068

Citation Report

#	Article	IF	CITATIONS
1	Trial watch: IDO inhibitors in cancer therapy. OncoImmunology, 2014, 3, e957994.	2.1	223
2	Recent advances and new opportunities for targeting human dendritic cells in situ. Oncolmmunology, 2014, 3, e954832.	2.1	8
3	Nanoparticle-Mediated Combinatorial Targeting of Multiple Human Dendritic Cell (DC) Subsets Leads to Enhanced T Cell Activation via IL-15–Dependent DC Crosstalk. Journal of Immunology, 2014, 193, 2297-2305.	0.4	39
4	Human skin dendritic cells can be targeted in situ by intradermal injection of antibodies against lectin receptors. Experimental Dermatology, 2014, 23, 909-915.	1.4	26
5	Modes of action of TLR7 agonists in cancer therapy. Immunotherapy, 2014, 6, 1085-1095.	1.0	66
6	Trial watch: Dendritic cell-based anticancer therapy. Oncolmmunology, 2014, 3, e963424.	2.1	62
7	Murine Langerin ⁺ dermal dendritic cells prime <scp>CD</scp> 8 ⁺ <scp>T</scp> cells while <scp>L</scp> angerhans cells induce crossâ€ŧolerance. EMBO Molecular Medicine, 2014, 6, 1191-1204.	3.3	76
8	Targeting human dendritic cells in situ to improve vaccines. Immunology Letters, 2014, 162, 59-67.	1.1	88
9	Dendritic cell immunotherapy: clinical outcomes. Clinical and Translational Immunology, 2014, 3, e21.	1.7	36
10	Enhanced Humoral Responses Induced by Targeting of Antigen to Murine Dendritic Cells. Scandinavian Journal of Immunology, 2015, 82, 515-522.	1.3	17
11	Targeting the indoleamine 2,3-dioxygenase pathway in cancer. , 2015, 3, 51.		280
12	Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small, 2015, 11, 5483-5496.	5.2	103
13	Comparative Immunogenicity of a Cytotoxic T Cell Epitope Delivered by Penetratin and TAT Cell Penetrating Peptides. Molecules, 2015, 20, 14033-14050.	1.7	15
14	Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines, 2015, 3, 662-685.	2.1	225
15	HGF/Met-Signaling Contributes to Immune Regulation by Modulating Tolerogenic and Motogenic Properties of Dendritic Cells. Biomedicines, 2015, 3, 138-148.	1.4	26
16	Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Frontiers in Immunology, 2015, 6, 534.	2.2	134
17	Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. Journal of Immunology Research, 2015, 2015, 1-18.	0.9	40
18	Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget, 2015, 6, 15772-15787.	0.8	265

#	Article	IF	CITATIONS
19	Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets. Blood, 2015, 125, 4042-4051.	0.6	103
20	Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1+ Dendritic Cells Induces Potent Antitumoral Responses. Journal of Immunology, 2015, 194, 5895-5902.	0.4	83
21	lgE/FcÎμRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses. Cell Reports, 2015, 10, 1487-1495.	2.9	61
22	Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models. Frontiers in Immunology, 2015, 6, 243.	2.2	44
23	pH-dependent recognition of apoptotic and necrotic cells by the human dendritic cell receptor DEC205. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7237-7242.	3.3	42
24	A novel method for synthetic vaccine construction based on protein assembly. Scientific Reports, 2014, 4, 7266.	1.6	73
25	Standing on the shoulders of giants: a scientific journey from Singapore to stem cells. Journal of Pediatric Surgery, 2015, 50, 15-22.	0.8	5
26	Resiquimod as an Immunologic Adjuvant for NY-ESO-1 Protein Vaccination in Patients with High-Risk Melanoma. Cancer Immunology Research, 2015, 3, 278-287.	1.6	81
27	Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell–Mediated Antitumor Immunity. Cancer Research, 2015, 75, 3020-3031.	0.4	50
28	MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses. Journal of Controlled Release, 2015, 216, 37-46.	4.8	64
29	Immune Modulation in Hematologic Malignancies. Seminars in Oncology, 2015, 42, 617-625.	0.8	22
30	Targeting the Innate Immune System as Immunotherapy for Acute Myeloid Leukemia. Frontiers in Oncology, 2015, 5, 83.	1.3	33
31	Guiding Principles in the Design of Molecular Bioconjugates for Vaccine Applications. Bioconjugate Chemistry, 2015, 26, 791-801.	1.8	74
32	Virological and Preclinical Characterization of a Dendritic Cell Targeting, Integration-deficient Lentiviral Vector for Cancer Immunotherapy. Journal of Immunotherapy, 2015, 38, 41-53.	1.2	24
33	Ikaros deficiency in host hematopoietic cells separates GVL from GVHD after experimental allogeneic hematopoietic cell transplantation. Oncolmmunology, 2015, 4, e1016699.	2.1	8
34	Rapid generation of NY-ESO-1-specific CD4 ⁺ T _{HELPER} 1 cells for adoptive T-cell therapy. Oncolmmunology, 2015, 4, e1002723.	2.1	20
35	Injectable cryogel-based whole-cell cancer vaccines. Nature Communications, 2015, 6, 7556.	5.8	312
36	Comprehensive functional characterization of cancer–testis antigens defines obligate participation in multiple hallmarks of cancer. Nature Communications, 2015, 6, 8840.	5.8	94

#	Article	IF	CITATIONS
37	Poly(I:C) as cancer vaccine adjuvant: Knocking on the door of medical breakthroughs. , 2015, 146, 120-131.		134
38	Antibody-Mediated Delivery of Antigen to Dendritic Cells. Immunotherapy (Los Angeles, Calif), 2016, 02,	0.1	6
39	Beyond antigens and adjuvants: formulating future vaccines. Journal of Clinical Investigation, 2016, 126, 799-808.	3.9	309
40	Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines, 2016, 4, 8.	2.1	68
41	Biodegradable Polymeric Nanoparticles-Based Vaccine Adjuvants for Lymph Nodes Targeting. Vaccines, 2016, 4, 34.	2.1	101
42	Therapeutic and Prophylactic Cancer Vaccines. , 2016, , 542-549.		1
43	Intradermal injection of an antiâ€Langerinâ€HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo. European Journal of Immunology, 2016, 46, 689-700.	1.6	17
44	Harnessing shared antigens and T-cell receptors in cancer: Opportunities and challenges. Proceedings of the United States of America, 2016, 113, 7944-7945.	3.3	8
45	The use of dendritic cell vaccinations in melanoma: where are we now?. Melanoma Management, 2016, 3, 247-250.	0.1	3
46	Dendritic Cell–Based Immunotherapy: State of the Art and Beyond. Clinical Cancer Research, 2016, 22, 1897-1906.	3.2	295
47	Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells. Immunologic Research, 2016, 64, 887-900.	1.3	23
48	Vesigenurtacel-L (HS-410) in the management of high-grade nonmuscle invasive bladder cancer. Future Oncology, 2016, 12, 2673-2682.	1.1	7
49	Combinatorial immunotherapeutic approaches to restore the function of anergic tumor-reactive cytotoxic CD8 ⁺ T cells. Human Vaccines and Immunotherapeutics, 2016, 12, 2519-2522.	1.4	6
50	Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biology, 2016, 17, 174.	3.8	1,768
51	Recent advances and future of immunotherapy for glioblastoma. Expert Opinion on Biological Therapy, 2016, 16, 1245-1264.	1.4	57
52	Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13438-13443.	3.3	33
53	Gaining ground on a cure through synergy: combining checkpoint inhibitors with cancer vaccines. Expert Review of Clinical Immunology, 2016, 12, 1347-1357.	1.3	24
54	Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E319-27.	3.3	71

#	Article	IF	Citations
55	A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. Oncolmmunology, 2016, 5, e1147641.	2.1	40
56	Future directions in bladder cancer immunotherapy: towards adaptive immunity. Immunotherapy, 2016, 8, 351-365.	1.0	21
57	Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Human Vaccines and Immunotherapeutics, 2016, 12, 104-116.	1.4	9
58	Anti-CTLA-4 Ab. , 2016, , 263-282.		2
59	Advances in Therapeutic Cancer Vaccines. Advances in Immunology, 2016, 130, 191-249.	1.1	88
60	Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. OncoImmunology, 2016, 5, e1088631.	2.1	104
61	Personalized approaches to active immunotherapy in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 72-82.	3.3	41
62	Nanomedicine approaches to improve cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1456.	3.3	39
63	Immune modulation by dendritic-cell-based cancer vaccines. Journal of Biosciences, 2017, 42, 161-173.	0.5	15
64	The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Seminars in Cancer Biology, 2017, 45, 23-35.	4.3	32
65	Exploiting tumor-associated dendritic cell heterogeneity for novel cancer therapies. Journal of Leukocyte Biology, 2017, 102, 317-324.	1.5	32
66	Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. Journal of Controlled Release, 2017, 256, 26-45.	4.8	41
67	Dendritic Cell Strategies for Eliciting Mutation-Derived Tumor Antigen Responses in Patients. Cancer Journal (Sudbury, Mass), 2017, 23, 131-137.	1.0	10
68	NY-ESO-1 Protein Cancer Vaccine With Poly-ICLC and OK-432: Rapid and Strong Induction of NY-ESO-1-specific Immune Responses by Poly-ICLC. Journal of Immunotherapy, 2017, 40, 140-147.	1.2	17
69	Trial watch: Dendritic cell-based anticancer immunotherapy. Oncolmmunology, 2017, 6, e1328341.	2.1	87
70	Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Research in Veterinary Science, 2017, 111, 55-62.	0.9	19
71	Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy. Immunotherapy, 2017, 9, 1019-1034.	1.0	8
72	Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. Journal of Leukocyte Biology, 2017, 102, 1323-1332.	1.5	35

ARTICLE IF CITATIONS # The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are 73 1.4 42 dependent upon p38/JNK signalling. Cytokine, 2017, 99, 287-296. Dendritic Cell-Based Cancer Therapies: Current Status and Future Directions. Molecular and 74 0.4 Translational Medicine, 2017, , 99-120. Co-delivery of the NKT agonist α-galactosylceramide and tumor antigens to cross-priming dendritic 75 cells breaks tolerance to self-antigens and promotes antitumor responses. Oncolmmunology, 2017, 6, 2.1 45 e1339855. Enhancing tumor specific immune responses by transcutaneous vaccination. Expert Review of 2.0 Vaccines, 2017, 16, 1079-1094. Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. 77 2.4 43 Current Opinion in Immunology, 2017, 47, 35-43. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. Journal of Leukocyte Biology, 2017, 102, 1017-1034. 1.5 Enhanced effects of DNA vaccine against botulinum neurotoxin serotype A by targeting antigen to 79 1.1 9 dendritic cells. Immunology Letters, 2017, 190, 118-124. High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity, 2017, 47, 1037-1050.e6. 6.6 231 A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2, . 300 81 5.6 Dendritic cell-based immunotherapy: a basic review and recent advances. Immunologic Research, 2017, 1.3 158 65, 798-810. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert Review of 83 2.0 33 Vaccines, 2017, 16, 27-36. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Seminars in Immunopathology, 2017, 39, 137-152. 84 2.8 Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells. 85 2.2 69 Frontiers in Immunology, 2017, 8, 971. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity. Frontiers in 2.2 164 Immunology, 2017, 8, 1764. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Frontiers in 87 2.2 54 Immunology, 2017, 8, 1804. Immune Cells As Targets and Tools For Cancer Therapy. Immunotherapy (Los Angeles, Calif), 2017, 03, . 0.1 Vaccination-induced skin-resident memory CD8⁺T cells mediate strong protection against 89 2.1 62 cutaneous melanoma. Oncolmmunology, 2018, 7, e1442163. Therapeutic cancer vaccines: From initial findings to prospects. Immunology Letters, 2018, 196, 11-21. 1.1

#	Article	IF	CITATIONS
91	Activation of human CD141 ⁺ and CD1c ⁺ dendritic cells <i>in vivo</i> with combined TLR3 and TLR7/8 ligation. Immunology and Cell Biology, 2018, 96, 390-400.	1.0	33
92	Local Immunotherapies of Cancer. , 2018, , 463-481.		Ο
93	Therapeutic HIV-1 vaccine. Current Opinion in HIV and AIDS, 2018, 13, 119-127.	1.5	22
94	Immunohistochemical Analysis of Foxp3+, CD4+, CD8+ Cell Infiltrates and PD-L1 in Oral Squamous Cell Carcinoma. Pathology and Oncology Research, 2018, 24, 497-505.	0.9	46
95	NY-ESO-1 Vaccination in Combination with Decitabine Induces Antigen-Specific T-lymphocyte Responses in Patients with Myelodysplastic Syndrome. Clinical Cancer Research, 2018, 24, 1019-1029.	3.2	87
96	Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews Immunology, 2018, 18, 168-182.	10.6	736
97	Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials, 2018, 156, 194-203.	5.7	48
98	T cells are involved in the induction of macrophage phenotypes in oral leukoplakia and squamous cell carcinoma—a preliminary report. Journal of Oral Pathology and Medicine, 2018, 47, 136-143.	1.4	18
99	Emerging Targeted and Immune-Based Therapies in Sarcoma. Journal of Clinical Oncology, 2018, 36, 125-135.	0.8	65
100	More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 925-938.	1.8	50
101	Antigen-specific active immunotherapy for ovarian cancer. The Cochrane Library, 2018, 9, CD007287.	1.5	11
102	Theranostics Applications of Nanoparticles in Cancer Immunotherapy. Medical Sciences (Basel,) Tj ETQq1 1 0.78	4314 rgBT 1.3	Qverlock 10
103	Enhancing Protective Efficacy of Poultry Vaccines through Targeted Delivery of Antigens to Antigen-Presenting Cells. Vaccines, 2018, 6, 75.	2.1	16
104	Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets?. Frontiers in Immunology, 2018, 9, 2804.	2.2	94
105	Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment. Frontiers in Immunology, 2018, 9, 3059.	2.2	354
106	HIV-1 T cell epitopes targeted to Rhesus macaque CD40 and DCIR: A comparative study of prototype dendritic cell targeting therapeutic vaccine candidates. PLoS ONE, 2018, 13, e0207794.	1.1	11
107	Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncolmmunology, 2018, 7, e1526250.	2.1	172
108	In vivo cancer vaccination: Which dendritic cells to target and how?. Cancer Treatment Reviews, 2018, 71, 88-101.	3.4	32

#	Article	IF	Citations
109	Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. International Journal of Nanomedicine, 2018, Volume 13, 367-386.	3.3	26
110	Immunogenicity of a Tripartite Cell Penetrating Peptide Containing a MUC1 Variable Number of Tandem Repeat (VNTR) and A T Helper Epitope. Molecules, 2018, 23, 2233.	1.7	15
111	Immune suppression and reversal of the suppressive tumor microenvironment. International Immunology, 2018, 30, 445-455.	1.8	110
112	Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy, 2018, 10, 769-778.	1.0	31
113	Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Frontiers in Pharmacology, 2018, 9, 307.	1.6	25
114	Dendritic Cell Biology. , 2018, , 247-260.e6.		0
115	Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Frontiers in Immunology, 2018, 9, 892.	2.2	18
116	NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Frontiers in Immunology, 2018, 9, 947.	2.2	261
117	A Dendritic Cell-Targeted Adenoviral Vector Facilitates Adaptive Immune Response Against Human Glioma Antigen (CMV-IE) and Prolongs Survival in a Human Glioma Tumor Model. Neurotherapeutics, 2018, 15, 1127-1138.	2.1	17
118	Dendritic cell vaccines for high-grade gliomas. Therapeutics and Clinical Risk Management, 2018, Volume 14, 1299-1313.	0.9	42
119	Personalized cancer neoantigen vaccines come of age. Theranostics, 2018, 8, 4238-4246.	4.6	51
120	The role of dendritic cells in cancer. International Review of Cell and Molecular Biology, 2019, 348, 123-178.	1.6	110
121	Threeâ€dimensional cryogels for biomedical applications. Journal of Biomedical Materials Research - Part A, 2019, 107, 2736-2755.	2.1	79
122	Cellular Therapy for Melanoma. , 2019, , 1-33.		0
123	Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses. Frontiers in Immunology, 2019, 10, 1529.	2.2	34
124	Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Letters, 2019, 19, 5266-5276.	4.5	40
125	Can Dendritic Cell Vaccination Prevent Leukemia Relapse?. Cancers, 2019, 11, 875.	1.7	12
126	Granzyme A Stimulates pDCs to Promote Adaptive Immunity via Induction of Type I IFN. Frontiers in Immunology, 2019, 10, 1450.	2.2	22

#	Article	IF	CITATIONS
127	<p>Co-delivery of allergen epitope fragments and R848 inhibits food allergy by inducing tolerogenic dendritic cells and regulatory T cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 7053-7064.	3.3	16
128	The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Frontiers in Immunology, 2019, 10, 2388.	2.2	198
129	CD137L-DCs, Potent Immune-Stimulators—History, Characteristics, and Perspectives. Frontiers in Immunology, 2019, 10, 2216.	2.2	21
130	Moving Immunoprevention Beyond Virally Mediated Malignancies: Do We Need to Link It to Early Detection?. Frontiers in Immunology, 2019, 10, 2385.	2.2	6
131	Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opinion on Drug Delivery, 2019, 16, 1149-1167.	2.4	46
132	Particulate carrier systems as adjuvants for cancer vaccines. Biomaterials Science, 2019, 7, 4873-4887.	2.6	17
133	Advancing immunomodulation by in vivo antigen delivery to DEC-205 and other cell surface molecules using recombinant chimeric antibodies. International Immunopharmacology, 2019, 73, 575-580.	1.7	29
134	Poly-ICLC, a TLR3 Agonist, Induces Transient Innate Immune Responses in Patients With Treated HIV-Infection: A Randomized Double-Blinded Placebo Controlled Trial. Frontiers in Immunology, 2019, 10, 725.	2.2	54
135	Pathogen Molecular Pattern Receptor Agonists: Treating Cancer by Mimicking Infection. Clinical Cancer Research, 2019, 25, 6283-6294.	3.2	38
136	A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS Central Science, 2019, 5, 808-820.	5.3	64
137	A Characterization of Dendritic Cells and Their Role in Immunotherapy in Glioblastoma: From Preclinical Studies to Clinical Trials. Cancers, 2019, 11, 537.	1.7	66
138	Poly(I:C) Potentiates T Cell Immunity to a Dendritic Cell Targeted HIV-Multiepitope Vaccine. Frontiers in Immunology, 2019, 10, 843.	2.2	21
139	Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?. Frontiers in Immunology, 2019, 10, 9.	2.2	126
140	Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Frontiers in Immunology, 2019, 10, 181.	2.2	37
141	Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Translational Oncology, 2019, 12, 733-738.	1.7	44
142	Enhancing Antigen Cross-Presentation in Human Monocyte-Derived Dendritic Cells by Recruiting the Intracellular Fc Receptor TRIM21. Journal of Immunology, 2019, 202, 2307-2319.	0.4	14
143	Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy. Cancers, 2019, 11, 176.	1.7	18
144	Activation of CD8+ T Cell Responses after Melanoma Antigen Targeting to CD169+ Antigen Presenting Cells in Mice and Humans. Cancers, 2019, 11, 183.	1.7	21

CITATION REPORT ARTICLE IF CITATIONS Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. 2.2 92 Frontiers in Immunology, 2019, 10, 2393. Non-small Cell Lung Cancer Cells Modulate the Development of Human CD1c+ Conventional Dendritic 2.2 Cell Subsets Mediated by CD103 and CD205. Frontiers in Immunology, 2019, 10, 2829. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Frontiers in Immunology, 2019, 2.2 60 10, 2876. Immunological and Genetic Biomarkers of Sarcomas., 2019, , 591-608. Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. 4.9 88 Trends in Biotechnology, 2019, 37, 373-388. Optimising Cancer Vaccine Design in Sarcoma. Cancers, 2019, 11, 1. 1.7 Improving Cancer Vaccine Efficiency by Nanomedicine. Advanced Biology, 2019, 3, e1800287. 3.0 22 Vaccine Therapy in Sarcoma., 2019, , 117-123. Advances in immunotherapy of type I diabetes. Advanced Drug Delivery Reviews, 2019, 139, 83-91. 32 6.6 Tumor Lysate‣oaded Lipid Hybrid Nanovaccine Collaborated with an Immune Checkpoint Antagonist for Combination Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1800837. Dendritic cells as cancer therapeutics. Seminars in Cell and Developmental Biology, 2019, 86, 77-88. 2.3 50 In vivo targeting of protein antigens to dendritic cells using antiâ€DECâ€205 single chain antibody improves HIV Gag specific CD4 $\langle sup \rangle + \langle sup \rangle$ T cell responses protecting from airway challenge with recombinant vacciniaâ \in gag virus. Immunity, Inflammation and Disease, 2019, 7, 55-67. 1.3 Current Considerations on Characterization of Immune Response to Multi-Domain Biotherapeutics. 2.2 15 BioDrugs, 2020, 34, 39-54. Dendritic cells in cancer immunology and immunotherapy. Nature Reviews Immunology, 2020, 20, 7-24. 10.6 1,401 Cell transferâ€based immunotherapies in cancer: A review. IUBMB Life, 2020, 72, 790-800. 1.5 12 <i>XCL1</i>/<i>Glypican-3</i> Fusion Gene Immunization Generates Potent Antitumor Cellular Immunity 34 and Enhances Antia € "PD-1 Efficacy. Cancer Immunology Research, 2020, 8, 81-93. Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue 2.11 Virus Nonstructural Protein 1. Vaccines, 2020, 8, 565.

	Selective tumor antigen vaccine delivery to human CD169 ⁺ antigen-presenting cells using ganglioside-liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27528-27539.	3.3	54
--	---	-----	----

145

146

147

148

149

151

153

154

155

157

159

161

		CITATION R	EPORT	
# 163	ARTICLE Decoding the Heterogeneity of Human Dendritic Cell Subsets. Trends in Immunology, 2020	41 1062-1071	IF 2.9	CITATIONS
103	Decoding the neterogeneity of Human Dendritic Cell Subsets. Hends in Immunology, 2020	, 41, 1002-1071.	2.9	70
164	Tissue-resident memory-like T cells in tumor immunity: Clinical implications. Seminars in Imm 2020, 49, 101415.	nunology,	2.7	15
165	Will Next-Generation Immunotherapy Overcome the Intrinsic Diversity and Low Immunoger Sarcomas to Improve Clinical Benefit?. Cancers, 2020, 12, 3392.	iicity of	1.7	5
166	Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expans dendritic cell subsets. Nature Cancer, 2020, 1, 1204-1217.	ion of	5.7	58
167	Promoting the activation of T cells with glycopolymer-modified dendritic cells by enhancing interactions. Science Advances, 2020, 6, .	cell	4.7	35
168	DC-Based Vaccines for Cancer Immunotherapy. Vaccines, 2020, 8, 706.		2.1	69
169	Human CLEC9A antibodies deliver NY-ESO-1 antigen to CD141 ⁺ dendritic cells naìve and memory NY-ESO-1-specific CD8 ⁺ T cells. , 2020, 8, e000691.	to activate		28
170	Cell and tissue engineering in lymph nodes for cancer immunotherapy. Advanced Drug Delix Reviews, 2020, 161-162, 42-62.	very	6.6	43
171	Cancer-Testis Gene Expression in Hepatocellular Carcinoma: Identification of Prognostic Ma Potential Targets for Immunotherapy. Technology in Cancer Research and Treatment, 2020, 153303382094427.		0.8	4
172	Engineering Strategies for Lymph Node Targeted Immune Activation. Accounts of Chemical 2020, 53, 2055-2067.	Research,	7.6	51
173	Chemical Strategies to Boost Cancer Vaccines. Chemical Reviews, 2020, 120, 11420-11478	s.	23.0	95
174	Targeted Co-delivery of Tumor Antigen and α-Galactosylceramide to CD141+ Dendritic Cell Potent Tumor Antigen-Specific Human CD8+ T Cell Response in Human Immune System Mid Immunology, 2020, 11, 2043.	s Induces a ce. Frontiers in	2.2	18
175	A Phase 1b Study Evaluating the Safety, Tolerability, and Immunogenicity of CMB305, a Len Prime-Boost Vaccine Regimen, in Patients with Locally Advanced, Relapsed, or Metastatic Ca Expressing NY-ESO-1. Oncolmmunology, 2020, 9, 1847846.		2.1	22
176	Combining chemotherapy and autologous peptideâ€pulsed dendritic cells provides survival stageÂIV melanoma patients. JDDG - Journal of the German Society of Dermatology, 2020, 1		0.4	2
178	Human cancer germline antigen-specific cytotoxic T cell—what can we learn from patient. and Molecular Immunology, 2020, 17, 684-692.	Cellular	4.8	12
179	Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141 ⁺ to activate naÃ⁻ve and memory WT1â€specific CD8 ⁺ T cells. Clinical and Trans Immunology, 2020, 9, e1141.	dendritic cells lational	1.7	26
180	Dendritic Cells and Their Role in Immunotherapy. Frontiers in Immunology, 2020, 11, 924.		2.2	253
181	Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacological Research, 2020, 159, 105017.		3.1	27

#	Article	IF	CITATIONS
182	Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers, 2020, 12, 590.	1.7	56
183	Biophysicochemical motifs in T cell receptor sequences as a potential biomarker for high-grade serous ovarian carcinoma. PLoS ONE, 2020, 15, e0229569.	1.1	16
184	Efficacy and safety of dendritic cell vaccines for patients with glioblastoma: A meta-analysis of randomized controlled trials. International Immunopharmacology, 2020, 83, 106336.	1.7	19
185	Cross-Presenting XCR1+ Dendritic Cells as Targets for Cancer Immunotherapy. Cells, 2020, 9, 565.	1.8	28
186	Targeting Antigens to Different Receptors on Conventional Type 1 Dendritic Cells Impacts the Immune Response. Journal of Immunology, 2020, 205, 661-673.	0.4	27
187	Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity, 2020, 53, 78-97.	6.6	44
188	Dendritic Cells and Their Roles in Anti-Tumour Immunity. , 2020, , .		0
189	Controlling timing and location in vaccines. Advanced Drug Delivery Reviews, 2020, 158, 91-115.	6.6	141
190	Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. International Journal of Molecular Sciences, 2020, 21, 597.	1.8	58
191	Notch-Mediated Generation of Monocyte-Derived Langerhans Cells: Phenotype and Function. Journal of Investigative Dermatology, 2021, 141, 84-94.e6.	0.3	10
192	Dendritic Cell Vaccines in Ovarian Cancer. Frontiers in Immunology, 2020, 11, 613773.	2.2	25
193	The use of immunotherapy for treatment of chemoresistant ovarian cancer. , 2021, , 79-96.		0
194	Induction of Therapeutic Protection in an HPV16-Associated Mouse Tumor Model Through Targeting the Human Papillomavirus-16 E5 Protein to Dendritic Cells. Frontiers in Immunology, 2021, 12, 593161.	2.2	6
195	Enhancing the immunogenicity of cancer vaccines by harnessing CLEC9A. Human Vaccines and Immunotherapeutics, 2022, 18, 1-5.	1.4	4
196	Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Frontiers in Immunology, 2021, 12, 641307.	2.2	53
197	Red blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(l : C) for enhanced tumoral photodynamic-immunotherapy. National Science Review, 2021, 8, nwab039.	4.6	63
198	Towards customized cancer vaccines: a promising filed in personalized cancer medicine. Expert Review of Vaccines, 2021, 20, 545-557.	2.0	2
199	Laserâ€assisted epicutaneous immunization to target human skin dendritic cells. Experimental Dermatology, 2021, 30, 1279-1289.	1.4	6

#	Article	IF	CITATIONS
200	Inmunoterapia personalizada contra el cáncer basada en neoantÃgenos. Revisión de la literatura. Revista Facultad De Medicina, 2021, 69, e81633.	0.0	0
201	Emerging glycoâ€based strategies to steer immune responses. FEBS Journal, 2021, 288, 4746-4772.	2.2	22
202	Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 686544.	1.8	25
203	DC-Derived Exosomes for Cancer Immunotherapy. Cancers, 2021, 13, 3667.	1.7	43
204	Therapeutic cancer vaccine therapy for acute myeloid leukemia. Immunotherapy, 2021, 13, 863-877.	1.0	6
205	Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines, 2021, 9, 784.	2.1	3
206	Unboxing dendritic cells: Tales of multiâ€faceted biology and function. Immunology, 2021, 164, 433-449.	2.0	16
207	Fcl ³ R engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nature Communications, 2021, 12, 4791.	5.8	55
208	Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Frontiers in Cell and Developmental Biology, 2021, 9, 732192.	1.8	18
209	Antigen Delivery to DEC205 ⁺ Dendritic Cells Induces Immunological Memory and Protective Therapeutic Effects against HPV-Associated Tumors at Different Anatomical Sites. International Journal of Biological Sciences, 2021, 17, 2944-2956.	2.6	11
210	Dendritic cell-based vaccination: powerful resources of immature dendritic cells against pancreatic adenocarcinoma. Oncolmmunology, 2018, 7, e1504727.	2.1	4
212	Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+T cell recognition. JCI Insight, 2016, 1, e87102.	2.3	66
213	Heterologous prime-boost vaccination protects against EBV antigen–expressing lymphomas. Journal of Clinical Investigation, 2019, 129, 2071-2087.	3.9	48
214	The novel complex combination of alum, CpG ODN and HH2 as adjuvant in cancer vaccine effectively suppresses tumor growth <i>in vivo</i> . Oncotarget, 2017, 8, 45951-45964.	0.8	18
215	Targeting Hsp90 in urothelial carcinoma. Oncotarget, 2015, 6, 8454-8473.	0.8	31
216	The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget, 2016, 7, 14125-14142.	0.8	29
217	Brain Cancer Drug Discovery: Clinical Trials, Drug Classes, Targets, and Combinatorial Therapies. Pharmacological Reviews, 2021, 73, 1172-1203.	7.1	13
218	How dendritic cells sense and respond to viral infections. Clinical Science, 2021, 135, 2217-2242.	1.8	16

#	Article	IF	CITATIONS
219	Specific Protein Antigen Delivery to Human Langerhans Cells in Intact Skin. Frontiers in Immunology, 2021, 12, 732298.	2.2	9
220	Cancer vaccine adjuvants. , 2019, 17, 36-44.	0.3	2
221	Development and Characterization of a Preclinical Model for the Evaluation of CD205-Mediated Antigen Delivery Therapeutics in Type 1 Diabetes. ImmunoHorizons, 2019, 3, 236-253.	0.8	1
222	Cellular Therapy for Melanoma. , 2020, , 1267-1299.		Ο
223	Optimizing dendritic cell-based approaches for cancer immunotherapy. Yale Journal of Biology and Medicine, 2014, 87, 491-518.	0.2	40
224	The expression, modulation and use of cancer-testis antigens as potential biomarkers for cancer immunotherapy. American Journal of Translational Research (discontinued), 2020, 12, 7002-7019.	0.0	9
225	Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. Journal of Controlled Release, 2022, 341, 184-205.	4.8	18
226	Blood DCs activated with R848 and poly(I:C) induce antigen-specific immune responses against viral and tumor-associated antigens. Cancer Immunology, Immunotherapy, 2022, 71, 1705-1718.	2.0	6
227	Assessing the safety, tolerability and efficacy of PLGA-based immunomodulatory nanoparticles in patients with advanced NY-ESO-1-positive cancers: a first-in-human phase I open-label dose-escalation study protocol. BMJ Open, 2021, 11, e050725.	0.8	21
228	Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chemical Reviews, 2022, 122, 3414-3458.	23.0	10
229	Applications of Antibody-Based Antigen Delivery Targeted to Dendritic Cells In Vivo. Antibodies, 2022, 11, 8.	1.2	8
230	Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the Câ€ŧype lectin receptor Langerin. European Journal of Immunology, 2022, 52, 1829-1841.	1.6	5
231	Cancer immunotherapy using artificial adjuvant vector cells to deliver NYâ€ESOâ€1 antigen to dendritic cells in situ. Cancer Science, 2022, 113, 864-874.	1.7	8
232	Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Molecular Cancer, 2022, 21, 45.	7.9	132
233	Tumor lysates cancer vaccine. , 2022, , 21-49.		0
234	Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers, 2022, 14, 978.	1.7	12
235	Haemagglutinin antigen selectively targeted to chicken CD83 overcomes interference from maternally derived antibodies in chickens. Npj Vaccines, 2022, 7, 33.	2.9	3
236	Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. Medical Review, 2021, 1, 222-243.	0.3	4

#	Article	IF	CITATIONS
237	Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. Methods in Molecular Biology, 2022, 2410, 649-670.	0.4	11
238	Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Frontiers in Immunology, 2021, 12, 775761.	2.2	45
250	Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. Nano Convergence, 2022, 9, 19.	6.3	12
251	Development of an Antigen Delivery System for a B Cell-Targeted Vaccine as an Alternative to Dendritic Cell-Targeted Vaccines. Chemical and Pharmaceutical Bulletin, 2022, 70, 341-350.	0.6	2
252	An all-in-one adjuvanted therapeutic cancer vaccine targeting dendritic cell cytosol induces long-lived tumor suppression through NLRC4 inflammasome activation. Biomaterials, 2022, 286, 121542.	5.7	10
253	Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold. ACS Medicinal Chemistry Letters, 0, , .	1.3	2
254	Emerging applications of nanobodies in cancer therapy. International Review of Cell and Molecular Biology, 2022, , 143-199.	1.6	9
255	Targeting undruggable carbohydrate recognition sites through focused fragment library design. Communications Chemistry, 2022, 5, .	2.0	9
256	Antigen targeting to dendritic cells: Still a place in future immunotherapy?. European Journal of Immunology, 2022, 52, 1909-1924.	1.6	7
257	Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Current Opinion in Immunology, 2022, 77, 102215.	2.4	12
259	Dendritic cell transfer for cancer immunotherapy. International Review of Cell and Molecular Biology, 2022, , 33-64.	1.6	7
260	Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. International Journal of Molecular Sciences, 2022, 23, 7325.	1.8	7
261	The Dendritic Cell Dilemma in the Skin: Between Tolerance and Immunity. Frontiers in Immunology, 0, 13, .	2.2	7
262	Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics, 2022, 14, 1448.	2.0	6
263	An adjuvant-containing cDC1-targeted recombinant fusion vaccine conveys strong protection against murine melanoma growth and metastasis. Oncolmmunology, 2022, 11, .	2.1	1
264	Dendritic Cell Vaccines: A Promising Approach in the Fight against Ovarian Cancer. Cancers, 2022, 14, 4037.	1.7	13
265	Cancer vaccines: the next immunotherapy frontier. Nature Cancer, 2022, 3, 911-926.	5.7	207
266	Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunological Investigations, 2022, 51, 2133-2158.	1.0	20

		15	0
#	Article	IF	CITATIONS
267	MuSyC dosing of adjuvanted cancer vaccines optimizes antitumor responses. Frontiers in Immunology, 0, 13, .	2.2	3
268	Refining the DC-targeting vaccination for preventing emerging infectious diseases. Frontiers in Immunology, 0, 13, .	2.2	5
269	Vaccine adjuvants to engage the cross-presentation pathway. Frontiers in Immunology, 0, 13, .	2.2	33
270	Reinvigoration of innate and adaptive immunity via therapeutic cellular vaccine for patients with AML. Molecular Therapy - Oncolytics, 2022, 27, 315-332.	2.0	9
271	Strategies to overcome DC dysregulation in the tumor microenvironment. Frontiers in Immunology, 0, 13, .	2.2	19
272	Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. IScience, 2022, 25, 105324.	1.9	2
273	Benefits of an Immunogenic Personalized Neoantigen Nanovaccine in Patients with Highâ€Risk Gastric/Gastroesophageal Junction Cancer. Advanced Science, 2023, 10, .	5.6	6
274	Selfâ€Assembly of Immune Signals to Program Innate Immunity through Rational Adjuvant Design. Advanced Science, 2023, 10, .	5.6	11
275	A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treatment and Research Communications, 2023, 34, 100667.	0.7	2
276	DEC-205 receptor targeted poly(lactic-co-glycolic acid) nanoparticles containing Eucommia ulmoides polysaccharide enhances the immune response of foot-and-mouth disease vaccine in mice. International Journal of Biological Macromolecules, 2023, 227, 576-589.	3.6	3
277	Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	12
278	Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Frontiers in Immunology, 0, 13, .	2.2	12
279	Cancerâ€ŧestis gene <scp> <i>STK31</i> </scp> is regulated by methylation and promotes the development of pancreatic cancer. Cancer Medicine, 0, , .	1.3	1
280	Adipocytes Encapsulating Telratolimod Recruit and Polarize Tumorâ€Associated Macrophages for Cancer Immunotherapy. Advanced Science, 2023, 10, .	5.6	8
281	Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. Journal of Leukocyte Biology, 2023, 113, 164-190.	1.5	3
282	Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomedicine and Pharmacotherapy, 2023, 161, 114457.	2.5	3
283	Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnology Advances, 2023, 65, 108144.	6.0	8
284	Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. International Journal of Pharmaceutics, 2023, 635, 122703.	2.6	3

#	Article	IF	CITATIONS
285	Dendritic Cell Subsets in Melanoma: Pathophysiology, Clinical Prognosis and Therapeutic Exploitation. Cancers, 2023, 15, 2206.	1.7	2
293	Vaccine adjuvants: mechanisms and platforms. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	41
299	In the Pipeline: Emerging Therapy for Acute Myeloid Leukaemia. , 2023, , 193-242.		0