Systematic identification of signaling pathways with por resistance

Science Signaling 7, ra121 DOI: 10.1126/scisignal.aaa1877

Citation Report

#	Article	IF	CITATIONS
1	RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Science Signaling, 2014, 7, ra122.	1.6	65
2	Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0143847.	1.1	20
3	Personalized targeted therapy for esophageal squamous cell carcinoma. World Journal of Gastroenterology, 2015, 21, 7648.	1.4	43
4	Efficacy of SERD/SERM Hybrid-CDK4/6 Inhibitor Combinations in Models of Endocrine Therapy–Resistant Breast Cancer. Clinical Cancer Research, 2015, 21, 5121-5130.	3.2	126
5	Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 996-1015.	2.2	5
6	Genomically guided cancer treatments: from "promising" to "clinically useful". Journal of the National Cancer Institute, 2015, 107, djv168-djv168.	3.0	5
7	Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell, 2015, 161, 205-214.	13.5	1,872
8	Mapping the Pathways of Resistance to Targeted Therapies. Cancer Research, 2015, 75, 4247-4251.	0.4	35
9	Targeting RAS -mutant Cancers: Is ERK the Key?. Trends in Cancer, 2015, 1, 183-198.	3.8	104
10	Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nature Communications, 2015, 6, 8305.	5.8	97
11	Decoding breast cancer tissue–stroma interactions using species-specific sequencing. Breast Cancer Research, 2015, 17, 109.	2.2	11
12	FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget, 2016, 7, 34371-34383.	0.8	37
13	Compensatory Increase of Transglutaminase 2 Is Responsible for Resistance to mTOR Inhibitor Treatment. PLoS ONE, 2016, 11, e0149388.	1.1	17
14	Molecular Mechanisms Involved in the Acquisition of Resistance to Treatment of Colon Cancer Cells. , 2016, , .		2
15	<i>PIK3CA</i> mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Science Translational Medicine, 2016, 8, 369ra175.	5.8	49
16	Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying I ³ -secretase Inhibitors. Molecular Therapy, 2016, 24, 926-936.	3.7	91
17	Combination with Î ³ -secretase inhibitor prolongs treatment efficacy of BRAF inhibitor in BRAF-mutated melanoma cells. Cancer Letters, 2016, 376, 43-52.	3.2	10
18	HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature, 2016, 537, 102-106.	13.7	335

#	Article	IF	CITATIONS
19	Epistructural Drug Design to Treat Cancer Metastasis and the Associated Drug Resistance. Soft and Biological Matter, 2016, , 417-425.	0.3	0
20	Integrative analysis of cancer genes in a functional interactome. Scientific Reports, 2016, 6, 29228.	1.6	6
21	Targeting MCL-1/BCL-XL Forestalls the Acquisition of Resistance to ABT-199 in Acute Myeloid Leukemia. Scientific Reports, 2016, 6, 27696.	1.6	125
22	An Automated High-throughput Array Microscope for Cancer Cell Mechanics. Scientific Reports, 2016, 6, 27371.	1.6	5
23	4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions. Bioorganic and Medicinal Chemistry, 2016, 24, 1292-1297.	1.4	33
24	A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine. Journal of Biomolecular Screening, 2016, 21, 521-534.	2.6	46
25	Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression. Acta Pharmacologica Sinica, 2016, 37, 519-529.	2.8	49
26	Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell, 2016, 29, 75-89.	7.7	191
27	Understanding the Genetic Mechanisms of Cancer Drug Resistance Using Genomic Approaches. Trends in Genetics, 2016, 32, 127-137.	2.9	69
28	Sensitive Detection of Mono- and Polyclonal ESR1 Mutations in Primary Tumors, Metastatic Lesions, and Cell-Free DNA of Breast Cancer Patients. Clinical Cancer Research, 2016, 22, 1130-1137.	3.2	166
29	Targeting the Breast Cancer Kinome. Journal of Cellular Physiology, 2017, 232, 53-60.	2.0	23
30	mTOR activity and its prognostic significance in human colorectal carcinoma depending on C1 and C2 complex-related protein expression. Journal of Clinical Pathology, 2017, 70, 410-416.	1.0	20
31	A New View of Pathway-Driven Drug Resistance in Tumor Proliferation. Trends in Pharmacological Sciences, 2017, 38, 427-437.	4.0	68
32	MAPK pathway in melanoma part II—secondary and adaptive resistance mechanisms to BRAF inhibition. European Journal of Cancer, 2017, 73, 93-101.	1.3	69
33	Codon bias imposes a targetable limitation on KRAS-driven therapeutic resistance. Nature Communications, 2017, 8, 15617.	5.8	38
34	Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer, 2017, 123, 2118-2129.	2.0	121
35	Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. Chinese Journal of Cancer, 2017, 36, 35.	4.9	63
36	Progress towards precision functional genomics in cancer. Current Opinion in Systems Biology, 2017, 2, 74-83.	1.3	7

#	Article	IF	CITATIONS
37	Involvement of Notch1 signaling in malignant progression of A549 cells subjected to prolonged cadmium exposure. Journal of Biological Chemistry, 2017, 292, 7942-7953.	1.6	55
38	The Varied Roles of Notch in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 245-275.	9.6	511
39	A Novel Notch–YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma. Molecular Cancer Research, 2017, 15, 1777-1791.	1.5	49
40	A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution. Cell Reports, 2017, 20, 999-1015.	2.9	77
41	Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiological Reviews, 2017, 97, 1235-1294.	13.1	658
42	Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Reports, 2017, 21, 2796-2812.	2.9	77
43	Molecular mechanisms for enhancement of stromal cell-derived factor 1–induced chemotaxis by platelet endothelial cell adhesion molecule 1 (PECAM-1). Journal of Biological Chemistry, 2017, 292, 19639-19655.	1.6	8
44	Downregulation of miR-874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. Oncology Reports, 2017, 38, 3376-3386.	1.2	29
45	p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia, 2017, 31, 1296-1305.	3.3	87
46	Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology. Scientific Reports, 2017, 7, 17803.	1.6	22
47	Epigenetic regulation of NOTCH1 and NOTCH3 by KMT2A inhibits glioma proliferation. Oncotarget, 2017, 8, 63110-63120.	0.8	21
48	Data-DrivenÂMethods for Advancing Precision Oncology. Current Pharmacology Reports, 2018, 4, 145-156.	1.5	6
49	Clinically Observed Estrogen Receptor Alpha Mutations within the Ligand-Binding Domain Confer Distinguishable Phenotypes. Oncology, 2018, 94, 176-189.	0.9	20
50	miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Research, 2018, 78, 1017-1030.	0.4	140
51	KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism. Cancer Cell, 2018, 34, 807-822.e7.	7.7	112
52	Notch Signaling in Estrogen-Dependent Cancers. , 2018, , 353-380.		0
53	Therapeutic strategies to target RAS-mutant cancers. Nature Reviews Clinical Oncology, 2018, 15, 709-720.	12.5	274
54	Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nature Communications, 2018, 9, 3646.	5.8	56

#	Article	IF	CITATIONS
55	Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nature Communications, 2018, 9, 3513.	5.8	85
56	Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. Science Signaling, 2018, 11, .	1.6	40
57	Cell signaling and cancer: a mechanistic insight into drug resistance. Molecular Biology Reports, 2019, 46, 5645-5659.	1.0	63
58	The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer. Cell Reports, 2019, 29, 889-903.e10.	2.9	40
59	<p>MAP3K1 rs889312 genotypes influence survival outcomes of Chinese gastric cancer patients who received adjuvant chemotherapy based on platinum and fluorouracil regimes</p> . OncoTargets and Therapy, 2019, Volume 12, 6843-6855.	1.0	3
60	Genomically informed small-molecule drugs overcome resistance to a sustained-release formulation of an engineered death receptor agonist in patient-derived tumor models. Science Advances, 2019, 5, eaaw9162.	4.7	11
61	Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handbook of Experimental Pharmacology, 2019, 260, 327-367.	0.9	14
62	Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials, 2019, 205, 64-80.	5.7	72
63	A large pooled analysis refines gene expression-based molecular subclasses in cutaneous melanoma. Oncolmmunology, 2019, 8, 1558664.	2.1	0
64	MKK7 transcription positively or negatively regulated by SP1 and KLF5 depends on HDAC4 activity in glioma. International Journal of Cancer, 2019, 145, 2496-2508.	2.3	17
65	TOP2Î ² -Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency. Molecular Cell, 2019, 74, 466-480.e4.	4.5	31
66	Unveiling the role of microRNAâ€7 in linking TGFâ€Î²â€Smadâ€mediated epithelialâ€mesenchymal transition with negative regulation of trophoblast invasion. FASEB Journal, 2019, 33, 6281-6295.	0.2	28
67	Ligand-binding Domain–activating Mutations of ESR1 Rewire Cellular Metabolism of Breast Cancer Cells. Clinical Cancer Research, 2019, 25, 2900-2914.	3.2	24
68	Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 87-100.	1.2	27
69	A Review of Key Biological and Molecular Events Underpinning Transformation of Melanocytes to Primary and Metastatic Melanoma. Cancers, 2019, 11, 2041.	1.7	17
70	Truncated BRPF1 Cooperates with Smoothened to Promote Adult Shh Medulloblastoma. Cell Reports, 2019, 29, 4036-4052.e10.	2.9	13
71	Wholeâ€exome sequencing reveals novel genetic variants associated with diverse phenotypes of melanoma cells. Molecular Carcinogenesis, 2019, 58, 588-602.	1.3	37
72	Notch signaling activation induces cell death in MAPKiâ€resistant melanoma cells. Pigment Cell and Melanoma Research, 2019, 32, 528-539.	1.5	8

#	Article	IF	CITATIONS
73	Targeted and immuno-biology driven treatment strategies for triple-negative breast cancer: current knowledge and future perspectives. Expert Review of Anticancer Therapy, 2019, 19, 29-42.	1.1	11
74	MicroRNAs and colorectal cancer chemoresistance: New solution for old problem. Life Sciences, 2020, 259, 118255.	2.0	42
75	Notch Signaling Function in the Angiocrine Regulation of Tumor Development. Cells, 2020, 9, 2467.	1.8	13
76	Comprehensive Transcriptomic Analysis Reveals Dysregulated Competing Endogenous RNA Network in Endocrine Resistant Breast Cancer Cells. Frontiers in Oncology, 2020, 10, 600487.	1.3	10
77	Low-Dose Vertical Inhibition of the RAF-MEK-ERK Cascade Causes Apoptotic Death of KRAS Mutant Cancers. Cell Reports, 2020, 31, 107764.	2.9	69
78	Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592094734.	1.4	12
79	Inflammasome Sensor NLRP1 Confers Acquired Drug Resistance to Temozolomide in Human Melanoma. Cancers, 2020, 12, 2518.	1.7	16
80	Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Science Signaling, 2020, 13, .	1.6	46
81	Prebiotic-Induced Anti-tumor Immunity Attenuates Tumor Growth. Cell Reports, 2020, 30, 1753-1766.e6.	2.9	105
82	Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Cancers, 2020, 12, 406.	1.7	11
83	The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer. Scientific Reports, 2020, 10, 1310.	1.6	25
84	Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. Biomedicine and Pharmacotherapy, 2021, 133, 111006.	2.5	16
87	Reconciling Non-Genetic Plasticity with Somatic Evolution in Cancer. Trends in Cancer, 2021, 7, 309-322.	3.8	41
88	NOTCH3 limits the epithelial–mesenchymal transition and predicts a favorable clinical outcome in esophageal cancer. Cancer Medicine, 2021, 10, 3986-3996.	1.3	7
89	Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Reports, 2021, 35, 109291.	2.9	15
90	Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. Npj Breast Cancer, 2021, 7, 85.	2.3	8
91	Peptide-tiling screens of cancer drivers reveal oncogenic protein domains and associated peptide inhibitors. Cell Systems, 2021, 12, 716-732.e7.	2.9	9
92	Role of the Bone Marrow Microenvironment in Drug Resistance of Hematological Malignances. Current Medicinal Chemistry, 2022, 29, 2290-2305.	1.2	2

#	Article	IF	CITATIONS
93	Charting oncogenicity of genes and variants across lineages via multiplexed screens in teratomas. IScience, 2021, 24, 103149.	1.9	2
94	An experimental model of anti-PD-1 resistance exhibits activation of TGFß and Notch pathways and is sensitive to local mRNA immunotherapy. Oncolmmunology, 2021, 10, 1881268.	2.1	18
95	Expression of transgenes enriched in rare codons is enhanced by the MAPK pathway. Scientific Reports, 2020, 10, 22166.	1.6	11
96	Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. Journal of Clinical Investigation, 2015, 125, 2484-2496.	3.9	103
97	Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis. PLoS ONE, 2015, 10, e0131689.	1.1	75
98	A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids. Molecular Systems Biology, 2020, 16, e9798.	3.2	17
99	Narrowing the focus: a toolkit to systematically connect oncogenic signaling pathways with cancer phenotypes. Genes and Cancer, 2016, 7, 218-228.	0.6	5
100	KRASG12 mutant induces the release of the WSTF/NRG3 complex, and contributes to an oncogenic paracrine signaling pathway. Oncotarget, 2016, 7, 53153-53164.	0.8	8
101	Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas. Oncotarget, 2016, 7, 2734-2753.	0.8	19
102	Combination therapy of RY10-4 with the γ-secretase inhibitor DAPT shows promise in treating HER2-amplified breast cancer. Oncotarget, 2016, 7, 4142-4154.	0.8	15
103	High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor. Oncotarget, 2016, 7, 19948-19959.	0.8	15
104	Promising Strategies for Overcoming BRAF Inhibitor Resistance Based on Known Resistance Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1415-1430.	0.9	3
105	The critical roles of miR-21 in anti-cancer effects of curcumin. Annals of Translational Medicine, 2015, 3, 330.	0.7	31
106	Role of microRNAs in chemoresistance. Annals of Translational Medicine, 2015, 3, 332.	0.7	65
107	MicroRNAs in multiple myeloma and related bone disease. Annals of Translational Medicine, 2015, 3, 334.	0.7	19
108	Overview of Research and Development for Anticancer Drugs. Journal of Cancer Therapy, 2016, 07, 762-772.	0.1	21
109	The KRAS-regulated kinome identifies WEE1 and ERK coinhibition as a potential therapeutic strategy in KRAS-mutant pancreatic cancer. Journal of Biological Chemistry, 2021, 297, 101335.	1.6	14
112	Drug Combinations to Enhance Therapeutic Efficacy and Edit Out Side Effects and Resistance to Inhibition of Drug Resistance. Soft and Biological Matter, 2016, , 323-350.	0.3	0

#	Article	IF	CITATIONS
115	A Dual PI3K/HDAC Inhibitor Induces Immunogenic Ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Research, 2021, 81, 6233-6245.	0.4	77
118	Anti-tumor activities of the new oral pan-RAF inhibitor, TAK-580, used as monotherapy or in combination with novel agents in multiple myeloma. Oncotarget, 2020, 11, 3984-3997.	0.8	6
119	MicroRNAs, signaling pathways and diseases. Annals of Translational Medicine, 2015, 3, 329.	0.7	5
120	HPV-p53-miR-34a axis in HPV-associated cancers. Annals of Translational Medicine, 2015, 3, 331.	0.7	5
121	CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Reports, 2021, 37, 110060.	2.9	14
122	Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene, 2022, 41, 895-906.	2.6	22
123	Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Advances in Cancer Research, 2022, 153, 101-130.	1.9	8
124	Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nature Cell Biology, 2022, 24, 230-241.	4.6	84
126	Molecular signaling and its role in drug resistance in hepatocellular carcinomas. , 2022, , 209-225.		0
132	DPYSL2 interacts with JAK1 to mediate breast cancer cell migration. Journal of Cell Biology, 2022, 221, .	2.3	9
133	Recent advances in understanding the role of HES6 in cancers. Theranostics, 2022, 12, 4374-4385.	4.6	8
134	Lactate is a potential promoter of tamoxifen resistance in MCF7 cells. Biochimica Et Biophysica Acta - General Subjects, 2022, , 130185.	1.1	4
136	BRAFV600E;K601Q metastatic melanoma patient-derived organoids and docking analysis to predict the response to targeted therapy. Pharmacological Research, 2022, 182, 106323.	3.1	8
137	The Evolution of BRAF Activation in Non-Small-Cell Lung Cancer. Frontiers in Oncology, 0, 12, .	1.3	8
139	ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	9
140	Cancer genes disfavoring TÂcell immunity identified via integrated systems approach. Cell Reports, 2022, 40, 111153.	2.9	4
141	Sustained potentiation of bystander killing via PTEN-loss driven macropinocytosis targeted peptide-drug conjugate therapy in metastatic triple-negative breast cancer. Biomaterials, 2022, 289, 121783.	5.7	4
142	Epithelial-Mesenchymal Transition Gene Signature Is Associated with Neoadjuvant Chemoradiotherapy Resistance and Prognosis of Esophageal Squamous Cell Carcinoma. Disease Markers, 2022, 2022, 1-14.	0.6	2

#	Article	IF	CITATIONS
143	Androgen Receptor Splice Variants Contribute to the Upregulation of DNA Repair in Prostate Cancer. Cancers, 2022, 14, 4441.	1.7	4
144	The role of CTNNB1 mutations and matrix metalloproteinases (MMPs) in anti-angiogenesis treatment of endometrial carcinoma. Gynecologic Oncology, 2022, , .	0.6	1
145	NOTCH Signaling Limits the Response of Low-Grade Serous Ovarian Cancers to MEK Inhibition. Molecular Cancer Therapeutics, 2022, 21, 1862-1874.	1.9	4
146	Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. , 2023, 40, .		11
147	Depletion of Fumarate Hydratase, an Essential TCA Cycle Enzyme, Drives Proliferation in a Two-Step Model. Cancers, 2022, 14, 5508.	1.7	2
150	FOXO nuclear shuttling dynamics are stimulus-dependent and correspond with cell fate. Molecular Biology of the Cell, 2023, 34, .	0.9	4
151	ANKLE1 cleaves mitochondrial DNA and contributes to cancer risk by promoting apoptosis resistance and metabolic dysregulation. Communications Biology, 2023, 6, .	2.0	1
152	VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in KRAS-mutant pancreatic cancer. Genes and Cancer, 2023, 14, 30-49.	0.6	0
153	IKKα promotes lung adenocarcinoma growth through ERK signaling activation via DARPP-32-mediated inhibition of PP1 activity. Npj Precision Oncology, 2023, 7, .	2.3	2