Genome sequencing of the high oil crop sesame provide

Genome Biology 15, R39

DOI: 10.1186/gb-2014-15-2-r39

Citation Report

#	Article	IF	CITATIONS
1	Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Frontiers in Plant Science, 2014, 5, 743.	1.7	53
2	Development of Simple Sequence Repeat (SSR) Markers of Sesame (Sesamum indicum) from a Genome Survey. Molecules, 2014, 19, 5150-5162.	1.7	67
3	Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnology Journal, 2014, 9, 1480-1492.	1.8	54
4	Analysis of expressed sequence tags from a normalized cDNA library of perilla (Perilla frutescens). Journal of Plant Biology, 2014, 57, 312-320.	0.9	4
5	Using nuclear gene data for plant phylogenetics: Progress and prospects II. Nextâ€gen approaches. Journal of Systematics and Evolution, 2015, 53, 371-379.	1.6	174
6	Tracking <i>sesamin synthase</i> gene expression through seed maturity in wild and cultivated sesame species – a domestication footprint. Plant Biology, 2015, 17, 1039-1046.	1.8	16
7	Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans. PLoS ONE, 2015, 10, e0144519.	1.1	20
8	Essences in Metabolic Engineering of Lignan Biosynthesis. Metabolites, 2015, 5, 270-290.	1.3	84
9	Next-Generation Sequencing (NGS) Tools and Impact in Plant Breeding. , 2015, , 563-612.		8
10	ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism. BMC Plant Biology, 2015, 15, 19.	1.6	15
11	Systematics and evolution in <i>Sesamum</i> L. (Pedaliaceae), part 1: Evidence regarding the origin of sesame and its closest relatives. Webbia, 2015, 70, 1-42.	0.1	20
12	Inheritance and molecular mapping of a novel dominant genic male-sterile gene in Sesamum indicum L Molecular Breeding, 2015, 35, 1.	1.0	10
13	Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L. Plant Physiology and Biochemistry, 2015, 94, 253-267.	2.8	23
14	The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Molecular Plant, 2015, 8, 922-934.	3.9	228
15	Genome-wide identification and analysis of the MADS-box gene family in sesame. Gene, 2015, 569, 66-76.	1.0	37
17	A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Research, 2015, 22, 121-131.	1.5	86
18	DNA Sequencing, Other Omics and Synthetic Biology. , 2015, , 125-140.		0
19	Identification, evolution, and expression partitioning of miRNAs in allopolyploid <i>Brassica napus</i> Journal of Experimental Botany, 2015, 66, 7241-7253.	2.4	44

#	Article	IF	Citations
20	Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6, 8609.	5.8	183
21	Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. Journal of Experimental Botany, 2015, 66, 5663-5681.	2.4	212
22	Analysis of Fatty Acid and Lignan Composition of Indian Germplasm of Sesame to Evaluate Their Nutritional Merits. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 65-76.	0.8	18
23	Sinbase: An Integrated Database to Study Genomics, Genetics and Comparative Genomics in Sesamum indicum. Plant and Cell Physiology, 2015, 56, e2-e2.	1.5	46
24	Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination. International Journal of Molecular Sciences, 2016, 17, 1139.	1.8	22
25	Whole genome homology-based identification of candidate genes for drought tolerance in sesame (Sesamum indicum L.). African Journal of Biotechnology, 2016, 15, 1464-1475.	0.3	22
26	Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques. Current Genomics, 2016, 17, 358-367.	0.7	51
27	Genetic Diversity, Population Structure, and Association Mapping of 10 Agronomic Traits in Sesame. Crop Science, 2016, 56, 331-343.	0.8	8
28	Analysis of Genetic Diversity and Population Structure of Sesame Accessions from Africa and Asia as Major Centers of Its Cultivation. Genes, 2016, 7, 14.	1.0	51
29	RNAi-mediated down-regulation of the expression of OsFAD2-1: effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biology, 2016, 16, 189.	1.6	26
30	Identification of Sesame Genomic Variations from Genome Comparison of Landrace and Variety. Frontiers in Plant Science, 2016, 7, 1169 .	1.7	48
31	Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response. Frontiers in Plant Science, 2016, 7, 1522.	1.7	77
32	Landscape of genomic diversity and trait discovery in soybean. Scientific Reports, 2016, 6, 23598.	1.6	151
33	Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.). BMC Plant Biology, 2016, 16, 250.	1.6	20
34	Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L Scientific Reports, 2016, 6, 31556.	1.6	65
35	High-throughput single nucleotide polymorphism (SNP) identification and mapping in the sesame (Sesamum indicum L.) genome with genotyping by sequencing (GBS) analysis. Molecular Breeding, 2016, 36, 1.	1.0	29
36	Survey of the genome of Pogostemon cablin provides insights into its evolutionary history and sesquiterpenoid biosynthesis. Scientific Reports, 2016, 6, 26405.	1.6	21
37	Assessment of genetic diversity amongst Ugandan sesame (Sesamum indicum L.) landraces based on agromorphological traits and genetic markers. Journal of Crop Science and Biotechnology, 2016, 19, 117-124.	0.7	17

#	ARTICLE	IF	Citations
38	Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). Mycorrhiza, 2016, 26, 553-563.	1.3	7
39	A physical map of important QTLs, functional markers and genes available for sesame breeding programs. Physiology and Molecular Biology of Plants, 2016, 22, 613-619.	1.4	17
40	Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biology, 2016, 16, 171.	1.6	116
41	Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods., 2016,, 1-26.		2
42	Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 2016, 17, 31.	1.2	84
43	Analysis of the Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. Molecular Plant, 2016, 9, 949-952.	3.9	255
44	Enhancement of \hat{l}_{\pm} -linolenic acid content in transgenic tobacco seeds by targeting a plastidial $i\%$ -3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Plant Cell Reports, 2016, 35, 213-226.	2.8	27
45	Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns. Plant Physiology, 2016, 170, 2095-2109.	2.3	269
46	Of dups and dinos: evolution at the K/Pg boundary. Current Opinion in Plant Biology, 2016, 30, 62-69.	3.5	64
47	Metabolic engineering of fatty acid biosynthetic pathway in sesame (Sesamum indicum L.): assembling tools to develop nutritionally desirable sesame seed oil. Phytochemistry Reviews, 2016, 15, 799-811.	3.1	23
48	Genome-Wide Convergence during Evolution of Mangroves from Woody Plants. Molecular Biology and Evolution, 2017, 34, msw277.	3.5	43
49	Dynamic transcriptome landscape of sesame (Sesamum indicum L.) under progressive drought and after rewatering. Genomics Data, 2017, 11, 122-124.	1.3	24
50	Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods. Reference Series in Phytochemistry, 2017, , 373-398.	0.2	1
51	Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches' broom phytoplasmas. Scientia Horticulturae, 2017, 226, 50-58.	1.7	21
52	Genome of wild olive and the evolution of oil biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9413-E9422.	3.3	233
53	Spatial organization of silybin biosynthesis in milk thistle [<i>Silybum marianum</i> (L.) Gaertn]. Plant Journal, 2017, 92, 995-1004.	2.8	41
54	Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Scientific Reports, 2017, 7, 8349.	1.6	31
55	Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes. Scientific Reports, 2017, 7, 8755.	1.6	62

#	Article	IF	CITATIONS
56	SesameFG: an integrated database for the functional genomics of sesame. Scientific Reports, 2017, 7, 2342.	1.6	22
57	Transcriptome comparative analysis of two Camellia species reveals lipid metabolism during mature seed natural drying. Trees - Structure and Function, 2017, 31, 1827-1848.	0.9	8
58	Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome. BMC Genomics, 2017, 18, 257.	1,2	17
59	Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales' evolutionary history. Scientific Reports, 2017, 7, 4477.	1.6	26
60	Impairing both <i>HMA4</i> homeologs is required for cadmium reduction in tobacco. Plant, Cell and Environment, 2017, 40, 364-377.	2.8	37
61	Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nature Communications, 2017, 8, 2155.	5.8	45
62	Lignan Biosynthesis for Food Bioengineering. , 2017, , 351-379.		1
63	The Emerging Oilseed Crop Sesamum indicum Enters the "Omics―Era. Frontiers in Plant Science, 2017, 8, 1154.	1.7	107
64	Development of Highly Informative Genome-Wide Single Sequence Repeat Markers for Breeding Applications in Sesame and Construction of a Web Resource: SisatBase. Frontiers in Plant Science, 2017, 8, 1470.	1.7	29
65	Functional Characterization of the Versatile MYB Gene Family Uncovered Their Important Roles in Plant Development and Responses to Drought and Waterlogging in Sesame. Genes, 2017, 8, 362.	1.0	61
66	Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biology, 2017, 17, 152.	1.6	94
67	Enhancing sesame production in West Africa's Sahel: a comprehensive insight into the cultivation of this untapped crop in Senegal and Mali. Agriculture and Food Security, 2017, 6, .	1.6	15
68	Genome-wide searches and molecular analyses highlight the unique evolutionary path of flavone synthase I (FNSI) in Apiaceae. Genome, 2018, 61, 103-109.	0.9	7
69	Relationship of Parental Genetic Distance with Heterosis and Specific Combining Ability in Sesame (Sesamum indicum L.) Based on Phenotypic and Molecular Marker Analysis. Biochemical Genetics, 2018, 56, 188-209.	0.8	11
70	Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Scientific Reports, 2018, 8, 4331.	1.6	39
71	Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytologist, 2018, 217, 428-438.	3.5	69
72	Photoperiod response-related gene SiCOL1 contributes to flowering in sesame. BMC Plant Biology, 2018, 18, 343.	1.6	17
73	Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC Plant Biology, 2018, 18, 351.	1.6	40

#	Article	IF	CITATIONS
74	An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. BMC Plant Biology, 2018, 18, 328.	1.6	23
75	Evolution of ALOG gene family suggests various roles in establishing plant architecture of Torenia fournieri. BMC Plant Biology, 2018, 18, 204.	1.6	6
76	Cytological characterization and molecular mapping of a novel recessive genic male sterility in sesame (Sesamum indicum L.). PLoS ONE, 2018, 13, e0204034.	1.1	8
77	Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii). BMC Plant Biology, 2018, 18, 248.	1.6	8
78	Genome-Wide Association Studies of 39 Seed Yield-Related Traits in Sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 2018, 19, 2794.	1.8	30
79	Factors Influencing Gene Family Size Variation Among Related Species in a Plant Family, Solanaceae. Genome Biology and Evolution, 2018, 10, 2596-2613.	1.1	54
80	Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS ONE, 2018, 13, e0199262.	1.1	29
81	High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant. GigaScience, 2018, 7, .	3.3	49
82	GWAS Uncovers Differential Genetic Bases for Drought and Salt Tolerances in Sesame at the Germination Stage. Genes, 2018, 9, 87.	1.0	72
83	Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS ONE, 2018, 13, e0200850.	1.1	57
84	GinMicrosatDb: a genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiology and Molecular Biology of Plants, 2018, 24, 929-937.	1.4	6
85	Phylogenomics of the olive tree (Olea europaea) reveals the relative contribution of ancient allo- and autopolyploidization events. BMC Biology, 2018, 16, 15.	1.7	30
86	Sequencing Plant Genomes. Progress in Botany Fortschritte Der Botanik, 2018, , 109-193.	0.1	4
87	Overexpression of BraLTP2, a Lipid Transfer Protein of Brassica napus, Results in Increased Trichome Density and Altered Concentration of Secondary Metabolites. International Journal of Molecular Sciences, 2018, 19, 1733.	1.8	21
88	Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in Upland cotton. Journal of Plant Physiology, 2018, 228, 101-112.	1.6	46
89	Genome sequence of <i>Jatropha curcas</i> L., a nonâ€edible biodiesel plant, provides a resource to improve seedâ€related traits. Plant Biotechnology Journal, 2019, 17, 517-530.	4.1	56
90	Trends in herbgenomics. Science China Life Sciences, 2019, 62, 288-308.	2.3	46
91	Depicting the Core Transcriptome Modulating Multiple Abiotic Stresses Responses in Sesame (Sesamum) Tj ETQ	q1 _{1.8} 0.78	4314 rgBT / <mark>O</mark>

#	Article	IF	CITATIONS
92	Root diversity in sesame (Sesamum indicum L.): insights into the morphological, anatomical and gene expression profiles. Planta, 2019, 250, 1461-1474.	1.6	20
93	Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nature Plants, 2019, 5, 991-1001.	4.7	72
94	Transcriptomic profiling of sesame during waterlogging and recovery. Scientific Data, 2019, 6, 204.	2.4	18
95	Phylotranscriptomic analyses reveal asymmetrical gene duplication dynamics and signatures of ancient polyploidy in mints. Genome Biology and Evolution, 2019, 11, 3393-3408.	1.1	21
96	A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells. GigaScience, 2019, 8, .	3.3	23
97	Sesame: Bioactive Compounds and Health Benefits. Reference Series in Phytochemistry, 2019, , 181-200.	0.2	21
98	Wholeâ€genome reâ€sequencing reveals the impact of the interaction of copy number variants of the <i>rhg1</i> and <i>Rhg4</i> genes on broadâ€based resistance to soybean cyst nematode. Plant Biotechnology Journal, 2019, 17, 1595-1611.	4.1	65
99	Genome-wide association study of vitamin E using genotyping by sequencing in sesame (Sesamum) Tj ETQq1 1 ().784314 0.5	rgBT /Overloc
100	Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple. Tropical Plant Biology, 2019, 12, 255-267.	1.0	7
101	Gene expression profiles that shape high and low oil content sesames. BMC Genetics, 2019, 20, 45.	2.7	18
102	The Carrot Nuclear Genome and Comparative Analysis. Compendium of Plant Genomes, 2019, , 187-204.	0.3	1
103	Herbgenomics: A stepping stone for research into herbal medicine. Science China Life Sciences, 2019, 62, 913-920.	2.3	22
104	Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus) Tj ETQq0 0 0 rgBT /	Overlock 1	10 Tf 50 262 ⁻
105	<i>De novo</i> origination of <i>MIRNAs</i> through generation of short inverted repeats in target genes. RNA Biology, 2019, 16, 846-859.	1.5	14
106	Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology, 2019, 20, 38.	3.8	542
107	The genetic basis of drought tolerance in the high oil crop <i>Sesamum indicum</i> . Plant Biotechnology Journal, 2019, 17, 1788-1803.	4.1	63
108	Potential for Adaptation to Climate Change Through Genomic Breeding in Sesame., 2019,, 371-440.		17
109	Tung Tree (Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production. Genomics, Proteomics and Bioinformatics, 2019, 17, 558-575.	3.0	43

#	ARTICLE	IF	CITATIONS
110	Influence of pollen sources on the expression of FA and TAC biosynthetic pathway genes in seeds of Paeonia rockii during the rapid oil accumulation. Scientia Horticulturae, 2019, 243, 477-483.	1.7	16
111	The genome of the medicinal plant <i>Andrographis paniculata</i> provides insight into the bioactive diterpenoid neoandrographolide. Plant Journal, 2019, 97, 841-857.	2.8	75
112	Insight into the evolution and functional characteristics of the panâ€genome assembly from sesame landraces and modern cultivars. Plant Biotechnology Journal, 2019, 17, 881-892.	4.1	79
113	Comparative genome/transcriptome analysis probes Boraginales' phylogenetic position, WGDs in Boraginales, and key enzyme genes in the alkannin/shikonin core pathway. Molecular Ecology Resources, 2020, 20, 228-241.	2.2	24
114	Genotypic Variation in Fatty Acids in Whole Grain Sesame (Fatty Acids in Whole Grain Sesame). Journal of Crop Science and Biotechnology, 2020, 23, 9-20.	0.7	1
115	Blue genome: chromosomeâ€scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in <i>Strobilanthes cusia</i>). Plant Journal, 2020, 104, 864-879.	2.8	15
116	Fine mapping of a novel male-sterile mutant showing wrinkled-leaf in sesame by BSA-Seq technology. Industrial Crops and Products, 2020, 156, 112862.	2.5	9
117	Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Molecular Biology and Evolution, 2020, 37, 3188-3210.	3.5	82
118	A highâ€quality reference genome sequence of <i>Salvia miltiorrhiza</i> provides insights into tanshinone synthesis in its red rhizomes. Plant Genome, 2020, 13, e20041.	1.6	45
119	Development of High-Resolution Simple Sequence Repeat Markers through Expression Profiling of Genes Associated with Pod Maturity of Soybean. Applied Sciences (Switzerland), 2020, 10, 6363.	1.3	0
120	Candidate genes involved in the biosynthesis of lignan in Schisandra chinensis fruit based on transcriptome and metabolomes analysis. Chinese Journal of Natural Medicines, 2020, 18, 684-695.	0.7	8
121	Transcriptome Dynamics during Black and White Sesame (Sesamum indicum L.) Seed Development and Identification of Candidate Genes Associated with Black Pigmentation. Genes, 2020, 11, 1399.	1.0	25
122	Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis. Genomics, Proteomics and Bioinformatics, 2020, 18, 230-240.	3.0	49
123	Chromosome Level Genome Assembly of Andrographis paniculata. Frontiers in Genetics, 2020, 11, 701.	1.1	14
124	Convergent adaptation of the genomes of woody plants at the land–sea interface. National Science Review, 2020, 7, 978-993.	4.6	44
125	Chromatin Architectures Are Associated with Response to Dark Treatment in the Oil Crop Sesamum indicum, Based on a High-Quality Genome Assembly. Plant and Cell Physiology, 2020, 61, 978-987.	1.5	7
126	Sustainable Sesame (Sesamum indicum L.) Production through Improved Technology: An Overview of Production, Challenges, and Opportunities in Myanmar. Sustainability, 2020, 12, 3515.	1.6	65
127	Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas. BMC Genomics, 2020, 21, 290.	1.2	2

#	Article	IF	CITATIONS
128	Identification and in silico evaluation of bHLH genes in the Sesamum indicum genome: Growth regulation and stress dealing specially through the metal ions homeostasis and flavonoid biosynthesis. Gene Reports, 2020, 19, 100639.	0.4	2
129	Comparative Analysis of Root Transcriptome Profiles of Sesame (Sesamum indicum L.) in Response to Osmotic Stress. Journal of Plant Growth Regulation, 2021, 40, 1787-1801.	2.8	8
130	High-resolution temporal transcriptome sequencing unravels ERF and WRKY as the master players in the regulatory networks underlying sesame responses to waterlogging and recovery. Genomics, 2021, 113, 276-290.	1.3	21
131	Sinbase 2.0: An Updated Database to Study Multi-Omics in Sesamum indicum. Plants, 2021, 10, 272.	1.6	6
132	Prospect of Designed Breeding in Sesame in the Post-genomics Era. Compendium of Plant Genomes, 2021, , 291-296.	0.3	2
133	De novo genome assembly of the potent medicinal plant Rehmannia glutinosa using nanopore technology. Computational and Structural Biotechnology Journal, 2021, 19, 3954-3963.	1.9	26
134	Genome Annotation and Gene Families in Sesame. Compendium of Plant Genomes, 2021, , 255-266.	0.3	2
135	The Sesame Genome for Gene Discovery in Sesame. Compendium of Plant Genomes, 2021, , 283-290.	0.3	2
136	A global survey of the gene network and key genes for oil accumulation in cultivated tetraploid cottons. Plant Biotechnology Journal, 2021, 19, 1170-1182.	4.1	18
137	Assessment of genetic diversity in Moroccan sesame (<i>Sesamum indicum</i>) using ISSR molecular markers. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 3.	0.6	10
138	Lignans of Sesame (Sesamum indicum L.): A Comprehensive Review. Molecules, 2021, 26, 883.	1.7	92
139	A novel motif in the 5'â€UTR of an orphan gene <i>Big Root Biomass</i> ' modulates root biomass in sesame. Plant Biotechnology Journal, 2021, 19, 1065-1079.	4.1	18
140	Functioning of PPR Proteins in Organelle RNA Metabolism and Chloroplast Biogenesis. Frontiers in Plant Science, 2021, 12, 627501.	1.7	38
141	QTL-Seq and Transcriptome Analysis Disclose Major QTL and Candidate Genes Controlling Leaf Size in Sesame (Sesamum indicum L.). Frontiers in Plant Science, 2021, 12, 580846.	1.7	14
142	QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS ONE, 2021, 16, e0247681.	1.1	16
143	Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliata subsp. australis. Horticulture Research, 2021, 8, 33.	2.9	23
144	The mechanism of sesame resistance against Macrophomina phaseolina was revealed via a comparison of transcriptomes of resistant and susceptible sesame genotypes. BMC Plant Biology, 2021, 21, 159.	1.6	16
145	Genome-wide analyses of tandem repeats and transposable elements in patchouli. Genes and Genetic Systems, 2021, 96, 81-87.	0.2	1

#	Article	IF	Citations
146	Genome-Wide Analysis of nsLTP Gene Family and Identification of SiLTPs Contributing to High Oil Accumulation in Sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 2021, 22, 5291.	1.8	20
147	Chromosomal-Level Reference Genome of the Neotropical Tree Jacaranda mimosifolia D. Don. Genome Biology and Evolution, 2021, 13, .	1.1	7
148	Genome-wide association study of seed coat color in sesame (Sesamum indicum L.). PLoS ONE, 2021, 16, e0251526.	1.1	23
149	Global Transcriptome Analyses Provide Into Several Fatty Acid Biosynthesis-related Genes in Peanut (Arachis hypogaea L.). Tropical Plant Biology, 2021, 14, 267-282.	1.0	5
150	Genome-wide association study and its applications in the non-model crop Sesamum indicum. BMC Plant Biology, 2021, 21, 283.	1.6	20
151	Fine Mapping of a Major Pleiotropic QTL Associated with Sesamin and Sesamolin Variation in Sesame (Sesamum indicum L.). Plants, 2021, 10, 1343.	1.6	15
152	Genomic insights into the fast growth of paulownias and the formation of Paulownia witches' broom. Molecular Plant, 2021, 14, 1668-1682.	3.9	39
153	QTL mapping of yield-related traits in sesame. Molecular Breeding, 2021, 41, 1.	1.0	8
154	CRISPR-based genome editing technology and its applications in oil crops. Oil Crop Science, 2021, 6, 105-113.	0.9	9
155	Genomeâ€wide analysis of butterfly bush (<i>Buddleja alternifolia</i>) in three uplands provides insights into biogeography, demography and speciation. New Phytologist, 2021, 232, 1463-1476.	3.5	21
156	Transcriptome analysis of sesame-Macrophomina phaseolina interactions revealing the distinct genetic components for early defense responses. Physiology and Molecular Biology of Plants, 2021, 27, 1675-1693.	1.4	6
157	Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome. Horticulture Research, 2021, 8, 177.	2.9	27
158	Leaf size modulation by cytokinins in sesame plants. Plant Physiology and Biochemistry, 2021, 167, 763-770.	2.8	8
159	Molecular Mapping and Breeding in Sesame. Compendium of Plant Genomes, 2021, , 159-177.	0.3	1
161	Building an octaploid genome and transcriptome of the medicinal plant Pogostemon cablin from Lamiales. Scientific Data, 2018, 5, 180274.	2.4	17
162	Integration of RNA-Seq profiling with genome-wide association study predicts candidate genes for oil accumulation in soybean. Crop and Pasture Science, 2020, 71, 996.	0.7	5
163	Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns. PLoS ONE, 2016, 11, e0149912.	1.1	42
164	An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants. PLoS ONE, 2016, 11, e0154882.	1.1	21

#	Article	IF	CITATIONS
166	Analysis of Molecular Variance and Population Structure of Sesame (<i>Sesamum indicum</i> L.) Genotypes Using Simple Sequence Repeat Markers. Plant Breeding and Biotechnology, 2018, 6, 321-336.	0.3	8
167	Oil plant genomes: current state of the science. Journal of Experimental Botany, 2022, 73, 2859-2874.	2.4	16
168	GreeNC 2.0: a comprehensive database of plant long non-coding RNAs. Nucleic Acids Research, 2022, 50, D1442-D1447.	6.5	33
170	Sesame: Bioactive Compounds and Health Benefits. Reference Series in Phytochemistry, 2018, , 1-20.	0.2	0
171	Positively Selected Orthologous Genes Identified in Sesame (<i>Sesamum indicum</i>) by Deep Resequencing. Plant Breeding and Biotechnology, 2019, 7, 24-33.	0.3	0
176	Genetic Potential and Possible Improvement of Sesamum indicum L , 0, , .		1
177	Mass Spectrometric Identification of Antimicrobial Peptides from Medicinal Seeds. Molecules, 2021, 26, 7304.	1.7	3
178	Mapping the major quantitative trait loci of the heading date trait in Qingke barley (Hordeum vulgare) Tj $ETQq1\ 1$ Transgender Health, 2021, 14, 882-893.	0.784314 1.1	ł rgBT /Over 2
179	Systematic analysis of HD-ZIP transcription factors in sesame genome and gene expression profiling of SiHD-ZIP class I entailing drought stress responses at early seedling stage. Molecular Biology Reports, 2022, 49, 2059-2071.	1.0	5
182	Effects of Different Irrigation Levels on Selected Crop Parameters of Sesame (Sesamum indicum L.) Under Semi-Arid Highland Conditions in Turkey. European Journal of Science and Technology, 0, , .	0.5	O
184	Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. Plant Journal, 2022, 109, 1305-1318.	2.8	12
185	Review on the Development and Applications of Medicinal Plant Genomes. Frontiers in Plant Science, 2021, 12, 791219.	1.7	18
186	A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. Plant Communications, 2022, 3, 100326.	3.6	14
188	Current Research Trends and Prospects for Yield and Quality Improvement in Sesame, an Important Oilseed Crop. Frontiers in Plant Science, 2022, 13, .	1.7	14
189	Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. Nucleus (India), 2022, 65, 151-164.	0.9	7
190	Transcriptome analysis and identification of genes associated with oil accumulation in upland cotton. Physiologia Plantarum, 2022, 174, e13701.	2.6	8
191	Transcriptome analysis combined with metabolome analysis reveals the significant functions of CesA genes in cotton (Gossypium hirsutum) fiber length development. Biocell, 2022, 46, 2133-2144.	0.4	0
192	Genome-wide association analysis and transcriptome reveal novel loci and a candidate regulatory gene of fatty acid biosynthesis in sesame (Sesamum indicum L.). Plant Physiology and Biochemistry, 2022, 186, 220-231.	2.8	8

#	Article	IF	CITATIONS
193	Characterization of Peroxidase and Laccase Gene Families and In Silico Identification of Potential Genes Involved in Upstream Steps of Lignan Formation in Sesame. Life, 2022, 12, 1200.	1.1	4
194	Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): A comprehensive review and future prospects. Journal of Integrative Agriculture, 2023, 22, 14-30.	1.7	6
195	Genetic Improvement in Sesame (Sesamum indicum L.): Progress and Outlook: A Review. Agronomy, 2022, 12, 2144.	1.3	11
196	Metabolome genomeâ€wide association study provides biochemical and genetic insights into natural variation of primary metabolites in sesame. Plant Journal, 2022, 112, 1051-1069.	2.8	2
198	Genetic diversity using biochemical, physiological, karyological and molecular markers of Sesamum indicum L. Frontiers in Genetics, 0, 13 , .	1.1	8
199	The wild allotetraploid sesame genome provides novel insights into evolution and lignan biosynthesis. Journal of Advanced Research, 2023, 50, 13-24.	4.4	8
200	A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Scientific Reports, 2022, 12, .	1.6	6
201	Discovering favorable genes, QTLs, and genotypes as a genetic resource for sesame (Sesamum indicum) Tj ETQq1	10.7843	14 rgBT /O
202	Improved assembly and annotation of the sesame genome. DNA Research, 2022, 29, .	1.5	11
204	Genome assembly of wild loquat ($\langle i \rangle$ Eriobotrya japonica $\langle i \rangle$) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat. Horticulture Research, 2023, 10, .	2.9	12
205	Syringa oblata genome provides new insights into molecular mechanism of flower color differences among individuals and biosynthesis of its flower volatiles. Frontiers in Plant Science, 0, 13, .	1.7	0
206	Resequencing of 410 Sesame Accessions Identifies SINST1 as the Major Underlying Gene for Lignans Variation. International Journal of Molecular Sciences, 2023, 24, 1055.	1.8	5
208	Integrating transcriptome and phytohormones analysis provided insights into plant height development in sesame. Plant Physiology and Biochemistry, 2023, 198, 107695.	2.8	4
209	Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. International Journal of Molecular Sciences, 2023, 24, 3105.	1.8	5
210	Computational identification and systematic classification of cytochrome P450 genes in Pogostemon cablin provide insights into flavonoids biosynthesis. Acta Physiologiae Plantarum, 2023, 45, .	1.0	1
211	Generation of Sesame Mutant Population by Mutagenesis and Identification of High Oleate Mutants by GC Analysis. Plants, 2023, 12, 1294.	1.6	1
217	Biotechnological Approaches for Genetic Improvement of Sesame (Sesamum indicum L.)., 2023,, 343-368.		0
219	Insight into the Molecular Breeding Research Status for Crop Improvement in India: Prospects and Achievements. Plant Molecular Biology Reporter, 0, , .	1.0	1

#	Article	IF	CITATIONS
220	Nutraceutomics of the Ancient Oilseed Crop Sesame (Sesamum indicum L.)., 2023, , 1-32.		O
223	The status of in vitro regeneration and genetic transformation in the recalcitrant oil seed crop Sesamum indicum L. In Vitro Cellular and Developmental Biology - Plant, 0, , .	0.9	0
224	Whole-genome sequencing in medicinal plants: current progress and prospect. Science China Life Sciences, 2024, 67, 258-273.	2.3	0
226	Research advances and prospects of molecular markers in sesame: a review. Plant Biotechnology Reports, 2023, 17, 585-603.	0.9	0
237	Nutraceutomics of the Ancient Oilseed Crop Sesame (Sesamum indicum L.)., 2023, , 471-501.		0