NCG 4.0: the network of cancer genes in the era of mass cancer genomes

Database: the Journal of Biological Databases and Curation 2014, bau015

DOI: 10.1093/database/bau015

Citation Report

#	Article	IF	CITATIONS
1	Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation. Science China Life Sciences, 2014, 57, 1090-1102.	4.9	7
2	Deep sequencing of the X chromosome reveals the proliferation history of colorectal adenomas. Genome Biology, 2014, 15, 437.	8.8	1
3	Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency. Nature Communications, 2014, 5, 3850.	12.8	49
4	Network analysis reveals a stress-affected common gene module among seven stress-related diseases/systems which provides potential targets for mechanism research. Scientific Reports, 2015, 5, 12939.	3.3	8
5	Computational methods and resources for the interpretation of genomic variants in cancer. BMC Genomics, 2015, 16, S7.	2.8	18
6	Identification and validation of potential prognostic IncRNA biomarkers for predicting survival in patients with multiple myeloma. Journal of Experimental and Clinical Cancer Research, 2015, 34, 102.	8.6	207
7	FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav086.	3.0	11
8	Personalized targeted therapy for esophageal squamous cell carcinoma. World Journal of Gastroenterology, 2015, 21, 7648.	3.3	43
9	Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Scientific Reports, 2015, 5, 10204.	3.3	18
10	Human cancer databases (Review). Oncology Reports, 2015, 33, 3-18.	2.6	69
11	Foamy viral vector integration sites in SCID-repopulating cells after MGMTP140K-mediated in vivo selection. Gene Therapy, 2015, 22, 591-595.	4.5	14
12	Practical aspects of NGS-based pathways analysis for personalized cancer science and medicine. Oncotarget, 2016, 7, 52493-52516.	1.8	15
13	Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer. Oncotarget, 2016, 7, 12598-12611.	1.8	218
14	GeneSCF: a real-time based functional enrichment tool with support for multiple organisms. BMC Bioinformatics, 2016, 17, 365.	2.6	87
15	Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles. PLoS ONE, 2016, 11, e0152860.	2.5	15
16	Discovering potential cancer driver genes by an integrated network-based approach. Molecular BioSystems, 2016, 12, 2921-2931.	2.9	27
17	A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16048.	4.1	13
18	Characterizing mutation–expression network relationships in multiple cancers. Computational Biology and Chemistry, 2016, 63, 73-82.	2.3	22

CITATION REPORT

#	Article	IF	CITATIONS
19	Why Chemotherapy Does Not Work: Cancer Genome Evolution and the Illusion of Oncogene Addiction. , 2016, , 177-190.		0
20	Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL. Clinical Epigenetics, 2016, 8, 106.	4.1	45
21	Systematic tracking of coordinated differential network motifs identifies novel disease-related genes by integrating multiple data. Neurocomputing, 2016, 206, 3-12.	5.9	4
22	Relationship between microRNA genes incidence and cancer-associated genomic regions in canine tumors: a comprehensive bioinformatics study. Functional and Integrative Genomics, 2016, 16, 143-152.	3.5	8
23	NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Research, 2016, 44, D992-D999.	14.5	95
24	HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes. Cancer Research, 2016, 76, 1463-1475.	0.9	35
25	ccmGDB: a database for cancer cell metabolism genes. Nucleic Acids Research, 2016, 44, D959-D968.	14.5	41
26	Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Research, 2016, 44, D969-D974.	14.5	55
27	A single-copy Sleeping Beauty transposon mutagenesis screen identifies new PTEN-cooperating tumor suppressor genes. Nature Genetics, 2017, 49, 730-741.	21.4	53
28	Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information. Molecular BioSystems, 2017, 13, 2135-2144.	2.9	20
29	Identifying DNase I hypersensitive sites as driver distal regulatory elements in breast cancer. Nature Communications, 2017, 8, 436.	12.8	22
30	Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. Microbiome, 2017, 5, 89.	11.1	27
31	Cancer drug target identification and node-level analysis of the network of MAPK pathways. Network Modeling Analysis in Health Informatics and Bioinformatics, 2018, 7, 1.	2.1	2
32	ConsensusDriver Improves upon Individual Algorithms for Predicting Driver Alterations in Different Cancer Types and Individual Patients. Cancer Research, 2018, 78, 290-301.	0.9	20
33	Protein Domain Level Cancer Drug Targets in the Network of MAPK pathways. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 16, 1-1.	3.0	0
34	The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biology, 2019, 20, 1.	8.8	938
35	A random walk-based method to identify driver genes by integrating the subcellular localization and variation frequency into bipartite graph. BMC Bioinformatics, 2019, 20, 238.	2.6	28
36	The prognostic signature of the somatic mutations in Ewing sarcoma: from a network view. Japanese Journal of Clinical Oncology, 2019, 49, 604-613.	1.3	2

IF ARTICLE CITATIONS # Identifying driver genes involving gene dysregulated expression, tissue-specific expression and gene-gene network. BMC Medical Genomics, 2019, 12, 168. 37 1.5 11 Nuclear localization of LDL receptor-related protein 1B in mammary gland carcinogenesis. Journal of Molecular Medicine, 2019, 97, 257-268. Rapid preliminary purity evaluation of tumor biopsies using deep learning approach. Computational 39 4.1 2 and Structural Biotechnology Journal, 2020, 18, 1746-1753. Germline copy number variations in BRCA1/2 negative families: Role in the molecular etiology of hereditary bréast cancer in Tunisia. PLoS ONE, 2021, 16, e0245362. Pan-cancer detection of driver genes at the single-patient resolution. Genome Medicine, 2021, 13, 12. 41 8.2 17 Identification of the miRNA signature associated with survival in patients with ovarian cancer. Aging, 2021, 13, 12660-12690. 3.1 EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer. 43 1.5 12 BMC Medical Genomics, 2021, 14, 122. DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization 4.5 with prior knowledge from interactome and pathways. PeerJ Computer Science, 0, 3, e133. Application of Bioinformatics Databases in the Study of Oxidative Stress Related Cancers., 2022, 1-12. 49 0 Application of Bioinformatics Databases in the Study of Oxidative Stress Related Cancers., 2022, 3229-3240.

CITATION REPORT