Host lifestyle affects human microbiota on daily timesc

Genome Biology

15, R89

DOI: 10.1186/gb-2014-15-7-r89

Citation Report

#	Article	IF	CITATIONS
1	Dynamics of tongue microbial communities with single-nucleotide resolution using oligotyping. Frontiers in Microbiology, 2014, 5, 568.	1.5	38
2	Science is innate!. Genome Biology, 2014, 15, 477.	3.8	0
4	Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution. Environmental Science and Technology Letters, 2014, 1, 405-409.	3.9	80
5	Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports, 2015, 5, 16350.	1.6	350
6	Entropy-Scaling Search of Massive Biological Data. Cell Systems, 2015, 1, 130-140.	2.9	64
7	Metabolome of human gut microbiome is predictive of host dysbiosis. GigaScience, 2015, 4, 42.	3.3	95
8	Self-tracking the microbiome: where do we go from here?. Microbiome, 2015, 3, 70.	4.9	10
9	The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 243-249.	1.1	51
10	Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microbial Ecology in Health and Disease, 2015, 26, 26555.	3.8	16
11	Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. Frontiers in Microbiology, 2015, 6, 1408.	1.5	106
12	Patterns of Gut Bacterial Colonization in Three Primate Species. PLoS ONE, 2015, 10, e0124618.	1.1	50
13	Inter-Individual Differences in the Oral Bacteriome Are Greater than Intra-Day Fluctuations in Individuals. PLoS ONE, 2015, 10, e0131607.	1.1	47
14	Perilipin-2 Modulates Lipid Absorption and Microbiome Responses in the Mouse Intestine. PLoS ONE, 2015, 10, e0131944.	1.1	43
15	The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations. PLoS ONE, 2015, 10, e0141842.	1.1	181
16	The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. PLoS ONE, 2015, 10, e0117441.	1.1	349
17	Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology, 2015, 25, 56-66.	2.3	345
18	The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microbial Ecology in Health and Disease, 2015, 26, 26309.	3.8	32
19	Unraveling the environmental and genetic interactions inÂatherosclerosis: Central role of the gut microbiota. Atherosclerosis, 2015, 241, 387-399.	0.4	67

#	Article	IF	Citations
20	Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host and Microbe, 2015, 17, 603-616.	5.1	628
21	Hospitalization Type and Subsequent Severe Sepsis. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 581-588.	2.5	124
22	Temporal and technical variability of human gut metagenomes. Genome Biology, 2015, 16, 73.	3.8	143
23	Dietary Microbes Modulate Transgenerational Cancer Risk. Cancer Research, 2015, 75, 1197-1204.	0.4	43
24	The regulation of fecal microbiota for transplantation: An international perspective for policy and public health. Clinical Research and Regulatory Affairs, 2015, 32, 99-107.	2.1	15
25	Heritability Studies: Methodological Flaws, Invalidated Dogmas, and Changing Paradigms. Advances in Medical Sociology, 2015, , 1-44.	0.1	20
26	Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota. Current Opinion in Biotechnology, 2015, 32, 149-155.	3.3	35
27	What Is a Host? Incorporating the Microbiota into the Damage-Response Framework. Infection and Immunity, 2015, 83, 2-7.	1.0	89
28	Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 633-640.	3.3	63
29	Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Computational and Structural Biotechnology Journal, 2015, 13, 390-401.	1.9	182
30	Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Scientific Reports, 2015, 5, 11845.	1.6	112
31	Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7569-7574.	3.3	135
32	Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clinical Microbiology and Infection, 2015, 21, 936.e1-936.e10.	2.8	57
33	Our interface with the built environment: immunity and the indoor microbiota. Trends in Immunology, 2015, 36, 121-123.	2.9	42
34	Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism. Cell Host and Microbe, 2015, 17, 681-689.	5.1	634
35	Sewage Reflects the Microbiomes of Human Populations. MBio, 2015, 6, e02574.	1.8	220
36	Deciphering microbial community robustness through synthetic ecology and molecular systems synecology. Current Opinion in Biotechnology, 2015, 33, 305-317.	3.3	60
37	Statistical Tools for Data Analysis. Springer Protocols, 2015, , 41-57.	0.1	0

#	Article	IF	CITATIONS
38	Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome, 2015, 3, 44.	4.9	118
39	Milk bioactives may manipulate microbes to mediate parent-offspring conflict. Evolution, Medicine and Public Health, 2015, 2015, 106-121.	1.1	42
40	Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Current Obesity Reports, 2015, 4, 389-400.	3.5	146
41	The intestinal microbiome in human disease and how it relates to arthritis and spondyloarthritis. Best Practice and Research in Clinical Rheumatology, 2015, 29, 202-212.	1.4	32
42	ConStrains identifies microbial strains in metagenomic datasets. Nature Biotechnology, 2015, 33, 1045-1052.	9.4	235
43	The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Frontiers in Microbiology, 2016, 7, 1081.	1.5	315
44	Individuality, Stability, and Variability of the Plaque Microbiome. Frontiers in Microbiology, 2016, 7, 564.	1.5	75
45	Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Frontiers in Microbiology, 2016, 7, 634.	1.5	27
46	Tracking Strains in the Microbiome: Insights from Metagenomics and Models. Frontiers in Microbiology, 2016, 7, 712.	1.5	44
47	Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales. Frontiers in Microbiology, 2016, 7, 1367.	1.5	83
48	Alteration of Fecal Microbiota Profiles in Juvenile Idiopathic Arthritis. Associations with HLA-B27 Allele and Disease Status. Frontiers in Microbiology, 2016, 7, 1703.	1.5	65
49	Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. International Journal of Molecular Sciences, 2016, 17, 578.	1.8	55
50	Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Nutrients, 2016, 8, 684.	1.7	57
52	On the Origins and Control of Community Types in the Human Microbiome. PLoS Computational Biology, 2016, 12, e1004688.	1.5	69
53	Regulation of Host Chromatin by Bacterial Metabolites. , 2016, , 423-442.		5
54	Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine. Frontiers in Physiology, 2016, 7, 606.	1.3	40
55	The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions. Frontiers in Astronomy and Space Sciences, 2016, 3, .	1.1	48
56	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clinical Pharmacology and Therapeutics, 2016, 99, 588-599.	2.3	24

		CITATION REPORT		
#	Article		IF	CITATIONS
57	Links Between the Microbiome and Bone. Journal of Bone and Mineral Research, 2016,	31, 1638-1646.	3.1	151
58	The role of tissueâ€specific microbiota in initial establishment success of <scp>PEnvironmental Microbiology, 2016, 18, 970-987.</scp>	acific oysters.	1.8	107
59	Dynamic Poisson Factor Analysis. , 2016, , .			2
60	The Gut Microbiome. , 2016, , 799-808.			2
61	The effect of NOD2 on the microbiota in Crohn's disease. Current Opinion in Biotechno 97-102.	ology, 2016, 40,	3.3	29
62	Predicting microbial interactions through computational approaches. Methods, 2016,	102, 12-19.	1.9	49
63	Host genetics is associated with the gut microbial community membership rather than Molecular BioSystems, 2016, 12, 1676-1686.	the structure.	2.9	11
64	Layerâ€byâ€Layer Encapsulation of Probiotics for Delivery to the Microbiome. Advance 28, 9486-9490.	d Materials, 2016,	11.1	239
65	Signals from the gut microbiota to distant organs in physiology and disease. Nature Me 1079-1089.	edicine, 2016, 22,	15.2	952
67	The subgingival periodontal microbiota of the aging mouth. Periodontology 2000, 201	6, 72, 30-53.	6.3	127
68	An overview of major metagenomic studies on human microbiomes in health and disea Biology, 2016, 4, 192-206.	se. Quantitative	0.3	10
69	How stable is the human gut microbiota? And why this question matters. Environmenta Microbiology, 2016, 18, 2779-2783.	al	1.8	17
70	Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bac Capnocytophaga sputigena. Toxicology in Vitro, 2016, 36, 133-141.	terium	1.1	12
71	Insights into human evolution from ancient and contemporary microbiome studies. Cu in Genetics and Development, 2016, 41, 14-26.	rrent Opinion	1.5	49
72	Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation?. Trends in Ecolo Evolution, 2016, 31, 689-699.	gy and	4.2	235
73	Mobile genes in the human microbiome are structured from global to individual scales. 535, 435-439.	Nature, 2016,	13.7	233
74	Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews 648-663.	s, 2016, 40,	3.9	71
75	The Microbiota and Its Modulation in Immune-Mediated Disorders. , 2016, , 191-227.			1

#	Article	IF	CITATIONS
76	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8, 343ra81.	5.8	763
77	Defining and quantifying the resilience of responses to disturbance: a conceptual and modelling approach from soil science. Scientific Reports, 2016, 6, 28426.	1.6	58

78 The human microbiome: Opportunities for dynamics, systems, and control (based on the IFAC blog post) Tj ETQq0 0 0 rgBT / Overlock 10

79	Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: an open, randomised, parallel-group study. Beneficial Microbes, 2016, 7, 473-484.	1.0	38
80	Use of Metatranscriptomics in Microbiome Research. Bioinformatics and Biology Insights, 2016, 10, BBI.S34610.	1.0	328
81	Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Medicine, 2016, 8, 47.	3.6	100
82	The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome, 2016, 4, 21.	4.9	99
83	Rules of the game for microbiota. Nature, 2016, 534, 182-183.	13.7	17
84	Universality of human microbial dynamics. Nature, 2016, 534, 259-262.	13.7	225
85	The intestinal microbiome and surgical disease. Current Problems in Surgery, 2016, 53, 257-293.	0.6	24
86	Microbiota and pathogen †pas de deux': setting up and breaking down barriers to intestinal infection. Pathogens and Disease, 2016, 74, ftw051.	0.8	20
87	The obese gut microbiome across the epidemiologic transition. Emerging Themes in Epidemiology, 2016, 13, 2.	1.2	40
88	Measuring the biodiversity of microbial communities by flow cytometry. Methods in Ecology and Evolution, 2016, 7, 1376-1385.	2.2	161
89	Getting Personal About Nutrition. Trends in Molecular Medicine, 2016, 22, 83-85.	3.5	11
90	A glance at … dietary emulsifiers, the human intestinal mucus and microbiome, and dietary fiber. Nutrition, 2016, 32, 609-614.	1.1	24
91	Microbiota and lifestyle interactions through the lifespan. Trends in Food Science and Technology, 2016, 57, 265-272.	7.8	24
92	What goes around comes around: novel pharmacological targets in the gut–brain axis. Therapeutic Advances in Gastroenterology, 2016, 9, 339-353.	1.4	14
93	Characterization of the gut microbiome in epidemiologic studies: the multiethnic cohort experience. Annals of Epidemiology, 2016, 26, 373-379.	0.9	42

#	Article	IF	CITATIONS
94	Composition and stability of intestinal microbiota of healthy children within a Dutch population. FASEB Journal, 2016, 30, 1512-1522.	0.2	45
95	Composition of human faecal microbiota in resistance to Campylobacter infection. Clinical Microbiology and Infection, 2016, 22, 61.e1-61.e8.	2.8	74
96	The microbiome and its potential as a cancer preventive intervention. Seminars in Oncology, 2016, 43, 97-106.	0.8	102
97	The Microbiome in Populations with a Low and High Prevalence of Caries. Journal of Dental Research, 2016, 95, 80-86.	2.5	194
98	Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, 2017, 61, 1500902.	1.5	194
99	Balance Trees Reveal Microbial Niche Differentiation. MSystems, 2017, 2, .	1.7	284
100	The Influence of the Microbiome on Allergic Sensitization to Food. Journal of Immunology, 2017, 198, 581-589.	0.4	92
101	Bringing the Dynamic Microbiome to Life with Animations. Cell Host and Microbe, 2017, 21, 7-10.	5.1	95
102	Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Medicine, 2017, 15, 7.	2.3	170
103	Gut Microbiome of the Canadian Arctic Inuit. MSphere, 2017, 2, .	1.3	40
104	Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. MSystems, 2017, 2,	1.7	558
105	Role of microbial communities in the pathogenesis of periodontal diseases and caries. Journal of Clinical Periodontology, 2017, 44, S23-S38.	2.3	176
106	A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. Journal of Applied Microbiology, 2017, 122, 1627-1638.	1.4	31
107	Alterations to the Gut Microbiome Impair Bone Strength and Tissue Material Properties. Journal of Bone and Mineral Research, 2017, 32, 1343-1353.	3.1	109
108	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
109	The human microbiome: an emerging tool in forensics. Microbial Biotechnology, 2017, 10, 228-230.	2.0	55
110	A psychology of the human brain–gut–microbiome axis. Social and Personality Psychology Compass, 2017, 11, e12309.	2.0	121
111	The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Review of Endocrinology and Metabolism, 2017, 12, 215-226.	1.2	30

#	Article	IF	CITATIONS
112	The role of the microbiome in cancer development and therapy. Ca-A Cancer Journal for Clinicians, 2017, 67, 326-344.	157.7	447
113	The Role of the Skin and Gut Microbiome in Psoriatic Disease. Current Dermatology Reports, 2017, 6, 94-103.	1.1	99
114	Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, 2017, 15, 397-408.	13.6	277
115	Probabilistic Invasion Underlies Natural Gut Microbiome Stability. Current Biology, 2017, 27, 1999-2006.e8.	1.8	144
116	The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 2017, 15, 630-638.	13.6	696
117	Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status. Infection and Immunity, 2017, 85, .	1.0	141
118	Weightâ€loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obesity Reviews, 2017, 18, 832-851.	3.1	161
119	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 2017, 15, 531-543.	13.6	150
120	Flavanol plasma bioavailability is affected by metabolic syndrome in rats. Food Chemistry, 2017, 231, 287-294.	4.2	21
121	Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome, 2017, 5, 39.	4.9	89
122	The Microbiome and Human Biology. Annual Review of Genomics and Human Genetics, 2017, 18, 65-86.	2.5	266
123	Health and Disease Imprinted in the Time Variability of the Human Microbiome. MSystems, 2017, 2, .	1.7	43
124	Clostridium difficile infection in returning travellers. Journal of Travel Medicine, 2017, 24, .	1.4	27
125	Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 2017, 17, 271-285.	12.8	699
126	The ecology of human microbiota: dynamics and diversity in health and disease. Annals of the New York Academy of Sciences, 2017, 1399, 78-92.	1.8	88
127	Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. BioEssays, 2017, 39, 1600188.	1.2	65
128	Microbial nutrient niches in the gut. Environmental Microbiology, 2017, 19, 1366-1378.	1.8	258
129	Can intestinal microbiota be associated with non-intestinal cancers?. Scientific Reports, 2017, 7, 12722.	1.6	19

#	Article	IF	CITATIONS
130	The importance of cancer cells for animal evolutionary ecology. Nature Ecology and Evolution, 2017, 1, 1592-1595.	3.4	37
131	A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nature Communications, 2017, 8, 518.	5.8	119
132	Network of microbial and antibiotic interactions drive colonization and infection with multidrug-resistant organisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10467-10472.	3.3	55
133	The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals. MBio, 2017, 8, .	1.8	82
134	Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota. MSystems, 2017, 2, .	1.7	8
135	The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Seminars in Immunology, 2017, 32, 35-42.	2.7	19
136	Single-Subject Studies in Translational Nutrition Research. Annual Review of Nutrition, 2017, 37, 395-422.	4.3	64
137	Integrating the microbiome as a resource in the forensics toolkit. Forensic Science International: Genetics, 2017, 30, 141-147.	1.6	81
138	Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community. Scientific Reports, 2017, 7, 5861.	1.6	75
139	Salivary microbiome in non-oral disease: A summary of evidence and commentary. Archives of Oral Biology, 2017, 83, 169-173.	0.8	56
140	A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nature Biotechnology, 2017, 35, 747-756.	9.4	340
141	Mapping the ecological networks of microbial communities. Nature Communications, 2017, 8, 2042.	5.8	125
142	Bone Mechanical Function and the Gut Microbiota. Advances in Experimental Medicine and Biology, 2017, 1033, 249-270.	0.8	11
143	The Microbiome and Bone and Joint Disease. Current Rheumatology Reports, 2017, 19, 77.	2.1	33
144	The Human Microbiome and Obesity: Moving beyond Associations. Cell Host and Microbe, 2017, 22, 589-599.	5.1	366
145	Holistic View on Health: Two Protective Layers of Biodiversity. Annales Zoologici Fennici, 2017, 54, 39-49.	0.2	35
146	Emergence of drug resistant bacteria at the Hajj: A systematic review. Travel Medicine and Infectious Disease, 2017, 18, 3-17.	1.5	35
147	Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. Npj Biofilms and Microbiomes, 2017, 3, 2.	2.9	158

#	Article	IF	CITATIONS
148	Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm. BMC Genomics, 2017, 18, 228.	1.2	17
149	The remedy within: will the microbiome fulfill its therapeutic promise?. Journal of Molecular Medicine, 2017, 95, 1021-1027.	1.7	30
150	Rethinking Diet to Aid Human–Microbe Symbiosis. Trends in Microbiology, 2017, 25, 100-112.	3.5	99
151	The gut microbiota and gastrointestinal surgery. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 43-54.	8.2	142
152	The Gut Microbiome and Its Marriage to the Immune System: Can We Change It All?. Birkhauser Advances in Infectious Diseases, 2017, , 191-208.	0.3	0
153	Tracking Human Gut Microbiome Changes Resulting from a Colonoscopy. Methods of Information in Medicine, 2017, 56, 442-447.	0.7	6
154	Circadian oscillations of microbial and functional composition in the human salivary microbiome. DNA Research, 2017, 24, 261-270.	1.5	85
155	Down for the count: <i>Cryptosporidium</i> infection depletes the gut microbiome in Coquerel's sifakas. Microbial Ecology in Health and Disease, 2017, 28, 1335165.	3.8	47
156	Abundance estimation and differential testing on strain level in metagenomics data. Bioinformatics, 2017, 33, i124-i132.	1.8	31
157	Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study. Frontiers in Physiology, 2017, 8, 250.	1.3	32
158	The oral microbiome. Emerging Topics in Life Sciences, 2017, 1, 287-296.	1.1	4
159	Previous exposure in a high-risk area for travellers' diarrhoea within the past year is associated with a significant protective effect for travellers' diarrhoea: a prospective observational cohort study in travellers to South Asia. Journal of Travel Medicine, 2017, 24, .	1.4	10
160	High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion. Frontiers in Microbiology, 2017, 8, 1531.	1.5	29
161	Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Frontiers in Microbiology, 2017, 8, 1561.	1.5	265
162	The role of HLA-B*27 in spondyloarthritis. Best Practice and Research in Clinical Rheumatology, 2017, 31, 797-815.	1.4	39
163	Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: The PlanHab randomized trial pilot study. PLoS ONE, 2017, 12, e0188556.	1.1	20
164	Two dynamic regimes in the human gut microbiome. PLoS Computational Biology, 2017, 13, e1005364.	1.5	101
165	The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS ONE, 2017, 12, e0180621.	1.1	55

#	Article	IF	CITATIONS
166	Characterizations of oral microbiota in elderly nursing home residents with diabetes. Journal of Oral Science, 2017, 59, 549-555.	0.7	35
167	Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nature Communications, 2017, 8, 1784.	5.8	714
168	The Inuit gut microbiome is dynamic over time and shaped by traditional foods. Microbiome, 2017, 5, 151.	4.9	53
169	Animal host–microbe interactions. Journal of Animal Ecology, 2018, 87, 315-319.	1.3	15
170	Temporal Variability of Oral Microbiota over 10 Months and the Implications for Future Epidemiologic Studies. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 594-600.	1.1	24
171	Why does the microbiome affect behaviour?. Nature Reviews Microbiology, 2018, 16, 647-655.	13.6	222
172	Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4284-E4293.	3.3	391
173	Quantification of Human Microbiome Stability Over 6 Months: Implications for Epidemiologic Studies. American Journal of Epidemiology, 2018, 187, 1282-1290.	1.6	20
174	Current understanding of the human microbiome. Nature Medicine, 2018, 24, 392-400.	15.2	1,593
175	Toward Personalized Control of Human Gut Bacterial Communities. MSystems, 2018, 3, .	1.7	2
176	Seven Billion Microcosms: Evolution within Human Microbiomes. MSystems, 2018, 3, .	1.7	9
177	Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing. Bioinformatics, 2018, 34, 372-380.	1.8	42
178	Occupancy strongly influences faecal microbial composition of wild lemurs. FEMS Microbiology Ecology, 2018, 94, .	1.3	8
179	1-Day or 5-Day Fecal Samples, Which One is More Beneficial to be Used for DNA-Based Gut Microbiota Study. Current Microbiology, 2018, 75, 288-295.	1.0	2
180	Stability of the human faecal microbiome in a cohort of adult men. Nature Microbiology, 2018, 3, 347-355.	5.9	203
181	The antibiotic resistome and microbiota landscape of refugees from Syria, Iraq and Afghanistan in Germany. Microbiome, 2018, 6, 37.	4.9	21
182	Taxa-function robustness in microbial communities. Microbiome, 2018, 6, 45.	4.9	61
183	The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein and Cell, 2018, 9, 474-487.	4.8	204

#	Article	IF	CITATIONS
184	Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi. MSphere, 2018, 3, .	1.3	173
185	The oral microbiota – a mechanistic role for systemic diseases. British Dental Journal, 2018, 224, 447-455.	0.3	110
186	Geography and postgenomics: how space and place are the new DNA. Geo Journal, 2018, 83, 153-168.	1.7	13
187	Diet, Gut Microbiota, and Vitamins D +ÂA in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 75-91.	2.1	117
188	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	1.0	95
189	Influence of the intestinal microbiome on anastomotic healing in the colon and rectum. Seminars in Colon and Rectal Surgery, 2018, 29, 2-7.	0.2	2
190	Dietary components that counteract the increased risk of colorectal cancer related to red meat consumption. International Journal of Food Sciences and Nutrition, 2018, 69, 536-548.	1.3	27
191	Modeling metabolism of the human gut microbiome. Current Opinion in Biotechnology, 2018, 51, 90-96.	3.3	122
192	Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. Journal of Dental Research, 2018, 97, 371-380.	2.5	259
193	How gut transcriptional function of <i>Drosophila melanogaster</i> varies with the presence and composition of the gut microbiota. Molecular Ecology, 2018, 27, 1848-1859.	2.0	36
194	Microbial biotransformations in the human distal gut. British Journal of Pharmacology, 2018, 175, 4404-4414.	2.7	43
195	Portable sequencing, genomic data, and scale in global emerging infectious disease surveillance. Geo: Geography and Environment, 2018, 5, e00066.	0.5	3
196	MDPbiome: microbiome engineering through prescriptive perturbations. Bioinformatics, 2018, 34, i838-i847.	1.8	14
197	Dynamic Distribution of Gut Microbiota in Goats at Different Ages and Health States. Frontiers in Microbiology, 2018, 9, 2509.	1.5	91
198	Interpersonal Variations in Gut Microbiota Profiles Supersedes the Effects of Differing Fecal Storage Conditions. Scientific Reports, 2018, 8, 17367.	1.6	46
199	Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome, 2018, 6, 202.	4.9	54
200	Stability and resilience of the intestinal microbiota in children in daycare – a 12 month cohort study. BMC Microbiology, 2018, 18, 223.	1.3	15
201	A Systematic Review, Meta-Analysis, and Meta-Regression Evaluating the Efficacy and Mechanisms of Action of Probiotics and Synbiotics in the Prevention of Surgical Site Infections and Surgery-Related Complications. Journal of Clinical Medicine, 2018, 7, 556.	1.0	42

#	Article	IF	CITATIONS
202	Acquisition and Loss of CTX-M-Producing and Non-Producing Escherichia coli in the Fecal Microbiome of Travelers to South Asia. MBio, 2018, 9, .	1.8	30
203	Microbial dysbiosis and mortality during mechanical ventilation: a prospective observational study. Respiratory Research, 2018, 19, 245.	1.4	64
204	Historical DNA Metabarcoding of the Prey and Microbiome of Trematomid Fishes Using Museum Samples. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	16
205	Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome, 2018, 6, 172.	4.9	131
206	Microbiota stability in healthy individuals after single-dose lactulose challenge—A randomized controlled study. PLoS ONE, 2018, 13, e0206214.	1.1	18
207	Community profiling of the urinary microbiota: considerations for low-biomass samples. Nature Reviews Urology, 2018, 15, 735-749.	1.9	87
208	Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. ELife, 2018, 7, .	2.8	140
209	An improved neutral community model for temporal observations in microbial communities. Ecological Modelling, 2018, 388, 108-114.	1.2	1
210	Dietary or supplemental fermentable fiber intake reduces the presence of Clostridium XI in mouse intestinal microbiota: The importance of higher fecal bacterial load and density. PLoS ONE, 2018, 13, e0205055.	1.1	10
211	A Hierarchical Ornstein-Uhlenbeck Model for Stochastic Time Series Analysis. Lecture Notes in Computer Science, 2018, , 188-199.	1.0	3
212	The Effect of Co-infection of Food-Borne Pathogenic Bacteria on the Progression of Campylobacter jejuni Infection in Mice. Frontiers in Microbiology, 2018, 9, 1977.	1.5	19
214	Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations. PLoS ONE, 2018, 13, e0197462.	1.1	27
215	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
216	Pharmacology in the age of the holobiont. Current Opinion in Systems Biology, 2018, 10, 34-42.	1.3	6
217	Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chemical Neuroscience, 2018, 9, 2288-2298.	1.7	7
218	Environmental Sources of Bacteria Differentially Influence Host-Associated Microbial Dynamics. MSystems, 2018, 3, .	1.7	35
219	Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis. Cell Host and Microbe, 2018, 24, 109-119.e6.	5.1	97
220	Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators of Inflammation, 2018, 2018, 1-15.	1.4	104

#	ARTICLE Toward an Intensive Longitudinal Understanding of Activated Sludge Bacterial Assembly and	IF	CITATIONS
221	Dynamics. Environmental Science & amp; Technology, 2018, 52, 8224-8232.	4.0	32
222	Personalized medicine: motivation, challenges, and progress. Fertility and Sterility, 2018, 109, 952-963.	0.5	294
223	Resistant Gram-Negative Bacteria and Diagnostic Point-of-Care Options for the Field Setting during Military Operations. BioMed Research International, 2018, 2018, 1-9.	0.9	17
224	Oral microbiota reveals signs of acculturation in Mexican American women. PLoS ONE, 2018, 13, e0194100.	1.1	21
225	Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids. ELife, 2018, 7,	2.8	14
226	Reply to "Precision medicine in the clouds". Nature Biotechnology, 2018, 36, 680-682.	9.4	2
227	Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients, 2018, 10, 576.	1.7	96
228	Microbial communities as dynamical systems. Current Opinion in Microbiology, 2018, 44, 41-49.	2.3	121
229	Defining microbiome function. Nature Microbiology, 2018, 3, 864-869.	5.9	37
230	Associations Between Nutrition, Gut Microbiome, and Health in A Novel Nonhuman Primate Model. Scientific Reports, 2018, 8, 11159.	1.6	60
231	Signatures of ecological processes in microbial community time series. Microbiome, 2018, 6, 120.	4.9	81
232	â€~TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data. Frontiers in Microbiology, 2018, 9, 36.	1.5	47
233	Targeted Approaches for In Situ Gut Microbiome Manipulation. Genes, 2018, 9, 351.	1.0	36
234	Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Medicine, 2018, 10, 6.	3.6	134
235	The role of the microbiome for human health: from basic science to clinical applications. European Journal of Nutrition, 2018, 57, 1-14.	1.8	664
236	Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. Microbiome, 2018, 6, 84.	4.9	56
237	Latent environment allocation of microbial community data. PLoS Computational Biology, 2018, 14, e1006143.	1.5	10
238	Predictability and persistence of prebiotic dietary supplementation in a healthy human cohort. Scientific Reports, 2018, 8, 12699.	1.6	37

#	Article	IF	CITATIONS
239	Orthogonal Dietary Niche Enables Reversible Engraftment of a Gut Bacterial Commensal. Cell Reports, 2018, 24, 1842-1851.	2.9	72
240	The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 611-636.	4.0	148
241	Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME Journal, 2018, 12, 2403-2416.	4.4	40
242	A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disorders, 2019, 21, 40-49.	1.1	149
243	The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease—a Critical Review. Molecular Neurobiology, 2019, 56, 1841-1851.	1.9	368
244	Age and Mothers: Potent Influences of Children's Skin Microbiota. Journal of Investigative Dermatology, 2019, 139, 2497-2505.e6.	0.3	46
245	Defining the human gut host–phage network through single-cell viral tagging. Nature Microbiology, 2019, 4, 2192-2203.	5.9	95
246	Population dynamics of the human gut microbiome: change is the only constant. Genome Biology, 2019, 20, 150.	3.8	33
247	Modelling approaches for studying the microbiome. Nature Microbiology, 2019, 4, 1253-1267.	5.9	114
248	Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Computational Biology, 2019, 15, e1006960.	1.5	42
249	Mixed Spices at Culinary Doses Have Prebiotic Effects in Healthy Adults: A Pilot Study. Nutrients, 2019, 11, 1425.	1.7	25
250	Hypergravity disrupts murine intestinal microbiota. Scientific Reports, 2019, 9, 9410.	1.6	19
251	An Introduction to Personalized Nutrition. , 2019, , 3-32.		3
252	Polymorphic Immune Mechanisms Regulate Commensal Repertoire. Cell Reports, 2019, 29, 541-550.e4.	2.9	55
253	The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host and Microbe, 2019, 26, 527-541.e5.	5.1	449
254	Are the gut microbial systems of giant pandas unstable?. Heliyon, 2019, 5, e02480.	1.4	17
255	Species-Level Salivary Microbial Indicators of Well-Resolved Periodontitis: A Preliminary Investigation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 347.	1.8	26
256	Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biology, 2019, 20, 226.	3.8	47

#	Article	IF	Citations
257	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	2.1	49
258	Timescales of gut microbiome dynamics. Current Opinion in Microbiology, 2019, 50, 56-63.	2.3	27
259	Scales of persistence: transmission and the microbiome. Current Opinion in Microbiology, 2019, 50, 42-49.	2.3	31
260	An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data. Microbiome, 2019, 7, 118.	4.9	28
261	Horizontal and Vertical Transfer of Oral Microbial Dysbiosis and Periodontal Disease. Journal of Dental Research, 2019, 98, 1503-1510.	2.5	42
262	A gut connection in mucous membrane pemphigoid: Insights into the role of the microbiome. Ocular Surface, 2019, 17, 615-616.	2.2	3
263	Experimental mucositis/gingivitis in persons aged 70 or over: microbiological findings and prediction of clinical outcome. Clinical Oral Investigations, 2019, 23, 3855-3863.	1.4	5
264	Effects of the long-term storage of human fecal microbiota samples collected in RNAlater. Scientific Reports, 2019, 9, 601.	1.6	36
265	The signatures of microorganisms and of human and environmental biomes can now be used to provide evidence in legal cases. FEMS Microbiology Letters, 2019, 366, .	0.7	7
266	Fruit Flies & the Gut Microbiome: Redesign-Your-Bacteria Lab Exercise. American Biology Teacher, 2019, 81, 47-51.	0.1	4
267	Trait-based community assembly and succession of the infant gut microbiome. Nature Communications, 2019, 10, 512.	5.8	88
268	Fungal-Bacterial Interactions in Health and Disease. Pathogens, 2019, 8, 70.	1.2	148
269	Artificial Intelligence and Personalized Medicine. Cancer Treatment and Research, 2019, 178, 265-283.	0.2	150
270	Microbiome and Antimicrobial Resistance Gene Dynamics in International Travelers. Emerging Infectious Diseases, 2019, 25, 1380-1383.	2.0	30
271	The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Advances in Nutrition, 2019, 10, 979-998.	2.9	50
272	Predicting and Understanding the Human Microbiome's Impact on Pharmacology. Trends in Pharmacological Sciences, 2019, 40, 495-505.	4.0	38
273	Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annual Review of Microbiology, 2019, 73, 335-358.	2.9	147
274	Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host and Microbe, 2019, 25, 789-802.e5.	5.1	441

#	Article	IF	CITATIONS
275	Rethinking gut microbiome residency and the <i>Enterobacteriaceae</i> in healthy human adults. ISME Journal, 2019, 13, 2306-2318.	4.4	97
276	Evolution of the gut microbiome following acute HIV-1 infection. Microbiome, 2019, 7, 73.	4.9	69
277	Microbial evolutionary medicine: from theory to clinical practice. Lancet Infectious Diseases, The, 2019, 19, e273-e283.	4.6	11
278	Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME Journal, 2019, 13, 1845-1856.	4.4	98
279	The founder hypothesis: A basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathogens, 2019, 15, e1007563.	2.1	67
280	Transmission of human-associated microbiota along family and social networks. Nature Microbiology, 2019, 4, 964-971.	5.9	149
281	Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension, 2019, 73, 926-935.	1.3	10
282	Metagenomics and the development of viral water quality tools. Npj Clean Water, 2019, 2, .	3.1	51
283	When the exception becomes the rule: An integrative approach to symbiosis. Science of the Total Environment, 2019, 672, 855-861.	3.9	11
284	Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. American Journal of Primatology, 2019, 81, e22970.	0.8	46
285	Enrichment of periodontal pathogens from the biofilms of healthy adults. Scientific Reports, 2019, 9, 5491.	1.6	56
286	The Dimension of Time in Host-Microbiome Interactions. MSystems, 2019, 4, .	1.7	49
287	Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host and Microbe, 2019, 25, 261-272.e5.	5.1	159
288	Chapter 18 Cross-feeding during human colon fermentation. , 2019, , 313-338.		1
289	Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 2019, 11, 2862.	1.7	449
290	Mice Microbiota Composition Changes by Inulin Feeding with a Long Fasting Period under a Two-Meals-Per-Day Schedule. Nutrients, 2019, 11, 2802.	1.7	22
291	Diet in Parkinson's Disease: Critical Role for the Microbiome. Frontiers in Neurology, 2019, 10, 1245.	1,1	83
292	Nutrient intakes and sources of fiber among children with low and high dietary fiber intake: the 2016 feeding infants and toddlers study (FITS), a cross-sectional survey. BMC Pediatrics, 2019, 19, 446.	0.7	16

#	Article	IF	CITATIONS
293	Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 2019, 45, 613-648.	2.7	30
294	Functional metagenomics: a tool to gain knowledge for agronomic and veterinary sciences. Biotechnology and Genetic Engineering Reviews, 2019, 35, 69-91.	2.4	6
295	Lung Microbiome Is Influenced by the Environment and Asthmatic Status in an Equine Model of Asthma. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 189-197.	1.4	33
296	Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environmental Research, 2019, 172, 700-712.	3.7	20
297	Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nature Reviews Immunology, 2019, 19, 243-254.	10.6	100
298	The Human Microbiome in Health and Disease. , 2019, , 607-618.		8
299	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	8.2	980
300	A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nature Reviews Clinical Oncology, 2020, 17, 183-194.	12.5	41
301	Microbial Contribution to the Human Metabolome: Implications for Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 345-369.	9.6	104
302	Compositional analyses reveal correlations between taxon-level gut bacterial abundance and peripheral T cell marker expression in African infants. Gut Microbes, 2020, 11, 237-244.	4.3	4
303	Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Nutrition, 2020, 11, 616-629.	2.9	70
304	Microbial succession during wheat bran fermentation and colonisation by human faecal microbiota as a result of niche diversification. ISME Journal, 2020, 14, 584-596.	4.4	30
305	The role of topical probiotics in skin conditions: A systematic review of animal and human studies and implications for future therapies. Experimental Dermatology, 2020, 29, 15-21.	1.4	72
306	Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2990-3004.	5.4	47
307	Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics, 2020, 21, 26.	1.2	26
308	Predicting the potential for organohalide respiration in wastewater: Comparison of intestinal and wastewater microbiomes. Science of the Total Environment, 2020, 705, 135833.	3.9	4
309	The connection between microbiome and schizophrenia. Neuroscience and Biobehavioral Reviews, 2020, 108, 712-731.	2.9	50
310	Can dynamic network modelling be used to identify adaptive microbiomes?. Functional Ecology, 2020, 34, 2065-2074.	1.7	6

#	ARTICLE	IF	CITATIONS
311	Understanding the impact of antibiotic perturbation on the human microbiome. Genome Medicine, 2020, 12, 82.	3.6	148
312	Intestinal Microbiota in Colorectal Cancer Surgery. Cancers, 2020, 12, 3011.	1.7	30
313	The Gut Microbiome and Bone Strength. Current Osteoporosis Reports, 2020, 18, 677-683.	1.5	35
314	The Central Role of Interbacterial Antagonism in Bacterial Life. Current Biology, 2020, 30, R1203-R1214.	1.8	59
315	Application of OU processes to modelling temporal dynamics of the human microbiome, and calculating optimal sampling schemes. BMC Bioinformatics, 2020, 21, 450.	1.2	1
316	Adjunctive dental therapies in caries-active children: Shifting the cariogenic salivary microbiome from dysbiosis towards non-cariogenic health. Human Microbiome Journal, 2020, 18, 100077.	3.8	3
317	Living Therapeutics: The Next Frontier of Precision Medicine. ACS Synthetic Biology, 2020, 9, 3184-3201.	1.9	15
318	Sequential laxative-probiotic usage for treatment of irritable bowel syndrome: a novel method inspired by mathematical modelling of the microbiome. Scientific Reports, 2020, 10, 19291.	1.6	3
319	Personalized Nutrition Through The Gut Microbiota: Current Insights And Future Perspectives. Nutrition Reviews, 2020, 78, 66-74.	2.6	20
320	Effects of High-Fat Diet Induced Obesity and Fructooligosaccharide Supplementation on Cardiac Protein Expression. Nutrients, 2020, 12, 3404.	1.7	2
321	Interaction of Sleep and Cortical Structural Maintenance From an Individual Person Microlongitudinal Perspective and Implications for Precision Medicine Research. Frontiers in Neuroscience, 2020, 14, 769.	1.4	3
322	Epidemiology and associated microbiota changes in deployed military personnel at high risk of traveler's diarrhea. PLoS ONE, 2020, 15, e0236703.	1.1	28
323	High altitude as a possible factor for dysbiosis of salivary microbiome in orthodontic patients. Archives of Oral Biology, 2020, 119, 104917.	0.8	3
324	Topological analysis reveals state transitions in human gut and marine bacterial communities. Npj Biofilms and Microbiomes, 2020, 6, 41.	2.9	5
325	The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome. Scientific Reports, 2020, 10, 18349.	1.6	25
326	Effects of High-Fat Diet at Two Energetic Levels on Fecal Microbiota, Colonic Barrier, and Metabolic Parameters in Dogs. Frontiers in Veterinary Science, 2020, 7, 566282.	0.9	16
327	Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms, 2020, 8, 1638.	1.6	41
328	The role of topical probiotics on wound healing: A review of animal and human studies. International Wound Journal, 2020, 17, 1687-1694.	1.3	50

#	Article	IF	CITATIONS
329	Irradiation-Induced Intestinal Damage Is Recovered by the Indigenous Gut Bacteria Lactobacillus acidophilus. Frontiers in Cellular and Infection Microbiology, 2020, 10, 415.	1.8	12
330	Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines, 2020, 8, 287.	1.4	22
331	Systems View of Deconditioning During Spaceflight Simulation in the PlanHab Project: The Departure of Urine 1 H-NMR Metabolomes From Healthy State in Young Males Subjected to Bedrest Inactivity and Hypoxia. Frontiers in Physiology, 2020, 11, 532271.	1.3	9
332	Dietary Emulsifier Sodium Stearoyl Lactylate Alters Gut Microbiota in vitro and Inhibits Bacterial Butyrate Producers. Frontiers in Microbiology, 2020, 11, 892.	1.5	23
333	Simultaneous profiling and cultivation of the skin microbiome of healthy young adult skin for the development of therapeutic agents. Heliyon, 2020, 6, e03700.	1.4	17
334	The role of the microbiome in the neurobiology of social behaviour. Biological Reviews, 2020, 95, 1131-1166.	4.7	72
335	Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Frontiers in Neurology, 2020, 11, 598.	1.1	62
336	New Insights into Molecular Links Between Microbiota and Gastrointestinal Cancers: A Literature Review. International Journal of Molecular Sciences, 2020, 21, 3212.	1.8	23
337	The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls. Gut Microbes, 2020, 11, 1374-1384.	4.3	48
338	Assessment of safety and efficacy of pine bark extract in normal and ovariectomized mice. Journal of Food Science, 2020, 85, 1956-1962.	1.5	1
339	Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food and Chemical Toxicology, 2020, 141, 111373.	1.8	36
340	A Guide to Diet-Microbiome Study Design. Frontiers in Nutrition, 2020, 7, 79.	1.6	78
341	Interest of bacterial pangenome analyses in clinical microbiology. Microbial Pathogenesis, 2020, 149, 104275.	1.3	12
342	Dissimilarity–Overlap analysis of replicate enrichment communities. ISME Journal, 2020, 14, 2505-2513.	4.4	17
343	Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients, 2020, 12, 1827.	1.7	20
344	Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nature Communications, 2020, 11, 1427.	5.8	133
345	The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME Journal, 2020, 14, 1584-1599.	4.4	78
346	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	4.9	213

CITATION REPORT IF CITATIONS Challenges and emerging systems biology approaches to discover how the human gut microbiome 1.5 8 impact host physiology. Biophysical Reviews, 2020, 12, 851-863. Revealing the microbial assemblage structure in the human gut microbiome using latent Dirichlet allocation. Microbiome, 2020, 8, 95. Performance comparison of fecal preservative and stock solutions for gut microbiome storage at 1.3 12 room temperature. Journal of Microbiology, 2020, 58, 703-710. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Research, 2020, 166, 106409. Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study. 1.6 82 Scientific Reports, 2020, 10, 2133. Diarrhoeal events can trigger long-term Clostridium difficile colonization with recurrent blooms. Nature Microbiology, 2020, 5, 642-650. Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications 1.7 30 in the Host. Nutrients, 2020, 12, 597. A phylogenetic model for the recruitment of species into microbial communities and application to 4.4 studies of the human microbiome. ISME Journal, 2020, 14, 1359-1368. The composition of faecal microbiota is related to the amount and variety of dietary fibres. 1.3 19 International Journal of Food Sciences and Nutrition, 2020, 71, 845-855. Transient invaders can induce shifts between alternative stable states of microbial communities. Science Advances, 2020, 6, eaay8676. Human Skin, Oral, and Gut Microbiomes Predict Chronological Age. MSystems, 2020, 5, . 1.7 80 Immunological Role of the Maternal Uterine Microbiome in Pregnancy: Pregnancies Pathologies and 2.2 Alterated Microbiota. Frontiers in Immunology, 2019, 10, 2823

359	Tools for Analysis of the Microbiome. Digestive Diseases and Sciences, 2020, 65, 674-685.	1.1	70
360	Tracking the functional meaning of the human oral-microbiome protein-protein interactions. Advances in Protein Chemistry and Structural Biology, 2020, 121, 199-235.	1.0	7
361	The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: a Pilot Study. Reproductive Sciences, 2020, 27, 1064-1073.	1.1	35
362	The microbial abundance dynamics of the paediatric oral cavity before and after sleep. Journal of Oral Microbiology, 2020, 12, 1741254.	1.2	10
363	Macroecological dynamics of gut microbiota. Nature Microbiology, 2020, 5, 768-775.	5.9	62
364	Gastrointestinal host-pathogen interaction in the age of microbiome research. Current Opinion in Microbiology, 2020, 53, 78-89.	2.3	27

ARTICLE

#

347

348

349

351

353

354

355

357

#	Article	IF	CITATIONS
365	Gut microbiota suggests dependency of Arunachal Macaque (Macaca munzala) on anthropogenic food in Western Arunachal Pradesh, Northeastern India: Preliminary findings. Global Ecology and Conservation, 2020, 22, e01030.	1.0	4
366	Dietary Xanthan Gum Alters Antibiotic Efficacy against the Murine Gut Microbiota and Attenuates <i>Clostridioides difficile</i> Colonization. MSphere, 2020, 5, .	1.3	26
367	Rapid Reconstitution of the Fecal Microbiome after Extended Diet-Induced Changes Indicates a Stable Gut Microbiome in Healthy Adult Dogs. Applied and Environmental Microbiology, 2020, 86, .	1.4	25
368	Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology, 2021, 70, 24-36.	4.3	46
369	Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Seminars in Cancer Biology, 2021, 70, 61-70.	4.3	25
370	Space, time and microdiversity: towards a resolution revolution in microbiomics. Environmental Microbiology Reports, 2021, 13, 31-35.	1.0	0
371	Impact of systemic factors in shaping the periodontal microbiome. Periodontology 2000, 2021, 85, 126-160.	6.3	55
372	The impact of the Fungus-Host-Microbiota interplay upon <i>Candida albicans</i> infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 2021, 45, .	3.9	139
373	Exposures to Semivolatile Organic Compounds in Indoor Environments and Associations with the Gut Microbiomes of Children. Environmental Science and Technology Letters, 2021, 8, 73-79.	3.9	18
374	<i>Salmonella</i> versus the Microbiome. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	88
375	The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures caseâ€study approach. Translational Sports Medicine, 2021, 4, 174-192.	0.5	14
376	Comparative evaluation of microbial profiles of oral samples obtained at different collection time points and using different methods. Clinical Oral Investigations, 2021, 25, 2779-2789.	1.4	9
377	An altered composition of fecal microbiota, organic acids, and the effect of probiotics in the guinea pig model of postoperative ileus. Neurogastroenterology and Motility, 2021, 33, e13966.	1.6	13
378	Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis. International Journal of Molecular Sciences, 2021, 22, 1397.	1.8	59
379	Modelling the effect of birth and feeding modes on the development of human gut microbiota. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201810.	1.2	9
380	Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement. Computational and Structural Biotechnology Journal, 2021, 19, 2223-2235.	1.9	12
381	Examination of hydrogen cross-feeders using a colonic microbiota model. BMC Bioinformatics, 2021, 22, 3.	1.2	12
382	Myeloid cells, tissue homeostasis, and anatomical barriers as innate immune effectors in arterial hypertension. Journal of Molecular Medicine, 2021, 99, 315-326.	1.7	0

#	Article	IF	CITATIONS
384	Longitudinal saliva omics responses to immune perturbation: a case study. Scientific Reports, 2021, 11, 710.	1.6	19
385	The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178.		4
386	What Is Known about Theragnostic Strategies in Colorectal Cancer. Biomedicines, 2021, 9, 140.	1.4	8
388	COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance. Pathogens, 2021, 10, 256.	1.2	13
389	Microbiome Analysis Reveals the Attenuation Effect of Lactobacillus From Yaks on Diarrhea via Modulation of Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 610781.	1.8	20
391	Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Frontiers in Microbiology, 2021, 12, 634511.	1.5	157
392	Hierarchical non-negative matrix factorization using clinical information for microbial communities. BMC Genomics, 2021, 22, 104.	1.2	2
394	Modelling spatial patterns in hostâ€associated microbial communities. Environmental Microbiology, 2021, 23, 2374-2388.	1.8	12
395	animalcules: interactive microbiome analytics and visualization in R. Microbiome, 2021, 9, 76.	4.9	18
396	Microbial transitions from health to disease. Periodontology 2000, 2021, 86, 201-209.	6.3	66
397	Fecal storage condition induces variations of microbial composition and differential interpretation of metagenomic analysis. , 2021, 5, 006-012.		1
398	Dysbiosis of the Human Oral Microbiome During the Menstrual Cycle and Vulnerability to the External Exposures of Smoking and Dietary Sugar. Frontiers in Cellular and Infection Microbiology, 2021, 11, 625229.	1.8	24
400	Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host and Microbe, 2021, 29, 394-407.e5.	5.1	137
402	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	2.0	86
403	iNetModels 2.0: an interactive visualization and database of multi-omics data. Nucleic Acids Research, 2021, 49, W271-W276.	6.5	25
404	Impact of Rapeseed and Soy Lecithin on Postprandial Lipid Metabolism, Bile Acid Profile, and Gut Bacteria in Mice. Molecular Nutrition and Food Research, 2021, 65, e2001068.	1.5	15
405	Comparison of Argentinean microbiota with other geographical populations reveals different taxonomic and functional signatures associated with obesity. Scientific Reports, 2021, 11, 7762.	1.6	8
406	Remodeling of the gut microbiome during Ramadan-associated intermittent fasting. American Journal of Clinical Nutrition, 2021, 113, 1332-1342.	2.2	64

#	Article	IF	CITATIONS
409	Diet, habitat environment and lifestyle conversion affect the gut microbiomes of giant pandas. Science of the Total Environment, 2021, 770, 145316.	3.9	27
410	Effects of Polyphenols in Tea (Camellia sinensis sp.) on the Modulation of Gut Microbiota in Human Trials and Animal Studies. Gastroenterology Insights, 2021, 12, 202-216.	0.7	11
412	Recent advances and health implications of dietary fasting regimens on the gut microbiome. American Journal of Physiology - Renal Physiology, 2021, 320, G847-G863.	1.6	16
413	Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila. MBio, 2021, 12, .	1.8	60
414	Establishment of an In Vitro System of the Human Intestinal Microbiota: Effect of Cultivation Conditions and Influence of Three Donor Stool Samples. Microorganisms, 2021, 9, 1049.	1.6	5
415	A single serving of mixed spices alters gut microflora composition: a dose–response randomised trial. Scientific Reports, 2021, 11, 11264.	1.6	7
416	Challenges, Strategies, and Perspectives for Reference-Independent Longitudinal Multi-Omic Microbiome Studies. Frontiers in Genetics, 2021, 12, 666244.	1.1	8
417	The alteration of gut microbiota by bioactive peptides: a review. Systems Microbiology and Biomanufacturing, 2021, 1, 363-377.	1.5	9
418	Functional heterogeneity in the fermentation capabilities of the healthy human gut microbiota. PLoS ONE, 2021, 16, e0254004.	1.1	11
419	Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients, 2021, 13, 2402.	1.7	34
420	Short-term effects of a Mediterranean-style dietary pattern on cognition and mental well-being: a systematic review of clinical trials. British Journal of Nutrition, 2022, 128, 1247-1256.	1.2	4
422	Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics?. International Journal of Molecular Sciences, 2021, 22, 7671.	1.8	37
423	Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks. Journal of Fungi (Basel, Switzerland), 2021, 7, 559.	1.5	12
424	The comings and goings of the healthy human gut microbiota. Cell Host and Microbe, 2021, 29, 1163-1164.	5.1	4
426	Inflammation Parameters Associated with Metabolic Disorders: Relationship Between Diet and Microbiota. Metabolic Syndrome and Related Disorders, 2021, 19, 469-482.	0.5	3
427	Gut Microbiota–Informed Precision Nutrition in the Generally Healthy Individual: Are We There Yet?. Current Developments in Nutrition, 2021, 5, nzab107.	0.1	11
428	Postoperative pain and the gut microbiome. Neurobiology of Pain (Cambridge, Mass), 2021, 10, 100070.	1.0	14
429	Healthy Oral Lifestyle Behaviours Are Associated with Favourable Composition and Function of the Oral Microbiota. Microorganisms, 2021, 9, 1674.	1.6	5

#	Article	IF	CITATIONS
431	Making Sense of a Scent-Sensing Metaphor for Microbes and Environmental Predictions. MSystems, 2021, 6, e0099321.	1.7	1
432	Exploring Changes in the Host Gut Microbiota During a Controlled Human Infection Model for Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702047.	1.8	6
433	A Modern-World View of Host–Microbiota–Pathogen Interactions. Journal of Immunology, 2021, 207, 1710-1718.	0.4	10
434	Heavy-tailed abundance distributions from stochastic Lotka-Volterra models. Physical Review E, 2021, 104, 034404.	0.8	6
435	Symbiosis and Dysbiosis of the Human Mycobiome. Frontiers in Microbiology, 2021, 12, 636131.	1.5	16
436	Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovascular Research, 2022, 118, 2415-2427.	1.8	45
437	Sustained Dysbiosis and Decreased Fecal Short-Chain Fatty Acids after Traumatic Brain Injury and Impact on Neurologic Outcome. Journal of Neurotrauma, 2021, 38, 2610-2621.	1.7	27
439	Linkage of community composition and function over short response time in anaerobic digestion systems with food fermentation wastewater. IScience, 2021, 24, 102958.	1.9	1
440	Modulating gut microbial metabolism in heart failure: Opportunities and challenges. EBioMedicine, 2021, 71, 103573.	2.7	0
441	Probabilistic early warning signals. Ecology and Evolution, 2021, 11, 14101-14114.	0.8	5
442	Listening in on the conversation between the human gut microbiome and its host. Current Opinion in Microbiology, 2021, 63, 150-157.	2.3	5
443	Modeling the temporal dynamics of gut microbiota from a local community perspective. Ecological Modelling, 2021, 460, 109733.	1.2	4
444	The Impact of Gut Microbiota on the Immune Response to Vaccination. , 2022, , 145-160.		0
445	Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 2021, 19, 2687-2698.	1.9	130
447	Poisson-Markov Mixture Model and Parallel Algorithm for Binning Massive and Heterogenous DNA Sequencing Reads. Lecture Notes in Computer Science, 2016, , 15-26.	1.0	2
448	Metagenomic investigation of faecal microbiota in sheep and goats of the same ages. Journal of Taibah University for Science, 2021, 15, 1-9.	1.1	11
465	Thermodynamic inference of data manifolds. Physical Review Research, 2020, 2, .	1.3	8
466	Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota. PLoS Biology, 2016, 14, e1002517.	2.6	164

#	Article	IF	CITATIONS
467	Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biology, 2016, 14, e2000225.	2.6	475
468	How the microbiome challenges our concept of self. PLoS Biology, 2018, 16, e2005358.	2.6	81
469	SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Computational Biology, 2017, 13, e1005539.	1.5	154
470	The Gut Microbiota of Wild Mice. PLoS ONE, 2015, 10, e0134643.	1.1	103
471	The Application of Magnetic Bead Selection to Investigate Interactions between the Oral Microbiota and Salivary Immunoglobulins. PLoS ONE, 2016, 11, e0158288.	1.1	6
472	Profiling Living Bacteria Informs Preparation of Fecal Microbiota Transplantations. PLoS ONE, 2017, 12, e0170922.	1.1	68
473	Unraveling the human salivary microbiome diversity in Indian populations. PLoS ONE, 2017, 12, e0184515.	1.1	22
474	Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches. Bosnian Journal of Basic Medical Sciences, 2021, 21, 270-283.	0.6	21
475	Microbiome succession with increasing age in three oral sites. Aging, 2020, 12, 7874-7907.	1.4	19
476	Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Alʹmanah KliniÄeskoj Mediciny, 2018, 46, 396-425.	0.2	26
477	A Pilot Study of the Effect of Deployment on the Gut Microbiome and Traveler's Diarrhea Susceptibility. Frontiers in Cellular and Infection Microbiology, 2020, 10, 589297.	1.8	5
478	The Ubiquitin Proteasome System in Periodontal Disease: A Comprehensive Review. Frontiers in Dental Medicine, 2020, 1, .	0.5	1
479	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	1.1	121
480	Exploring the food-gut axis in immunotherapy response of cancer patients. World Journal of Gastroenterology, 2020, 26, 4919-4932.	1.4	17
481	Stochastic logistic models reproduce experimental time series of microbial communities. ELife, 2020, 9, .	2.8	34
482	Probabilistic adaptation in changing microbial environments. PeerJ, 2016, 4, e2716.	0.9	24
483	Ananke: temporal clustering reveals ecological dynamics of microbial communities. PeerJ, 2017, 5, e3812.	0.9	25
484	Robust and automatic definition of microbiome states. PeerJ, 2019, 7, e6657.	0.9	12

	CITATION	CITATION REPORT	
#	Article	IF	Citations
485	Gut Microbiome and Alzheimer's Disease. Journal of Dairy Science and Biotechnology, 2021, 39, 94-103.	0.5	0
486	A macroecological description of alternative stable states reproduces intra- and inter-host variability of gut microbiome. Science Advances, 2021, 7, eabj2882.	4.7	23
487	Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management?. Folia Microbiologica, 2021, 66, 897-916.	1.1	5
488	Successional dynamics and alternative stable states in a saline activated sludge microbial community over 9Âyears. Microbiome, 2021, 9, 199.	4.9	33
489	The significance of biofilms to human, animal, plant and ecosystem health. Functional Ecology, 2022, 36, 294-313.	1.7	22
490	Psychophysiological Effects of Lactobacillus plantarum PS128 in Patients with Major Depressive Disorder: A Preliminary 8-Week Open Trial. Nutrients, 2021, 13, 3731.	1.7	23
491	Old age and other factors associated with salivary microbiome variation. BMC Oral Health, 2021, 21, 490.	0.8	23
492	Präention der Resistenzentwicklung in Krankenhaus, Arztpraxis und in der Veterinämedizin. , 2016, , 73-90.		0
497	The Intestinal Microbiome, the Immune System and Spondyloarthropathy. , 2017, , 145-165.		0
506	Integrated Biomedical System. F1000Research, 0, 7, 162.	0.8	0
514	Präention der Resistenzentwicklung in Krankenhaus, Arztpraxis und in der Veterinämedizin. , 2019, , 147-179.		2
517	Mini-review: How can we protect the microbiota in our gut from antimicrobial agents during hematopoietic stem cell transplantation?. Journal of Hematopoietic Cell Transplantation, 2019, 8, 22-27.	0.1	0
524	The oral microbiome in relation to pancreatic cancer risk in African Americans. British Journal of Cancer, 2022, 126, 287-296.	2.9	9
527	Transparency is key to ethical vaccine research—Response. Science, 2020, 370, 1423-1423.	6.0	0
528	Microbial Forensics: Detection and Characterization in the Twenty-first Century. , 2020, , 357-370.		0
533	The Hoops, Hopes, and Hypes of Human Microbiome Research. Yale Journal of Biology and Medicine, 2016, 89, 363-373.	0.2	29
534	The effects of preoperative intestinal dysbacteriosis on postoperative recovery in colorectal cancer surgery: a prospective cohort study. BMC Gastroenterology, 2021, 21, 446.	0.8	6
535	Building up a clinical microbiota profiling: a quality framework proposal. Critical Reviews in Microbiology, 2022, 48, 356-375.	2.7	6

#	Article	IF	Citations
536	Changes to human faecal microbiota after international travel. Travel Medicine and Infectious Disease, 2021, 44, 102199.	1.5	4
537	The cost of bacterial predation via type VI secretion system leads to predator extinction under environmental stress. IScience, 2021, 24, 103507.	1.9	7
539	Usefulness of Microbiome for Forensic Geolocation: A Review. Life, 2021, 11, 1322.	1.1	6
540	Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nature Communications, 2021, 12, 6740.	5.8	89
541	Early-Life Adversity Leaves Its Imprint on the Oral Microbiome for More Than 20 Years and Is Associated with Long-Term Immune Changes. International Journal of Molecular Sciences, 2021, 22, 12682.	1.8	8
542	Multivariate statistical monitoring system for microbial population dynamics. Physical Biology, 2022, 19, 016003.	0.8	0
543	Analysis of Postmortem Intestinal Microbiota Successional Patterns with Application in Postmortem Interval Estimation. Microbial Ecology, 2022, 84, 1087-1102.	1.4	17
544	On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Frontiers in Microbiology, 2021, 12, 784797.	1.5	15
546	Modelling structure and dynamics of microbial community in aquatic ecosystems: The importance of hydrology, 2022, 605, 127351.	2.3	9
547	Are We What We Eat? Impact of Diet on the Gut–Brain Axis in Parkinson's Disease. Nutrients, 2022, 14, 380.	1.7	32
548	Beneficial microbes from human and animal intestines. , 2022, , 55-76.		0
550	Exploring New Drug Targets for Type 2 Diabetes: Success, Challenges and Opportunities. Biomedicines, 2022, 10, 331.	1.4	17
551	Interactions between the environmental and human microbiota in the preservation of health and genesis of disease: symposium report. Current Opinion in Gastroenterology, 2022, 38, 146-155.	1.0	1
552	A Guide to Dietary Pattern–Microbiome Data Integration. Journal of Nutrition, 2022, 152, 1187-1199.	1.3	12
553	Effects of viremia and CD4 recovery on gut "microbiome-immunity―axis in treatment-naÃ⁻ve HIV-1-infected patients undergoing antiretroviral therapy. World Journal of Gastroenterology, 2022, 28, 635-652.	1.4	6
554	Dietary Intake Mediates Ethnic Differences in Gut Microbial Composition. Nutrients, 2022, 14, 660.	1.7	17
555	The crewed journey to Mars and its implications for the human microbiome. Microbiome, 2022, 10, 26.	4.9	14
556	The holobiont mind: A bridge between 4E cognition and the microbiome. Adaptive Behavior, 2023, 31, 487-496.	1.1	6

#	Article	IF	CITATIONS
557	The Gut Microbiome. , 2022, , .		0
559	Microbiome Resilience and Health Implications for People in Half-Year Travel. Frontiers in Immunology, 2022, 13, 848994.	2.2	2
560	A multiple-dimension model for microbiota of patients with colorectal cancer from normal participants and other intestinal disorders. Applied Microbiology and Biotechnology, 2022, 106, 2161-2173.	1.7	2
561	Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of Inflammatory Bowel Disease. Frontiers in Genetics, 2022, 13, 784397.	1.1	14
562	Parallelâ€Meta Suite: Interactive and rapid microbiome data analysis on multiple platforms. , 2022, 1, .		19
563	Characteristics of human oral microbiome and its non-invasive diagnostic value in chronic kidney disease. Bioscience Reports, 2022, 42, .	1.1	6
564	The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114619119.	3.3	30
565	Effects of Long-Term Enclosed Environment on Human Health Based on the Analysis of Salivary Microbiota and Cytokines. Microbiology Spectrum, 2022, 10, e0025422.	1.2	3
566	Viewing Bacterial Colonization through the Lens of Systems Biology. MSystems, 2022, 7, e0138321.	1.7	6
567	Dynamics of the normal gut microbiota: A longitudinal one-year population study in Sweden. Cell Host and Microbe, 2022, 30, 726-739.e3.	5.1	64
568	Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Medicine, 2022, 14, 30.	3.6	21
569	Fast growth can counteract antibiotic susceptibility in shaping microbial community resilience to antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116954119.	3.3	9
570	Gut microbiota and migraine. Neurobiology of Pain (Cambridge, Mass), 2022, 11, 100090.	1.0	14
571	The stochastic logistic model with correlated carrying capacities reproduces beta-diversity metrics of microbial communities. PLoS Computational Biology, 2022, 18, e1010043.	1.5	7
572	Robust bacterial co-occurence community structures are independent of r- and K-selection history. Scientific Reports, 2021, 11, 23497.	1.6	3
574	Personal Dense Dynamic Data Clouds Connect Systems Biomedicine to Scientific Wellness. Methods in Molecular Biology, 2022, 2486, 315-334.	0.4	1
575	Early indicators of microbial strain dysbiosis in the human gastrointestinal microbial community of certain healthy humans and hospitalized COVID-19 patients. Scientific Reports, 2022, 12, 6562.	1.6	1
576	Competition for fluctuating resources reproduces statistics of species abundance over time across wide-ranging microbiotas. ELife, 2022, 11, .	2.8	37

		CITATION REPORT		
#	Article		IF	Citations
594	<i>BiomeHorizon</i> : Visualizing Microbiome Time Series Data in R. MSystems, 2022,	7, e0138021.	1.7	2
595	Gut microbial similarity in twins is driven by shared environment and aging. EBioMedici 104011.	ne, 2022, 79,	2.7	7
596	Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gu Cell Host and Microbe, 2022, 30, 836-847.e6.	t microbes.	5.1	29
597	A randomization-based causal inference framework for uncovering environmental expo on human gut microbiota. PLoS Computational Biology, 2022, 18, e1010044.	osure effects	1.5	8
598	Complexity–stability trade-off in empirical microbial ecosystems. Nature Ecology and 6, 693-700.	l Evolution, 2022,	3.4	29
599	Increased Relative Abundance of Ruminoccocus Is Associated With Reduced Cardiovas Obese Population. Frontiers in Nutrition, 2022, 9, 849005.	cular Risk in an	1.6	13
601	Circulating extracellular vesicles carrying Firmicutes reflective of the local immune stat predict clinical response to pembrolizumab in urothelial carcinoma patients. Cancer Im Immunotherapy, 2022, 71, 2999-3011.	us may munology,	2.0	4
602	Multiomic Analyses of Nascent Preterm Infant Microbiomes Differentiation Suggest Op Targeted Intervention. Advanced Biology, 2022, 6, .	pportunities for	1.4	4
603	Engineered microbial systems for advanced drug delivery. Advanced Drug Delivery Revi 114364.	ews, 2022, 187,	6.6	18
604	Probiotics in gastrointestinal surgery. , 2022, , 449-462.			Ο
605	Role of gene regulation and inter species interaction as a key factor in gut microbiota a Archives of Microbiology, 2022, 204, .	adaptation.	1.0	4
606	Diurnal and eating-associated microbial patterns revealed via high-frequency saliva san Research, 2022, 32, 1112-1123.	ıpling. Genome	2.4	3
607	Temporal Alignment of Longitudinal Microbiome Data. Frontiers in Microbiology, 0, 13	,.	1.5	1
608	Nutrition-wide association study of microbiome diversity and composition in colorecta patients. BMC Cancer, 2022, 22, .	l cancer	1.1	9
609	Microbiome and Uveitides. A Review. Ceska A Slovenska Oftalmologie, 2022, 78, 47-52	2.	0.1	1
610	The Relation of Diet and Health: You Are What You Eat. International Journal of Enviror Research and Public Health, 2022, 19, 7774.	imental	1.2	1
611	Timeâ€lagged interspecies interactions prevail during biofilm development in moving b reactor. Biotechnology and Bioengineering, 0, , .	ed biofilm	1.7	0
612	CrAssphage as an indicator of human-fecal contamination in water environment and vi in wastewater treatment. Water Research, 2022, 221, 118827.	rus reduction	5.3	24

#	Article	IF	Citations
613	Impact of indigenous microbiota in gut inflammatory disorders. , 2022, , 179-209.		0
614	Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology, 2022, 20, 707-720.	13.6	66
615	Causality and correlation analysis for deciphering the microbial interactions in activated sludge. Frontiers in Microbiology, 0, 13, .	1.5	0
616	Differential richness inference for 16S rRNA marker gene surveys. Genome Biology, 2022, 23, .	3.8	5
617	The gut microbiota's role in diet-related cardiovascular health: an innocent bystander or a key mediator; the question remains. European Journal of Preventive Cardiology, 2022, 29, 1893-1894.	0.8	2
620	Detecting bacterial adaptation within individual microbiomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	12
621	Machine learning on the road to unlocking microbiota's potential for boosting immune checkpoint therapy. International Journal of Medical Microbiology, 2022, 312, 151560.	1.5	1
622	Impact of the gut microbiome on human health and diseases. , 2022, , 25-40.		0
623	Individual variations and effects of birth facilities on the fecal microbiome of laboratory-bred marmosets (Callithrix jacchus) assessed by a longitudinal study. PLoS ONE, 2022, 17, e0273702.	1.1	1
624	Intersection of Diet and Exercise with the Gut Microbiome and Circulating Metabolites in Male Bodybuilders: A Pilot Study. Metabolites, 2022, 12, 911.	1.3	2
625	Personalized medicine: current trends and prospects. Rossiyskiy Vestnik Perinatologii I Pediatrii, 2022, 67, 14-21.	0.1	0
626	MicrobiomeCensus estimates human population sizes from wastewater samples based on inter-individual variability in gut microbiomes. PLoS Computational Biology, 2022, 18, e1010472.	1.5	1
627	Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Frontiers in Immunology, 0, 13, .	2.2	21
629	The Resemblance between Bacterial Gut Colonization in Pigs and Humans. Microorganisms, 2022, 10, 1831.	1.6	2
631	Network-based gut microbiome analysis in dogs. Italian Journal of Animal Science, 2022, 21, 1465-1475.	0.8	0
632	Corncob structures in dental plaque reveal microhabitat taxon specificity. Microbiome, 2022, 10, .	4.9	17
633	The gut microbiome and obstructive sleep apnea syndrome in children. Sleep Medicine, 2022, 100, 462-471.	0.8	4
634	MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics. MSystems, 2022, 7, .	1.7	1

#	Article	IF	CITATIONS
635	The hallmarks of dietary intervention-resilient gut microbiome. Npj Biofilms and Microbiomes, 2022, 8,	2.9	18
636	Responses of Ileal and Fecal Microbiota to Withdrawal of Pancreatic Enzyme Replacement Therapy in a Porcine Model of Exocrine Pancreatic Insufficiency. International Journal of Molecular Sciences, 2022, 23, 11700.	1.8	1
637	Single-cell Genomics for Uncovering Relationships between Bacteriophages and their Hosts. , 0, , .		0
638	Travelâ€related gastrointestinal diseases: Assessment and management. , 2022, 1, .		3
639	A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant. Computational Statistics and Data Analysis, 2023, 179, 107659.	0.7	2
640	Impact of antibiotic perturbation on fecal viral communities in mice. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	1
641	Healthy microbiome – a mere idea or a sound concept?. Physiological Research, 2022, 71, 719-738.	0.4	6
642	Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health. Annual Review of Food Science and Technology, 2023, 14, 157-182.	5.1	6
643	Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers, 2022, 14, 5682.	1.7	5
644	Sex differences in the oral microbiome, host traits, and their causal relationships. IScience, 2023, 26, 105839.	1.9	9
645	Age and micronutrient effects on the microbiome in a mouse model of zinc depletion and supplementation. PLoS ONE, 2022, 17, e0275352.	1.1	3
646	Foods may modify responsiveness to cancer immune checkpoint blockers by altering both the gut microbiota and activation of estrogen receptors in immune cells. , 0, 1, .		2
647	Characteristics of the gut microbiome in esports players compared with those in physical education students and professional athletes. Frontiers in Nutrition, 0, 9, .	1.6	7
648	Microbiota-dependent proteolysis of gluten subverts diet-mediated protection against type 1 diabetes. Cell Host and Microbe, 2023, 31, 213-227.e9.	5.1	3
649	A Low-Fat/Sucrose Diet Rich in Complex Carbohydrates Reverses High-Fat/Sucrose Diet-Induced Corneal Dysregulation. International Journal of Molecular Sciences, 2023, 24, 931.	1.8	1
650	Origins of scaling laws in microbial dynamics. Physical Review Research, 2023, 5, .	1.3	2
651	Glycosidic linkage of rare and new-to-nature disaccharides reshapes gut microbiota in vitro. Food Chemistry, 2023, , 135440.	4.2	1
653	Ecological influence by colonization of fluoride-resistant Streptococcus mutans in oral biofilm. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1

#	Article	IF	Citations
654	Individuality and stability of the koala (<i>Phascolarctos cinereus</i>) faecal microbiota through time. PeerJ, 0, 11, e14598.	0.9	3
655	Understanding human health through metatranscriptomics. Trends in Molecular Medicine, 2023, 29, 376-389.	3.5	17
656	Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biology, 2023, 24, .	3.8	19
657	Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers, 2023, 15, 866.	1.7	15
658	What Is the Microbiome? A Description of a Social Network. Clinics in Colon and Rectal Surgery, 2023, 36, 091-097.	0.5	2
660	Controlling the human microbiome. Cell Systems, 2023, 14, 135-159.	2.9	2
661	How longitudinal data can contribute to our understanding of host genetic effects on the gut microbiome. Gut Microbes, 2023, 15, .	4.3	2
663	Comparing the gut microbiome of obese, African American, older adults with and without mild cognitive impairment. PLoS ONE, 2023, 18, e0280211.	1.1	6
665	Effect of Probiotic Supplementation on Gut Microbiota in Patients with Major Depressive Disorders: A Systematic Review. Nutrients, 2023, 15, 1351.	1.7	20
666	The Gut Microbiome, Microsatellite Status and the Response to Immunotherapy in Colorectal Cancer. International Journal of Molecular Sciences, 2023, 24, 5767.	1.8	4
667	Impact of High Salt-Intake on a Natural Gut Ecosystem in Wildling Mice. Nutrients, 2023, 15, 1565.	1.7	3
668	Association between salivary microbiota and renal function in renal transplant patients during the perioperative period. Frontiers in Microbiology, 0, 14, .	1.5	0
669	Discrete patterns of microbiome variability across timescales in a wild rodent population. BMC Microbiology, 2023, 23, .	1.3	1
670	A Novel E3 Probiotics Formula Restored Gut Dysbiosis and Remodelled Gut Microbial Network and Microbiome Dysbiosis Index (MDI) in Southern Chinese Adult Psoriasis Patients. International Journal of Molecular Sciences, 2023, 24, 6571.	1.8	6
671	An in vitro platform for study of the human gut microbiome under an oxygen gradient. Biomedical Microdevices, 2023, 25, .	1.4	2
672	Effects of intake of four types of snack with different timings on postprandial glucose levels after dinner. European Journal of Nutrition, 2023, 62, 2217-2231.	1.8	1
675	Roles of the gut microbiome in weight management. Nature Reviews Microbiology, 2023, 21, 535-550.	13.6	11
684	Präention der Resistenzentwicklung in Krankenhaus, Arztpraxis und Veterinämedizin. , 2023, , 33-70.		Ο

#	Article	IF	CITATIONS
701	Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chemical Society Reviews, 2023, 52, 6617-6643.	18.7	5
718	Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotoxicity Research, 2024, 42, .	1.3	0