Improved saccharification and ethanol yield from fieldin cinnamoyl-CoA reductase

Proceedings of the National Academy of Sciences of the Unite 111, 845-850

DOI: 10.1073/pnas.1321673111

Citation Report

#	Article	IF	CITATIONS
1	Mutation of the Inducible <i>ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2</i> Alters Lignin Composition and Improves Saccharification Â. Plant Physiology, 2014, 166, 1956-1971.	2.3	63
2	Tailoring lignin biosynthesis for efficient and sustainable biofuel production. Plant Biotechnology Journal, 2014, 12, 1154-1162.	4.1	21
3	Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal, 2014, 12, 1174-1192.	4.1	96
4	Influence of Populus Genotype on Gene Expression by the Wood Decay Fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2014, 80, 5828-5835.	1.4	28
5	Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnology Journal, 2014, 12, 1163-1173.	4.1	96
6	The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 2014, 5, 358.	1.7	455
7	Next Generation Plant Biotechnology. Sustainable Development and Biodiversity, 2014, , 77-100.	1.4	3
8	Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. Biotechnology for Biofuels, 2014, 7, 113.	6.2	30
10	Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food and Energy Security, 2015, 4, 159-177.	2.0	39
11	Roles of lignin biosynthesis and regulatory genes in plant development. Journal of Integrative Plant Biology, 2015, 57, 902-912.	4.1	160
12	Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production. PLoS ONE, 2015, 10, e0134964.	1.1	12
13	A metabolomic assessment of NAC154 transcription factor overexpression in field grown poplar stem wood. Phytochemistry, 2015, 115, 112-120.	1.4	12
14	Microbial Factories. , 2015, , .		14
15	Introduction of chemically labile substructures into <i>Arabidopsis</i> lignin through the use of LigD, the Cαâ€dehydrogenase from <i>Sphingobium</i> sp. strain <scp>SYK</scp> â€6. Plant Biotechnology Journal, 2015, 13, 821-832.	4.1	45
16	Molecular control of wood formation in trees. Journal of Experimental Botany, 2015, 66, 4119-4131.	2.4	148
17	Effects of Delignification on Crystalline Cellulose in Lignocellulose Biomass Characterized by Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction. Bioenergy Research, 2015, 8, 1750-1758.	2.2	33
18	Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property: Fig. 1 Journal of Experimental Botany, 2015, 66, 4109-4118.	2.4	197
19	Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification. Bioresource Technology, 2015, 186, 223-231.	4.8	38

#	Article	IF	CITATIONS
20	High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale. Frontiers in Energy Research, 2015, 3, .	1.2	9
21	Wood development: Growth through knowledge. Nature Plants, 2015, 1, .	4.7	5
22	Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnology for Biofuels, 2015, 8, 41.	6.2	133
23	Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. Plant Cell, 2015, 27, 2195-2209.	3.1	136
24	How cell wall complexity influences saccharification efficiency in <i>Miscanthus sinensis</i> . Journal of Experimental Botany, 2015, 66, 4351-4365.	2.4	82
25	CRISPRing into the woods. GM Crops and Food, 2015, 6, 206-215.	2.0	36
26	Genetic manipulation of lignocellulosic biomass for bioenergy. Current Opinion in Chemical Biology, 2015, 29, 32-39.	2.8	57
27	Functional characterization of <i><scp>CCR</scp></i> in birch (<i>Betula platyphylla</i> \tilde{A} — <i>Betula) Tj ETQq1 283-296.</i>	1 0.78431 2.6	14 rgBT /O∨ 27
28	Ploidy Level Affects Important Biomass Traits of Novel Shrub Willow (Salix) Hybrids. Bioenergy Research, 2015, 8, 259-269.	2.2	47
29	Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Frontiers in Microbiology, 2016, 7, 650.	1.5	237
30	Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. Biotechnology for Biofuels, 2016, 9, 139.	6.2	63
31	Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 2016, 128, 8296-8354.	1.6	159
32	Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8164-8215.	7.2	1,576
33	Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nature Communications, 2016, 7, 11989.	5.8	61
34	Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4392-4397.	3.3	146
35	Overexpression of <i><scp>GA</scp>20â€<scp>OXIDASE</scp>1</i> impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnology Journal, 2016, 14, 997-1007.	4.1	59
36	A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa. Tree Genetics and Genomes, 2016, 12, 1.	0.6	24
37	New developments in engineering plant metabolic pathways. Current Opinion in Biotechnology, 2016, 42, 126-132.	3.3	83

	CHATION N	LPORT	
#	Article	IF	CITATIONS
38	Transition of primary to secondary cell wall synthesis. Science Bulletin, 2016, 61, 838-846.	4.3	28
39	Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure. Biotechnology for Biofuels, 2016, 9, 31.	6.2	54
40	Micropyrolysis of natural poplar mutants with altered p-hydroxyphenyl lignin content. Journal of Analytical and Applied Pyrolysis, 2016, 122, 377-386.	2.6	1
41	Biotechnology of Tropical Tree Crops. , 2016, , 245-295.		1
42	Lignocellulosic bioma ss : Biosynthesis, degradation, and industrial utilization. Engineering in Life Sciences, 2016, 16, 1-16.	2.0	171
43	Progress toward Lignin Valorization via Selective Catalytic Technologies and the Tailoring of Biosynthetic Pathways. ACS Sustainable Chemistry and Engineering, 2016, 4, 5123-5135.	3.2	79
45	Bioenergy Trees: Genetic and Genomic Strategies to Improve Yield. , 2016, , 167-190.		4
46	Engineering genomes for biofuels. , 2016, , 569-597.		0
47	Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnology for Biofuels, 2016, 9, 195.	6.2	36
48	Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 2016, 34, 997-1017.	6.0	175
49	Suberin as an Extra Barrier to Grass Digestibility: a Closer Look to Sugarcane Forage. Tropical Plant Biology, 2016, 9, 96-108.	1.0	4
50	Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany, 2016, 67, 515-531.	2.4	216
51	Molecular Breeding for Improved Second Generation Bioenergy Crops. Trends in Plant Science, 2016, 21, 43-54.	4.3	78
52	Unlocking the potential of lignocellulosic biomass through plant science. New Phytologist, 2016, 209, 1366-1381.	3.5	177
53	Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2312-2317.	3.3	99
54	Biosafety of Forest Transgenic Trees. Forestry Sciences, 2016, , .	0.4	6
55	Forest tree genomics: 10 achievements from the past 10Âyears and future prospects. Annals of Forest Science, 2016, 73, 77-103.	0.8	91
56	Wheat defense response to Fusarium head blight and possibilities of its improvement. Physiological and Molecular Plant Pathology, 2017, 98, 9-17.	1.3	3

#	Article	IF	CITATIONS
57	New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnology Reports, 2017, 11, 1-8.	0.9	67
58	Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase, cinnamoyl CoA reductase, and cinnamyl alcohol dehydrogenase leads to lignin reduction in rice (Oryza sativa L. ssp.) Tj ETQq1	10.08431	4 rg B T /Over
59	Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017, 5, 25.	4.9	406
60	Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for <scp>CINNAMYL ALCOHOL DEHYDROGENASE</scp> (<scp>CAD</scp>). Plant Journal, 2017, 91, 480-490.	2.8	68
61	The Arabidopsis NST3/SND1 promoter is active in secondary woody tissue in poplar. Journal of Wood Science, 2017, 63, 396-400.	0.9	5
63	Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renewable and Sustainable Energy Reviews, 2017, 74, 1080-1107.	8.2	31
64	Regulation of secondary cell wall biosynthesis by a <scp>NAC</scp> transcription factor from <i>Miscanthus</i> . Plant Direct, 2017, 1, e00024.	0.8	19
65	Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039.	2.3	99
66	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE</i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057.	2.3	90
67	<i><scp>C</scp>aldicellulosiruptor saccharolyticus</i> transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose. Microbial Biotechnology, 2017, 10, 1546-1557.	2.0	11
68	Hydrochar enhances growth of poplar for bioenergy while marginally contributing to direct soil carbon sequestration. GCB Bioenergy, 2017, 9, 1618-1626.	2.5	31
69	A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis. Scientific Reports, 2017, 7, 15798.	1.6	35
70	Real-time monitoring of PtaHMGB activity in poplar transactivation assays. Plant Methods, 2017, 13, 50.	1.9	9
71	Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnology for Biofuels, 2017, 10, 101.	6.2	48
72	Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial. Biotechnology for Biofuels, 2017, 10, 110.	6.2	11
73	In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?. Renewable and Sustainable Energy Reviews, 2017, 75, 927-937.	8.2	103
74	Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. Planta, 2017, 245, 61-75.	1.6	25
75	Differentially expressed genes in heads and tails of Angelica sinensis diels: Focusing on ferulic acid metabolism. Chinese Journal of Integrative Medicine, 2017, 23, 779-785.	0.7	3

#	Article	IF	CITATIONS
76	Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnology for Biofuels, 2017, 10, 253.	6.2	22
77	Advances in Genetic Manipulation of Lignocellulose to Reduce Biomass Recalcitrance and Enhance Biofuel Production in Bioenergy Crops. Journal of Plant Biochemistry & Physiology, 2017, 05, .	0.5	2
78	Biofuels: Greenhouse Gas Mitigation and Global Warming. , 2018, , .		22
79	Plant cell wall sugars: sweeteners for a bioâ€based economy. Physiologia Plantarum, 2018, 164, 27-44.	2.6	14
80	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	9.4	136
81	Potential of Lignocellulosic Materials for Production of Ethanol. , 2018, , 271-290.		3
82	Lignocellulosic Feedstock Improvement for Biofuel Production Through Conventional Breeding and Biotechnology. , 2018, , 107-140.		3
83	Engineered Lignin in Poplar Biomass Facilitates Cu-Catalyzed Alkaline-Oxidative Pretreatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 2932-2941.	3.2	31
84	The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars. Planta, 2018, 247, 887-897.	1.6	25
85	Application of Py-GC/MS coupled with PARAFAC2 and PLS-DA to study fast pyrolysis of genetically engineered poplars. Journal of Analytical and Applied Pyrolysis, 2018, 129, 101-111.	2.6	13
86	Field evaluation of transgenic poplars expressing the constitutively active small G protein for improved biomass traits. Biomass and Bioenergy, 2018, 109, 16-22.	2.9	3
87	A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees. BMC Genomics, 2018, 19, 11.	1.2	25
88	Biotechnology for bioenergy dedicated trees: meeting future energy demands. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2018, 73, 15-32.	0.6	10
89	Metabolic engineering and enzyme-mediated processing: A biotechnological venture towards biofuel production – A review. Renewable and Sustainable Energy Reviews, 2018, 82, 436-447.	8.2	73
90	Significance of Lignin S/G Ratio in Biomass Recalcitrance of <i>Populus trichocarpa</i> Variants for Bioethanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 2162-2168.	3.2	100
91	Vessel-Specific Reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed <i>ccr1</i> Mutants Restores Vessel and Xylary Fiber Integrity and Increases Biomass. Plant Physiology, 2018, 176, 611-633.	2.3	76
92	Current Approaches and Key Applications of Plant Metabolic Engineering. , 2018, , 47-61.		1
93	Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals. Energies, 2018, 11, 2936.	1.6	55

#	Article	IF	CITATIONS
94	Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana. Biotechnology for Biofuels, 2018, 11, 257.	6.2	14
95	Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigraâ€. Tree Physiology, 2018, 38, 320-339.	1.4	35
96	Understanding the influences of different pretreatments on recalcitrance of Populus natural variants. Bioresource Technology, 2018, 265, 75-81.	4.8	20
97	Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility. Agriculture (Switzerland), 2018, 8, 76.	1.4	17
98	Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery. Biotechnology for Biofuels, 2018, 11, 77.	6.2	9
99	Lignin Engineering in Forest Trees. Frontiers in Plant Science, 2019, 10, 912.	1.7	92
100	Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13816-13824.	3.3	68
101	Natural Bio-active Compounds. , 2019, , .		2
102	Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants, 2019, 5, 225-237.	4.7	50
103	Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels, 2019, 12, 15.	6.2	47
104	Genetic Modification of Biomass to Alter Lignin Content and Structure. Industrial & Engineering Chemistry Research, 2019, 58, 16190-16203.	1.8	23
105	Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. Journal of Experimental Botany, 2019, 70, 4039-4047.	2.4	29
106	A systems biology view of wood formation in <i>Eucalyptus grandis</i> trees submitted to different potassium and water regimes. New Phytologist, 2019, 223, 766-782.	3.5	48
107	Metabolic Engineering and Genetic Manipulation of Novel Biomass Species for Biofuel Production. , 2019, , 13-34.		3
108	Tailor-made trees: engineering lignin for ease of processing and tomorrow's bioeconomy. Current Opinion in Biotechnology, 2019, 56, 147-155.	3.3	44
109	Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 2019, 37, 518-531.	4.9	183
110	Fibreâ€specific regulation of lignin biosynthesis improves biomass quality in <i>Populus</i> . New Phytologist, 2020, 226, 1074-1087.	3.5	43
111	Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele. Nature Communications, 2020, 11, 5020.	5.8	41

#	Article	IF	CITATIONS
112	Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. Mycorrhiza, 2020, 30, 555-566.	1.3	9
113	Discovering Biomass Structural Determinants Defining the Properties of Plant-Derived Renewable Carbon Fiber. IScience, 2020, 23, 101405.	1.9	12
114	Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemistry, 2020, 295, 15144-15157.	1.6	48
115	Transgenic Poplar Designed for Biofuels. Trends in Plant Science, 2020, 25, 881-896.	4.3	45
116	Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnology for Biofuels, 2020, 13, 97.	6.2	19
117	Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar. Biotechnology for Biofuels, 2020, 13, 43.	6.2	9
118	Properties of densified poplar wood through partial delignification with alkali and acid pretreatment. Journal of Materials Science, 2020, 55, 14664-14676.	1.7	23
119	Engineering hydroxyproline―O â€glycosylated biopolymers to reconstruct the plant cell wall for improved biomass processability. Biotechnology and Bioengineering, 2020, 117, 945-958.	1.7	3
120	Pectic galactan affects cell wall architecture during secondary cell wall deposition. Planta, 2020, 251, 100.	1.6	14
121	Rewired phenolic metabolism and improved saccharification efficiency of a <i>Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2)</i> mutant. Plant Journal, 2021, 105, 1240-1257.	2.8	13
122	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	2.9	8
124	Targeted plant improvement through genome editing: from laboratory to field. Plant Cell Reports, 2021, 40, 935-951.	2.8	47
125	Enhancing the multi-functional properties of renewable lignin carbon fibers <i>via</i> defining the structure–property relationship using different biomass feedstocks. Green Chemistry, 2021, 23, 3725-3739.	4.6	33
126	Lignin: an innovative, complex, and highly flexible plant material/component. , 2021, , 35-60.		1
127	MiR396â€ <i>GRF</i> module associates with switchgrass biomass yield and feedstock quality. Plant Biotechnology Journal, 2021, 19, 1523-1536.	4.1	35
128	Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Biotechnology for Biofuels, 2021, 14, 43.	6.2	10
129	Achievements and prospects of genetic engineering in poplar: a review. New Forests, 2021, 52, 889-920.	0.7	13
130	Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. Environmental Microbiology Reports, 2021, 13, 272-293.	1.0	9

#	Article	IF	CITATIONS
132	Opportunities and barriers for biofuel and bioenergy production from poplar. GCB Bioenergy, 2021, 13, 905-913.	2.5	10
133	PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Scientific Reports, 2021, 11, 9450.	1.6	10
134	Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH, 2021, 2, 299-313.	1.8	0
136	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	1.7	49
137	CRISPR as9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in <i>Populus tremula</i> × <i>P. alba</i> . Plant Biotechnology Journal, 2021, 19, 2221-2234.	4.1	29
138	Vessel―and rayâ€specific monolignol biosynthesis as an approach to engineer fiberâ€hypolignification and enhanced saccharification in poplar. Plant Journal, 2021, 108, 752-765.	2.8	11
139	Tailoring renewable materials via plant biotechnology. Biotechnology for Biofuels, 2021, 14, 167.	6.2	25
140	Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Frontiers in Microbiology, 2021, 12, 658284.	1.5	56
141	A gene-editing/complementation strategy for tissue-specific lignin reduction while preserving biomass yield. Biotechnology for Biofuels, 2021, 14, 175.	6.2	12
142	Transgenic rice plants expressing the α-L-arabinofuranosidase of <i>Coprinopsis cinerea</i> exhibit strong dwarfism and markedly enhanced tillering. Plant Biotechnology, 2021, 38, 379-386.	0.5	2
143	Stochastic model of lignocellulosic material saccharification. PLoS Computational Biology, 2021, 17, e1009262.	1.5	3
144	Lessons from 25ÂYears of GM Tree Field Trials in Europe and Prospects for the Future. Forestry Sciences, 2016, , 67-100.	0.4	4
145	Metabolic Engineering Strategies for Enhancing the Production of Bio-active Compounds from Medicinal Plants. , 2019, , 287-316.		12
146	Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions. BMC Plant Biology, 2020, 20, 251.	1.6	5
147	Linkage Mapping of Stem Saccharification Digestibility in Rice. PLoS ONE, 2016, 11, e0159117.	1.1	6
148	Saccharification Protocol for Small-scale Lignocellulosic Biomass Samples to Test Processing of Cellulose into Glucose. Bio-protocol, 2016, 6, .	0.2	11
149	In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. Plant and Cell Physiology, 2021, 62, 1813-1827.	1.5	7
150	Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. Sugar Tech, 2022, 24, 369-385.	0.9	9

#	Article	IF	CITATIONS
151	Regulation of Lignin Biosynthesis Through RNAi in Aid of Biofuel Production. , 2015, , 185-201.		0
152	Current Status and Future Prospects of Wood and Tree Biotechnology. Mokuzai Gakkai Shi, 2015, 61, 200-206.	0.2	Ο
153	Ecological interactions between herbivores and silver birch and aspen trees genetically modified for fungal disease resistance. Dissertationes Forestales, 2015, 2015, .	0.1	0
154	Perspectives on the use of transcriptomics to advance biofuels. AIMS Bioengineering, 2015, 2, 487-506.	0.6	Ο
156	Cloning and Analysis of the Eg4CL1 Gene and Its Promoter from Oil Palm (Elaeis guineensis Jacq.). Sains Malaysiana, 2018, 47, 1709-1723.	0.3	4
158	Saccharification of Orange Bagasse Pre-treated with Calcium Hydroxide using an enzymatic blend Diluted Hydrochloric Acid. Revista Ion, 2019, 32, 75-85.	0.1	0
159	Saccharification of Orange Bagasse Pre-treated with Calcium Hydroxide using an enzymatic blend Diluted Hydrochloric Acid. Revista Ion, 2019, 32, 75-85.	0.1	0
161	Simultaneous manipulation of lignin structure and secondary cell wall formation in transgenic poplar. Journal of Wood Science, 2020, 66, .	0.9	3
162	Plant Cell Manipulation Technology for Biorefinery. , 2020, , 461-490.		1
164	Assessment of Durum Wheat (Triticum durum Desf.) Genotypes Diversity for the Integrated Production of Bioethanol and Grains. Energies, 2021, 14, 7735.	1.6	2
165	Two types of cinnamoyl-CoA reductase function divergently in accumulation of lignins, flavonoids and glucosinolates and enhance lodging resistance in Brassica napus. Crop Journal, 2022, 10, 647-660.	2.3	12
166	A new approach to zipâ€lignin: 3,4â€dihydroxybenzoate is compatible with lignification. New Phytologist, 2022, 235, 234-246.	3.5	12
167	Analyses of Pepper Cinnamoyl-CoA Reductase Gene Family and Cloning of CcCCR1/2 and Their Function Identification in the Formation of Pungency. Horticulturae, 2022, 8, 537.	1.2	0
168	Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. Frontiers in Plant Science, 0, 13, .	1.7	8
169	Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
170	Field and saccharification performances of poplars severely downregulated in <i>CAD1</i> . New Phytologist, 2022, 236, 2075-2090.	3.5	9
171	Aspartic proteases modulate programmed cell death and secondary cell wall synthesis during wood formation in poplar. Journal of Experimental Botany, 2022, 73, 6876-6890.	2.4	5
172	High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Frontiers in Genetics, 0, 13, .	1.1	6

#	Article	IF	CITATIONS
173	A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods in Molecular Biology, 2023, , 153-179.	0.4	0
174	Lignin engineering in forest trees: From gene discovery to field trials. Plant Communications, 2022, 3, 100465.	3.6	18
175	Overexpression of PtoMYB115 improves lignocellulose recalcitrance to enhance biomass digestibility and bioethanol yield by specifically regulating lignin biosynthesis in transgenic poplar. , 2022, 15, .		5
176	WGCNA Reveals Genes Associated with Lignification in the Secondary Stages of Wood Formation. Forests, 2023, 14, 99.	0.9	2
177	Accelerating wood domestication in forest trees through genome editing: Advances and prospects. Current Opinion in Plant Biology, 2023, 71, 102329.	3.5	8
178	Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners. Plant Biotechnology Journal, 2023, 21, 1005-1021.	4.1	3
179	Genetic markers and tree properties predicting wood biorefining potential in aspen (Populus tremula) bioenergy feedstock. , 2023, 16, .		1
180	Genetically engineered lignocellulosic feedstocks for enhanced biofuel yields. , 2023, , 47-80.		0