Historical account on gaining insights on the mechanism induced by Agrobacterium tumefaciens

Frontiers in Microbiology 5, 340 DOI: 10.3389/fmicb.2014.00340

Citation Report

#	Article	IF	CITATIONS
1	Expression of Agrobacterium Homolog Genes Encoding T-complex Recruiting Protein under Virulence Induction Conditions. Frontiers in Microbiology, 2015, 6, 1379.	1.5	9
2	Agrobacterium: natureââ,¬â"¢s genetic engineer. Frontiers in Plant Science, 2014, 5, 730.	1.7	169
3	Domestication: Sweet! A naturally transgenic crop. Nature Plants, 2015, 1, 15077.	4.7	0
4	Editorial: "Agrobacterium biology and its application to transgenic plant production― Frontiers in Plant Science, 2015, 6, 265.	1.7	20
5	Tracking the Story of Cytokinin Research. Journal of Plant Growth Regulation, 2015, 34, 723-739.	2.8	25
6	Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annual Review of Genetics, 2015, 49, 577-601.	3.2	458
7	Successful Technologies and Approaches Used to Develop and Manage Resistance against Crop Diseases and Pests. , 2016, , 43-66.		14
8	Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. International Journal of Molecular Sciences, 2016, 17, 145.	1.8	77
9	A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant. Scientific Reports, 2016, 6, 29848.	1.6	15
10	The <i>Rickettsia</i> type IV secretion system: unrealized complexity mired by gene family expansion. Pathogens and Disease, 2016, 74, ftw058.	0.8	45
11	Comparative characterization of three bacterial exo-type alginate lyases. International Journal of Biological Macromolecules, 2016, 86, 519-524.	3.6	18
12	Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid, 2017, 91, 82-89.	0.4	74
13	A Career on Both Sides of the Atlantic: Memoirs of a Molecular Plant Pathologist. Annual Review of Phytopathology, 2017, 55, 1-21.	3.5	21
14	Natural Agrobacterium Transformants: Recent Results and Some Theoretical Considerations. Frontiers in Plant Science, 2017, 8, 1600.	1.7	34
15	Ecological and evolutionary dynamics of a model facultative pathogen: <i>Agrobacterium</i> and crown gall disease of plants. Environmental Microbiology, 2018, 20, 16-29.	1.8	54
16	Presence of anAgrobacterium-Type Tumor-Inducing Plasmid inNeorhizobiumsp. NCHU2750 and the Link to Phytopathogenicity. Genome Biology and Evolution, 2018, 10, 3188-3195.	1.1	13
17	From A. rhizogenes RolD to Plant P5CS: Exploiting Proline to Control Plant Development. Plants, 2018, 7, 108.	1.6	15
18	The Agrobacterium Phenotypic Plasticity (Plast) Genes. Current Topics in Microbiology and Immunology, 2018, 418, 375-419.	0.7	23

CITATION REPORT

#	Article	IF	CITATIONS
19	Tangled history of a multigene family: The evolution of ISOPENTENYLTRANSFERASE genes. PLoS ONE, 2018, 13, e0201198.	1.1	25
20	The Rhizobiaceae Bacteria Transferring Genes to Higher Plants. , 2019, , 269-289.		1
21	Differentiations in Gene Content and Expression Response to Virulence Induction Between Two Agrobacterium Strains. Frontiers in Microbiology, 2019, 10, 1554.	1.5	25
22	Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Frontiers in Plant Science, 2019, 10, 1204.	1.7	25
23	Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium tumefaciens from Rose Crown Gall in Selected Regions of South Korea. Plants, 2019, 8, 452.	1.6	6
24	Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnology Advances, 2019, 37, 259-270.	6.0	64
25	Genetic Modifications of Corn. , 2019, , 43-85.		4
26	Characterization and phylogenetic diversity of <i>Allorhizobium vitis</i> isolated from grapevine in Morocco. Journal of Applied Microbiology, 2020, 128, 828-839.	1.4	4
27	<i>Agrobacterium tumefaciens</i> ferritins play an important role in full virulence through regulating iron homeostasis and oxidative stress survival. Molecular Plant Pathology, 2020, 21, 1167-1178.	2.0	13
28	Agrobacterium strains and strain improvement: Present and outlook. Biotechnology Advances, 2021, 53, 107677.	6.0	29
29	Transgenesis as a Tool for the Efficient Production of Selected Secondary Metabolites from Plant in Vitro Cultures. Plants, 2020, 9, 132.	1.6	23
30	Phytoremediation using genetically engineered plants to remove metals: a review. Environmental Chemistry Letters, 2021, 19, 669-698.	8.3	55
31	The Divergent Key Residues of Two Agrobacterium fabrum (tumefaciens) CheY Paralogs Play a Key Role in Distinguishing Their Functions. Microorganisms, 2021, 9, 1134.	1.6	2
33	Plant susceptible responses: the underestimated side of plant–pathogen interactions. Biological Reviews, 2022, 97, 45-66.	4.7	28
34	The Only Chemoreceptor Encoded by che Operon Affects the Chemotactic Response of Agrobacterium to Various Chemoeffectors. Microorganisms, 2021, 9, 1923.	1.6	6
35	Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ, 2016, 4, e2222.	0.9	37
36	Complete Genome Sequence of <i>Agrobacterium</i> sp. Strain 33MFTa1.1, Isolated from <i>Thlaspi arvense</i> Roots. Microbiology Resource Announcements, 2019, 8, .	0.3	1
37	Natural Agrobacterium-Mediated Transformation in the Genus Nicotiana. Compendium of Plant Genomes, 2020, , 195-209.	0.3	3

		CITATION REPORT		
#	Article		IF	CITATIONS
38	Molekulare Struktur und Regulation prokaryotischer Gene. , 2020, , 131-201.			0
39	Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. Bi Biology, 2022, 20, 16.	ИС	1.7	16
40	Modern plant biotechnology as a strategy in addressing climate change and attainingÂfood secu Agriculture and Food Security, 2022, 11, .	rity.	1.6	48
49	Agrobacterium expressing aÂtype III secretion system delivers Pseudomonas effectors into plant to enhance transformation. Nature Communications, 2022, 13, 2581.	cells	5.8	32
50	Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. Plants, 2022, 11, 1297.		1.6	10
51	Inhibition of Agrobacterium tumefaciens Growth and Biofilm Formation by Tannic Acid. Biomedia 2022, 10, 1619.	tines,	1.4	4
52	Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection. Advances in Genetics, 2022, , 1-29.		0.8	3
53	Transgenic Medicinal Plants for Improved Plant Metabolites Production. , 2022, , 403-415.			0
54	Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. Journal of Bacteriology, 202	3, 205,	1.0	7
55	Draft Genome Sequence of Agrobacterium radiobacter Strain MD22b, Isolated from a Grape Plar Tajikistan. Microbiology Resource Announcements, 2023, 12, .	it in	0.3	0
58	Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Molecular Biotechnology,	0, , .	1.3	5