Defending Yarbus: Eye movements reveal observers' tas

Journal of Vision 14, 29-29 DOI: 10.1167/14.3.29

Citation Report

#	Article	IF	CITATIONS
1	What's on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths. Frontiers in Aging Neuroscience, 2014, 6, 312.	1.7	54
2	Optimal attentional modulation of a neural population. Frontiers in Computational Neuroscience, 2014, 8, 34.	1.2	9
3	An inverse Yarbus process: Predicting observers' task from eye movement patterns. Vision Research, 2014, 103, 127-142.	0.7	66
4	Privacy considerations for a pervasive eye tracking world. , 2014, , .		34
5	Prediction of search targets from fixations in open-world settings. , 2015, , .		32
6	Classifying mental states from eye movements during scene viewing Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1502-1514.	0.7	40
7	Scanpaths of Complex Image Viewing: Insights From Experimental and Modeling Studies. Perception, 2015, 44, 1064-1076.	0.5	10
8	Characteristic visuomotor influences on eye-movement patterns to faces and other high level stimuli. Frontiers in Psychology, 2015, 6, 1027.	1.1	8
9	Looking at others through implicitly or explicitly prejudiced eyes. Visual Cognition, 2015, 23, 612-642.	0.9	9
10	Video saliency prediction through machine learning with semantic information. , 2015, , .		0
11	Factors affecting identification of tasks using eye gaze. , 2015, , .		1
12	Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37, 1408-1424.	9.7	138
13	Humans have idiosyncratic and task-specific scanpaths for judging faces. Vision Research, 2015, 108, 67-76.	0.7	66
14	A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration. IEEE Transactions on Image Processing, 2015, 24, 1076-1086.	6.0	48
15	Intrinsic and extrinsic effects on image memorability. Vision Research, 2015, 116, 165-178.	0.7	164
16	Salient Object Detection: A Benchmark. IEEE Transactions on Image Processing, 2015, 24, 5706-5722.	6.0	1,126
17	Augmented saliency model using automatic 3D head pose detection and learned gaze following in natural scenes. Vision Research, 2015, 116, 113-126.	0.7	35
18	What do eyes reveal about the mind?. Neurocomputing, 2015, 149, 788-799.	3.5	34

	CITATION	KEPORT	
#	Article	IF	CITATIONS
20	Vanishing point attracts gaze in free-viewing and visual search tasks. Journal of Vision, 2016, 16, 18.	0.1	7
21	Patterns of Activity in the Human Frontal and Parietal Cortex Differentiate Large and Small Saccades. Frontiers in Integrative Neuroscience, 2016, 10, 34.	1.0	4
22	Selective scanpath repetition during memory-guided visual search. Visual Cognition, 2016, 24, 15-37.	0.9	35
23	Spatially Binned ROC: A Comprehensive Saliency Metric. , 2016, , .		4
24	Classifying mobile eye tracking data with hidden Markov models. , 2016, , .		6
25	Individual Differences in Image-Quality Estimations. ACM Transactions on Applied Perception, 2016, 13, 1-22.	1.2	2
26	Rationale and Architecture for Incorporating Human Oculomotor Plant Features in User Interest Modeling. , 2016, , .		4
27	GSET somi. , 2016, , .		10
28	Predicting task from eye movements: On the importance of spatial distribution, dynamics, and image features. Neurocomputing, 2016, 207, 653-668.	3.5	33
29	Theoretical perspectives on active sensing. Current Opinion in Behavioral Sciences, 2016, 11, 100-108.	2.0	95
30	Reconciling Saliency and Object Center-Bias Hypotheses in Explaining Free-Viewing Fixations. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1214-1226.	7.2	30
31	Video-Based Eye Tracking in Sex Research: A Systematic Literature Review. Journal of Sex Research, 2016, 53, 1008-1019.	1.6	30
32	The categories, frequencies, and stability of idiosyncratic eye-movement patterns to faces. Vision Research, 2017, 141, 191-203.	0.7	36
33	Decoding working memory content from attentional biases. Psychonomic Bulletin and Review, 2017, 24, 1252-1260.	1.4	11
34	The role of stimulus predictability in the allocation of attentional resources: an eye-tracking study. Cognitive Processing, 2017, 18, 335-342.	0.7	1
35	Controllability matters: The user experience of adaptive maps. GeoInformatica, 2017, 21, 619-641.	2.0	18
36	Temporally Robust Eye Movements through Task Priming and Self-referential Stimuli. Scientific Reports, 2017, 7, 7257.	1.6	2
37	Genetic Influence on Eye Movements to Complex Scenes at Short Timescales. Current Biology, 2017, 27, 3554-3560.e3.	1.8	86

#	Article	IF	CITATIONS
38	Human classifier: Observers can deduce task solely from eye movements. Attention, Perception, and Psychophysics, 2017, 79, 1415-1425.	0.7	7
40	Mixing Methods and Triangulating Results to Study the Influence of Panning on Map Users' Attentive Behaviour. Cartographic Journal, 2017, 54, 196-213.	0.8	6
41	SubsMatch 2.0: Scanpath comparison and classification based on subsequence frequencies. Behavior Research Methods, 2017, 49, 1048-1064.	2.3	40
42	People Are Unable to Recognize or Report on Their Own Eye Movements. Quarterly Journal of Experimental Psychology, 2017, 70, 2251-2270.	0.6	32
43	Did You Notice It?—How Can We Predict the Subjective Detection of Video Quality Changes From Eye Movements?. IEEE Journal on Selected Topics in Signal Processing, 2017, 11, 37-47.	7.3	3
44	Inferring Intent and Action from Gaze in Naturalistic Behavior. International Journal of Mobile Human Computer Interaction, 2017, 9, 41-57.	0.1	6
45	Scan patterns during real-world scene viewing predict individual differences in cognitive capacity. Journal of Vision, 2017, 17, 23.	0.1	33
46	The effect of four user interface concepts on visual scan pattern similarity and information foraging in a complex decision making task. Applied Ergonomics, 2018, 70, 6-17.	1.7	16
47	Analysis of the treatment plan evaluation process in radiotherapy through eye tracking. Zeitschrift Fur Medizinische Physik, 2018, 28, 318-324.	0.6	7
48	What Am I Looking at? Interpreting Dynamic and Static Gaze Displays. Cognitive Science, 2018, 42, 220-252.	0.8	17
49	Scanpath modeling and classification with hidden Markov models. Behavior Research Methods, 2018, 50, 362-379.	2.3	78
50	Physiological heatmaps: a tool for visualizing users' emotional reactions. Multimedia Tools and Applications, 2018, 77, 11547-11574.	2.6	33
51	"Economies of Experienceâ€â€"Disambiguation of Degraded Stimuli Leads to a Decreased Dispersion of Eyeâ€Movement Patterns. Cognitive Science, 2018, 42, 728-756.	0.8	6
52	Negative results in computer vision: A perspective. Image and Vision Computing, 2018, 69, 1-8.	2.7	26
53	Prediction of search targets from fixations based on weighted average map. , 2018, , .		0
54	Predicting observer's task from eye movement patterns during motion image analysis. , 2018, , .		2
55	Symmetric Evaluation of Multimodal Human–Robot Interaction with Gaze and Standard Control. Symmetry, 2018, 10, 680.	1.1	3
56	Attention and long-term memory: Bidirectional interactions and their effects on behavior. Psychology of Learning and Motivation - Advances in Research and Theory, 2018, 69, 285-323.	0.5	9

#	Article	IF	CITATIONS
57	Task-Related Differences in Eye Movements in Individuals With Aphasia. Frontiers in Psychology, 2018, 9, 2430.	1.1	10
58	The Theoretical and Methodological Opportunities Afforded by Guided Play With Young Children. Frontiers in Psychology, 2018, 9, 1152.	1.1	33
59	A Generative Model of Cognitive State from Task and Eye Movements. Cognitive Computation, 2018, 10, 703-717.	3.6	10
60	Evaluating Saccade-Bounded Eye Movement Features for the User Modeling. , 2018, , .		Ο
61	If there's a penis, it's most likely a man: Investigating the social construction of gender using eye tracking. PLoS ONE, 2018, 13, e0193616.	1.1	9
62	Detecting Concealed Knowledge From Ocular Responses. , 2018, , 169-186.		5
63	Inferring user tasks in pedestrian navigation from eye movement data in real-world environments. International Journal of Geographical Information Science, 2019, 33, 739-763.	2.2	43
64	Neuroeconomics Meets Aquaponics: An Eye-tracking Pilot Study on Perception of Information about Aquaponics. Sustainability, 2019, 11, 3580.	1.6	7
65	Memorabilityâ€based image compression. IET Image Processing, 2019, 13, 1490-1501.	1.4	3
66	Task classification model for visual fixation, exploration, and search. , 2019, , .		8
67	Ferns for area of interest free scanpath classification. , 2019, , .		9
68	Visual cues to fertility are in the eye (movements) of the beholder. Hormones and Behavior, 2019, 115, 104562.	1.0	3
69	The Effect of Task on Visual Attention in Interactive Virtual Environments. ACM Transactions on Applied Perception, 2019, 16, 1-17.	1.2	19
70	A Novel Eye Movement Data Transformation Technique that Preserves Temporal Information: A Demonstration in a Face Processing Task. Sensors, 2019, 19, 2377.	2.1	5
71	Individual differences in visual salience vary along semantic dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11687-11692.	3.3	67
72	Learning From Peers' Eye Movements in the Absence of Expert Guidance: A ProofÂof Concept Using Laboratory Stock Trading, Eye Tracking, and Machine Learning. Cognitive Science, 2019, 43, e12716.	0.8	13
73	Predicting artificial visual field losses: A gaze-based inference study. Journal of Vision, 2019, 19, 22.	0.1	19
74	Human-level saccade detection performance using deep neural networks. Journal of Neurophysiology, 2019, 121, 646-661.	0.9	55

#	Article	IF	CITATIONS
75	Detecting task demand via an eye tracking machine learning system. Decision Support Systems, 2019, 116, 91-101.	3.5	47
76	Psychophysical evaluation of individual low-level feature influences on visual attention. Vision Research, 2019, 154, 60-79.	0.7	9
77	Does it look safe? An eye tracking study into the visual aspects of fear of crime. Quarterly Journal of Experimental Psychology, 2019, 72, 599-615.	0.6	15
78	The right look for the job: decoding cognitive processes involved in the task from spatial eye-movement patterns. Psychological Research, 2020, 84, 245-258.	1.0	6
79	On the strategic value of â€~shooting yourself in the foot': an experimental study of burning money. International Journal of Game Theory, 2020, 49, 23-45.	0.5	2
80	Scanpath similarity measure reveals not only a decreased social preference, but also an increased nonsocial preference in individuals with autism. Autism, 2020, 24, 374-386.	2.4	7
81	Probabilistic Topic Model for Context-Driven Visual Attention Understanding. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 1653-1667.	5.6	3
82	Inferring task performance and confidence from displays of eye movements. Applied Cognitive Psychology, 2020, 34, 1430-1443.	0.9	7
83	Machine learning-based classification of viewing behavior using a wide range of statistical oculomotor features. Journal of Vision, 2020, 20, 1.	0.1	4
84	Visual exploration of emotional body language: a behavioural and eye-tracking study. Psychological Research, 2020, 85, 2326-2339.	1.0	10
85	Interpretable Global-Local Dynamics for the Prediction of Eye Fixations in Autonomous Driving Scenarios. IEEE Access, 2020, 8, 217068-217085.	2.6	8
86	Task-dependence in scene perception: Head unrestrained viewing using mobile eye-tracking. Journal of Vision, 2020, 20, 3.	0.1	6
87	Comparing pedestrians' gaze behavior in desktop and in real environments. Cartography and Geographic Information Science, 2020, 47, 432-451.	1.4	15
88	Reference data preparation for complex satellite image segmentation. IET Image Processing, 2020, 14, 628-637.	1.4	Ο
90	The Philosophical Landscape on Attention. , 2020, , 6-34.		0
91	Attention, Mental Causation, and the Self. , 2020, , 35-74.		0
92	Attention, Perception, and Knowledge. , 2020, , 75-116.		0
93	Attention, Consciousness, and Habitual Behavior. , 2020, , 117-161.		ο

#	Article	IF	CITATIONS
94	Attention, Action, and Responsibility. , 2020, , 162-198.		0
99	Predicting Spatial Visualization Problems' Difficulty Level from Eye-Tracking Data. Sensors, 2020, 20, 1949.	2.1	4
100	Fixation data analysis for complex high-resolution satellite images*. Geocarto International, 2021, 36, 698-719.	1.7	0
101	Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiatry and Clinical Neurosciences, 2021, 75, 82-100.	1.0	42
102	Salient Object Detection in the Deep Learning Era: An In-Depth Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 3239-3259.	9.7	259
103	Audio-Visual Salient Object Detection. Lecture Notes in Computer Science, 2021, , 510-521.	1.0	0
104	Interaction between image and text during the process of biblical art reception. Journal of Eye Movement Research, 2020, 13, .	0.5	0
105	Gaze-Based Intention Estimation for Shared Autonomy in Pick-and-Place Tasks. Frontiers in Neurorobotics, 2021, 15, 647930.	1.6	12
106	A COMPARATIVE RESEARCH ON G-HMM AND TSS TECHNOLOGIES FOR EYE MOVEMENT TRACKING ANALYSIS. Journal of Mechanics in Medicine and Biology, 2021, 21, 2140023.	0.3	1
107	Non-invasive Cognitive-level Human Interfacing for the Robotic Restoration of Reaching & Grasping. , 2021, , .		3
108	Temporal context guides visual exploration during scene recognition Journal of Experimental Psychology: General, 2021, 150, 873-889.	1.5	6
109	Contribution of Eye-Tracking to Study Cognitive Impairments Among Clinical Populations. Frontiers in Psychology, 2021, 12, 590986.	1.1	16
110	Art Education and Expertise An Eye Tracking Study. Hacettepe Üniversitesi Edebiyat Fakültesi Dergisi, 0, ,	0.1	1
111	Convolutional neural networks can decode eye movement data: A black box approach to predicting task from eye movements. Journal of Vision, 2021, 21, 9.	0.1	2
112	Automatic gaze to the nose region cannot be inhibited during observation of facial expression in Eastern observers. Consciousness and Cognition, 2021, 94, 103179.	0.8	1
113	Data-driven group comparisons of eye fixations to dynamic stimuli. Quarterly Journal of Experimental Psychology, 2022, 75, 989-1003.	0.6	1
114	Quantifying the Predictability of Visual Scanpaths Using Active Information Storage. Entropy, 2021, 23, 167.	1.1	4
115	Bodily emotional expressions are a primary source of information for dogs, but not for humans. Animal Cognition, 2021, 24, 267-279.	0.9	17

		CITATION REPORT		
#	Article		IF	Citations
116	Task-Driven Saliency Detection on Music Video. Lecture Notes in Computer Science, 201	5,,658-671.	1.0	1
117	Monitoring Dementia with Automatic Eye Movements Analysis. Smart Innovation, Syster Technologies, 2016, , 299-309.	ns and	0.5	6
119	Observers' cognitive states modulate how visual inputs relate to gaze control Journ Experimental Psychology: Human Perception and Performance, 2016, 42, 1429-1442.	al of	0.7	18
120	ChapterÂ2. Eye gaze as a cue for recognizing intention and coordinating joint action. Ad Interaction Studies, 0, , 21-46.	vances in	1.0	4
123	Deep semantic gaze embedding and scanpath comparison for expertise classification durviewing. , 2020, , .	ring OPT		24
124	Decoding Task From Oculomotor Behavior In Virtual Reality. , 2020, , .			6
125	Predicting the Valence of a Scene from Observers' Eye Movements. PLoS ONE, 2015	, 10, e0138198.	1.1	44
126	Topology for gaze analyses - Raw data segmentation. Journal of Eye Movement Research	, 2017, 10, .	0.5	11
127	Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker different experimental set-ups. Journal of Eye Movement Research, 2015, 8, .	in	0.5	71
128	Human Gaze Assisted Artificial Intelligence: A Review. , 2020, 2020, 4951-4958.			18
129	Identifying map users with eye movement data from map-based spatial tasks: user privac Cartography and Geographic Information Science, 2022, 49, 50-69.	y concerns.	1.4	7
130	Preliminary Studies on Personalized Preference Prediction from Gaze in Comparing Visua Lecture Notes in Computer Science, 2016, , 576-585.	lizations.	1.0	0
131	26. Eye Movements. , 2016, , 387-404.			0
132	Personality Gaze Patterns Unveiled via Automatic Relevance Determination. Lecture Note Science, 2018, , 171-184.	es in Computer	1.0	8
133	Dominance of perceptual grouping over functional category: an eye tracking study of hig satellite images. , 2018, , .	;h-resolution		0
134	Eye movements while judging faces for trustworthiness and dominance. PeerJ, 2018, 6, e	:5702.	0.9	2
135	Saccades: Fundamentals and Neural Mechanisms. Studies in Neuroscience, Psychology a Economics, 2019, , 11-71.	nd Behavioral	0.1	10
136	Effects of individuality, education, and image on visual attention: Analyzing eye-tracking machine learning. Journal of Eye Movement Research, 2019, 12, .	data using	0.5	2

Cr	τάτι	ON	REP	ORT
\sim	17311		IVEL 1	

#	Article	IF	CITATIONS
137	Augmenting the Business Intelligence Lifecycle Model with Usability: Using eye‑Tracking to Discover the why of Usability Problems. Electronic Journal of Information Systems Evaluation, 2020, 23, .	0.2	0
138	A MinHash approach for fast scanpath classification. , 2020, , .		2
139	Task-dependent eye-movement patterns in viewing art. Journal of Eye Movement Research, 2020, 13, .	0.5	5
140	Inferring Intent and Action from Gaze in Naturalistic Behavior. , 2020, , 1464-1482.		0
143	A two-step approach for interest estimation from gaze behavior in digital catalog browsing. Journal of Eye Movement Research, 2020, 13, .	0.5	0
144	The role of eye movements in perceiving vehicle speed and time-to-arrival at the roadside. Scientific Reports, 2021, 11, 23312.	1.6	3
145	Aging changes the interactions between the oculomotor and memory systems. Aging, Neuropsychology, and Cognition, 2022, 29, 418-442.	0.7	2
146	EHTask: Recognizing User Tasks From Eye and Head Movements in Immersive Virtual Reality. IEEE Transactions on Visualization and Computer Graphics, 2023, 29, 1992-2004.	2.9	11
147	Inferring Goals with Gaze during Teleoperated Manipulation. , 2021, , .		7
148	Gaze dynamics are sensitive to target orienting for working memory encoding in virtual reality. Journal of Vision, 2022, 22, 2.	0.1	2
149	Where do people look when they look at money?. International Journal of Industrial Ergonomics, 2022, 88, 103261.	1.5	0
150	Detecting individuals' spatial familiarity with urban environments using eye movement data. Computers, Environment and Urban Systems, 2022, 93, 101758.	3.3	7
151	Editorial: Active Vision and Perception in Human-Robot Collaboration. Frontiers in Neurorobotics, 2022, 16, 848065.	1.6	2
152	Applying machine learning to dissociate between stroke patients and healthy controls using eye movement features obtained from a virtual reality task. Heliyon, 2022, 8, e09207.	1.4	4
153	Exploring Eye Movement Biometrics in Real-World Activities: A Case Study of Wayfinding. Sensors, 2022, 22, 2949.	2.1	2
158	Light field salient object detection: A review and benchmark. Computational Visual Media, 2022, 8, 509-534.	10.8	23
159	Can Gaze Inform Egocentric Action Recognition?. , 2022, , .		3
160	Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach. Frontiers in Systems Neuroscience, 2022, 16, .	1.2	1

#	Article	IF	CITATIONS
161	What Attracts the Driver's Eye? Attention as a Function of Task and Events. Information (Switzerland), 2022, 13, 333.	1.7	4
162	Modeling Eye Movements During Decision Making: A Review. Psychometrika, 2023, 88, 697-729.	1.2	12
163	Seeing the Forrest through the trees: Oculomotor metrics are linked to heart rate. PLoS ONE, 2022, 17, e0272349.	1.1	1
164	Investigating Classification Methods using Fixation Patterns to Predict Visual Tasks. IFAC-PapersOnLine, 2022, 55, 19-24.	0.5	0
165	Understanding User Reliance on Al in Assisted Decision-Making. Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-23.	2.5	4
166	Simple eye movement metrics can predict future decision making performance: The case of financial choices. Judgment and Decision Making, 2019, 14, 223-233.	0.8	5
167	Looking at faces in the wild. Scientific Reports, 2023, 13, .	1.6	2
168	A novel approach to studying strategic decisions with eye-tracking and machine learning. Judgment and Decision Making, 2017, 12, 596-609.	0.8	18
169	Did You Get That? Predicting Learners' Comprehension of a Video Lecture from Visualizations of Their Gaze Data. Cognitive Science, 2023, 47, .	0.8	2
170	Context-empowered Visual Attention Prediction in Pedestrian Scenarios. , 2023, , .		0
171	Consistency and stability of gaze behavior when reading manga. Applied Cognitive Psychology, 2023, 37, 542-557.	0.9	0
172	Crowdsourcing Thumbnail Captions: Data Collection and Validation. ACM Transactions on Interactive Intelligent Systems, 2023, 13, 1-28.	2.6	0
176	Task Matters When Scanning Data Visualizations. , 2023, , 263-272.		1

Task Matters When Scanning Data Visualizations. , 2023, , 263-272. 176