Mercaptosuccinate Dioxygenase, a Cysteine Dioxygenase paradoxus Strain B4 Is the Key Enzyme of Mercaptosuc

Journal of Biological Chemistry 289, 30800-30809 DOI: 10.1074/jbc.m114.579730

Citation Report

#	Article	IF	CITATIONS
2	A jack-of-all-trades: 2-mercaptosuccinic acid. Applied Microbiology and Biotechnology, 2015, 99, 4545-4557.	1.7	12
3	The Cysteine Dioxygenase Homologue from Pseudomonas aeruginosa Is a 3-Mercaptopropionate Dioxygenase. Journal of Biological Chemistry, 2015, 290, 24424-24437.	1.6	47
4	Influence of cysteine 164 on active site structure in rat cysteine dioxygenase. Journal of Biological Inorganic Chemistry, 2016, 21, 501-510.	1.1	18
5	Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16. Applied and Environmental Microbiology, 2016, 82, 910-921.	1.4	9
6	Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T. PLoS ONE, 2017, 12, e0174256.	1.1	3
7	Biochemical characterization and essentiality of fumarate hydratase. Journal of Biological Chemistry, 2018, 293, 5878-5894.	1.6	16
8	Nickelâ€substituted ironâ€dependent cysteine dioxygenase: Implications for the dioxygenation activity of nickel model compounds. International Journal of Quantum Chemistry, 2018, 118, e25564.	1.0	1
9	Substrate Specificity in Thiol Dioxygenases. Biochemistry, 2019, 58, 2398-2407.	1.2	25
10	Functional analysis of active amino acid residues of the mercaptosuccinate dioxygenase of Variovorax paradoxus B4. Enzyme and Microbial Technology, 2019, 120, 61-68.	1.6	8
11	Carbon–fluorine bond cleavage mediated by metalloenzymes. Chemical Society Reviews, 2020, 49, 4906-4925.	18.7	61
12	Spectroscopic Investigation of Cysteamine Dioxygenase. Biochemistry, 2020, 59, 2450-2458.	1.2	10
13	Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates. Journal of Biological Chemistry, 2020, 295, 11789-11802.	1.6	19
14	Sulfur-Ligated, Oxidative Nonheme Iron Enzymes and Related Complexes. , 2021, , 333-377.		8
15	Structure and Functional Differences of Cysteine and 3â€Mercaptopropionate Dioxygenases: A Computational Study. Chemistry - A European Journal, 2021, 27, 13793-13806.	1.7	12
16	Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor. Journal of Biological Chemistry, 2021, 297, 101176.	1.6	10
17	Structure of 3-mercaptopropionic acid dioxygenase with a substrate analog reveals bidentate substrate binding at the iron center. Journal of Biological Chemistry, 2021, 296, 100492.	1.6	12
19	Low-Spin Cyanide Complexes of 3-Mercaptopropionic Acid Dioxygenase (MDO) Reveal the Impact of Outer-Sphere SHY-Motif Residues. Inorganic Chemistry, 2021, 60, 18639-18651.	1.9	4
20	Charge Maintenance during Catalysis in Nonheme Iron Oxygenases. ACS Catalysis, 2022, 12, 6191-6208.	5.5	12

#	Article	IF	CITATIONS
21	Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Accounts of Chemical Research, 2022, 55, 2480-2490.	7.6	5
22	Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase. Methods in Enzymology, 2023, , 101-135.	0.4	0

CITATION REPORT