Central Gain Control in Tinnitus and Hyperacusis

Frontiers in Neurology 5, 206 DOI: 10.3389/fneur.2014.00206

Citation Report

#	Article	IF	CITATIONS
1	Tinnitus-Related Changes in the Inferior Colliculus. Frontiers in Neurology, 2015, 6, 61.	1.1	30
2	Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model. Frontiers in Neurology, 2015, 6, 157.	1.1	23
3	Forward acoustic masking enhances the auditory brainstem response in a diotic, but not dichotic, paradigm in salicylate-induced tinnitus. Hearing Research, 2015, 323, 51-60.	0.9	12
4	Pump Up the Volume: Could Excessive Neural Gain Explain Tinnitus and Hyperacusis?. Audiology and Neuro-Otology, 2015, 20, 273-282.	0.6	39
5	Hyperacusis following unilateral damage to the insular cortex: A three-case report. Brain Research, 2015, 1606, 102-112.	1.1	32
6	Development of the acoustic startle response in rats and its change after early acoustic trauma. Behavioural Brain Research, 2015, 286, 212-221.	1.2	27
7	No longer falling on deaf ears: Mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hearing Research, 2015, 329, 1-10.	0.9	30
8	Coexistance of tinnitus and hyperacusis in individuals with auditory dys-synchrony: A single case study. Intractable and Rare Diseases Research, 2016, 5, 50-55.	0.3	0
9	N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice. Aging, 2016, 8, 730-750.	1.4	46
10	Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage. Neural Plasticity, 2016, 2016, 1-9.	1.0	22
11	Variable Effects of Acoustic Trauma on Behavioral and Neural Correlates of Tinnitus In Individual Animals. Frontiers in Behavioral Neuroscience, 2016, 10, 207.	1.0	42
12	Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation. Frontiers in Neural Circuits, 2016, 10, 72.	1.4	18
13	Theoretical Tinnitus Framework: A Neurofunctional Model. Frontiers in Neuroscience, 2016, 10, 370.	1.4	15
14	Auditory brainstem response and late latency response in individuals with tinnitus having normal hearing. Intractable and Rare Diseases Research, 2016, 5, 262-268.	0.3	18
15	Cortical Reorganisation during a 30-Week Tinnitus Treatment Program. PLoS ONE, 2016, 11, e0148828.	1.1	5
16	The Effects of Compensatory Auditory Stimulation and High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Tinnitus Perception – A Randomized Pilot Study. PLoS ONE, 2016, 11, e0166208.	1.1	19
17	Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurological Sciences, 2016, 37, 1511-1516.	0.9	7
18	Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation. Hearing Research, 2016, 341, 210-219.	0.9	12

TATION REDC

#	Article	IF	Citations
19	Investigating the Effects of a Personalized, Spectrally Altered Music-Based Sound Therapy on Treating Tinnitus: A Blinded, Randomized Controlled Trial. Audiology and Neuro-Otology, 2016, 21, 296-304.	0.6	26
20	A role for inhibition in deafness-induced plasticity of the avian auditory brainstem. Neuroscience, 2016, 327, 10-19.	1.1	3
21	Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation. Neuron, 2016, 89, 867-879.	3.8	259
22	Noise trauma induced plastic changes in brain regions outside the classical auditory pathway. Neuroscience, 2016, 315, 228-245.	1.1	37
23	The effect of noise exposure during the developmental period on the function of the auditory system. Hearing Research, 2017, 352, 1-11.	0.9	21
24	Plastic changes along auditory pathway during salicylate-induced ototoxicity: Hyperactivity and CF shifts. Hearing Research, 2017, 347, 28-40.	0.9	31
25	Salicylate-induced hyperacusis in rats: Dose- and frequency-dependent effects. Hearing Research, 2017, 350, 133-138.	0.9	27
26	A randomised controlled study of mindfulness meditation versus relaxation therapy in the management of tinnitus. Journal of Laryngology and Otology, 2017, 131, 501-507.	0.4	41
27	Tinnitus and hyperacusis: Contributions of paraflocculus, reticular formation and stress. Hearing Research, 2017, 349, 208-222.	0.9	38
28	Auditory Brainstem and Middle Latency Responses Measured Pre- and Posttreatment for Hyperacusic Hearing-Impaired Persons Successfully Treated to Improve Sound Tolerance and to Expand the Dynamic Range for Loudness: Case Evidence. Seminars in Hearing, 2017, 38, 071-093.	0.5	4
29	A Sound Therapy-Based Intervention to Expand the Auditory Dynamic Range for Loudness among Persons with Sensorineural Hearing Losses: Case Evidence Showcasing Treatment Efficacy. Seminars in Hearing, 2017, 38, 130-150.	0.5	14
30	Structured Counseling for Auditory Dynamic Range Expansion. Seminars in Hearing, 2017, 38, 115-129.	0.5	4
32	Corelease of Inhibitory Neurotransmitters in the Mouse Auditory Midbrain. Journal of Neuroscience, 2017, 37, 9453-9464.	1.7	45
33	Prolonged low-level noise-induced plasticity in the peripheral and central auditory system of rats. Neuroscience, 2017, 359, 159-171.	1.1	27
34	Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise. Journal of Neuroscience, 2017, 37, 7727-7736.	1.7	53
35	Pharmacological modulation of Kv3.1 mitigates auditory midbrain temporal processing deficits following auditory nerve damage. Scientific Reports, 2017, 7, 17496.	1.6	26
36	Hyperacusis in chronic pain: neural interactions between the auditory and nociceptive systems. International Journal of Audiology, 2017, 56, 801-809.	0.9	47
37	Long-Lasting forward Suppression of Spontaneous Firing in Auditory Neurons: Implication to the Residual Inhibition of Tinnitus. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 343-353.	0.9	34

#	Article	IF	CITATIONS
38	Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology. Hearing Research, 2017, 349, 197-207.	0.9	62
39	Reductions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. European Journal of Neuroscience, 2017, 45, 398-409.	1.2	11
40	Optimal management of Cogan's syndrome: a multidisciplinary approach. Journal of Multidisciplinary Healthcare, 2018, Volume 11, 1-11.	1.1	28
41	Reflex Modification Audiometry Reveals Dual Roles for Olivocochlear Neurotransmission. Frontiers in Cellular Neuroscience, 2017, 11, 361.	1.8	9
42	Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Frontiers in Neuroscience, 2016, 10, 621.	1.4	101
43	Characteristics of somatic tinnitus patients with and without hyperacusis. PLoS ONE, 2017, 12, e0188255.	1.1	16
44	The Short Hyperacusis Questionnaire: A Tool for the Identification and Measurement of Hyperacusis in the Italian Tinnitus Population. Audiology Research, 2017, 7, 61-66.	0.8	5
45	Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity. Brain Structure and Function, 2018, 223, 2343-2360.	1.2	11
46	Hyperacusis: major research questions. Hno, 2018, 66, 358-363.	0.4	54
47	Tinnitus and Auditory Perception After a History of Noise Exposure: Relationship to Auditory Brainstem Response Measures. Ear and Hearing, 2018, 39, 881-894.	1.0	69
49	Increased spontaneous firing rates in auditory midbrain following noise exposure are specifically abolished by a Kv3 channel modulator. Hearing Research, 2018, 365, 77-89.	0.9	21
50	Tinnitus. New England Journal of Medicine, 2018, 378, 1224-1231.	13.9	102
51	Intrinsic physiology of inhibitory neurons changes over auditory development. Journal of Neurophysiology, 2018, 119, 290-304.	0.9	5
52	The FBN rat model of aging: investigation of ABR waveforms and ribbon synapse changes. Neurobiology of Aging, 2018, 62, 53-63.	1.5	38
53	Species Differences in the Organization of the Ventral Cochlear Nucleus. Anatomical Record, 2018, 301, 862-886.	0.8	4
54	Neural plasticity and its initiating conditions in tinnitus. Hno, 2018, 66, 172-178.	0.4	28
55	Neural Plastic Changes in the Subcortical Auditory Neural Pathway after Single-Sided Deafness in Adult Mice: A MEMRI Study. BioMed Research International, 2018, 2018, 1-8.	0.9	15
56	Cochlear Synaptopathy Changes Sound-Evoked Activity Without Changing Spontaneous Discharge in the Mouse Inferior Colliculus. Frontiers in Systems Neuroscience, 2018, 12, 59.	1.2	21

#	Article	IF	CITATIONS
57	Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Frontiers in Neuroscience, 2018, 12, 866.	1.4	82
58	Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure. Neuroscience Letters, 2018, 687, 183-188.	1.0	17
59	Sensory overamplification in layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic damage. Nature Communications, 2018, 9, 2468.	5.8	79
60	Reduction of sound-evoked midbrain responses observed by functional magnetic resonance imaging following acute acoustic noise exposure. Journal of the Acoustical Society of America, 2018, 143, 2184-2194.	0.5	3
61	Audiovestibular Symptoms in Systemic Autoimmune Diseases. Journal of Immunology Research, 2018, 2018, 1-14.	0.9	48
62	Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hearing Research, 2018, 365, 36-48.	0.9	100
63	Small Arms Fire-like noise: Effects on Hearing Loss, Gap Detection and the Influence of Preventive Treatment. Neuroscience, 2019, 407, 32-40.	1.1	14
64	Increased Gain in the Auditory Pathway, Alzheimer's Disease Continuum, and Air Pollution: Peripheral and Central Auditory System Dysfunction Evolves Across Pediatric and Adult Urbanites. Journal of Alzheimer's Disease, 2019, 70, 1275-1286.	1.2	15
65	Decreased sound tolerance associated with blast exposure. Scientific Reports, 2019, 9, 10204.	1.6	11
66	Aberrant thalamocortical coherence in an animal model of tinnitus. Journal of Neurophysiology, 2019, 121, 893-907.	0.9	14
67	Impact of Temporomandibular Joint Complaints on Tinnitus-Related Distress. Frontiers in Neuroscience, 2019, 13, 879.	1.4	36
68	Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiology of Aging, 2019, 83, 73-85.	1.5	34
69	Residual inhibition: From the putative mechanisms to potential tinnitus treatment. Hearing Research, 2019, 375, 1-13.	0.9	35
70	Association of Genetic vs Environmental Factors in Swedish Adoptees With Clinically Significant Tinnitus. JAMA Otolaryngology - Head and Neck Surgery, 2019, 145, 222.	1.2	40
71	GABAergic and glutamatergic cells in the inferior colliculus dynamically express the GABAAR γ1 subunit during aging. Neurobiology of Aging, 2019, 80, 99-110.	1.5	7
73	Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram. Neuroscience, 2019, 408, 31-45.	1.1	20
74	Intermittent tinnitus—an empirical description. Hno, 2019, 67, 51-58.	0.4	4
76	The Relationship between Severity of Hearing Loss and Subjective Tinnitus Loudness among Patients Seen in a Specialist Tinnitus and Hyperacusis Therapy Clinic in UK. Journal of the American Academy of Audiology, 2019, 30, 712-719.	0.4	17

#	Article	IF	CITATIONS
77	Homeostatic activity regulation as a mechanism underlying the effect of brain stimulation. Bioelectronic Medicine, 2019, 5, 16.	1.0	7
78	Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala. Neuroscience, 2019, 422, 212-227.	1.1	34
79	Sleep Deprivation Modifies Noise-Induced Cochlear Injury Related to the Stress Hormone and Autophagy in Female Mice. Frontiers in Neuroscience, 2019, 13, 1297.	1.4	10
80	The rat animal model for noise-induced hearing loss. Journal of the Acoustical Society of America, 2019, 146, 3692-3709.	0.5	43
81	Auditory brainstem response demonstrates that reduced peripheral auditory input is associated with self-report of tinnitus. Journal of the Acoustical Society of America, 2019, 146, 3849-3862.	0.5	32
82	Rationale and Efficacy of Sound Therapies for Tinnitus and Hyperacusis. Neuroscience, 2019, 407, 120-134.	1.1	53
83	Associations between hyperacusis and psychosocial work factors in the general population. International Archives of Occupational and Environmental Health, 2019, 92, 59-65.	1.1	9
84	Intermittent Low-level Noise Causes Negative Neural Gain in the Inferior Colliculus. Neuroscience, 2019, 407, 135-145.	1.1	18
85	Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience, 2019, 399, 184-198.	1.1	11
86	Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis. Neuroscience, 2019, 407, 146-169.	1.1	50
87	Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery?. Journal of Ethnopharmacology, 2019, 231, 409-428.	2.0	91
88	Testing the Central Gain Model: Loudness Growth Correlates with Central Auditory Gain Enhancement in a Rodent Model of Hyperacusis. Neuroscience, 2019, 407, 93-107.	1.1	43
89	Adult-Onset Hearing Impairment Induces Layer-Specific Cortical Reorganization: Evidence of Crossmodal Plasticity and Central Gain Enhancement. Cerebral Cortex, 2019, 29, 1875-1888.	1.6	22
90	The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds. NeuroImage, 2020, 204, 116239.	2.1	7
91	A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis. International Journal of Audiology, 2020, 59, 5-15.	0.9	27
92	Nitric oxide regulates the firing rate of neuronal subtypes in the guinea pig ventral cochlear nucleus. European Journal of Neuroscience, 2020, 51, 963-983.	1.2	9
93	Auditory Brainstem Changes in Timing may Underlie Hyperacusis in a Salicylate-induced Acute Rat Model. Neuroscience, 2020, 426, 129-140.	1.1	6
94	Acoustic analysis of hearing aid sound therapy programs. Hearing, Balance and Communication, 2020, 18, 8-15.	0.1	1

#	Article	IF	CITATIONS
95	Alterations in brainstem auditory processing, the acoustic startle response and sensorimotor gating of startle in Wistar audiogenic rats (WAR), an animal model of reflex epilepsies. Brain Research, 2020, 1727, 146570.	1.1	1
96	Efficacy of Multi-Modal Migraine Prophylaxis Therapy on Hyperacusis Patients. Annals of Otology, Rhinology and Laryngology, 2020, 129, 421-427.	0.6	14
97	A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Frontiers in Neuroscience, 2020, 14, 561185.	1.4	4
98	Exaggerated cortical representation of speech in older listeners: mutual information analysis. Journal of Neurophysiology, 2020, 124, 1152-1164.	0.9	18
99	Sex-Dependent Aggregation of Tinnitus in Swedish Families. Journal of Clinical Medicine, 2020, 9, 3812.	1.0	18
100	Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis. Current Topics in Behavioral Neurosciences, 2020, 51, 133-160.	0.8	13
101	Nitric oxide increases gain in the ventral cochlear nucleus of guinea pigs with tinnitus. European Journal of Neuroscience, 2020, 52, 4057-4080.	1.2	7
102	Acoustic Reflexes in Individuals Having Hyperacusis of the Auditory Origin. Indian Journal of Otolaryngology and Head and Neck Surgery, 2020, 72, 497-502.	0.3	1
103	The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. Journal of Neuroscience, 2020, 40, 7190-7202.	1.7	65
104	A novel approach to investigate subcortical and cortical sensitivity to temporal structure simultaneously. Hearing Research, 2020, 398, 108080.	0.9	3
105	Hyperexcitability of the Nucleus Accumbens Is Involved in Noise-Induced Hyperacusis. Neural Plasticity, 2020, 2020, 1-7.	1.0	2
106	Occupational Noise: Auditory and Non-Auditory Consequences. International Journal of Environmental Research and Public Health, 2020, 17, 8963.	1.2	37
107	A Delphi survey to determine a definition and description of hyperacusis by clinician consensus. International Journal of Audiology, 2021, 60, 607-613.	0.9	24
109	Binaural Interaction in Tinnitus Patients. Audiology and Neuro-Otology, 2020, 25, 315-322.	0.6	2
110	Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sciences, 2020, 10, 367.	1.1	17
111	Altered Topological Patterns of Gray Matter Networks in Tinnitus: A Graph-Theoretical-Based Study. Frontiers in Neuroscience, 2020, 14, 541.	1.4	13
112	Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. Journal of Neurophysiology, 2020, 124, 418-431.	0.9	43
113	Noise. Otolaryngologic Clinics of North America, 2020, 53, 543-553.	0.5	9

#	Article	IF	CITATIONS
114	Intolerance of loud sounds in childhood: Is there an intergenerational association with grandmaternal smoking in pregnancy?. PLoS ONE, 2020, 15, e0229323.	1.1	4
115	Functional magnetic resonance imaging of enhanced central auditory gain and electrophysiological correlates in a behavioral model of hyperacusis. Hearing Research, 2020, 389, 107908.	0.9	19
116	Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Frontiers in Systems Neuroscience, 2019, 13, 88.	1.2	23
117	Repeated Moderate Sound Exposure Causes Accumulated Trauma to Cochlear Ribbon Synapses in Mice. Neuroscience, 2020, 429, 173-184.	1.1	10
118	The Density of Perineuronal Nets Increases With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. Frontiers in Aging Neuroscience, 2020, 12, 27.	1.7	10
119	Hyperacusis in Children with Attention Deficit Hyperactivity Disorder: A Preliminary Study. International Journal of Environmental Research and Public Health, 2020, 17, 3045.	1.2	14
120	Acoustic trauma induced the alteration of the activity balance of excitatory and inhibitory neurons in the inferior colliculus of mice. Hearing Research, 2020, 391, 107957.	0.9	10
121	Single-Session of Combined tDCS-TMS May Increase Therapeutic Effects in Subjects With Tinnitus. Frontiers in Neurology, 2020, 11, 160.	1.1	15
122	Efficacy of an Integrative Treatment for Tinnitus Combining Music and Cognitive-Behavioral Therapy—Assessed With Behavioral and EEG Data. Frontiers in Integrative Neuroscience, 2020, 14, 12.	1.0	6
123	Effect of Tinnitus Habituation Therapy on Auditory Abilities. International Archives of Otorhinolaryngology, 2021, 25, e18-e26.	0.3	2
124	Auditory synaptopathy in mice lacking the glutamate transporter GLAST and its impact on brain activity. Progress in Brain Research, 2021, 262, 245-261.	0.9	10
125	Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation. Progress in Neurobiology, 2021, 196, 101893.	2.8	16
126	Differential Plasticity in Auditory and Prefrontal Cortices, and Cognitive-Behavioral Deficits Following Noise-Induced Hearing Loss. Neuroscience, 2021, 455, 1-18.	1.1	11
127	A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neuroscience and Biobehavioral Reviews, 2021, 121, 1-17.	2.9	60
128	Uni- and bilateral spectral loudness summation and binaural loudness summation with loudness matching and categorical loudness scaling. International Journal of Audiology, 2021, 60, 350-358.	0.9	4
129	Electrophysiological assessment and pharmacological treatment of blast-induced tinnitus. PLoS ONE, 2021, 16, e0243903.	1.1	5
130	Neural Networks in Health and Disease. , 2021, , 178-186.		0
131	Total remission or persistence of tinnitus and decreased sound level tolerance in adolescents with normal audiograms: A follow-up study. Progress in Brain Research, 2021, 260, 253-268.	0.9	5

		CITATION REPORT		
#	Article		IF	Citations
132	Review: Neural Mechanisms of Tinnitus and Hyperacusis in Acute Drug-Induced Ototoxi Journal of Audiology, 2021, 30, 901-915.	icity. American	0.5	13
133				

		CITATION RE	PORT	
#	Article		IF	CITATIONS
153	Tinnitus: current treatments and future directions. Otorhinolaryngology(Italy), 2021, 71,		0.1	0
154	Virtual reality for tinnitus management: a randomized controlled trial. International Journ Audiology, 2021, , 1-8.	al of	0.9	7
155	Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxic in Molecular Neuroscience, 2021, 14, 715952.	ity. Frontiers	1.4	0
156	A neural signature of regularity in sound is reduced in older adults. Neurobiology of Aging 1-10.	g, 2022, 109,	1.5	15
157	Subjective tinnitus: lesion-induced pathological central homeostasis remodeling. Journal 2021, 16, 266-272.	of Otology,	0.4	1
158	Auditory experience, for a certain duration, is a prerequisite for tinnitus: lessons from sub unilateral tinnitus in the better-hearing ear. Progress in Brain Research, 2021, 260, 223-2	jects with 33.	0.9	3
159	Impact of personality on acoustic tinnitus suppression and emotional reaction to stimuli Progress in Brain Research, 2021, 260, 187-203.	sounds.	0.9	2
160	A contribution to the debate on tinnitus definition. Progress in Brain Research, 2021, 262	2, 469-485.	0.9	20
161	How low must you go? Effects of low-level noise on cochlear neural response. Hearing Re 2020, 392, 107980.	search,	0.9	9
162	Relationship between headaches and tinnitus in a Swedish study. Scientific Reports, 202	0, 10, 8494.	1.6	24
165	Altered cortical and subcortical connectivity due to infrasound administered near the heat threshold $\hat{a} \in $ Evidence from fMRI. PLoS ONE, 2017, 12, e0174420.	ıring	1.1	22
166	Increased risk of tinnitus in patients with chronic kidney disease: A nationwide, populatic cohort study. PLoS ONE, 2017, 12, e0183192.	n-based	1.1	15
167	Central Compensation in Auditory Brainstem after Damaging Noise Exposure. ENeuro, 20 ENEURO.0250-18.2018.)18, 5,	0.9	45
168	Mechanisms Underlying Long-Term Synaptic Zinc Plasticity at Mouse Dorsal Cochlear Nu Glutamatergic Synapses. Journal of Neuroscience, 2020, 40, 4981-4996.	cleus	1.7	20
169	Current view of neurotransmitter changes underlying tinnitus. Neural Regeneration Rese 10, 368.	arch, 2015,	1.6	4
170	Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. ELife, 2015, 4, e06576.		2.8	188
171	Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclod Evidence That Loudness Recruitment Can Have a Cochlear Origin. Frontiers in Surgery, 20	lextrin Provide 021, 8, 687490.	0.6	2
172	Hyperacusis in Autism Spectrum Disorders. Audiology Research, 2021, 11, 547-556.		0.8	20

			1
# 175	ARTICLE Analysis of concrete expressions of patient's hyperacusis. Audiology Japan, 2019, 62, 235-239.	IF 0.1	CITATIONS
176	Hiperacusia. EMC - OtorrinolaringologÃa, 2019, 48, 1-8.	0.0	Ο
178	Severe Temporal Hyper-Activated States Caused by Noise in Tinnitus and Hyperacusis with Normal Hearing. Journal of Audiology and Otology, 2019, 23, 160-166.	0.2	1
180	The Aging Auditory System: Electrophysiology. Springer Handbook of Auditory Research, 2020, , 117-141.	0.3	2
181	Acúfenos subjetivos invalidantes. EMC - OtorrinolaringologÃa, 2020, 49, 1-21.	0.0	0
184	The Content and Quality of Information About Hyperacusis Presented Online. American Journal of Audiology, 2020, 29, 623-630.	0.5	5
185	The Pathological Mechanisms and Treatments of Tinnitus. Discoveries, 2021, 9, e137.	1.5	3
186	Cross-modal connectivity effects in age-related hearing loss. Neurobiology of Aging, 2022, 111, 1-13.	1.5	3
187	Manejo del tinnitus con estimulador de sonido con especificidad frecuencial. Acta De OtorrinolaringologÃa & CirugÃa De Cabeza Y Cuello, 2021, 49, 184-188.	0.0	0
188	Distorted Tonotopy Severely Degrades Neural Representations of Connected Speech in Noise following Acoustic Trauma. Journal of Neuroscience, 2022, 42, 1477-1490.	1.7	11
189	Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Frontiers in Neural Circuits, 2021, 15, 785603.	1.4	11
190	Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS ONE, 2022, 17, e0263516.	1.1	1
191	Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Frontiers in Neuroscience, 2022, 16, 799787.	1.4	12
192	Detecting Noise-Induced Cochlear Synaptopathy by Auditory Brainstem Response in Tinnitus Patients With Normal Hearing Thresholds: A Meta-Analysis. Frontiers in Neuroscience, 2021, 15, 778197.	1.4	14
193	Loudness recruitment and hyperacusis. , 2022, , 177-200.		0
194	The Neurodiversity Approach(es): What Are They and What Do They Mean for Researchers?. Human Development, 2022, 66, 73-92.	1.2	68
195	Standardized Clinical Profiling in Spanish Patients with Chronic Tinnitus. Journal of Clinical Medicine, 2022, 11, 978.	1.0	6
196	Tinnitus, sound intolerance, and mental health: the role of long-term occupationalÂnoise exposure. European Archives of Oto-Rhino-Laryngology, 2022, 279, 5161-5170.	0.8	6

ARTICLE IF CITATIONS # Are Electrocochleographic Changes an Early Sign of Cochlear Synaptopathy? A Prospective Study in 197 1.3 1 Tinnitus Patients with Normal Hearing. Diagnostics, 2022, 12, 802. Secondary auditory cortex mediates a sensorimotor mechanism for action timing. Nature 198 7.1 Neurosciénce, 2022, 25, 330-344. Hyperacusis: demographic, audiological, and clinical characteristics of patients at the ENT 199 0.8 6 department. European Archives of Oto-Rhino-Laryngology, 2022, 279, 4899-4907. A Review of the Neurobiological Mechanisms that Distinguish Between Loudness Recruitment and 200 0.5 Hyperacusis. Medical Science Monitor, 2022, 28, e936373. Correlation of Blast-Induced Tympanic Membrane Perforation with Peripheral Cochlear Synaptopathy. 201 1.7 2 Journal of Neurotrauma, 2022, 39, 999-1009. Degenerate brainstem circuitry after combined physiochemical exposure to jet fuel and noise. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 175-183. 1.1 Current topics in hearing research: Deafferentation and threshold independent hearing loss. Hearing 203 0.9 6 Research, 2022, 419, 108408. The Impact of Occupational Noise Exposure on Hyperacusis: a Longitudinal Population Study of Female 204 10 Workers in Sweden. Ear and Hearing, 2022, 43, 1366-1377. Etiology and pathogenesis of auditory and vestibular dysfunction in patients with autoimmune 221 0 disorders., 2022, , 139-166. Embryonic medial ganglionic eminence cells survive and integrate into the inferior colliculus of adult mice. Hearing Research, 2022, , 108520. The Effect of Lifetime Noise Exposure and Aging on Speech-Perception-in-Noise Ability and 224 1.7 1 Self-Reported Hearing Symptoms: An Online Study. Frontiers in Aging Neuroscience, 0, 14, . Estimated cochlear neural degeneration is associated with loudness hypersensitivity in individuals 0.5 with normal audiograms. JASĂ Express Letters, 2022, 2, . Intrinsic Noise Improves Speech Recognition in a Computational Model of the Auditory Pathway. 226 1.4 17 Frontiers in Neuroscience, 0, 16, . Long-Term Effects of COVID-19 and the Pandemic on Tinnitus Patients. Frontiers in Neurology, 0, 13, . 1.1 Clinical and investigational tools for monitoring noise-induced hyperacusis. Journal of the 229 0.55 Acoustical Society of America, 2022, 152, 553-566. Nitric oxide signalling underlies salicylate-induced increases in neuronal firing in the inferior colliculus: A central mechanism of tinnitus?. Hearing Research, 2022, 424, 108585. Audiological biomarkers of tinnitus in an older Portuguese population. Frontiers in Aging 231 1.7 1 Neuroscience, 0, 14, . Effectiveness of bimodal auditory and electrical stimulation in patients with tinnitus: A feasibility 1.4 study. Frontiers in Neuroscience, 0, 16, .

#	Article	IF	Citations
233	Age-related ultrastructural changes in the lateral cortex of the inferior colliculus. Neurobiology of Aging, 2022, 120, 43-59.	1.5	2
234	Neural signatures of auditory hypersensitivity following acoustic trauma. ELife, 0, 11, .	2.8	16
235	Updates to the guinea pig animal model for in-vivo auditory neuroscience in the low-frequency hearing range. Hearing Research, 2022, 424, 108603.	0.9	3
236	Auditory disturbances in patients with complex regional pain syndrome. Pain, 2022, Publish Ahead of Print, .	2.0	1
237	Sensory Loss and Risk of Dementia. Neuroscientist, 0, , 107385842211260.	2.6	5
238	Short- and Long-Term Effect of Cochlear Implantation on Disabling Tinnitus in Single-Sided Deafness Patients: A Systematic Review. Journal of Clinical Medicine, 2022, 11, 5664.	1.0	4
239	Adaptation in auditory processing. Physiological Reviews, 2023, 103, 1025-1058.	13.1	9
240	Effects of aging on neural processing during an active listening task. PLoS ONE, 2022, 17, e0273304.	1.1	2
243	The hunt for hidden hearing loss in humans: From preclinical studies to effective interventions. Frontiers in Neuroscience, 0, 16, .	1.4	8
244	Transient decrease in sound tolerance levels following hearing deprivation in normal-hearing subjects. Journal of Otology, 2022, 17, 232-238.	0.4	1
245	Pilot study on the role of somatic modulation in hyperacusis. European Archives of Oto-Rhino-Laryngology, 0, , .	0.8	1
247	Sound Therapy to Reduce Auditory Gain for Hyperacusis and Tinnitus. American Journal of Audiology, 2022, 31, 1067-1077.	0.5	2
248	Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits. Cell Reports, 2022, 41, 111649.	2.9	6
249	Distinctive alterations in the functional anatomy of the cerebral cortex in pain-sensitized osteoarthritis and fibromyalgia patients. Arthritis Research and Therapy, 2022, 24, .	1.6	1
250	Hyperacusis: Loudness intolerance, fear, annoyance and pain. Hearing Research, 2022, 426, 108648.	0.9	3
251	Electroacupuncture Promotes Neuroplasticity of Central Auditory Pathway: An Auditory Evoked Potentials Study. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-9.	0.5	2
253	Tinnitus is associated with improved cognitive performance and speech perception–Can stochastic resonance explain?. Frontiers in Aging Neuroscience, 0, 14, .	1.7	5
254	Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age. Hearing Research, 2023, 428, 108677.	0.9	6

#	Article	IF	CITATIONS
255	Psychological Profile and Social Behaviors of Patients with Hyperacusis. Journal of Clinical Medicine, 2022, 11, 7317.	1.0	1
256	Hearing protection and damage mitigation in Chinchillas exposed to repeated low-intensity blasts. Hearing Research, 2023, 429, 108703.	0.9	0
257	Modelling homeostatic plasticity in the auditory cortex results in neural signatures of tinnitus. NeuroImage, 2023, 271, 119987.	2.1	0
258	Combined evaluation of audiology examination and self-reported symptoms in patients with hyperacusis. Scientific Reports, 2023, 13, .	1.6	0
259	Noise Exposure in Palestinian Workers Without a Diagnosis of Hearing Impairment: Relations to Speech-Perception-in-Noise Difficulties, Tinnitus, and Hyperacusis. Journal of Speech, Language, and Hearing Research, 0, , 1-25.	0.7	0
260	A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage. Journal of Neuroscience, 2023, 43, 2277-2290.	1.7	5
262	Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hearing Research, 2023, 431, 108726.	0.9	1
263	Recent Developments in Haptic Devices Designed for Hearing-Impaired People: A Literature Review. Sensors, 2023, 23, 2968.	2.1	4
266	Shortened neural conduction time in young adults with tinnitus as revealed by chirp-evoked auditory brainstem response. Journal of the Acoustical Society of America, 2023, 153, 2178-2189.	0.5	0
267	Age-related changes of GAD1 mRNA expression in the central inferior colliculus. Translational Medicine of Aging, 2023, 7, 20-32.	0.6	1

304 Hyperacusis and Tinnitus. , 2024, , 501-513.

0