An evaluation of a liquid antimicrobial (Sal CURB®) for epidemic diarrhea virus infection of $na\tilde{A}$ ve pigs during

BMC Veterinary Research 10, 220 DOI: 10.1186/s12917-014-0220-9

Citation Report

#	Article	IF	CITATIONS
1	An evaluation of porcine epidemic diarrhea virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial. Porcine Health Management, 2015, 1, 9.	0.9	56
2	Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Research, 2016, 226, 93-107.	1.1	137
3	Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease. Vaccine, 2016, 34, 3478-3492.	1.7	26
4	Inactivation of porcine epidemic diarrhea virus using heated water. Veterinary and Animal Science, 2016, 1-2, 1-3.	0.6	5
5	Evaluation of the minimum infectious dose of porcine epidemic diarrhea virus in virus-inoculated feed. American Journal of Veterinary Research, 2016, 77, 1108-1113.	0.3	43
6	Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Research, 2016, 226, 71-84.	1.1	136
7	Modeling the transboundary risk of feed ingredients contaminated with porcine epidemic diarrhea virus. BMC Veterinary Research, 2016, 12, 51.	0.7	77
8	Epidemiological factors associated to spread of porcine epidemic diarrhea in Japan. Preventive Veterinary Medicine, 2016, 123, 161-167.	0.7	43
9	Using Machine Learning to Predict Swine Movements within a Regional Program to Improve Control of Infectious Diseases in the US. Frontiers in Veterinary Science, 2017, 4, 2.	0.9	33
10	Effects of dietary supplementation of formaldehyde and crystalline amino acids on gut microbial composition of nursery pigs. Scientific Reports, 2018, 8, 8164.	1.6	5
11	Phylogeographic investigation of 2014 porcine epidemic diarrhea virus (PEDV) transmission in Taiwan. PLoS ONE, 2019, 14, e0213153.	1.1	9
12	A review of strategies to impact swine feed biosecurity. Animal Health Research Reviews, 2020, 21, 61-68.	1.4	13
13	Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate. Journal of Animal Science and Biotechnology, 2020, 11, 114.	2.1	47
14	The risk of viral transmission in feed: What do we know, what do we do?. Transboundary and Emerging Diseases, 2020, 67, 2365-2371.	1.3	18
15	The Canadian 2014 porcine epidemic diarrhoea virus outbreak: Important risk factors that were not considered in the epidemiological investigation could change the conclusions. Transboundary and Emerging Diseases, 2020, 67, 1101-1112.	1.3	14
16	An evaluation of additives for mitigating the risk of virusâ€contaminated feed using an iceâ€block challenge model. Transboundary and Emerging Diseases, 2021, 68, 833-845.	1.3	21
17	Biosecurity in pig farms: a review. Porcine Health Management, 2021, 7, 5.	0.9	74
18	Risk and Mitigation of African Swine Fever Virus in Feed. Animals, 2021, 11, 792.	1.0	30

#	Article	IF	CITATIONS
19	Using environmental sampling to evaluate the effectiveness of decontamination methods to reduce detection of porcine epidemic diarrhea virus RNA on feed manufacturing surfaces. Translational Animal Science, 2021, 5, txab121.	0.4	3
20	Evaluating the distribution of African swine fever virus within a feed mill environment following manufacture of inoculated feed. PLoS ONE, 2021, 16, e0256138.	1.1	8
21	The potential anti- African swine fever virus effects of medium chain fatty acids on in vitro feed model: An evaluation study using a field ASFV strain isolated in Vietnam. Open Veterinary Journal, 2021, 11, 346.	0.3	5
22	Effects of medium chain fatty acids as a mitigation or prevention strategy against porcine epidemic diarrhea virus in swine feed. Journal of Animal Science, 2020, 98, .	0.2	13
23	Comparison of Thermal and Non-Thermal Processing of Swine Feed and the Use of Selected Feed Additives on Inactivation of Porcine Epidemic Diarrhea Virus (PEDV). PLoS ONE, 2016, 11, e0158128.	1.1	33
24	Environmental persistence of porcine coronaviruses in feed and feed ingredients. PLoS ONE, 2017, 12, e0178094.	1.1	31
25	Genetic characterisation of African swine fever virus in outbreaks in Ha Nam province, Red River Delta Region of Vietnam, and activity of antimicrobial products against virus infection in contaminated feed. Journal of Veterinary Research (Poland), 2020, 64, 207-213.	0.3	13
26	Monoglyceride reduces viability of porcine epidemic diarrhoea virus in feed and prevents disease transmission to postâ€weaned piglets. Transboundary and Emerging Diseases, 2022, 69, 121-127.	1.3	10
28	Understanding the role of feed manufacturing and delivery within a series of porcine deltacoronavirus investigations. , 2022, 30, 17-23.		2
29	Invited Review: Strategic adoption of antibiotic free pork production: The importance of a holistic approach. Translational Animal Science, 0, , .	0.4	1
30	Modeling between-farm transmission dynamics of porcine epidemic diarrhea virus: Characterizing the dominant transmission routes. Preventive Veterinary Medicine, 2022, 208, 105759.	0.7	7
31	An assessment of enhanced biosecurity interventions and their impact on porcine reproductive and respiratory syndrome virus outbreaks within a managed group of farrow-to-wean farms, 2020–2021. Frontiers in Veterinary Science, 0, 9, .	0.9	3