A phase I/II trial of hydroxychloroquine in conjunction concurrent and adjuvant temozolomide in patients with multiforme

Autophagy 10, 1359-1368 DOI: 10.4161/auto.28984

Citation Report

#	Article	IF	CITATIONS
1	Autophagy and senescence in cancer therapy. Journal of Cellular Physiology, 2013, 229, n/a-n/a.	2.0	87
2	Combined MTOR and autophagy inhibition. Autophagy, 2014, 10, 1391-1402.	4.3	366
3	Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy, 2014, 10, 1478-1480.	4.3	77
4	Combined autophagy and HDAC inhibition. Autophagy, 2014, 10, 1403-1414.	4.3	240
5	Autophagy and Its Effects: Making Sense of Double-Edged Swords. PLoS Biology, 2014, 12, e1001967.	2.6	76
6	Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy, 2014, 10, 1415-1425.	4.3	149
7	Combined autophagy and proteasome inhibition. Autophagy, 2014, 10, 1380-1390.	4.3	310
8	Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy, 2014, 10, 1369-1379.	4.3	309
9	Mouse Models Address Key Concerns Regarding Autophagy Inhibition in Cancer Therapy. Cancer Discovery, 2014, 4, 873-875.	7.7	28
10	Targeting Mitochondrial Metabolism by Inhibiting Autophagy in <i>BRAF</i> -Driven Cancers. Cancer Discovery, 2014, 4, 766-772.	7.7	75
11	Targeting the Autophagy Process in Breast Cancer Development and Treatment. , 0, , .		0
12	Autophagy in cancer. F1000prime Reports, 2015, 7, 18.	5.9	73
13	Inhibition of Autophagy by Targeting ATG4B: Promises and Challenges of An Emerging Anti-cancer Strategy. Clinical Cancer Drugs, 2015, 2, 61-70.	0.3	2
14	Targeting autophagy in cancer management – strategies and developments. Cancer Management and Research, 2015, 7, 291.	0.9	96
15	Autophagy, Metabolism, and Cancer. Clinical Cancer Research, 2015, 21, 5037-5046.	3.2	540
16	You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia. Leukemia, 2015, 29, 517-525.	3.3	77
17	Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion. Molecular Cancer Research, 2015, 13, 651-658.	1.5	152
18	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	3.5	1,012

λτιών Ρέρω

	CITATION	Report	
#	Article	IF	CITATIONS
19	The utility of chloroquine in cancer therapy. Current Medical Research and Opinion, 2015, 31, 1009-1013.	0.9	45
20	Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia. Autophagy, 2015, 11, 355-372.	4.3	87
22	Rapid Onset of Retinal Toxicity From High-Dose Hydroxychloroquine Given for Cancer Therapy. American Journal of Ophthalmology, 2015, 160, 799-805.e1.	1.7	68
23	Development of an HTS-Compatible Assay for the Discovery of Ulk1 Inhibitors. Journal of Biomolecular Screening, 2015, 20, 913-920.	2.6	7
24	Safety and Biologic Response of Pre-operative Autophagy Inhibition in Combination with Gemcitabine in Patients with Pancreatic Adenocarcinoma. Annals of Surgical Oncology, 2015, 22, 4402-4410.	0.7	187
25	Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology, 2015, 17, 1051-1063.	0.6	178
26	The next breakthrough in LAM clinical trials may be their design: challenges in design and execution of future LAM clinical trials. Expert Review of Respiratory Medicine, 2015, 9, 195-204.	1.0	6
27	Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy, 2015, 11, 1849-1863.	4.3	99
28	HDAC Family Members Intertwined in the Regulation of Autophagy: A Druggable Vulnerability in Aggressive Tumor Entities. Cells, 2015, 4, 135-168.	1.8	71
29	Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene, 2015, 34, 5662-5676.	2.6	56
30	Pharmacological Inhibition of ULK1 Kinase Blocks Mammalian Target of Rapamycin (mTOR)-dependent Autophagy. Journal of Biological Chemistry, 2015, 290, 11376-11383.	1.6	261
31	Metabolic Dependencies in <i>RAS</i> -Driven Cancers. Clinical Cancer Research, 2015, 21, 1828-1834.	3.2	192
32	Impact of Autophagy Inhibition at Different Stages on Cytotoxic Effect of Autophagy Inducer in Glioblastoma Cells. Cellular Physiology and Biochemistry, 2015, 35, 1303-1316.	1.1	53
33	Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy, 2015, 11, 2074-2088.	4.3	90
34	The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism?. Acta Biochimica Et Biophysica Sinica, 2016, 48, 17-26.	0.9	13
35	High-dose chloroquine is metabolically cardiotoxic by inducing lysosomes and mitochondria dysfunction in a rat model of pressure overload hypertrophy. Physiological Reports, 2015, 3, e12413.	0.7	34
36	<i>MIR517C</i> inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation. Autophagy, 2015, 11, 2213-2232.	4.3	83
37	Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy, 2015, 11, 60-74.	4.3	101

#	Article	IF	CITATIONS
38	Autophagy modulation: a target for cancer treatment development. Cancer Chemotherapy and Pharmacology, 2015, 75, 439-447.	1.1	112
39	Molecular Pathways: Autophagy in Cancer—A Matter of Timing and Context. Clinical Cancer Research, 2015, 21, 498-504.	3.2	72
40	Autophagy in acute leukemias: A double-edged sword with important therapeutic implications. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 14-26.	1.9	74
41	Cellular and metabolic functions for autophagy in cancer cells. Trends in Cell Biology, 2015, 25, 37-45.	3.6	207
42	Pro-oxidative Phytoagents Induce Autophagy in Tumors. , 2016, , 307-323.		0
43	Targeting Autophagy in Glioblastoma. Critical Reviews in Oncogenesis, 2016, 21, 241-252.	0.2	15
44	Autophagy Modulation for Organelle-Targeting Therapy. , 0, , .		3
46	Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy. Journal of Cancer Prevention, 2016, 21, 216-226.	0.8	178
47	Sirolimus and Hydroxychloroquine as an Add-On to Standard Therapy for Glioblastoma Multiforme: Case Report. Journal of Biomolecular Research & Therapeutics, 2016, 5, .	0.2	0
48	Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. International Journal of Molecular Sciences, 2016, 17, 102.	1.8	298
49	Measuring Autophagy in the Context of Cancer. Advances in Experimental Medicine and Biology, 2016, 899, 121-143.	0.8	11
50	Autophagy levels are elevated in barrett's esophagus and promote cell survival from acid and oxidative stress. Molecular Carcinogenesis, 2016, 55, 1526-1541.	1.3	20
51	Targeting Notch Signaling and Autophagy Increases Cytotoxicity in Glioblastoma Neurospheres. Brain Pathology, 2016, 26, 713-723.	2.1	42
52	Drug Repurposing to Circumvent Chemotherapy Resistance in Brain Tumours. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 107-144.	0.1	3
53	Resistance to Targeted Therapies Against Adult Brain Cancers. Resistance To Targeted Anti-cancer Therapeutics, 2016, , .	0.1	4
54	Autophagy Inhibition Enhances Sunitinib Efficacy in Clear Cell Ovarian Carcinoma. Molecular Cancer Research, 0, , .	1.5	1
55	Therapeutic Targeting of Autophagy. EBioMedicine, 2016, 14, 15-23.	2.7	232
56	The Evolving, Multifaceted Roles of Autophagy in Cancer. Advances in Cancer Research, 2016, 130, 1-53.	1.9	52

#	Article	IF	CITATIONS
57	Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 282-293.	1.3	56
58	Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. Journal of Neuro-Oncology, 2016, 129, 39-45.	1.4	35
59	Astragalosidell inhibits autophagic flux and enhance chemosensitivity of cisplatin in human cancer cells. Biomedicine and Pharmacotherapy, 2016, 81, 166-175.	2.5	20
60	Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin. Autophagy, 2016, 12, 949-962.	4.3	62
61	Autophagy as a Therapeutic Target in Cancer. Current Cancer Research, 2016, , 1-16.	0.2	0
62	Targeting Autophagy in Cancer Therapy. Current Cancer Research, 2016, , .	0.2	28
63	Targeting PI3-Kinases in Modulating Autophagy and Anti-cancer Therapy. Current Cancer Research, 2016, , 85-97.	0.2	0
64	Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC Neurology, 2016, 16, 178.	0.8	85
65	Recent insights into the function of autophagy in cancer. Genes and Development, 2016, 30, 1913-1930.	2.7	641
66	Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World Journal of Surgical Oncology, 2016, 14, 189.	0.8	100
67	Crosstalk between autophagy and intracellular radiation response (Review). International Journal of Oncology, 2016, 49, 2217-2226.	1.4	46
68	Glioblastoma, hypoxia and autophagy: a survival-prone â€~ménage-Ã-trois'. Cell Death and Disease, 2016, 7, e2434-e2434.	2.7	103
70	Methods for Studying Autophagy Within the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2016, 899, 145-166.	0.8	38
71	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2016, , .	0.8	3
72	To live or let die: Unclear task of autophagy in the radiosensitization battle. Radiotherapy and Oncology, 2016, 119, 265-275.	0.3	34
73	PI3K/Akt/mTOR activation by suppression of ELK3 mediates chemosensitivity of MDA-MB-231 cells to doxorubicin by inhibiting autophagy. Biochemical and Biophysical Research Communications, 2016, 477, 277-282.	1.0	40
74	Decorinâ€mediated inhibition of the migration of U87 <scp>MG</scp> glioma cells involves activation of autophagy and suppression of <scp>TGF</scp> â€i² signaling. FEBS Open Bio, 2016, 6, 707-719.	1.0	34
75	Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. British Journal of Cancer, 2016, 114, 485-496.	2.9	61

ARTICLE IF CITATIONS # The renewed battle against RAS-mutant cancers. Cellular and Molecular Life Sciences, 2016, 73, 76 2.4 33 1845-1858. The challenges associated with molecular targeted therapies for glioblastoma. Journal of 1.4 58 Neuro-Oncology, 2016, 127, 427-434. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacological 78 3.183 Research, 2016, 105, 164-175. Targeting autophagy to sensitive glioma to temozolomide treatment. Journal of Experimental and 240 Clinical Cancer Research, 2016, 35, 23. Autophagy inhibitors. Cellular and Molecular Life Sciences, 2016, 73, 985-1001. 80 2.4 231 Leaving the lysosome behind: novel developments in autophagy inhibition. Future Medicinal Chemistry, 2016, 8, 73-86. 1.1 How to train glioma cells to die: molecular challenges in cell death. Journal of Neuro-Oncology, 82 1.4 28 2016, 126, 377-384. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer 2.6 cell death. Oncogene, 2016, 35, 2913-2922. Modulation of inflammation by autophagy: Consequences for human disease. Autophagy, 2016, 12, 84 4.3 287 245-260. Emerging strategies to effectively target autophagy in cancer. Oncogene, 2016, 35, 1-11. Lysosomal dysfunction and autophagy blockade contribute to IMB-6G-induced apoptosis in pancreatic 86 1.6 37 cancer cells. Scientific Reports, 2017, 7, 41862. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. 87 1.3 Cardiovascular Drugs and Therapy, 2017, 31, 109-117. Autophagy as a potential target for sarcoma treatment. Biochimica Et Biophysica Acta: Reviews on 88 3.3 19 Cancer, 2017, 1868, 40-50. The Role of Autophagy in Cancer. Annual Review of Cancer Biology, 2017, 1, 19-39. 2.3 158 Autophagy is dispensable for <i>Kmt2a/Mll-Mllt3/Af9</i> AML maintenance and anti-leukemic effect of 90 4.3 43 chloroquine. Autophagy, 2017, 13, 955-966. Hydroxychloroquine retinopathy. Eye, 2017, 31, 828-845. 166 Autophagy Inhibition Enhances Sunitinib Efficacy in Clear Cell Ovarian Carcinoma. Molecular Cancer 92 1.552 Research, 2017, 15, 250-258. Sirolimus and Autophagy Inhibition in Lymphangioleiomyomatosis. Chest, 2017, 151, 1302-1310.

	CITATION	Report	
#	Article	IF	CITATIONS
94	Up-regulation of autophagy is a mechanism of resistance to chemotherapy and can be inhibited by pantoprazole to increase drug sensitivity. Cancer Chemotherapy and Pharmacology, 2017, 79, 959-969.	1.1	43
95	Targeting the unfolded protein response in cancer. Pharmacological Research, 2017, 120, 258-266.	3.1	93
96	Lysosomal Biology in Cancer. Methods in Molecular Biology, 2017, 1594, 293-308.	0.4	68
97	ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice. Biochemical Pharmacology, 2017, 138, 150-162.	2.0	61
98	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
99	Recent advances in the treatment of glioblastoma multiforme by inhibiting angiogenesis and using nanocarrier systems. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 30-40.	2.7	3
100	Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung Journal of Medical Sciences, 2017, 33, 215-223.	0.8	89
101	Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Seminars in Cancer Biology, 2017, 43, 90-110.	4.3	25
102	Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.	5.7	87
103	ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells. Autophagy, 2017, 13, 2056-2071.	4.3	23
104	Lysosomotropism depends on glucose: a chloroquine resistance mechanism. Cell Death and Disease, 2017, 8, e3014-e3014.	2.7	37
105	Pituitary Tumor Suppression by Combination of Cabergoline and Chloroquine. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3692-3703.	1.8	40
106	Targeting autophagy in cancer. Nature Reviews Cancer, 2017, 17, 528-542.	12.8	1,856
107	Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. International Journal of Pharmaceutics, 2017, 531, 372-388.	2.6	54
108	Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. British Journal of Cancer, 2017, 117, 813-825.	2.9	89
109	Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. International Journal of Pharmaceutics, 2017, 531, 389-410.	2.6	41
110	MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell, 2017, 32, 840-855.e8.	7.7	188
111	Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes and Development, 2017, 31, 2067-2084.	2.7	57

#	Article	IF	CITATIONS
112	Ferroquine, the next generation antimalarial drug, has antitumor activity. Scientific Reports, 2017, 7, 15896.	1.6	72
113	Targeting metabolic reprogramming in KRAS-driven cancers. International Journal of Clinical Oncology, 2017, 22, 651-659.	1.0	102
114	How can tricyclic sophoridinic derivatives be used as autophagy inhibitors for cancer treatments?. Future Medicinal Chemistry, 2017, 9, 835-837.	1.1	4
115	Enhanced cytotoxic activity of doxorubicin through the inhibition of autophagy in triple negative breast cancer cell line. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 49-57.	1.1	35
116	Non-cell-autonomous Effects of Autophagy Inhibition in Tumor Cells Promote Growth of Drug-resistant Cells. Molecular Pharmacology, 2017, 91, 58-64.	1.0	11
117	Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nature Reviews Clinical Oncology, 2017, 14, 247-258.	12.5	261
118	Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemotherapy and Pharmacology, 2017, 79, 287-294.	1.1	113
119	Disruption of Autophagic Degradation with ROC-325 Antagonizes Renal Cell Carcinoma Pathogenesis. Clinical Cancer Research, 2017, 23, 2869-2879.	3.2	51
120	Natural Cyclopeptide RA-XII, a New Autophagy Inhibitor, Suppresses Protective Autophagy for Enhancing Apoptosis through AMPK/mTOR/P70S6K Pathways in HepG2 Cells. Molecules, 2017, 22, 1934.	1.7	40
121	Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. International Journal of Molecular Sciences, 2017, 18, 1279.	1.8	293
122	Clinical Applications of Autophagy Proteins in Cancer: From Potential Targets to Biomarkers. International Journal of Molecular Sciences, 2017, 18, 1496.	1.8	41
123	Combination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway. Frontiers in Molecular Neuroscience, 2017, 10, 68.	1.4	32
124	A Triphenylphosphonium-Functionalized Mitochondriotropic Nanocarrier for Efficient Co-Delivery of Doxorubicin and Chloroquine and Enhanced Antineoplastic Activity. Pharmaceuticals, 2017, 10, 91.	1.7	20
125	Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. Journal of Experimental and Clinical Cancer Research, 2017, 36, 118.	3.5	46
126	Drug repurposing for the treatment of glioblastoma multiforme. Journal of Experimental and Clinical Cancer Research, 2017, 36, 169.	3.5	58
128	Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy. International Journal of Molecular Sciences, 2017, 18, 1297.	1.8	27
129	Effects of chronic exposure of hydroxychloroquine/ chloroquine on the risk of cancer, metastasis, and death: a population-based cohort study on patients with connective tissue diseases. Clinical Epidemiology, 2017, Volume 9, 545-554.	1.5	10
130	Repurposing Drugs in Oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.	0.6	197

#	Article	IF	CITATIONS
131	Hydroxychloroquine: A Physiologically-Based Pharmacokinetic Model in the Context of Cancer-Related Autophagy Modulation. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 447-459.	1.3	67
132	Targeting autophagy in cancer. Cancer, 2018, 124, 3307-3318.	2.0	484
133	Novel organometallic chloroquine derivative inhibits tumor growth. Journal of Cellular Biochemistry, 2018, 119, 5921-5933.	1.2	14
134	Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02. Neuro-Oncology, 2018, 20, 546-556.	0.6	93
135	EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition. Autophagy, 2018, 14, 283-295.	4.3	38
136	The potentially conflicting cell autonomous and cell non-autonomous functions of autophagy in mediating tumor response to cancer therapy. Biochemical Pharmacology, 2018, 153, 46-50.	2.0	7
137	Monitoring autophagic flux using p62/SQSTM1 based luciferase reporters in glioma cells. Experimental Cell Research, 2018, 363, 84-94.	1.2	23
138	Autophagy in glioma cells: An identity crisis with a clinical perspective. Cancer Letters, 2018, 428, 139-146.	3.2	18
139	Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis, 2018, 39, 689-699.	1.3	58
140	Identification of a novel autophagic inhibitor cepharanthine to enhance the anti-cancer property of dacomitinib in non-small cellAlung cancer. Cancer Letters, 2018, 412, 1-9.	3.2	36
141	Enhanced glioma therapy by synergistic inhibition of autophagy and tyrosine kinase activity. International Journal of Pharmaceutics, 2018, 536, 1-10.	2.6	32
142	Role of autophagy in Zika virus infection and pathogenesis. Virus Research, 2018, 254, 34-40.	1.1	101
143	Autophagy promotes escape from phosphatidylinositol 3â€kinase inhibition in estrogen receptorâ€positive breast cancer. FASEB Journal, 2018, 32, 1222-1235.	0.2	22
144	Autophagy Inhibition in Childhood Nephroblastoma and the Therapeutic Significance. Current Cancer Drug Targets, 2018, 18, 295-303.	0.8	7
145	The Roles of Autophagy in Cancer. International Journal of Molecular Sciences, 2018, 19, 3466.	1.8	631
146	Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Frontiers in Oncology, 2018, 8, 462.	1.3	108
147	Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiation Research, 2018, 190, 538.	0.7	21
148	In Search of a Breakthrough Therapy for Glioblastoma Multiforme. Neuroglia (Basel, Switzerland), 2018, 1, 292-310.	0.3	11

#	Article	IF	CITATIONS
149	The HDAC6 inhibitor C1A modulates autophagy substrates in diverse cancer cells and induces cell death. British Journal of Cancer, 2018, 119, 1278-1287.	2.9	36
150	Autophagy modulates temozolomide-induced cell death in alveolar Rhabdomyosarcoma cells. Cell Death Discovery, 2018, 4, 52.	2.0	39
151	Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nature Communications, 2018, 9, 4347.	5.8	77
152	Lysosomes contribute to radioresistance in cancer. Cancer Letters, 2018, 439, 39-46.	3.2	29
153	Inhibiting eEF-2 kinase-mediated autophagy enhanced the cytocidal effect of AKT inhibitor on human nasopharyngeal carcinoma. Drug Design, Development and Therapy, 2018, Volume 12, 2655-2663.	2.0	7
154	Autophagy therapeutics: preclinical basis and initial clinical studies. Cancer Chemotherapy and Pharmacology, 2018, 82, 923-934.	1.1	23
155	Re-purposing Chloroquine for Glioblastoma: Potential Merits and Confounding Variables. Frontiers in Oncology, 2018, 8, 335.	1.3	59
156	Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 563-575.	2.2	102
157	Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death and Disease, 2018, 9, 889.	2.7	82
158	Effects of sequentially applied single and combined temozolomide, hydroxychloroquine and AT101 treatment in a long-term stimulation glioblastoma in vitro model. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1475-1485.	1.2	15
159	Activating Autophagy Enhanced the Antitumor Effect of Antibody Drug Conjugates Rituximab-Monomethyl Auristatin E. Frontiers in Immunology, 2018, 9, 1799.	2.2	12
160	Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Science, 2018, 109, 2497-2508.	1.7	16
161	Autophagy inhibition potentiates SAHA‑mediated apoptosis in glioblastoma cells by accumulation of damaged mitochondria. Oncology Reports, 2018, 39, 2787-2796.	1.2	16
162	Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity. Frontiers in Immunology, 2018, 9, 887.	2.2	63
163	Coordinated autophagy modulation overcomes glioblastoma chemoresistance through disruption of mitochondrial bioenergetics. Scientific Reports, 2018, 8, 10348.	1.6	27
164	An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme—Role in Pathogenesis and Therapeutic Perspective. International Journal of Molecular Sciences, 2018, 19, 889.	1.8	65
165	Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. ACS Applied Materials & Interfaces, 2018, 10, 30983-30993.	4.0	51
166	Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells. Drug Design, Development and Therapy, 2018, Volume 12, 911-920.	2.0	14

#	Article	IF	CITATIONS
167	Dual receptor recognizing liposomes containing paclitaxel and hydroxychloroquine for primary and metastatic melanoma treatment via autophagy-dependent and independent pathways. Journal of Controlled Release, 2018, 288, 148-160.	4.8	46
168	Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8479-E8488.	3.3	38
169	Autophagy Inhibition and Chemosensitization in Cancer Therapy. , 2019, , 259-273.		3
170	Inhibition of autophagy significantly increases the antitumor effect of Abiraterone in prostate cancer. World Journal of Urology, 2019, 37, 351-358.	1.2	18
171	Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. Journal of Experimental and Clinical Cancer Research, 2019, 38, 298.	3.5	45
172	Opportunities and challenges of co‑targeting epidermal growth factor receptor and autophagy signaling in non‑small cell lung cancer (Review). Oncology Letters, 2019, 18, 499-506.	0.8	12
173	A novel potent autophagy inhibitor ECDD-S27 targets vacuolar ATPase and inhibits cancer cell survival. Scientific Reports, 2019, 9, 9177.	1.6	11
174	Role of Autophagy in Renal Cancer. Journal of Cancer, 2019, 10, 2501-2509.	1.2	40
175	Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer. International Journal of Oncology, 2019, 55, 405-414.	1.4	21
176	Role of endolysosomes and pH in the pathogenesis and treatment of glioblastoma. Cancer Reports, 2019, 2, .	0.6	19
177	Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Molecular Medicine, 2019, 25, 49.	1.9	27
178	Phase Ib/II study of hydroxychloroquine in combination with chemotherapy in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Treatment and Research Communications, 2019, 21, 100158.	0.7	41
179	Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers, 2019, 11, 1599.	1.7	112
180	SB365, Pulsatilla Saponin D Induces Caspase-Independent Cell Death and Augments the Anticancer Effect of Temozolomide in Glioblastoma Multiforme Cells. Molecules, 2019, 24, 3230.	1.7	10
181	Involvement of Actin in Autophagy and Autophagy-Dependent Multidrug Resistance in Cancer. Cancers, 2019, 11, 1209.	1.7	14
182	Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discovery, 2019, 9, 1167-1181.	7.7	579
183	A phase I trial of MK-2206 and hydroxychloroquine in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2019, 84, 899-907.	1.1	20
184	Age-sensitive associations of segmental and suprasegmental perception with sentence-level language skills in Mandarin-speaking children with cochlear implants. Research in Developmental Disabilities, 2019, 93, 103453.	1.2	6

			-
#	ARTICLE	IF	CITATIONS
185	Cellular Stress Responses in Radiotherapy. Cells, 2019, 8, 1105.	1.8	179
186	Current Outlook on Autophagy in Human Leukemia: Foe in Cancer Stem Cells and Drug Resistance, Friend in New Therapeutic Interventions. International Journal of Molecular Sciences, 2019, 20, 461.	1.8	46
187	Targeting Glioblastoma Stem Cells with 2-Deoxy-D-Glucose (2-DG) Potentiates Radiation-Induced Unfolded Protein Response (UPR). Cancers, 2019, 11, 159.	1.7	39
188	Dipyridamole impairs autophagic flux and exerts antiproliferative activity on prostate cancer cells. Experimental Cell Research, 2019, 382, 111456.	1.2	24
189	The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action. Cancers, 2019, 11, 533.	1.7	37
190	Autophagy dysfunctions associated with cancer cells and their therapeutic implications. Biomedicine and Pharmacotherapy, 2019, 115, 108892.	2.5	35
191	<p>Targeting off-target effects: endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment</p> . OncoTargets and Therapy, 2019, Volume 12, 1857-1865.	1.0	35
192	Interaction of Discoidin Domain Receptor 1 with a 14-3-3-Beclin-1-Akt1 Complex Modulates Glioblastoma Therapy Sensitivity. Cell Reports, 2019, 26, 3672-3683.e7.	2.9	48
193	EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers, 2019, 11, 312.	1.7	93
194	Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model. Cancers, 2019, 11, 215.	1.7	15
195	20(S)-ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to icotinib through inhibition of autophagy. European Journal of Pharmacology, 2019, 850, 141-149.	1.7	34
196	Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology, 2020, 219, jcb.201909033.	2.3	80
197	Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells. BMC Neuroscience, 2019, 20, 63.	0.8	29
198	Prognostic Significance of LC3B and p62/SQSTM1 Expression in Gastric Adenocarcinoma. Anticancer Research, 2019, 39, 6711-6722.	0.5	27
199	IITZ-01, a novel potent lysosomotropic autophagy inhibitor, has single-agent antitumor efficacy in triple-negative breast cancer in vitro and in vivo. Oncogene, 2019, 38, 581-595.	2.6	36
200	Autophagy and mitochondrial metabolism: insights into their role and therapeutic potential in chronic myeloid leukaemia. FEBS Journal, 2019, 286, 1271-1283.	2.2	11
201	Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33, 981-994.	3.3	99
202	New developments in mechanisms of prostate cancer progression. Seminars in Cancer Biology, 2019, 57, 111-116.	4.3	39

#	Article	IF	CITATIONS
203	PPT1 Promotes Tumor Growth and Is the Molecular Target of Chloroquine Derivatives in Cancer. Cancer Discovery, 2019, 9, 220-229.	7.7	164
204	Autophagy Inhibition to Augment mTOR Inhibition: a Phase I/II Trial of Everolimus and Hydroxychloroquine in Patients with Previously Treated Renal Cell Carcinoma. Clinical Cancer Research, 2019, 25, 2080-2087.	3.2	93
205	The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death and Differentiation, 2019, 26, 640-652.	5.0	89
206	Tamoxifen induces toxicity, causes autophagy, and partially reverses dexamethasone resistance in Jurkat T cells. Journal of Leukocyte Biology, 2019, 105, 983-998.	1.5	42
207	ILâ€1 induces p62/SQSTM1 and autophagy in ERα + /PR + BCa cell lines concomitant with ERα and PR repression, conferring an ERα â^' /PR â^' BCaâ€ŀike phenotype. Journal of Cellular Biochemistry, 2019, 120, 1477-1491.	1.2	9
208	Exploiting Nanomaterialâ€Mediated Autophagy for Cancer Therapy. Small Methods, 2019, 3, 1800365.	4.6	25
209	The multifaceted role of autophagy in cancer and the microenvironment. Medicinal Research Reviews, 2019, 39, 517-560.	5.0	146
210	Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. International Journal of Cancer, 2019, 144, 1735-1745.	2.3	63
211	Regorafenib induces lethal autophagy arrest by stabilizing PSAT1 in glioblastoma. Autophagy, 2020, 16, 106-122.	4.3	91
212	Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death and Differentiation, 2020, 27, 1134-1153.	5.0	57
213	Monitoring autophagy in cancer: From bench to bedside. Seminars in Cancer Biology, 2020, 66, 12-21.	4.3	31
214	On the relevance of precision autophagy flux control <i>in vivo</i> – Points of departure for clinical translation. Autophagy, 2020, 16, 750-762.	4.3	18
215	Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma. Journal of Cellular Biochemistry, 2020, 121, 2027-2037.	1.2	25
216	Autophagy in the Immunosuppressive Perivascular Microenvironment of Glioblastoma. Cancers, 2020, 12, 102.	1.7	21
217	Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Medicinal Research Reviews, 2020, 40, 1002-1060.	5.0	49
218	Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death and Differentiation, 2020, 27, 843-857.	5.0	278
219	Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology, 2020, 159, 257-278.	2.0	49
220	Editing Cytoprotective Autophagy in Glioma: An Unfulfilled Potential for Therapy. Trends in Molecular Medicine, 2020, 26, 252-262.	3.5	27

CITATION REP	PORT

#	Article	IF	CITATIONS
221	Pharmacological Advances of Chloroquine and Hydroxychloroquine: From Antimalarials to Investigative Therapies in COVID-19. Natural Product Communications, 2020, 15, 1934578X2095364.	0.2	1
222	Autophagy Takes Center Stage as a Possible Cancer Hallmark. Frontiers in Oncology, 2020, 10, 586069.	1.3	31
223	The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers, 2020, 12, 2926.	1.7	28
224	The immuno-oncological challenge of COVID-19. Nature Cancer, 2020, 1, 946-964.	5.7	96
225	Immunomodulatory Effects of Hydroxychloroquine and Chloroquine in Viral Infections and Their Potential Application in Retinal Gene Therapy. International Journal of Molecular Sciences, 2020, 21, 4972.	1.8	24
226	Autophagy and Tumor Database: ATdb, a novel database connecting autophagy and tumor. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	12
227	Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. Journal of Neuro-Oncology, 2020, 150, 269-359.	1.4	8
228	Multifaceted WNT Signaling at the Crossroads Between Epithelial-Mesenchymal Transition and Autophagy in Glioblastoma. Frontiers in Oncology, 2020, 10, 597743.	1.3	23
229	Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers, 2020, 12, 3461.	1.7	33
230	Triangular Relationship between p53, Autophagy, and Chemotherapy Resistance. International Journal of Molecular Sciences, 2020, 21, 8991.	1.8	40
231	Autophagy in Osteosarcoma. Advances in Experimental Medicine and Biology, 2020, 1258, 167-175.	0.8	6
232	Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era. Cancer Gene Therapy, 2020, 28, 971-983.	2.2	6
234	Tumors Responsive to Autophagy-Inhibition: Identification and Biomarkers. Cancers, 2020, 12, 2463.	1.7	4
235	Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: a phase IB trial. Autophagy, 2021, 17, 2604-2612.	4.3	59
236	Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway. Journal of Experimental and Clinical Cancer Research, 2020, 39, 197.	3.5	40
237	Coâ€ŧargeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. Journal of Cellular and Molecular Medicine, 2020, 24, 11667-11679.	1.6	13
238	The impact of autophagy during the development and survival of glioblastoma. Open Biology, 2020, 10, 200184.	1.5	20
239	Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration. International Journal of Molecular Sciences, 2020, 21, 3157.	1.8	31

#	Article	IF	CITATIONS
240	The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Frontiers in Pharmacology, 2020, 11, 787.	1.6	16
241	Spermidine as a target for cancer therapy. Pharmacological Research, 2020, 159, 104943.	3.1	34
242	Mitochondrial dysfunction generates aggregates that resist lysosomal degradation in human breast cancer cells. Cell Death and Disease, 2020, 11, 460.	2.7	16
243	Receptor tyrosine kinase targeting in glioblastoma: performance, limitations and future approaches. Wspolczesna Onkologia, 2020, 24, 55-66.	0.7	27
244	Silencing of circRACGAP1 sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7. Cell Death and Disease, 2020, 11, 169.	2.7	42
245	Autophagy in cancer: Recent advances and future directions. Seminars in Cancer Biology, 2020, 66, 171-181.	4.3	33
246	Rapid changes in the ATG5â€ATG16L1 complex following nutrient deprivation measured using NanoLuc Binary Technology (NanoBIT). FEBS Journal, 2020, 287, 4917-4932.	2.2	5
247	Hydroxychloroquine and short-course radiotherapy in elderly patients with newly diagnosed high-grade glioma: a randomized phase II trial. Neuro-Oncology Advances, 2020, 2, vdaa046.	0.4	7
248	Autophagy Roles in Genome Maintenance. Cancers, 2020, 12, 1793.	1.7	23
249	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183.	0.5	11
249 250	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392.	0.5	11 43
249 250 251	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. Journal of Controlled Release, 2020, 325, 100-110.	0.5 1.8 4.8	11 43 43
249 250 251 252	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. Journal of Controlled Release, 2020, 325, 100-110. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 2020, 16, 155-166.	0.5 1.8 4.8 3.5	11 43 43 952
249 250 251 252 253	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. Journal of Controlled Release, 2020, 325, 100-110. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 2020, 16, 155-166. Arole of metallothionein-3 in radiation-induced autophagy in glioma cells. Scientific Reports, 2020, 10, 2015.	0.5 1.8 4.8 3.5 1.6	 11 43 43 952 19
249 250 251 252 253 253	Autophagy and DNA damage repair. Cenome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. Journal of Controlled Release, 2020, 325, 100-110. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 2020, 16, 155-166. A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Scientific Reports, 2020, 10, 2015. WNK2 Inhibits Autophagic Flux in Human Glioblastoma Cell Line. Cells, 2020, 9, 485.	0.5 1.8 4.8 3.5 1.6 1.8	 11 43 43 952 19 4
249 250 251 252 253 254	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. Journal of Controlled Release, 2020, 325, 100-110. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 2020, 16, 155-166. Arole of metallothionein-3 in radiation-induced autophagy in glioma cells. Scientific Reports, 2020, 10, 2015. WNK2 Inhibits Autophagic Flux in Human Glioblastoma Cell Line. Cells, 2020, 9, 485. Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Letters, 2020, 475, 34-42.	0.5 1.8 4.8 3.5 1.6 1.8 3.2	 11 43 43 952 19 4 32
249 250 251 252 253 254 255	Autophagy and DNA damage repair. Genome Instability & Disease, 2020, 1, 172-183. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. International Journal of Molecular Sciences, 2020, 21, 4392. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. Journal of Controlled Release, 2020, 325, 100-110. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, 2020, 16, 155-166. A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Scientific Reports, 2020, 10, 2015. WNK2 Inhibits Autophagic Flux in Human Glioblastoma Cell Line. Cells, 2020, 9, 485. Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Letters, 2020, 475, 34-42. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Frontiers in Pharmacology, 2020, 11, 547.	0.5 1.8 4.8 3.5 1.6 3.2 1.6	 11 43 43 952 19 4 32 25

#	Article	IF	CITATIONS
258	Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Frontiers in Pharmacology, 2020, 11, 408.	1.6	80
259	Inhibition of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating autophagy. Molecular Carcinogenesis, 2020, 59, 651-660.	1.3	33
260	DCZ5248, a novel dual inhibitor of Hsp90 and autophagy, exerts antitumor activity against colon cancer. Acta Pharmacologica Sinica, 2021, 42, 132-141.	2.8	18
261	Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy. Life Sciences, 2021, 265, 118745.	2.0	40
262	Optimization of hydroxychloroquine dosing scheme based on COVID-19 patients' characteristics: a review of the literature and simulations. Xenobiotica, 2021, 51, 127-138.	0.5	6
263	Protective autophagy by thymidine causes resistance to rapamycin in colorectal cancer cells in vitro. , 2021, 4, 719-727.		0
264	Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Frontiers in Aging Neuroscience, 2020, 12, 630743.	1.7	19
265	Therapeutic approaches to overcome temozolomide resistance in glioblastoma. , 2021, , 507-545.		1
266	Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 1318.	1.8	19
267	The addition of chloroquine and bevacizumab to standard radiochemotherapy for recurrent glioblastoma multiforme. British Journal of Neurosurgery, 2021, , 1-13.	0.4	1
268	Inhibition of Autophagy Does Not Re-Sensitize Acute Myeloid Leukemia Cells Resistant to Cytarabine. International Journal of Molecular Sciences, 2021, 22, 2337.	1.8	16
269	Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules, 2021, 26, 1169.	1.7	14
270	The Controversial Role of Autophagy in Ewing Sarcoma Pathogenesis—Current Treatment Options. Biomolecules, 2021, 11, 355.	1.8	8
271	Two Faces of Autophagy in the Struggle against Cancer. International Journal of Molecular Sciences, 2021, 22, 2981.	1.8	30
272	Autophagy in tumour immunity and therapy. Nature Reviews Cancer, 2021, 21, 281-297.	12.8	185
273	Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers, 2021, 13, 1211.	1.7	19
274	Inhibiting autophagy targets human leukemic stem cells and hypoxic AML blasts by disrupting mitochondrial homeostasis. Blood Advances, 2021, 5, 2087-2100.	2.5	23
275	A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers, 2021, 13, 1795.	1.7	67

ARTICLE IF CITATIONS # Drug Repurposing in Oncology: Current Evidence and Future Direction. Current Medicinal Chemistry, 276 1.2 6 2021, 28, 2175-2194. PIK3C3 Inhibition Promotes Sensitivity to Colon Cancer Therapy by Inhibiting Cancer Stem Cells. 1.7 28 Cancers, 2021, 13, 2168. Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to 278 4.8 22 intracellular responsive presentation. Journal of Controlled Release, 2021, 333, 107-128. Role of lysosomes in physiological activities, diseases, and therapy. Journal of Hematology and 279 6.9 98 Oncology, 2021, 14, 79. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Frontiers in Oncology, 280 1.3 4 2021, 11, 652133. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacological Research, 2021, 168, 105582. 3.1 α-Tomatine, a novel early-stage autophagy inhibitor, inhibits autophagy to enhance apoptosis via Beclin-1 282 1.1 14 in Skov3 cells. FÃ-toterapÃ-Á¢, 2021, 152, 104911. Targeting autophagy in disease: established and new strategies. Autophagy, 2022, 18, 473-495. 4.3 Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer 284 2.0 10 agents. Life Sciences, 2021, 279, 119576. A Prognostic Nomogram for Predicting Overall Survival in Pediatric Wilms Tumor Based on an Autophagy-related Gene Signature. Combinatorial Chemistry and High Throughput Screening, 2021, 24, . Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. 286 3.3 36 Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188565. Impairment of Autophagic Flux Participates in the Antitumor Effects of TAT-Cx43266-283 in Glioblastoma Stem Cells. Cancers, 2021, 13, 4262. Pharmacokinetic and Pharmacodynamic Assessment of Hydroxychloroguine in Breast Cancer. Journal 288 1.3 4 of Pharmacology and Experimental Therapeutics, 2021, 379, 331-342. Aminoquinolines as Translational Models for Drug Repurposing: Anticancer Adjuvant Properties and Toxicokinetic-Related Features. Journal of Oncology, 2021, 2021, 1-18. Cinchona Alkaloid-Inspired Urea-Containing Autophagy Inhibitor Shows Single-Agent Anticancer 290 2.9 4 Efficacy. Journal of Medicinal Chemistry, 2021, 64, 14513-14525. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochemistry 1.9 International, 2021, 149, 105136. A perspective on the role of autophagy in cancer. Biochimica Et Biophysica Acta - Molecular Basis of 292 1.8 54 Disease, 2021, 1867, 166262. Autophagy and senescence in cancer therapy. Advances in Cancer Research, 2021, 150, 1-74.

#	Article	IF	CITATIONS
294	Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100033.	1.7	8
295	Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers. Journal of Clinical Investigation, 2015, 125, 1401-1418.	3.9	52
296	Transcriptional regulation of autophagy in RAS-driven cancers. Journal of Clinical Investigation, 2015, 125, 1393-1395.	3.9	7
297	Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. Journal of Clinical Investigation, 2016, 126, 4417-4429.	3.9	67
298	Chloroquine Sensitizes Nasopharyngeal Carcinoma Cells but Not Nasoepithelial Cells to Irradiation by Blocking Autophagy. PLoS ONE, 2016, 11, e0166766.	1.1	21
299	The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation. Radiation Research, 2020, 194, 103.	0.7	51
300	Autophagy-dependent danger signaling and adaptive immunity to poorly immunogenic tumors. Oncotarget, 2017, 8, 5686-5691.	0.8	12
301	Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget, 2017, 8, 35205-35221.	0.8	48
302	Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy. Oncotarget, 2018, 9, 1602-1616.	0.8	15
303	Chloroquine plays a cell-dependent role in the response to treatment of pancreatic adenocarcinoma. Oncotarget, 2018, 9, 30837-30846.	0.8	18
304	Chemical modulation of autophagy as an adjunct to chemotherapy in childhood and adolescent brain tumors. Oncotarget, 2018, 9, 35266-35277.	0.8	5
305	Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: a pilot safety and effectiveness analysis in a small patient cohort. Oncotarget, 2015, 6, 16735-16745.	0.8	31
306	Colorectal cancer-related mutant <i>KRAS</i> alleles function as positive regulators of autophagy. Oncotarget, 2015, 6, 30787-30802.	0.8	39
307	Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget, 2016, 7, 20016-20032.	0.8	32
308	Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget, 2016, 7, 35703-35723.	0.8	30
309	Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. , 2021, 4, 17-43.		95
310	The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Current Pharmaceutical Design, 2020, 26, 4467-4485.	0.9	34
311	Clinical Trial of Radiotherapy After Intravenous Injection of Acridine Orange for Patients with Cancer. Anticancer Research, 2018, 38, 481-489.	0.5	15

#	Article	IF	CITATIONS
312	Understanding the Effects of Radiotherapy on the Tumour Immune Microenvironment to Identify Potential Prognostic and Predictive Biomarkers of Radiotherapy Response. Cancers, 2020, 12, 2835.	1.7	8
313	Modulating lysosomal pH: a molecular and nanoscale materials design perspective. Journal of Life Sciences (Westlake Village, Calif), 2020, 2, 25-37.	1.8	17
314	Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World Journal of Gastroenterology, 2017, 23, 8443-8451.	1.4	22
315	Stem cell quiescence and its clinical relevance. World Journal of Stem Cells, 2020, 12, 1307-1326.	1.3	24
316	Role of autophagy in regulation of glioma stem cells population during therapeutic stress. Journal of Stem Cells and Regenerative Medicine, 2020, 16, 80-89.	2.2	11
317	Cancer Nanotechnology for Drug Targeting and Delivery Approaches. Nanotechnology in the Life Sciences, 2021, , 53-91.	0.4	0
318	Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World Journal of Gastrointestinal Oncology, 2021, 13, 1229-1243.	0.8	9
319	Regulation of autophagy as a therapeutic option in glioblastoma. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 574-599.	2.2	12
320	Breaking Bad: Autophagy Tweaks the Interplay Between Glioma and the Tumor Immune Microenvironment. Frontiers in Immunology, 2021, 12, 746621.	2.2	4
321	Autophagy in Cancer Therapy: Progress and Issues. Journal of Cancer Research Updates, 2015, 4, 1-12.	0.3	0
322	Dying: What Happens in the Cells and Tissues. , 2017, , 7-22.		0
325	Pleiotropic activities of RKIP in cancer: Role in survival, EMT, chemo-immuno-resistance, and autophagy. , 2020, , 47-75.		1
326	Endoplasmic Reticulum Stress and Autophagy in Cancer. , 2020, , 355-402.		0
327	Relevance of Autophagy in Cancer Stem Cell and Therapeutic. , 2020, , 203-222.		0
328	Crosstalks between Yin-Yang 1 (YY1) and autophagy in cancer. , 2020, , 9-27.		0
329	Autophagy in Cancer Therapy—Molecular Mechanisms and Current Clinical Advances. Cancers, 2021, 13, 5575.	1.7	12
330	Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduction and Targeted Therapy, 2021, 6, 379.	7.1	58
331	Potent and broad anticancer activities of leaf extracts from L. of the subtropical Okinawa islands. American Journal of Cancer Research, 2020, 10, 581-594.	1.4	2

#	ARTICLE	IF	CITATIONS
332	Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials, 2022, 280, 121287.	5.7	38
333	Autophagy and cancer metabolism—The twoâ€way interplay. IUBMB Life, 2022, 74, 281-295.	1.5	5
334	ATG4B Inhibitor UAMC-2526 Potentiates the Chemotherapeutic Effect of Gemcitabine in a PancO2 Mouse Model of Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2021, 11, 750259.	1.3	5
335	Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers, 2021, 13, 5622.	1.7	21
336	The Implication of Autophagy in Gastric Cancer Progression. Life, 2021, 11, 1304.	1.1	7
337	Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nature Reviews Clinical Oncology, 2022, 19, 114-131.	12.5	76
338	Delineating the role of autophagy in driving the resistance to cancer chemotherapy. , 2021, 1, 78.		1
339	Responsive nanomedicines enhanced by or enhancing physical modalities to treat solid cancer tumors: Preclinical and clinical evidence of safety and efficacy. Advanced Drug Delivery Reviews, 2022, 181, 114075.	6.6	8
340	KRT4 suppresses oral squamous cell carcinoma development by reducing ATG4B-mediated autophagy. Biocell, 2022, 46, 441-451.	0.4	1
341	Biochanin A Sensitizes Glioblastoma to Temozolomide by Inhibiting Autophagy. Molecular Neurobiology, 2022, 59, 1262-1272.	1.9	12
342	The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Frontiers in Oncology, 2022, 12, 841625.	1.3	10
343	Autophagy-mediated degradation of NOTCH1 intracellular domain controls the epithelial to mesenchymal transition and cancer metastasis. Cell and Bioscience, 2022, 12, 17.	2.1	9
344	Autophagy-based unconventional secretion of HMGB1 in glioblastoma promotes chemosensitivity to temozolomide through macrophage M1-like polarization. Journal of Experimental and Clinical Cancer Research, 2022, 41, 74.	3.5	25
345	Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Current Oncology, 2022, 29, 1695-1708.	0.9	42
346	Repurposing autophagy regulators in brain tumors. International Journal of Cancer, 2022, 151, 167-180.	2.3	7
347	Oral Conventional Synthetic Disease-Modifying Antirheumatic Drugs with Antineoplastic Potential: a Review. Dermatology and Therapy, 2022, 12, 835-860.	1.4	4
348	Nanoprodrug ratiometrically integrating autophagy inhibitor and genotoxic agent for treatment of triple-negative breast cancer. Biomaterials, 2022, 283, 121458.	5.7	13
349	Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery—A Comprehensive Review of the Literature. Biomolecules, 2021, 11, 1870.	1.8	13

#	Article	IF	CITATIONS
350	Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharmaceutica Sinica B, 2022, 12, 1781-1804.	5.7	27
362	Focused Design of Novel Cyclic Peptides Endowed with GABARAP-Inhibiting Activity. International Journal of Molecular Sciences, 2022, 23, 5070.	1.8	2
363	The multifaceted role of autophagy in cancer. EMBO Journal, 2022, 41, e110031.	3.5	63
364	The role of autophagy in initiation, progression, TME modification, diagnosis, and treatment of esophageal cancers. Critical Reviews in Oncology/Hematology, 2022, 175, 103702.	2.0	5
365	Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go?. Cancers, 2022, 14, 2416.	1.7	13
366	Molecular Mechanisms of Chloroquine and Hydroxychloroquine Used in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 1122-1144.	0.9	8
367	Therapeutic advantage of targeting lysosomal membrane integrity supported by lysophagy in malignant glioma. Cancer Science, 2022, 113, 2716-2726.	1.7	6
368	Population Pharmacokinetics of Hydroxychloroquine Sulphate in Healthcare Workers Given for Prophylaxis Against Corona Virus Disease 2019 (COVIDâ€19) in India. Journal of Clinical Pharmacology, 0, , .	1.0	1
369	Apalutamide and autophagy inhibition in a xenograft mouse model of human prostate cancer. Journal of Cancer Research and Clinical Oncology, 2022, 148, 3351-3360.	1.2	2
370	Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation. Nature Communications, 2022, 13, .	5.8	9
371	SH3GLB1-related autophagy mediates mitochondrial metabolism to acquire resistance against temozolomide in glioblastoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	5
372	Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm, 2022, 3,	3.1	30
373	Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166484.	1.8	15
374	ASCL2 Maintains Stemness Phenotype through ATG9B and Sensitizes Gliomas to Autophagy Inhibitor. Advanced Science, 2022, 9, .	5.6	5
375	Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers, 2022, 14, 3705.	1.7	6
376	SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes. Autophagy, 2023, 19, 839-857.	4.3	16
377	Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Materials, 2022, 14, .	3.8	18
378	The crosstalk between sonodynamic therapy and autophagy in cancer. Frontiers in Pharmacology, 0, 13, .	1.6	5

#	Article	IF	CITATIONS
379	Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine, 2022, 106, 154406.	2.3	16
380	Emetine in Combination with Chloroquine Induces Oncolytic Potential of HIV-1-Based Lentiviral Particles. Cells, 2022, 11, 2829.	1.8	1
381	Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Frontiers in Oncology, 0, 12, .	1.3	4
382	Autophagy in Cancer Immunotherapy. Cells, 2022, 11, 2996.	1.8	17
383	Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules, 2022, 12, 1565.	1.8	6
384	Parthenolide and arsenic trioxide co-trigger autophagy-accompanied apoptosis in hepatocellular carcinoma cells. Frontiers in Oncology, 0, 12, .	1.3	6
385	The Question of Survival or Death: What Is the Role of Autophagy in Acute Myeloid Leukemia (AML)?. International Journal of Hematology-Oncology and Stem Cell Research, 0, , .	0.3	0
386	A Critical Review of Chloroquine and Hydroxychloroquine as Potential Adjuvant Agents for Treating People with Cancer. Future Pharmacology, 2022, 2, 431-443.	0.6	4
387	Polymeric Chloroquine as an Effective Antimigration Agent in the Treatment of Pancreatic Cancer. Molecular Pharmaceutics, 0, , .	2.3	1
388	Co-delivery of ibrutinib and hydroxychloroquine by albumin nanoparticles for enhanced chemotherapy of glioma. International Journal of Pharmaceutics, 2023, 630, 122436.	2.6	10
389	Biologic Functions of Hydroxychloroquine in Disease: From COVID-19 to Cancer. Pharmaceutics, 2022, 14, 2551.	2.0	4
390	Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy. Biomolecules and Therapeutics, 2023, 31, 1-15.	1.1	6
392	Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer and Metastasis Reviews, 2023, 42, 19-35.	2.7	9
393	Chloroquine reduces neutrophil extracellular trap (NET) formation through inhibition of peptidyl arginine deiminase 4 (PAD4). Clinical and Experimental Immunology, 2023, 211, 239-247.	1.1	3
394	Autophagy and cancer: Basic mechanisms and inhibitor development. Cancer Science, 2023, 114, 2699-2708.	1.7	7
396	Transcriptomic analysis reveals differential adaptation of colorectal cancer cells to low and acute doses of cisplatin. Gene, 2023, 864, 147304.	1.0	1
397	m6A reader HNRNPA2B1 destabilization of ATG4B regulates autophagic activity, proliferation and olaparib sensitivity in breast cancer. Experimental Cell Research, 2023, 424, 113487.	1.2	4
399	Anticancer Mechanism of Flavonoids on High-Grade Adult-Type Diffuse Gliomas. Nutrients, 2023, 15, 797.	1.7	7

#	Article	IF	CITATIONS
400	Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Frontiers in Medicine, 0, 10, .	1.2	1
401	Current and potential roles of RNA modification-mediated autophagy dysregulation in cancer. Archives of Biochemistry and Biophysics, 2023, 736, 109542.	1.4	1
402	Is Autophagy Inhibition in Combination with Temozolomide a Therapeutically Viable Strategy?. Cells, 2023, 12, 535.	1.8	4
403	Discovery of canine drug toceranib phosphate as a repurposed agent against human hepatocellular carcinoma. Liver International, 2023, 43, 928-944.	1.9	0
404	Annexin A1 induces oxaliplatin resistance of gastric cancer through autophagy by targeting PI3K/AKT/mTOR. FASEB Journal, 2023, 37, .	0.2	6
405	What Is the Significance of Lysosomal-Mediated Resistance to Imatinib?. Cells, 2023, 12, 709.	1.8	2
406	Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics. British Journal of Cancer, 2023, 128, 1838-1849.	2.9	3
407	Advanced Bioinformatics Analysis and Genetic Technologies for Targeting Autophagy in Glioblastoma Multiforme. Cells, 2023, 12, 897.	1.8	2
408	The relationship between autophagy and PD-L1 and their role in antitumor therapy. Frontiers in Immunology, 0, 14, .	2.2	5
409	New targets for old drugs. , 2023, , 315-349.		0
424	Accelerated hydroxychloroquine toxic retinopathy. Documenta Ophthalmologica, 2024, 148, 37-45.	1.0	1
425	Mechanisms of Chemoresistance in High-Grade Gliomas. , 2023, , .		1