Transoral Robotic Surgery: A Populationâ€Level Analys

Otolaryngology - Head and Neck Surgery 150, 968-975

DOI: 10.1177/0194599814525747

Citation Report

#	Article	IF	Citations
1	A Contemporary Analysis of Surgical Trends in the Treatment of Squamous Cell Carcinoma of the Oropharynx from 1998 to 2012: A Report from the National Cancer Database. Annals of Surgical Oncology, 2015, 22, 4422-4431.	0.7	61
2	Transoral robotic surgery for oropharyngeal squamous cell carcinoma. Current Opinion in Otolaryngology and Head and Neck Surgery, 2015, 23, 127-131.	0.8	10
3	Surgery Versus Radiotherapy for Early Oropharyngeal Tumors: a Never-Ending Debate. Current Treatment Options in Oncology, 2015, 16, 42.	1.3	42
4	Transoral Robotic Surgery in Oropharyngeal Carcinoma. Archives of Pathology and Laboratory Medicine, 2015, 139, 1389-1397.	1.2	13
5	Robotic-assisted modified retroauricular cervical approach: initial experience in Latin America. Revista Do Colegio Brasileiro De Cirurgioes, 2016, 43, 289-291.	0.3	7
6	Robotics in otolaryngology and head and neck surgery: Recommendations for training and credentialing: A report of the 2015 AHNS education committee, AAOâ€HNS robotic task force and AAOâ€HNS sleep disorders committee. Head and Neck, 2016, 38, E151-8.	0.9	37
7	Oncologic outcomes of surgically treated earlyâ€stage oropharyngeal squamous cell carcinoma. Head and Neck, 2016, 38, 1467-1471.	0.9	24
8	Long-term survival outcomes in patients with surgically treated oropharyngeal cancer and defined human papilloma virus status. Journal of Laryngology and Otology, 2016, 130, 1048-1053.	0.4	12
9	Retroauricular Endoscope-Assisted Approach to the Neck: Early Experience in Latin America. International Archives of Otorhinolaryngology, 2016, 20, 138-144.	0.3	20
10	Applications of Evolving Robotic Technology for Head and Neck Surgery. Annals of Otology, Rhinology and Laryngology, 2016, 125, 207-212.	0.6	7
11	Adoption of transoral robotic surgery compared with other surgical modalities for treatment of oropharyngeal squamous cell carcinoma. Journal of Surgical Oncology, 2016, 114, 405-411.	0.8	49
13	Treatment de-intensification strategies for head and neck cancer. European Journal of Cancer, 2016, 68, 125-133.	1.3	101
14	Pretreatment predictors of adjuvant chemoradiation in patients receiving transoral robotic surgery for squamous cell carcinoma of the oropharynx: a case control study. Cancers of the Head & Neck, 2016, 1, 7.	6.2	9
15	Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base. Cancer, 2016, 122, 1523-1532.	2.0	128
16	Metaâ€analysis on survival of patients treated with transoral surgery versus radiotherapy for earlyâ€stage squamous cell carcinoma of the oropharynx. Head and Neck, 2016, 38, E2143-50.	0.9	45
17	Morbidity and Mortality Associated With Robotic Head and Neck Surgery. JAMA Otolaryngology - Head and Neck Surgery, 2016, 142, 405.	1.2	11
18	Morbidity, mortality and cost from HPV-related oropharyngeal cancer: Impact of 2-, 4- and 9-valent vaccines. Human Vaccines and Immunotherapeutics, 2016, 12, 1343-1347.	1.4	11
19	Minimizing adjuvant treatment after transoral robotic surgery through surgical margin revision and exclusion of radiographic extracapsular extension: A Prospective observational cohort study. Head and Neck, 2017, 39, 965-973.	0.9	23

#	Article	IF	CITATIONS
20	Assessment of Surgical Learning Curves in Transoral Robotic Surgery for Squamous Cell Carcinoma of the Oropharynx. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 542.	1.2	28
21	The impact of prophylactic external carotid artery ligation on postoperative bleeding after transoral robotic surgery (TORS) for oropharyngeal squamous cell carcinoma. Oral Oncology, 2017, 70, 1-6.	0.8	51
22	Controversies in Postoperative Irradiation of Oropharyngeal Cancer After Transoral Surgery. Surgical Oncology Clinics of North America, 2017, 26, 357-370.	0.6	8
23	The role of transoral robotic surgery in the management of oropharyngeal cancer. Current Opinion in Oncology, 2017, 29, 166-171.	1.1	17
24	Impact of positive margins on outcomes of oropharyngeal squamous cell carcinoma according to p16 status. Head and Neck, 2017, 39, 1680-1688.	0.9	38
25	Trends and the utilization of transoral robotic surgery with neck dissection in New York State. Laryngoscope, 2017, 127, 1571-1576.	1.1	4
26	Unplanned readmission following transoral robotic surgery. Oral Oncology, 2017, 75, 127-132.	0.8	24
27	Financial outcomes of transoral robotic surgery: A narrative review. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2018, 39, 448-452.	0.6	8
28	Upfront surgery versus definitive chemoradiotherapy in patients with human Papillomavirus-associated oropharyngeal squamous cell cancer. Oral Oncology, 2018, 79, 64-70.	0.8	42
29	Retroauricular endoscopic and robotic versus conventional neck dissection for oral cancer. Journal of Robotic Surgery, 2018, 12, 117-129.	1.0	25
30	Intraoperative imaging during minimally invasive transoral robotic surgery using near-infrared light. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2018, 39, 220-222.	0.6	16
31	First bite syndrome following transcervical arterial ligation after transoral robotic surgery. Laryngoscope, 2018, 128, 1589-1593.	1.1	13
32	Positive Margins by Oropharyngeal Subsite in Transoral Robotic Surgery for T1/T2 Squamous Cell Carcinoma. Otolaryngology - Head and Neck Surgery, 2018, 158, 660-666.	1.1	20
33	Hoofd-halstumoren. Bijblijven (Amsterdam, Netherlands), 2018, 34, 811-817.	0.0	0
34	The interplay of IMRT and transoral surgery in HPV-mediated oropharyngeal cancer: Getting the balance right. Oral Oncology, 2018, 86, 171-180.	0.8	15
35	Transoral Robotic Surgery in the Nordic Countries: Current Status and Perspectives. Frontiers in Oncology, 2018, 8, 289.	1.3	7
36	Extracapsular extension is not a significant prognostic indicator in non-squamous cancers of the major salivary glands. Cancers of the Head & Neck, 2018, 3, 5.	6.2	2
38	Development and Assessment of a Transoral Robotic Surgery Curriculum to Train Otolaryngology Residents. Orl, 2018, 80, 69-76.	0.6	10

#	ARTICLE	IF	CITATIONS
39	Outcomes of transoral laser microsurgery for oropharyngeal squamous cell carcinoma in Ireland and review of the literature on transoral approaches. Irish Journal of Medical Science, 2019, 188, 397-403.	0.8	1
40	The acceptance and adoption of transoral robotic surgery in Australia and New Zealand. Journal of Robotic Surgery, 2019, 13, 301-307.	1.0	13
41	Initial and Longâ€ŧerm Retention of Robotic Technical Skills in an Otolaryngology Residency Program. Laryngoscope, 2019, 129, 1380-1385.	1.1	9
42	Margins in Laryngeal Squamous Cell Carcinoma Treated with Transoral Laser Microsurgery: A National Database Study. Otolaryngology - Head and Neck Surgery, 2019, 161, 986-992.	1.1	11
43	Metaâ€enalysis comparing outcomes of different transoral surgical modalities in management of oropharyngeal carcinoma. Head and Neck, 2019, 41, 1656-1666.	0.9	21
44	Novel minimally invasive transoral surgery bleeding model implemented in a nationwide otolaryngology emergencies bootcamp. Journal of Robotic Surgery, 2019, 13, 773-778.	1.0	6
45	Positive margin rates and predictors in transoral robotic surgery after federal approval: A national quality study. Head and Neck, 2019, 41, 3064-3072.	0.9	24
46	Role of Treatment Deintensification in the Management of p16+ Oropharyngeal Cancer: ASCO Provisional Clinical Opinion. Journal of Clinical Oncology, 2019, 37, 1578-1589.	0.8	50
47	Postoperative Treatment of Oropharyngeal Cancer in the Era of Human Papillomavirus. Current Treatment Options in Oncology, 2019, 20, 20.	1.3	11
48	Readmission after surgery for oropharyngeal cancer: An analysis of rates, causes, and risk factors. Laryngoscope, 2019, 129, 910-918.	1.1	11
49	Predictors of gastrostomy tube dependence in surgically managed oropharyngeal squamous cell carcinoma. Laryngoscope, 2019, 129, 415-421.	1.1	13
50	Clinical value of transoral robotic surgery: Nationwide results from the first 5 years of adoption. Laryngoscope, 2019, 129, 1844-1855.	1.1	30
51	Current Concepts in Chemotherapy for Head and Neck Cancer. Oral and Maxillofacial Surgery Clinics of North America, 2019, 31, 145-154.	0.4	34
52	Is robotic surgery an option for early Tâ€stage laryngeal cancer? Early nationwide results. Laryngoscope, 2020, 130, 1195-1201.	1.1	16
53	Prophylactic arterial ligation following transoral robotic surgery: A systematic review and metaâ€analysis. Head and Neck, 2020, 42, 739-746.	0.9	15
54	Cost Considerations for Robotic Surgery. Otolaryngologic Clinics of North America, 2020, 53, 1131-1138.	0.5	8
55	MRI-Based Assessment of the Pharyngeal Constrictor Muscle as a Predictor of Surgical Margin after Transoral Robotic Surgery in HPV-Positive Tonsillar Cancer. American Journal of Neuroradiology, 2020, 41, 2320-2326.	1.2	4
56	Transoral Robotic Surgical Proficiency Via Realâ€Time Tactile Collision Awareness System. Laryngoscope, 2020, 130, S1-S17.	1.1	1

#	ARTICLE	IF	CITATIONS
57	Comparison of Survival After Transoral Robotic Surgery vs Nonrobotic Surgery in Patients With Early-Stage Oropharyngeal Squamous Cell Carcinoma. JAMA Oncology, 2020, 6, 1555.	3.4	36
58	Transoral robotic resection of a posterior hypopharyngeal wall liposarcoma: A case report of a rare entity and literature review. Otolaryngology Case Reports, 2020, 15, 100158.	0.0	0
59	Days alive and out of hospital a validated patient-centred outcome to be used for patients undergoing transoral robotic surgery: protocol and perspectives. Acta Oto-Laryngologica, 2021, 141, 95-98.	0.3	7
60	Insurance Status as a Predictor of Treatment in Human Papillomavirus Positive Oropharyngeal Cancer. Laryngoscope, 2021, 131, 776-781.	1.1	8
61	Evaluating the risks and benefits of ketorolac in transoral robotic surgery. Journal of Robotic Surgery, 2021, 15, 885-889.	1.0	1
62	Acceptance and adoption of transoral robotic surgery in Germany. European Archives of Oto-Rhino-Laryngology, 2021, 278, 4021-4026.	0.8	6
63	Machine Learning to Predict Treatment in Oropharyngeal Squamous Cell Carcinoma. Orl, 2022, 84, 39-46.	0.6	1
64	Transoral robotic surgery versus nonrobotic resection of oropharyngeal squamous cell carcinoma. Head and Neck, 2021, 43, 2259-2273.	0.9	17
65	Oropharyngeal Carcinoma Treated with Surgery Alone: Outcomes and Predictors of Failure. Annals of Otology, Rhinology and Laryngology, 2022, 131, 281-288.	0.6	3
66	Human Papillomavirus and Squamous Cell Carcinoma of Unknown Primary in the Head and Neck Region: A Comprehensive Review on Clinical Implications. Viruses, 2021, 13, 1297.	1.5	7
67	Robotic and Endoscopic Approaches to Head and Neck Surgery. Hematology/Oncology Clinics of North America, 2021, 35, 875-894.	0.9	5
68	Oropharynx Cancer. , 2016, , 27-49.		0
69	Robotics in Surgery., 2017,, 1-10.		0
70	Robotic-assisted surgery for pharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2018, 44, 331-335.	0.0	0
71	A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery. Acta Otorhinolaryngologica Italica, 2015, 35, 157-61.	0.7	21
72	Transoral robotic surgery adoption and safety in treatment of oropharyngeal cancers. Cancer, 2022, 128, 685-696.	2.0	13
73	Current Status of Transoral Surgery for Patients With Early-Stage Pharyngeal and Laryngeal Cancers in Japan. Frontiers in Oncology, 2021, 11, 804933.	1.3	4
74	Transoral Robotic Surgery for Laryngopharyngeal Cancer. Nihon Kikan Shokudoka Gakkai Kaiho, 2022, 73, 98-101.	0.0	0

#	Article	IF	CITATIONS
75	Second window indocyanine green for oropharyngeal tumours: A case series and comparison of nearâ€infrared camera systems. Clinical Otolaryngology, 2022, 47, 589-593.	0.6	1
76	The effect of human papillomavirus status on prognosis and local treatment strategies of T1-2N0 oropharyngeal squamous cell cancer. Frontiers in Public Health, 0, 10, .	1.3	0
77	Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma of the Tonsil versus Base of Tongue: A Systematic Review and Meta-Analysis. Cancers, 2022, 14, 3837.	1.7	2
78	Advances in Surgery and Reconstruction: TORS, TLM. , 2022, , 25-43.		0
79	Specimen-Based Resection Margins and Local Control during Transoral Robotic Surgery for Oropharyngeal HPV-Mediated Squamous Cell Carcinoma. Orl, 0 , 1 -8.	0.6	0
80	Adoption of otolaryngologistâ€head neck surgeons toward transoral robotic surgery: An international survey. Laryngoscope Investigative Otolaryngology, 2023, 8, 95-102.	0.6	1
81	Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature. Cancers, 2023, 15, 896.	1.7	6
82	Single centre analysis of perioperative complications in trans-oral robotic surgery for oropharyngeal carcinomas. Indian Journal of Otolaryngology and Head and Neck Surgery, 0, , .	0.3	0
83	Role of transoral robotic surgery in surgical treatment of earlyâ€stage supraglottic larynx carcinoma. Head and Neck, 2023, 45, 972-982.	0.9	1