Effects of different mesenchymal stromal cell sources a emphysema

Respiratory Research 15, 118 DOI: 10.1186/s12931-014-0118-x

Citation Report

#	Article	IF	CITATIONS
1	Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria. Stem Cell Research and Therapy, 2015, 6, 102.	2.4	22
2	Human adult stem cells derived from adipose tissue and bone marrow attenuate enteric neuropathy in the guinea-pig model of acute colitis. Stem Cell Research and Therapy, 2015, 6, 244.	2.4	30
3	Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. Stem Cell Research and Therapy, 2015, 6, 263.	2.4	17
4	Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Frontiers in Physiology, 2015, 6, 362.	1.3	47
5	Mesenchymal Stem Cells Immunosuppressed IL-22 in Patients with Immune Thrombocytopenia via Soluble Cellular Factors. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	8
6	Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells International, 2015, 2015, 1-11.	1.2	67
7	Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	5
8	Umbilical cord derived stem cell (ModulatistTM) transplantation for severe chronic obstructive pulmonary disease: a report of two cases. Biomedical Research and Therapy, 2016, 3, .	0.3	3
9	Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS ONE, 2016, 11, e0147005.	1.1	58
10	Preclinical Studies of Mesenchymal Stem Cell (MSC) Administration in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. PLoS ONE, 2016, 11, e0157099.	1.1	48
11	Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema. Frontiers in Physiology, 2016, 7, 277.	1.3	12
12	Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase. Frontiers in Physiology, 2016, 7, 457.	1.3	36
13	Animal Models of Chronic Obstructive Pulmonary Disease Exacerbations: A Review of the Current Status. Journal of Biomedical Sciencies, 2016, 05, .	0.3	11
14	Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Scientific Reports, 2016, 6, 38207.	1.6	68
15	CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Translational Medicine, 2016, 5, 488-499.	1.6	27
16	Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. Journal of Heart and Lung Transplantation, 2016, 35, 1245-1254.	0.3	85
17	Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2016, 29, 514-524.	0.7	20
18	Intraperitoneal injection (IP), Intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Scientific Reports, 2016, 6, 30696.	1.6	90

#	Article	IF	CITATIONS
19	The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents?. Clinical and Experimental Immunology, 2017, 188, 1-11.	1.1	65
20	Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by <i>Ang-1</i> mRNA. Stem Cells, 2017, 35, 1849-1859.	1.4	154
21	Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Research and Therapy, 2017, 8, 58.	2.4	44
22	Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial. Stem Cells Translational Medicine, 2017, 6, 962-969.	1.6	68
23	Generation of a Chronic Obstructive Pulmonary Disease Model in Mice by Repeated Ozone Exposure. Journal of Visualized Experiments, 2017, , .	0.2	3
24	Elastase-Induced Lung Emphysema Models in Mice. Methods in Molecular Biology, 2017, 1639, 67-75.	0.4	32
25	Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig. Respiratory Research, 2017, 18, 50.	1.4	18
26	Variability in Tidal Volume Affects Lung and Cardiovascular Function Differentially in a Rat Model of Experimental Emphysema. Frontiers in Physiology, 2017, 8, 1071.	1.3	18
27	Activation of Notch1 signaling alleviates dysfunction of bone marrow-derived mesenchymal stem cells induced by cigarette smoke extract. International Journal of COPD, 2017, Volume 12, 3133-3147.	0.9	17
28	Mesenchymal stromal cell therapy in COPD: from bench to bedside. International Journal of COPD, 2017, Volume 12, 3017-3027.	0.9	40
29	Can Youthful Mesenchymal Stem Cells from Wharton's Jelly Bring a Breath of Fresh Air for COPD?. International Journal of Molecular Sciences, 2017, 18, 2449.	1.8	10
30	Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous Leishmaniasis in BALB/c Mice Induced by Leishmania amazonensis. Frontiers in Immunology, 2017, 8, 893.	2.2	21
31	Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development. PLoS ONE, 2017, 12, e0183741.	1.1	16
32	Chrelin therapy improves lung and cardiovascular function in experimental emphysema. Respiratory Research, 2017, 18, 185.	1.4	12
33	Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Research and Therapy, 2017, 8, 220.	2.4	52
34	Best of Milan 2017—repair of the emphysematous lung: mesenchymal stromal cell and matrix. Journal of Thoracic Disease, 2017, 9, S1544-S1547.	0.6	3
35	Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World Journal of Stem Cells, 2017, 9, 45.	1.3	8
36	Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease?. Thorax, 2018, 73, 565-574.	2.7	69

#	Article	IF	CITATIONS
37	Intratracheal Administration of Autologous Bone Marrow-Derived Cells Ameliorates Monocrotaline-Induced Pulmonary Vessel Remodeling and Lung Inflammation in Rats. Lung, 2018, 196, 147-155.	1.4	2
38	Mesenchymal Stromal Cells to Regenerate Emphysema: On the Horizon?. Respiration, 2018, 96, 148-158.	1.2	28
39	Can Stem Cells Ameliorate the Pancreatic Damage Induced by Streptozotocin in Rats?. Canadian Journal of Diabetes, 2018, 42, 61-70.	0.4	10
40	Therapeutic administration of bone marrowâ€derived mesenchymal stromal cells reduces airway inflammation without upâ€regulating Tregs in experimental asthma. Clinical and Experimental Allergy, 2018, 48, 205-216.	1.4	34
41	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.4	59
42	Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine – a new paradigm for tissue repair. Biomaterials Science, 2018, 6, 60-78.	2.6	207
43	Effect of idebenone on bone marrow mesenchymal stem cells inÃ ⁻ ¿½vitro. Molecular Medicine Reports, 2018, 17, 5376-5383.	1.1	4
44	Stem Cells: Classification, Characterization, and Sources. , 2018, , 7-7.		0
45	Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Research and Therapy, 2018, 9, 296.	2.4	22
46	Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respiratory Research, 2018, 19, 218.	1.4	80
47	Cell-based Therapy for Chronic Obstructive Pulmonary Disease. Rebuilding the Lung. Annals of the American Thoracic Society, 2018, 15, S253-S259.	1.5	13
48	Animal Models of Chronic Obstructive Pulmonary Disease. , 2018, , .		2
49	Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. Stem Cell Reports, 2018, 11, 1120-1135.	2.3	136
50	Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension?. International Journal of Molecular Sciences, 2018, 19, 2534.	1.8	49
51	Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. Stem Cells, 2018, 36, 1311-1328.	1.4	115
52	Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19, 104.	1.4	44
53	Bone Marrow-Derived Mononuclear Cell Therapy in Papain-Induced Experimental Pulmonary Emphysema. Frontiers in Physiology, 2018, 9, 121.	1.3	12
54	Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Frontiers in Immunology, 2018, 9, 1147.	2.2	36

#	Article	IF	CITATIONS
55	Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Research and Therapy, 2018, 9, 45.	2.4	95
56	Activation of p70S6 Kinase-1 in Mesenchymal Stem Cells Is Essential to Lung Tissue Repair. Stem Cells Translational Medicine, 2018, 7, 551-558.	1.6	13
57	Stem cell therapies for chronic obstructive pulmonary disease: current status of pre-clinical studies and clinical trials. Journal of Thoracic Disease, 2018, 10, 1084-1098.	0.6	45
58	Secretome of Mesenchymal Stem Cells and its Impact on Chronic Obstructive Pulmonary Disease. Stem Cells in Clinical Applications, 2019, , 139-157.	0.4	Ο
59	Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Research and Therapy, 2019, 10, 264.	2.4	33
60	Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 2019, 1-15.	1.2	47
61	Infection with Opportunistic Bacteria Triggers Severe Pulmonary Inflammation in Lupus-Prone Mice. Mediators of Inflammation, 2019, 2019, 1-10.	1.4	1
62	Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. IScience, 2019, 15, 421-438.	1.9	299
63	Predifferentiated amniotic fluid mesenchymal stem cells enhance lung alveolar epithelium regeneration and reverse elastase-induced pulmonary emphysema. Stem Cell Research and Therapy, 2019, 10, 163.	2.4	19
64	Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction. Frontiers in Physiology, 2019, 10, 664.	1.3	10
65	Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives. Stem Cells International, 2019, 2019, 1-14.	1.2	145
66	Adipose Tissue-Derived Stem Cells Have the Ability to Differentiate into Alveolar Epithelial Cells and Ameliorate Lung Injury Caused by Elastase-Induced Emphysema in Mice. Stem Cells International, 2019, 2019, 1-14.	1.2	12
67	Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains. Drug Discovery Today: Disease Models, 2019, 29-30, 27-34.	1.2	0
68	Current understanding of the immunosuppressive properties of mesenchymal stromal cells. Journal of Molecular Medicine, 2019, 97, 605-618.	1.7	81
69	Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Translational Medicine, 2019, 8, 301-312.	1.6	40
70	Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: A systematic review and meta-analysis. Pulmonary Pharmacology and Therapeutics, 2019, 54, 39-52.	1.1	27
71	The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14, 31-39.	1.0	106
72	The immunomodulatory effects of mesenchymal stem cells on long term pulmonary complications in an animal model exposed to a sulfur mustard analog. International Immunopharmacology, 2020, 80, 105879	1.7	11

#	Article	IF	CITATIONS
73	S100A9/CD163 Expression in Circulating Classical Monocytes in Chronic Obstructive Pulmonary Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2020, 17, 587-594.	0.7	1
74	Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 2020, 6, eaba6884.	4.7	351
75	Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Research and Therapy, 2020, 11, 374.	2.4	5
76	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	1.8	83
77	A Small-Sized Population of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Shows High Stemness Properties and Therapeutic Benefit. Stem Cells International, 2020, 2020, 1-17.	1.2	22
78	Magnetic targeting increases mesenchymal stromal cell retention in lungs and enhances beneficial effects on pulmonary damage in experimental silicosis. Stem Cells Translational Medicine, 2020, 9, 1244-1256.	1.6	12
79	Stem cell homing: From physiology to therapeutics. Stem Cells, 2020, 38, 1241-1253.	1.4	116
80	MSC Based Therapies—New Perspectives for the Injured Lung. Journal of Clinical Medicine, 2020, 9, 682.	1.0	118
81	Molecular and Cellular Mechanisms Responsible for Beneficial Effects of Mesenchymal Stem Cell-Derived Product "Exo-d-MAPPS―in Attenuation of Chronic Airway Inflammation. Analytical Cellular Pathology, 2020, 2020, 1-15.	0.7	38
82	Amelioration of elastaseâ€induced lung emphysema and reversal of pulmonary hypertension by pharmacological iNOS inhibition in mice. British Journal of Pharmacology, 2021, 178, 152-171.	2.7	17
83	A brief review on potential application of mesenchymal stem cell and secretome in combating mortality and morbidity in COVID-19 patients. Biomedical Journal, 2021, 44, 63-73.	1.4	14
84	Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Research and Therapy, 2021, 12, 54.	2.4	43
85	Preclinical and clinical applications of mesenchymal stem cell-based therapy in pulmonary diseases. , 2021, , 99-117.		0
86	Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 600711.	1.8	51
87	Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Frontiers in Cell and Developmental Biology, 2021, 9, 639657.	1.8	38
88	Allogeneic human neural stem cells for improved therapeutic delivery to peritoneal ovarian cancer. Stem Cell Research and Therapy, 2021, 12, 205.	2.4	5
89	The role of altered stem cell function in airway and alveolar repair and remodelling in COPD. , 2021, , 322-339.		3
90	Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Frontiers in Cardiovascular Medicine, 2021, 8, 649512.	1.1	23

#	Article	IF	CITATIONS
91	The Application of Mesenchymal Stem Cells in the Treatment of Liver Diseases: Mechanism, Efficacy, and Safety Issues. Frontiers in Medicine, 2021, 8, 655268.	1.2	23
92	Allogenic Use of Human Placenta-Derived Stromal Cells as a Highly Active Subtype of Mesenchymal Stromal Cells for Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 5302.	1.8	21
93	Effect of mesenchymal stromal cell infusions on lung function in COPD patients with high CRP levels. Respiratory Research, 2021, 22, 142.	1.4	17
94	Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Frontiers in Cell and Developmental Biology, 2021, 9, 661385.	1.8	14
95	Stem cell therapy for chronic obstructive pulmonary disease. Chinese Medical Journal, 2021, 134, 1535-1545.	0.9	13
96	Characteristics and Developments in Mesenchymal Stem Cell Therapy for COVID-19: An Update. Stem Cells International, 2021, 2021, 1-16.	1.2	7
97	Increased In Vitro Intercellular Barrier Function of Lung Epithelial Cells Using Adipose-Derived Mesenchymal Stem/Stromal Cells. Pharmaceutics, 2021, 13, 1264.	2.0	5
98	Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm, 2021, 2, 351-380.	3.1	15
99	Cell-Based Transplantation versus Cell Homing Approaches for Pulp-Dentin Complex Regeneration. Stem Cells International, 2021, 2021, 1-23.	1.2	11
100	Mesenchymal stromal cells-based therapy in a murine model of elastase-induced emphysema: Simvastatin as a potential adjuvant in cellular homing. Pulmonary Pharmacology and Therapeutics, 2021, 70, 102075.	1.1	1
101	Preclinical Evidence for the Role of Stem/Stromal Cells in COPD. , 2019, , 73-96.		1
102	Human Adipose-Derived Mesenchymal Stem Cells Ameliorate Elastase-Induced Emphysema in Mice by Mesenchymal–Epithelial Transition. International Journal of COPD, 2021, Volume 16, 2783-2793.	0.9	6
103	Clinical Application of Stem/Stromal Cells in COPD. , 2019, , 97-118.		0
104	Extracellular Vesicles: The Next Frontier in Regenerative Medicine and Drug Delivery. Advances in Experimental Medicine and Biology, 2020, 1249, 143-160.	0.8	2
105	The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells, 2021, 10, 2982.	1.8	12
106	Mesenchymal Stem/Stromal Cells and Their Paracrine Activity—Immunomodulation Mechanisms and How to Influence the Therapeutic Potential. Pharmaceutics, 2022, 14, 381.	2.0	46
107	Routes of Stem Cell Administration. Advances in Experimental Medicine and Biology, 2022, , 1.	0.8	0
109	The Role of Mesenchymal Stem Cells in the Induction of Cancer-Stem Cell Phenotype. Frontiers in Oncology, 2022, 12, 817971.	1.3	8

#	Article	IF	CITATIONS
110	Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells, 2021, 10, 3467.	1.8	23
111	Mesenchymal Stem Cells Ameliorate Hyperglycemia in Type I Diabetic Developing Male Rats. Stem Cells International, 2022, 2022, 1-13.	1.2	5
120	An insight into the molecular mechanisms of mesenchymal stem cells and their translational approaches to combat COVID-19. , 2022, , 23-46.		0
122	Stem Cell-Based Regenerative Therapy and Derived Products in COPD: A Systematic Review and Meta-Analysis. Cells, 2022, 11, 1797.	1.8	7
123	Reduction of Emphysema Severity by Human Umbilical Cord-Derived Mesenchymal Stem Cells in Mice. International Journal of Molecular Sciences, 2022, 23, 8906.	1.8	1
124	Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs, 2022, 36, 701-715.	2.2	9
125	Targeting the mitochondria in chronic respiratory diseases. Mitochondrion, 2022, 67, 15-37.	1.6	20
126	Restoration of vascular endothelial integrity by mesenchymal stromal/stem cells in debilitating virus diseases. Human Cell, 2022, 35, 1633-1639.	1.2	4
127	Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. Journal of Inflammation Research, 0, Volume 15, 5235-5246.	1.6	3
129	Mesenchymal Stromal Cells for COVID-19 Critical Care Patients. , 2022, , 163-191.		0
130	Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Discovery, 2022, 8, .	2.0	9
131	The Impact of Mesenchymal Stromal Cells on Neutrophils: A Concise Review. Current Stem Cell Research and Therapy, 2023, 18, 878-891.	0.6	0
132	Gene expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of COPD patients and controls. Respiratory Research, 2023, 24, .	1.4	4
133	Safety and efficacy of clinical-grade, cryopreserved menstrual blood mesenchymal stromal cells in experimental acute respiratory distress syndrome. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
134	The Role of Lung Resident Mesenchymal Stromal Cells in the Pathogenesis and Repair of Chronic Lung Disease. Stem Cells, 2023, 41, 431-443.	1.4	7
135	Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Frontiers in Pharmacology, 0, 14, .	1.6	7
136	Mesenchymal Stem Cells from COPD Patients Are Capable of Restoring Elastase-Induced Emphysema in a Murine Experimental Model. International Journal of Molecular Sciences, 2023, 24, 5813.	1.8	1
137	Mesenchymal stromal cell therapy for chronic lung diseases: experimental and clinical evidence. Expert Review of Respiratory Medicine, 2023, 17, 223-235.	1.0	2

#	Article	IF	CITATIONS
138	Dental Pulp Stem Cells Ameliorate Elastase-Induced Pulmonary Emphysema by Regulating Inflammation and Oxidative Stress. Journal of Inflammation Research, 0, Volume 16, 1497-1508.	1.6	2
141	Lung-Resident Stem Cells. , 2024, , 53-73.		0