Optical methods for sensing and imaging oxygen: mater applications

Chemical Society Reviews 43, 3666-3761

DOI: 10.1039/c4cs00039k

Citation Report

#	Article	IF	CITATIONS
2	Luminescent Dual Sensors Reveal Extracellular pH-Gradients and Hypoxia on Chronic Wounds That Disrupt Epidermal Repair. Theranostics, 2014, 4, 721-735.	10.0	117
3	320-fold luminescence enhancement of [Ru(dpp)3]Cl2 dispersed on PMMA opal photonic crystals and highly improved oxygen sensing performance. Light: Science and Applications, 2014, 3, e209-e209.	16.6	42
4	Discrete O2 sensors produced by a spotting method on polyolefin fabric substrates. Sensors and Actuators B: Chemical, 2014, 203, 935-940.	7.8	16
5	Endosomes: guardians against [Ru(Phen) ₃] ²⁺ photo-action in endothelial cells during in vivo pO ₂ detection? Metallomics, 2014, 6, 2279-2289.	2.4	10
6	Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomedical Optics Express, 2014, 5, 3748.	2.9	66
8	Investigation of the Fluorescence Quenching of 1-Aminoanthracene by Dissolved Oxygen in Cyclohexane. Journal of Physical Chemistry A, 2014, 118, 11512-11520.	2.5	5
9	A resonance energy transfer approach for the selective detection of aromatic amino acids. Journal of Materials Chemistry C, 2014, 2, 10157-10163.	5.5	29
10	A highly luminescent and highly oxygen-sensitive Tb(iii) complex with a tris-aryloxide functionalised 1,4,7-triazacyclononane ligand. Chemical Communications, 2014, 50, 15737-15739.	4.1	21
11	Response of strongly fluorescent carbazole-based benzoxazole derivatives to external force and acidic vapors. RSC Advances, 2014, 4, 58732-58739.	3.6	30
13	Time-Resolved Emission Imaging Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. Structure and Bonding, 2014, , 205-256.	1.0	43
14	Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chemical Society Reviews, 2014, 43, 3666-3761.	38.1	886
15	<i>In vivo</i> measurement of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate. Journal of Biomedical Optics, 2014, 19, 077004.	2.6	22
16	Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nature Communications, 2014, 5, 4460.	12.8	161
17	Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation. Journal of the American Chemical Society, 2014, 136, 9701-9709.	13.7	304
18	Ratiometric Fluorescent Biosensor for Hyaluronidase with Hyaluronan As Both Nanoparticle Scaffold and Substrate for Enzymatic Reaction. Biomacromolecules, 2014, 15, 3383-3389.	5.4	52
19	Exceptional Oxygen Sensing Properties of New Blue Lightâ€Excitable Highly Luminescent Europium(III) and Gadolinium(III) Complexes. Advanced Functional Materials, 2014, 24, 6548-6560.	14.9	52
20	Porous Cu(I) Triazolate Framework and Derived Hybrid Membrane with Exceptionally High Sensing Efficiency for Gaseous Oxygen. Advanced Functional Materials, 2014, 24, 5866-5872.	14.9	81
22	Robust optical oxygen sensors based on polymer-bound NIR-emitting platinum(<scp>ii</scp>)–benzoporphyrins. Journal of Materials Chemistry C, 2014, 2, 7589-7598.	5.5	42

#	Article	IF	Citations
23	Fe-catalyzed cycloaddition of indoles and o-phthalaldehyde for the synthesis of benzo[b]carbazoles with TMSCl- or acid-responsive properties. RSC Advances, 2014, 4, 47272-47277.	3.6	8
24	Targetable Phosphorescent Oxygen Nanosensors for the Assessment of Tumor Mitochondrial Dysfunction By Monitoring the Respiratory Activity. Angewandte Chemie - International Edition, 2014, 53, 12471-12475.	13.8	41
25	Metalloporphyrins in macromolecular chemistry. Russian Chemical Bulletin, 2015, 64, 2001-2011.	1.5	7
26	Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BioEssays, 2015, 37, 921-928.	2.5	182
27	Versatile common instrumentation for optical detection of pH and dissolved oxygen. Review of Scientific Instruments, 2015, 86, 074302.	1.3	12
28	Composite particles with magnetic properties, near-infrared excitation, and far-red emission for luminescence-based oxygen sensing. Microsystems and Nanoengineering, 2015, 1, .	7.0	8
29	Oxygenâ€Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angewandte Chemie - International Edition, 2015, 54, 8340-8362.	13.8	145
30	Bright, "Clickable―Porphyrins for the Visualization of Oxygenation under Ambient Light. Angewandte Chemie - International Edition, 2015, 54, 14728-14731.	13.8	34
31	Luminescent imaging with optical chemical sensors. Methods and Applications in Fluorescence, 2015, 3, 040202.	2.3	2
32	Hybrid Organic/Inorganic Nanostructures for Highly Sensitive Photoelectrochemical Detection of Dissolved Oxygen in Aqueous Media. Advanced Functional Materials, 2015, 25, 4531-4538.	14.9	64
33	Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie, 2015, 127, 8212-8217.	2.0	17
34	Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie - International Edition, 2015, 54, 8094-8099.	13.8	121
35	Photostable, Oxygenâ€Sensitive Optical Probe Based on a Homonuclear Terbium(III) Complex Covalently Bound to Functionalized Polydimethylsiloxane. ChemPlusChem, 2015, 80, 1721-1724.	2.8	9
38	Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen. Sensors, 2015, 15, 20193-20203.	3.8	16
39	Organic Photodetectors in Analytical Applications. Electronics (Switzerland), 2015, 4, 688-722.	3.1	44
40	Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing. Sensors, 2015, 15, 13503-13521.	3.8	44
41	LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range. PLoS ONE, 2015, 10, e0128125.	2.5	45
42	A 3D-Printed Oxygen Control Insert for a 24-Well Plate. PLoS ONE, 2015, 10, e0137631.	2.5	40

#	Article	IF	Citations
43	A Pyrene@Micelle Sensor for Fluorescent Oxygen Sensing. BioMed Research International, 2015, 2015, 1-6.	1.9	4
44	Tuned red NIR phosphorescence of polyurethane hybrid composites embedding metallic nanoclusters for oxygen sensing. Chemical Communications, 2015, 51, 8177-8180.	4.1	66
45	Simultaneous color sensing of O2 and pH using a smartphone. Sensors and Actuators B: Chemical, 2015, 220, 326-330.	7.8	38
46	Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes. , 2015, , .		0
47	Organometallic polymers for electrode decoration in sensing applications. RSC Advances, 2015, 5, 106355-106376.	3.6	22
48	Microsecond wide-field TCSPC microscopy based on an ultra-fast CMOS camera. Proceedings of SPIE, 2015, , .	0.8	2
49	Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors. Methods and Applications in Fluorescence, 2015, 3, 042005.	2.3	39
50	Etching of multimode optical glass fibers: A new method for shaping the measuring tip and immobilization of indicator dyes in recessed fiber-optic microprobes. Sensors and Actuators B: Chemical, 2015, 211, 462-468.	7.8	9
51	Solid-state oxygen sensors based on phosphorescent diiodo-borondipyrromethene dye. Sensors and Actuators B: Chemical, 2015, 212, 229-234.	7.8	24
52	Superhydrophobic Porous Surfaces: Dissolved Oxygen Sensing. ACS Applied Materials & Dissolved Ox	8.0	40
53	Intracellular and in Vivo Oxygen Sensing Using Phosphorescent Ir(III) Complexes with a Modified Acetylacetonato Ligand. Analytical Chemistry, 2015, 87, 2710-2717.	6.5	76
54	Photostable trifluoromethyl-substituted platinum(<scp>ii</scp>) emitters for continuous monitoring of molecular oxygen. Journal of Materials Chemistry C, 2015, 3, 2166-2174.	5.5	36
55	An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 2015, 44, 4743-4768.	38.1	1,316
56	Intrinsic Artefacts in Optical Oxygen Sensors—How Reliable are our Measurements?. Chemistry - A European Journal, 2015, 21, 3978-3986.	3.3	19
57	Synthesis of Triplet–Triplet Annihilation Upconversion Nanocapsules Under Protective Conditions. Macromolecular Rapid Communications, 2015, 36, 1084-1088.	3.9	25
58	Unravelling the Quenching Mechanisms of a Luminescent Ru ^{II} Probe for Cu ^{II} . Chemistry - an Asian Journal, 2015, 10, 622-629.	3.3	10
59	Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chemical Science, 2015, 6, 1825-1831.	7.4	205
60	Tunable Near UV Microcavity OLED Arrays: Characterization and Analytical Applications. Advanced Functional Materials, 2015, 25, 1226-1232.	14.9	32

#	Article	IF	CITATIONS
61	Synthesis of a Platinum Diketonateâ€Containing Polymer Showing Oxygenâ€Resistant Phosphorescence. Macromolecular Rapid Communications, 2015, 36, 684-688.	3.9	3
62	Transition metal induced switch of fluorescence and absorption response of a Zn(<scp>ii</scp>)porphyrin–DNA conjugate to cysteine derivatives. RSC Advances, 2015, 5, 15916-15922.	3.6	6
63	Trifluoromethyl-substituted cyclometalated iridium sup III /sup emitters with high photostability for continuous oxygen sensing. Journal of Materials Chemistry C, 2015, 3, 8010-8017.	5.5	44
64	Photostable Fluorophenyl-Substituted Cyclometalated Platinum(II) Emitters for Monitoring of Molecular Oxygen in Real Time. Inorganic Chemistry, 2015, 54, 7783-7790.	4.0	30
65	Waterborne Polyurethanes with Tunable Fluorescence and Room-Temperature Phosphorescence. ACS Applied Materials & Distriction (2015), 7, 17209-17216.	8.0	57
66	A review of emerging trends on water quality measurement sensors. , 2015, , .		32
67	Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions. BioResearch Open Access, 2015, 4, 266-277.	2.6	34
68	Fluorescence and phosphorescence of lutetium(III) and gadolinium(III) porphyrins for the intraratiometric oxygen sensing. Chemical Physics Letters, 2015, 634, 188-193.	2.6	31
69	A water-sprayable, thermogelating and biocompatible polymer host for use in fluorescent chemical sensing and imaging of oxygen, pH values and temperature. Sensors and Actuators B: Chemical, 2015, 221, 37-44.	7.8	33
70	Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer. Chemical Papers, 2015, 69, .	2.2	4
71	Luminescent films for chemo- and biosensing. Chemical Society Reviews, 2015, 44, 6981-7009.	38.1	254
72	Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory?. RSC Advances, 2015, 5, 63318-63329.	3.6	72
73	Intracellular probes for imaging oxygen concentration: how good are they?. Methods and Applications in Fluorescence, 2015, 3, 034001.	2.3	53
74	Light-directed functionalization methods for high-resolution optical fiber based biosensors. Proceedings of SPIE, 2015, , .	0.8	2
75	Fast lifetime and amplitude determination in luminescence exponential decays. Sensors and Actuators B: Chemical, 2015, 216, 595-602.	7.8	12
76	Creating Diversified Response Profiles from a Single Quenchometric Sensor Element by Using Phase-Resolved Luminescence. Sensors, 2015, 15, 760-768.	3.8	0
77	Sub- $\langle i \rangle \hat{l}^{1}/4 \langle i \rangle$ s time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay. New Journal of Physics, 2015, 17, 023032.	2.9	24
78	Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide. Macromolecules, 2015, 48, 2967-2977.	4.8	117

#	ARTICLE	IF	CITATIONS
79	Strongly Phosphorescent Transition-Metal Complexes with N-Heterocyclic Carbene Ligands as Cellular Probes. Structure and Bonding, 2015, , 181-203.	1.0	5
80	Luminescence ratiometric oxygen sensor based on gadolinium labeled porphyrin and filter paper. Sensors and Actuators B: Chemical, 2015, 215, 405-411.	7.8	25
81	Phosphorescent O2 sensors integrated in polymeric film materials by local solvent crazing. Materials & Design, 2015, 77, 110-113.	5.1	16
82	Mesoporous upconversion nanoparticles modified with a Tb(III) complex to display both green upconversion and downconversion luminescence for in vitro bioimaging and sensing of temperature. Mikrochimica Acta, 2015, 182, 1653-1660.	5.0	32
83	Imaging of oxygen in microreactors and microfluidic systems. Methods and Applications in Fluorescence, 2015, 3, 034002.	2.3	38
84	Evaluation of different functional groups for covalent immobilization of enzymes in the development of biosensors with oxygen optical transduction. Analytical Methods, 2015, 7, 2943-2949.	2.7	11
85	Microscale Sensing of Oxygen via Encapsulated Porphyrin Nanofibers: Effect of Indicator and Polymer "Core―Permeability. ACS Applied Materials & Interfaces, 2015, 7, 8606-8614.	8.0	44
86	Layer-by-Layer assembly of a water–insoluble platinum complex for optical fiber oxygen sensors. Sensors and Actuators B: Chemical, 2015, 207, 683-689.	7.8	31
87	Versatile Conjugated Polymer Nanoparticles for High-Resolution O ₂ Imaging in Cells and 3D Tissue Models. ACS Nano, 2015, 9, 5275-5288.	14.6	147
88	High selective fluorescence imaging of cesium distribution in Arabidopsis using a bis(trihydroxyphenyl)-appended fluorescent probe with a turn-on system. RSC Advances, 2015, 5, 26662-26665.	3.6	11
89	Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Medical Photonics, 2015, 27, 3-40.	3.8	208
90	Metal–organic framework composites with luminescent gold(<scp>iii</scp>) complexes. Strongly emissive and long-lived excited states in open air and photo-catalysis. Chemical Science, 2015, 6, 7105-7111.	7.4	51
91	A novel viologen-based visible and reversible paper sensor for oxygen. Materials Letters, 2015, 158, 255-257.	2.6	13
92	Tailoring Oxygen Sensitivity with Halide Substitution in Difluoroboron Dibenzoylmethane Polylactide Materials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23633-23643.	8.0	72
93	Universal optical platform for monitoring of bioprocess variables. , 2015, , .		0
94	B–N@Graphene: Highly Sensitive and Selective Gas Sensor. Journal of Physical Chemistry C, 2015, 119, 24827-24836.	3.1	112
95	Tuning oxygen-sensing behaviour of a porous coordination framework by a guest fluorophore. Inorganic Chemistry Frontiers, 2015, 2, 1085-1090.	6.0	12
96	Polymer Composites for Intelligent Food Packaging. Journal of Molecular and Engineering Materials, 2015, 03, 1540005.	1.8	10

#	Article	IF	CITATIONS
97	Controlling energy transfer in ytterbium complexes: oxygen dependent lanthanide luminescence and singlet oxygen formation. Chemical Communications, 2015, 51, 15633-15636.	4.1	26
98	Quick and simple integration of optical oxygen sensors into glass-based microfluidic devices. RSC Advances, 2015, 5, 70808-70816.	3.6	31
99	Ratiometric oxygen sensing using lanthanide luminescent emitting interfaces. Chemical Communications, 2015, 51, 15944-15947.	4.1	23
100	Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chemistry of Materials, 2015, 27, 8255-8260.	6.7	97
101	Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 2015, 220, 305-314.	1.9	34
102	Oxygen and relative humidity monitoring with films tailored for enhanced photoluminescence. Analytica Chimica Acta, 2015, 853, 563-571.	5.4	8
103	Profiling of oxygen in biofilms using individually addressable disk microelectrodes on a microfabricated needle. Mikrochimica Acta, 2015, 182, 985-993.	5.0	13
104	Mitochondria-targeted oxygen probes based on cationic iridium complexes with a 5-amino-1, 10-phenanthroline ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 172-182.	3.9	43
105	Oxygen sensing properties of gadolinium labeled hematoporphyrin monomethyl ether based on filter paper. Sensors and Actuators B: Chemical, 2015, 206, 351-356.	7.8	24
106	Modulation of Innate Immunity by Hypoxia. , 2016, , 81-106.		0
107	Oxygen signaling: Call for papers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R948-R948.	1.8	0
108	System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring. Journal of Sensors, 2016, 2016, 1-13.	1.1	2
109	An Optimized Method Based on Digitalized Lissajous Curve to Determine Lifetime of Luminescent Materials on Optical Fiber Sensors. Journal of Sensors, 2016, 2016, 1-10.	1.1	0
110	Time-resolved luminescence imaging of intracellular oxygen levels based on long-lived phosphorescent iridium(III) complex. Optics Express, 2016, 24, 15757.	3.4	25
111	Measuring the oxygen content of a single oil droplet. Chemical Science, 2016, 7, 6458-6462.	7.4	16
113	Flexible Transparent Reduced Graphene Oxide Sensor Coupled with Organic Dye Molecules for Rapid Dualâ€Mode Ammonia Gas Detection. Advanced Functional Materials, 2016, 26, 4329-4338.	14.9	113
114	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€Solution Effects on Porosity and Sensitivity. Angewandte Chemie, 2016, 128, 16255-16259.	2.0	9
115	Dual sensing of pH and DO using opto-sol fluorescence based sensor — A spectral analysis. , 2016, , .		0

#	Article	IF	CITATIONS
116	A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics, 2016, 10, 044111.	2.4	109
117	In situ quantification of ultra″ow O ₂ concentrations in oxygen minimum zones: Application of novel optodes. Limnology and Oceanography: Methods, 2016, 14, 784-800.	2.0	28
118	Towards a novel optical trace oxygen sensor for commerical use. , 2016, , .		0
119	Difluoroboron \hat{l}^2 -diketonate materials with long-lived phosphorescence enable lifetime based oxygen imaging with a portable cost effective camera. Analytical Methods, 2016, 8, 3109-3114.	2.7	61
120	Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale. Applied Microbiology and Biotechnology, 2016, 100, 3853-3863.	3.6	36
121	In-vivo imaging of O2 dynamics on coral surfaces spray-painted with sensor nanoparticles. Sensors and Actuators B: Chemical, 2016, 237, 1095-1101.	7.8	28
122	Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015). Mikrochimica Acta, 2016, 183, 2085-2109.	5.0	36
123	Thienyl Difluoroboron \hat{l}^2 -Diketonates in Solution and Polylactide Media. Australian Journal of Chemistry, 2016, 69, 537.	0.9	19
124	A fluorescent assay for \hat{l}^3 -glutamyltranspeptidase via aggregation induced emission and its applications in real samples. Biosensors and Bioelectronics, 2016, 85, 317-323.	10.1	71
125	Real-Time Monitoring of Dissolved Oxygen with Inherent Oxygen-Sensitive Centers in Metal–Organic Frameworks. Chemistry of Materials, 2016, 28, 2652-2658.	6.7	56
126	A fluorescent turn-on probe for visualizing lysosomes in hypoxic tumor cells. Analyst, The, 2016, 141, 2879-2882.	3.5	31
127	Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors. Sensing and Bio-Sensing Research, 2016, 8, 36-42.	4.2	8
128	lodine-mediated etching of gold nanorods for plasmonic sensing of dissolved oxygen and salt iodine. Analyst, The, 2016, 141, 2955-2961.	3. 5	56
129	High performance optical oxygen sensors based on iridium complexes exhibiting interchromophore energy shuttling. Analyst, The, 2016, 141, 3090-3097.	3.5	26
130	Design and development of portable opto-electronic sensing system for real-time monitoring of food fermentation. Sensors and Actuators B: Chemical, 2016, 233, 674-683.	7.8	4
131	An oxygen-sensitive luminescent Dy(<scp>iii</scp>) complex. Dalton Transactions, 2016, 45, 9492-9496.	3.3	16
132	Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors. Analytical and Bioanalytical Chemistry, 2016, 408, 2985-2992.	3.7	34
133	Design and Application of an Optical Sensor for Simultaneous Imaging of pH and Dissolved O ₂ with Low Cross-Talk. ACS Sensors, 2016, 1, 681-687.	7.8	63

#	ARTICLE	IF	CITATIONS
134	Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode. Science of the Total Environment, 2016, 569-570, 1232-1240.	8.0	30
136	Preparation and characterization of a luminescent carbon dots grafted CaSiO ₃ :Eu ³⁺ phosphor for ratiometric fluorescent oxygen sensing. RSC Advances, 2016, 6, 98554-98562.	3.6	15
137	Analysis of the role of wood anatomy on oxygen diffusivity in barrel staves using luminescent imaging. Sensors and Actuators B: Chemical, 2016, 237, 1035-1043.	7.8	12
138	A Novel Ratiometric Oxygen Sensor Based On a Sextuple Hydrogenâ€Bonding Selfâ€Assembly Molecular Heterodimer. Chinese Journal of Chemistry, 2016, 34, 873-877.	4.9	6
139	Confocal Luminescence Lifetime Imaging with Variable Scan Velocity and Its Application to Oxygen Sensing. Analytical Chemistry, 2016, 88, 10736-10743.	6.5	11
140	In Vitro Detection of Hypoxia Using a Ratiometric Quantum Dot-Based Oxygen Sensor. ACS Sensors, 2016, 1, 1244-1250.	7.8	33
141	Mitochondria-targeted theranostic nanoparticles forÂoptical sensingÂof oxygen, photodynamic cancer therapy, and assessment of therapeutic efficacy. Mikrochimica Acta, 2016, 183, 2723-2731.	5.0	14
142	Chitosan-coated hemoglobin microcapsules for use in an electrochemical sensor and as a carrier for oxygen. Mikrochimica Acta, 2016, 183, 2847-2854.	5.0	8
143	A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching. Journal of Luminescence, 2016, 179, 581-587.	3.1	19
144	Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 2016, 3, 1500434.	11.2	271
145	Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. Advanced Science, 2016, 3, 1500155.	11.2	111
146	Measurement of oxygen transfer from air into organic solvents. Journal of Chemical Technology and Biotechnology, 2016, 91, 832-836.	3.2	44
147	Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors. Methods and Applications in Fluorescence, 2016, 4, 035001.	2.3	3
148	Analysis of a Nitroreductase-Based Hypoxia Sensor in Primary Neuronal Cultures. ACS Chemical Neuroscience, 2016, 7, 1188-1191.	3.5	10
149	Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor. Journal of Materials Chemistry C, 2016, 4, 8514-8521.	5.5	58
150	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€Solution Effects on Porosity and Sensitivity. Angewandte Chemie - International Edition, 2016, 55, 16021-16025.	13.8	60
151	Lifetime of Phosphorescence from Nanoparticles Yields Accurate Measurement of Concentration of Oxygen in Microdroplets, Allowing One To Monitor the Metabolism of Bacteria. Analytical Chemistry, 2016, 88, 12006-12012.	6.5	24
152	Oxygen Sensing Difluoroboron \hat{l}^2 -Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging. ACS Sensors, 2016, 1, 1366-1373.	7.8	104

#	Article	IF	CITATIONS
153	Comparison study on the influence of the central metal ions in palladium(<scp>ii</scp>)- and gadolinium(<scp>iii</scp>)-porphyrins for phosphorescence-based oxygen sensing. Journal of Materials Chemistry C, 2016, 4, 9581-9587.	5.5	22
154	A Mitochondriaâ€Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angewandte Chemie, 2016, 128, 10101-10105.	2.0	77
155	A Mitochondriaâ€Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia. Angewandte Chemie - International Edition, 2016, 55, 9947-9951.	13.8	422
156	Wound Diagnostics and Diagnostic Dressings. , 2016, , 145-193.		2
157	A series of iridophosphors with tunable excited states for hypoxia monitoring via time-resolved luminescence microscopy. Journal of Materials Chemistry C, 2016, 4, 10638-10645.	5.5	17
158	Nanoparticle Oxygen Sensing in Skin. , 2016, , 257-273.		1
159	Polyimides with Heavy Halogens Exhibiting Room-Temperature Phosphorescence with Very Large Stokes Shifts. ACS Macro Letters, 2016, 5, 1301-1305.	4.8	87
160	Elucidating the influences of mechanical bending on charge transport at the interfaces of organic light-emitting diodes. Thin Solid Films, 2016, 619, 281-287.	1.8	9
161	CRANAD-1 as a cyanide sensor in aqueous media: a theoretical study. RSC Advances, 2016, 6, 99385-99390.	3.6	11
162	Vitro toxicity assessments of nano-ZnS on bovine serum albumin by multispectroscopic methods. Canadian Journal of Chemistry, 2016, 94, 877-881.	1.1	1
163	Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Current Opinion in Chemical Biology, 2016, 33, 39-45.	6.1	81
164	Recent advances in fluorescent film sensing from the perspective of both molecular design and film engineering. Molecular Systems Design and Engineering, 2016, 1, 242-257.	3.4	34
165	Ultrafast and Ultrasensitive Gas Sensors Derived from a Large Fermi-Level Shift in the Schottky Junction with Sieve-Layer Modulation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17382-17388.	8.0	13
166	Control of Lanthanide Coordination Environment: Synthesis, Structure, and Oxygen-Sensitive Luminescence Properties of an Eight-Coordinate Tb(III) Complex. Inorganic Chemistry, 2016, 55, 6609-6615.	4.0	22
167	Facile synthesis of a ratiometric oxygen nanosensor for cellular imaging. Biosensors and Bioelectronics, 2016, 86, 176-184.	10.1	22
168	Complexes trans-Pt(BODIPY)X(PEt ₃) ₂ : excitation energy-dependent fluorescence and phosphorescence emissions, oxygen sensing and photocatalysis. Dalton Transactions, 2016, 45, 10420-10434.	3.3	36
169	Harnessing Fluorescence versus Phosphorescence Ratio via Ancillary Ligand Fine-Tuned MLCT Contribution. Journal of Physical Chemistry C, 2016, 120, 12196-12206.	3.1	25
170	Exploring the interaction of <scp>l</scp> -cysteine capped CuS nanoparticles with bovine serum albumin (BSA): a spectroscopic study. RSC Advances, 2016, 6, 58288-58295.	3.6	47

#	Article	IF	CITATIONS
171	Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3591-3600.	8.0	63
172	Design of oxygen sensing nanomaterial: synthesis, encapsulation of phenylacetylide substituted Pd(<scp>ii</scp>) and Pt(<scp>ii</scp>) meso-tetraphenylporphyrins into poly(1-trimethylsilyl-1-propyne) nanofibers and influence of silver nanoparticles. RSC Advances, 2016, 6. 9967-9977.	3.6	27
173	Sm3+ doped TiO2 as optical oxygen sensor material. Optical Materials, 2016, 51, 24-30.	3.6	31
174	Ultrafast excited state dynamics of iridium(<scp>iii</scp>) complexes and their changes upon immobilisation onto titanium dioxide layers. Physical Chemistry Chemical Physics, 2016, 18, 10682-10687.	2.8	29
175	Ratiometric dissolved oxygen sensitive indicator based on lutetium labeled hematoporphyrin monomethyl ether with balanced phosphorescence and fluorescence dual emission. Sensors and Actuators B: Chemical, 2016, 231, 539-546.	7.8	22
176	PtOEP/PS composite particles based on fluorescent sensor for dissolved oxygen detection. Materials Letters, 2016, 172, 112-115.	2.6	21
177	High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors. Trends in Food Science and Technology, 2016, 50, 85-102.	15.1	60
178	Luminescent Triphosphine Cyanide d ¹⁰ Metal Complexes. Inorganic Chemistry, 2016, 55, 2174-2184.	4.0	44
179	Aggregation induced emission enhancement of pyrene-appended Schiff base luminophore and its photovoltaic effect. Journal of Luminescence, 2016, 175, 44-49.	3.1	5
180	Phosphorescent oxygen sensors produced from polyolefin fibres by solvent-crazing method. Sensors and Actuators B: Chemical, 2016, 230, 434-441.	7.8	17
181	Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer. Biosensors and Bioelectronics, 2016, 79, 600-607.	10.1	44
182	Photoactivatable Nanostructured Surfaces for Biomedical Applications. Topics in Current Chemistry, 2016, 370, 135-168.	4.0	17
183	Asymmetrically Crowded "Push–Pull―Octaphenylporphyrins with Modulated Frontier Orbitals: Syntheses, Photophysical, and Electrochemical Redox Properties. Inorganic Chemistry, 2016, 55, 584-597.	4.0	35
184	Light-Responsive Nanostructured Systems for Applications in Nanomedicine. Topics in Current Chemistry, 2016, , .	4.0	9
185	Mesoporous manganese–porphyrin–silica hybrid nanomaterial sensitive to H2O2 fluorescent detection. Materials Research Bulletin, 2016, 74, 325-332.	5 . 2	14
186	Amperometric oxygen biosensor based on hemoglobin encapsulated in nanosized grafted starch particles. Mikrochimica Acta, 2016, 183, 353-359.	5.0	7
187	Photostable ester-substituted bis-cyclometalated cationic iridium(<scp>iii</scp>) complexes for continuous monitoring of oxygen. Dalton Transactions, 2016, 45, 734-741.	3.3	15
188	Fiber-Optic Chemical Sensors and Biosensors (2013–2015). Analytical Chemistry, 2016, 88, 203-227.	6.5	350

#	Article	IF	CITATIONS
189	Cancer cell aggregate hypoxia visualized inÂvitro via biocompatible fiber sensors. Biomaterials, 2016, 76, 208-217.	11.4	22
190	Efficient near-infrared (NIR) luminescent PMMA-supported hybrid materials doped with tris- \hat{l}^2 -diketonate Ln3+ complex (Ln = Nd or Yb). Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 104-113.	3.9	28
191	Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair. European Journal of Molecular and Clinical Medicine, 2017, 2, 70.	0.1	0
192	Calix[4]arene-based fluorescent probe and the adsorption capacity of its electrospun nanofibrous film for the cesium cation as an adsorbent. Supramolecular Chemistry, 2017, 29, 139-145.	1.2	8
193	Bis(naphthol)-based fluorescent chemoprobe for cesium cation and its immobilisation on silica nanoparticle as a high selective adsorbent. Supramolecular Chemistry, 2017, 29, 707-713.	1.2	4
194	Oxygen imaging of living cells and tissues using luminescent molecular probes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 30, 71-95.	11.6	98
195	Enhancement of luminescence-based optical fiber oxygen sensors by tuning the distance between fluorophore layers. Sensors and Actuators B: Chemical, 2017, 248, 836-847.	7.8	20
196	Electronically tuned sulfonamide-based probes with ultra-sensitivity for Ga3+ or Al3+ detection in aqueous solution. Analytica Chimica Acta, 2017, 958, 38-50.	5.4	40
197	Upconversion luminescence turning of NaREF4 (RE=0.4Y+0.4La+0.2 (Yb, Er, Tm)) nanoparticles and their applications for detecting Rhodamine B in shrimp. Journal of Rare Earths, 2017, 35, 120-126.	4.8	5
200	Optode use to evaluate microbial planktonic respiration in oligotrophic ecosystems as an indicator of environmental stress. Aquatic Sciences, 2017, 79, 529-541.	1.5	8
201	Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Physical Chemistry Chemical Physics, 2017, 19, 6313-6329.	2.8	400
202	Platinum(II) Ring-Fused Chlorins as Near-Infrared Emitting Oxygen Sensors and Photodynamic Agents. ACS Medicinal Chemistry Letters, 2017, 8, 310-315.	2.8	42
203	Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue. Journal of Neuroscience Methods, 2017, 281, 1-6.	2.5	8
204	Rigidly linking cyclometallated Ir(<scp>iii</scp>) and Pt(<scp>ii</scp>) centres: an efficient approach to strongly absorbing and highly phosphorescent red emitters. Chemical Communications, 2017, 53, 2729-2732.	4.1	35
205	Remote Terpyridine Integrated NHC–Ir ^{III} Luminophores as Potential Dualâ€Emissive Ratiometric O ₂ Probes. Chemistry - A European Journal, 2017, 23, 4770-4773.	3.3	17
206	\hat{l} 4Respirometer to determine the oxygen consumption rate of mammalian cells in a microfluidic cell culture. , 2017, , .		4
207	Lifetime-Based Oxygen Sensing Properties of palladium(II) and platinum(II) meso-tetrakis(4-phenylethynyl)phenylporphyrin. Journal of Fluorescence, 2017, 27, 861-868.	2.5	21
208	Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chemistry, 2017, 9, 689-697.	13.6	790

#	Article	IF	CITATIONS
209	Heterometallic Hybrid Open Frameworks: Synthesis and Application for Selective Detection of Nitro Explosives. Crystal Growth and Design, 2017, 17, 1836-1842.	3.0	21
210	Poly($\hat{l}\mu$ -caprolactone)-containing graft copolymers for ratiometric extracellular oxygen sensing. Sensors and Actuators B: Chemical, 2017, 248, 108-118.	7.8	12
211	Controllable synthesis and luminescent properties of rare earth doped Gd2(MoO4)3 nanoplates. Journal of Colloid and Interface Science, 2017, 504, 134-139.	9.4	9
212	TDDFT study on recognition mechanism for the oxygen sensing of the cyclometalated platinum (II) complex. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 183, 371-377.	3.9	0
213	Multiple-Wavelength Detection in SOI Lateral PIN Diodes With Backside Reflectors. IEEE Transactions on Industrial Electronics, 2017, 64, 7368-7376.	7.9	6
214	Novel multi-component photofunctional nanohybrids for ratio-dependent oxygen sensing. Journal of Colloid and Interface Science, 2017, 502, 8-15.	9.4	16
215	Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Fieldâ€"The Photochemist's Role. Photochemistry and Photobiology, 2017, 93, 1139-1153.	2.5	20
216	Hyperporphyrin effect on oxygen sensitivity of free meso -tetraphenylporphyrins. Dyes and Pigments, 2017, 144, 102-109.	3.7	11
217	Fluorinated meso-tetraaryl Pt(<scp>ii</scp>)-porphyrins: structure, photophysical, electrochemical, and phosphorescent oxygen sensing studies. New Journal of Chemistry, 2017, 41, 4908-4917.	2.8	15
218	Fluorimetric oxygen sensor with an efficient optical read-out for in vitro cell models. Sensors and Actuators B: Chemical, 2017, 249, 738-746.	7.8	18
219	Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence. Sensors and Actuators B: Chemical, 2017, 249, 364-377.	7.8	29
220	Luminescent Tb(iii) and Sm(iii) complexes with a 1,4,7-triazacyclononane-based tris-aryloxide ligand for high-performance oxygen sensors. Dalton Transactions, 2017, 46, 9126-9130.	3.3	18
221	A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose. Sensors and Actuators B: Chemical, 2017, 250, 156-161.	7.8	14
222	Cavity ring-down Faraday rotation spectroscopy for oxygen detection. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	18
223	Enhanced visible-light-active photocatalytic performances on Ag nanoparticles sensitized TiO2 nanotube arrays. Superlattices and Microstructures, 2017, 109, 579-587.	3.1	25
224	Linking Re ^I and Pt ^{II} Chromophores with Aminopyridines: A Simple Route to Achieve a Complicated Photophysical Behavior. Chemistry - A European Journal, 2017, 23, 11301-11311.	3.3	10
225	Azoâ€Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chemistry - an Asian Journal, 2017, 12, 2008-2028.	3.3	90
226	Highly enhanced sensitivity of optical oxygen sensors using microstructured PtTFPP/PDMS-pillar arrays sensing layer. Sensors and Actuators B: Chemical, 2017, 251, 495-502.	7.8	35

#	Article	IF	CITATIONS
227	A robust and reliable optical trace oxygen sensor. , 2017, , .		1
228	Platinum porphyrin/3-(trimethoxysily)propylmethacrylate functionalized flexible PDMS micropillar arrays as optical oxygen sensors. New Journal of Chemistry, 2017, 41, 5429-5435.	2.8	30
229	Double-tailed long chain BODIPYs - Synthesis, characterization and preliminary studies on their use as lipid fluorescence probes. Journal of Molecular Structure, 2017, 1146, 62-69.	3.6	7
230	Effect of substituents on properties of diphenylphosphoryl-substituted bis-cyclometalated Ir(III) complexes with a picolinic acid as ancillary ligand. Dyes and Pigments, 2017, 145, 136-143.	3.7	9
231	Measurement of oxygen concentrations in bacterial biofilms using transient state monitoring by single plane illumination microscopy. Biomedical Physics and Engineering Express, 2017, 3, 035020.	1.2	17
232	A C-Pyrenyl Poly(methylenephosphine): Oxidation "Turns On―Blue Photoluminescence in Solution and the Solid State. Organometallics, 2017, 36, 2520-2526.	2.3	19
233	Mixed-Lanthanide Porous Coordination Polymers Showing Range-Tunable Ratiometric Luminescence for O ₂ Sensing. Inorganic Chemistry, 2017, 56, 4238-4243.	4.0	63
234	Cu(I) 3,5-Diethyl-1,2,4-Triazolate (MAF-2): From Crystal Engineering to Multifunctional Materials. Crystal Growth and Design, 2017, 17, 1441-1449.	3.0	24
235	Effect of ancillary ligands on the properties of diphenylphosphoryl-substituted cationic lr(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2017, 5, 3519-3527.	5.5	18
238	Defective Metal–Organic Frameworks Incorporating Iridiumâ€Based Metalloligands: Sorption and Dye Degradation Properties. Chemistry - A European Journal, 2017, 23, 6615-6624.	3.3	44
239	Oxygenâ€Sensing Difluoroboron Thienyl Phenyl βâ€Diketonate Polylactides. ChemPlusChem, 2017, 82, 399-406.	2.8	22
240	Single-Particle Ratiometric Pressure Sensing Based on "Double-Sensor―Colloidal Nanocrystals. Nano Letters, 2017, 17, 1071-1081.	9.1	26
241	Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer. Analytica Chimica Acta, 2017, 950, 88-97.	5.4	35
242	Facile Conversion of Ni(II) Cyclopropylchlorins into Novel β-Substituted Porphyrins through Acid-Catalyzed Ring-Opening Reaction. Inorganic Chemistry, 2017, 56, 424-437.	4.0	10
243	Electron-Deficient Near-Infrared Pt(II) and Pd(II) Benzoporphyrins with Dual Phosphorescence and Unusually Efficient Thermally Activated Delayed Fluorescence: First Demonstration of Simultaneous Oxygen and Temperature Sensing with a Single Emitter. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38008-38023.	8.0	53
244	A highly sensitive and fast-responding oxygen sensor based on POSS-containing hybrid copolymer films. Journal of Materials Chemistry C, 2017, 5, 11395-11402.	5.5	21
245	Fabrication of highly stable and sensitive electrochemical sensor from hemoglobin–Au nanocomposites and its analytical applications. RSC Advances, 2017, 7, 42884-42890.	3.6	3
246	Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin. Journal of the American Chemical Society, 2017, 139, 14129-14136.	13.7	23

#	Article	IF	Citations
247	Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode. Methods in Molecular Biology, 2017, 1670, 267-281.	0.9	2
248	Gold Corroles as Near-IR Phosphors for Oxygen Sensing. Inorganic Chemistry, 2017, 56, 10991-10997.	4.0	43
249	Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive Materials. ACS Applied Materials & Lorentz & L	8.0	45
250	Rational design of polymeric core shell ratiometric oxygen-sensing nanostructures. Analyst, The, 2017, 142, 3400-3406.	3.5	11
251	Photophysics of the Singlet Oxygen Sensor Green Chromophore: Self-Production of ¹ O ₂ Explained by Molecular Modeling. Journal of Physical Chemistry B, 2017, 121, 7586-7592.	2.6	7
252	Purely Organic Dyes with Thermally Activated Delayed Fluorescenceâ€"A Versatile Class of Indicators for Optical Temperature Sensing. Advanced Optical Materials, 2017, 5, 1700372.	7.3	84
253	Hyperbranched Phosphorescent Conjugated Polymer Dots with Iridium(III) Complex as the Core for Hypoxia Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 28319-28330.	8.0	84
254	Automated in Situ Oxygen Profiling at Aquatic–Terrestrial Interfaces. Environmental Science & Emp; Technology, 2017, 51, 9970-9978.	10.0	9
255	Ligand Influence on the Photophysical Properties and Electronic Structures of Tungsten Iodide Clusters. European Journal of Inorganic Chemistry, 2017, 2017, 5387-5394.	2.0	16
256	Roomâ€Temperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€Shell Polymer Nanoparticles Containing Metalâ€Free Organic Phosphors. Angewandte Chemie, 2017, 129, 16425-16429.	2.0	40
257	A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments. Scientific Reports, 2017, 7, 15233.	3.3	30
258	Roomâ€Temperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€Shell Polymer Nanoparticles Containing Metalâ€Free Organic Phosphors. Angewandte Chemie - International Edition, 2017, 56, 16207-16211.	13.8	155
259	Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen. ACS Sensors, 2017, 2, 1692-1699.	7.8	25
260	Au/SiO2 nanoparticles in TiO2:Sm3+ films for improved fluorescence sensing of oxygen. Journal of Materials Chemistry C, 2017, 5, 11958-11964.	5.5	7
261	Integration and application of optical chemical sensors in microbioreactors. Lab on A Chip, 2017, 17, 2693-2712.	6.0	109
262	Luminescent oxygen-sensing films with improved sensitivity based on light scattering by TiO2 particles. Sensors and Actuators B: Chemical, 2017, 253, 934-941.	7.8	11
263	Wireless Oxygen Sensors Enabled by Fe(II)-Polymer Wrapped Carbon Nanotubes. ACS Sensors, 2017, 2, 1044-1050.	7.8	69
264	Amphiphilic silane modified multifunctional nanoparticles for ratiometric oxygen sensing. RSC Advances, 2017, 7, 34118-34124.	3.6	1

#	ARTICLE	IF	CITATIONS
265	Improving oxygen sensing performance of Ir(III) complexes with fluorine atoms: Synthesis, characterization and sensing behavior of their electrospinning fibrous films. Sensors and Actuators B: Chemical, 2017, 241, 957-966.	7.8	14
266	Lessons learned in tuning the optoelectronic properties of phosphorescent iridium(<scp>iii</scp>) complexes. Chemical Communications, 2017, 53, 807-826.	4.1	180
267	Luciferin inspired oxygen sensing with alternant change of color and fluorescence. Dyes and Pigments, 2017, 138, 1-6.	3.7	5
268	Heteroleptic Copper Photosensitizers: Why an Extended Ï€â€System Does Not Automatically Lead to Enhanced Hydrogen Production. Chemistry - A European Journal, 2017, 23, 312-319.	3.3	91
269	GalnN Quantum Wells as Optochemical Transducers for Chemical Sensors and Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 15-23.	2.9	16
270	Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Biosensors and Bioelectronics, 2017, 87, 941-948.	10.1	83
271	Molecular imaging of the tumor microenvironment. Advanced Drug Delivery Reviews, 2017, 113, 24-48.	13.7	175
272	Comparative study of polymeric matrices embedding oxygen-sensitive fluorophores by means of Layer-by-Layer nanosassembly. Sensors and Actuators B: Chemical, 2017, 239, 1124-1133.	7.8	11
273	High sensitivity and accuracy dissolved oxygen (DO) detection by using PtOEP/poly(MMA-co-TFEMA) sensing film. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 170, 242-246.	3.9	19
274	Electrospinning fibrous films doped with iridium complexes for high performance oxygen sensing: Synthesis and characterization. Sensors and Actuators B: Chemical, 2017, 240, 697-708.	7.8	18
275	Luminescence materials for pH and oxygen sensing in microbial cells – structures, optical properties, and biological applications. Critical Reviews in Biotechnology, 2017, 37, 723-738.	9.0	14
276	Bis-cyclometalated Ir(III) complexes with a diphenylamino group: design, synthesis, and application in oxygen sensing. Dyes and Pigments, 2017, 136, 641-647.	3.7	20
277	Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemiaâ€. EFSA Journal, 2017, 15, e04691.	1.8	20
279	Trace Oxygen Sensitive Material Based on Two Porphyrin Derivatives in a Heterodimeric Complex. Molecules, 2017, 22, 1787.	3.8	5
280	Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles. Sensors, 2017, 17, 548.	3.8	38
281	Design and Fabrication of a Ratiometric Planar Optode for Simultaneous Imaging of pH and Oxygen. Sensors, 2017, 17, 1316.	3.8	21
282	Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide. Chemosensors, 2017, 5, 28.	3.6	33
283	Luminescent Properties of Oxazine 170 Perchlorate Doped PMMA Fiber. Fibers, 2017, 5, 15.	4.0	11

#	Article	IF	CITATIONS
284	Versatile Optochemical Quantification with Optical Mouse. Journal of Sensors, 2017, 2017, 1-7.	1.1	1
285	Luminescence: Solid Phase â~†., 2018, , 281-281.		0
286	Direct Integration of Redâ€NIR Emissive Ceramicâ€like A _n M ₆ X ⁱ ₈ X ^a ₆ Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions. Chemistry - A European Journal, 2018, 24, 4825-4829.	3.3	20
287	Construction of a hypoxia responsive upconversion nanosensor for tumor imaging by fluorescence resonance energy transfer from carbon dots to ruthenium complex. Journal of Materials Chemistry B, 2018, 6, 2315-2322.	5.8	25
288	Highly selective FET-type glucose sensor based on shape-controlled palladium nanoflower-decorated graphene. Sensors and Actuators B: Chemical, 2018, 264, 216-223.	7.8	37
289	Substituent influence in phenanthroline-derived ancillary ligands on the excited state nature of novel cationic Ir(<scp>iii</scp>) complexes. New Journal of Chemistry, 2018, 42, 6644-6654.	2.8	15
290	Direct determination of oxygen and other elements in non-conducting crystal materials by pulsed glow discharge time-of-flight mass spectrometry with potassium titanyl phosphate as an example. Vacuum, 2018, 153, 248-253.	3 . 5	7
291	Two-photon oxygen nanosensors based on a conjugated fluorescent polymer doped with platinum porphyrins. Methods and Applications in Fluorescence, 2018, 6, 035008.	2.3	8
292	Optical frequency comb Faraday rotation spectroscopy. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	11
293	Non-Invasive Oxygen Determination in Intelligent Packaging Using a Smartphone. IEEE Sensors Journal, 2018, 18, 4351-4357.	4.7	21
294	Anionic iridium(III) complexes and their conjugated polymer soft salts for time-resolved luminescent detection of intracellular oxygen levels. Sensors and Actuators B: Chemical, 2018, 262, 436-443.	7.8	23
295	Robust and magnetically recoverable dual-sensor particles: Real-time monitoring of glucose and dissolved oxygen. Sensors and Actuators B: Chemical, 2018, 262, 371-379.	7.8	7
296	NIR Phosphorescent Intramolecularly Bridged Benzoporphyrins and Their Application in Oxygen-Compensated Glucose Optode. Analytical Chemistry, 2018, 90, 2741-2748.	6.5	11
297	Design of two-photon absorbing fluorophores for FRET antenna-core oxygen probes. New Journal of Chemistry, 2018, 42, 7914-7930.	2.8	7
298	A luminescent bimetallic iridium(iii) complex for ratiometric tracking intracellular viscosity. Chemical Communications, 2018, 54, 1371-1374.	4.1	37
299	Simple formation of chitosan tablet with self-supporting blocks: Fe3+-mediated supramolecular coordination. Chemical Engineering Journal, 2018, 341, 648-657.	12.7	16
300	Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Mikrochimica Acta, 2018, 185, 171.	5.0	12
301	A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Analytica Chimica Acta, 2018, 1015, 66-73.	5.4	17

#	Article	IF	CITATIONS
302	A Singleâ€Anionâ€Based Redâ€Emitting Cationic Diiridium(III) Complex Bearing a Pyrimidineâ€Based Bridging Ligand for Oxygen Sensing. European Journal of Inorganic Chemistry, 2018, 2018, 1131-1136.	2.0	26
303	Design and Development of an Electronic Interface for Gas Detection and Exhaled Breath Analysis in Liquids. IEEE Sensors Journal, 2018, 18, 31-36.	4.7	8
304	Oxygen Sensing Based on the Yellowing of Newspaper. ACS Sensors, 2018, 3, 160-166.	7.8	15
306	Comparative validation of amperometric and optical analyzers of dissolved oxygen: a case study. Environmental Monitoring and Assessment, 2018, 190, 313.	2.7	11
307	Phase stability and oxygen-sensitive photoluminescence of ZrO2:Eu,Nb nanopowders. Materials Chemistry and Physics, 2018, 214, 135-142.	4.0	24
308	A platinum-porphine/poly(perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging. Sensors and Actuators B: Chemical, 2018, 269, 88-95.	7.8	21
309	A Probe Based on a Soft Salt Complex for Ratiometric and Lifetime Imaging of Variations in Intracellular Oxygen Content. European Journal of Inorganic Chemistry, 2018, 2018, 2345-2349.	2.0	9
310	A Dissolved Oxygen Analyzer with an Optical Sensor. Journal of Analytical Chemistry, 2018, 73, 102-108.	0.9	16
311	BODIPYâ€Pyrene and Perylene Dyads as Heavyâ€Atomâ€Free Singlet Oxygen Sensitizers. ChemPhotoChem, 2018 2, 606-615.	³ , _{3.0}	66
312	Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules. Applied Physics Letters, 2018, 112, .	3.3	5
313	Quantitative imaging and spectroscopic technologies for microbiology. FEMS Microbiology Letters, 2018, 365, .	1.8	15
314	Optical method for detecting oxygen via the chromogenic reaction catalyzed by polyphenol oxidase. Enzyme and Microbial Technology, 2018, 114, 1-6.	3.2	2
315	Modeling of luminescence-based oxygen sensing by redox-switched energy transfer in nanocrystalline TiO2:Sm3+. Sensors and Actuators B: Chemical, 2018, 265, 556-564.	7.8	18
316	Evaluation of multi-layered graphene nano-platelet composite coatings for corrosion control part I - contact potentials and gas permeability. Corrosion Science, 2018, 136, 285-291.	6.6	24
317	Electrospinning fibrous films doped with a series of luminescent copper complexes: Synthesis, characterization and oxygen sensing performance comparison. Sensors and Actuators B: Chemical, 2018, 254, 81-92.	7.8	5
318	Singleâ€Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem, 2018, 10, 654-665.	3.7	20
319	In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 2018, 24, 15-34.	10.8	127
320	Luminescent oxygen-sensing film based on \hat{l}^2 -diketone-modified Eu(III)-doped yttrium oxide nanosheets. Sensors and Actuators B: Chemical, 2018, 257, 340-346.	7.8	13

#	Article	IF	CITATIONS
321	Organâ€Onâ€Aâ€Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Advanced Healthcare Materials, 2018, 7, 1700506.	7.6	227
322	Brilliant green sequestered poly(amic) acid film for dual-mode detection: Fluorescence and electrochemical enzymatic biosensor. Sensors and Actuators B: Chemical, 2018, 256, 71-78.	7.8	17
323	Regulation of metal–metal interactions and chromic phenomena of multi-decker platinum complexes having π-systems. Coordination Chemistry Reviews, 2018, 355, 101-115.	18.8	132
324	Temperature compensation of pressure-sensitive luminescent polymer sensors. Sensors and Actuators B: Chemical, 2018, 255, 1960-1966.	7.8	16
325	Predictive simulation of non-steady-state transport of gases through rubbery polymer membranes. Polymer, 2018, 134, 125-142.	3.8	12
326	An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Archives of Toxicology, 2018, 92, 41-82.	4.2	77
327	Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors. Nanotechnology, 2018, 29, 145704.	2.6	10
328	Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Materials Chemistry Frontiers, 2018, 2, 347-354.	5.9	21
329	Photocatalytic Reversible Color Switching Based on Titania Nanoparticles. Small Methods, 2018, 2, 1700273.	8.6	40
330	Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron βâ€Diketonate Materials. Chemistry - A European Journal, 2018, 24, 1859-1869.	3.3	37
331	Honeycomb structured porous films from a platinum porphyrin-grafted poly(styrene-co-4-vinylpyridine) copolymer as an optical oxygen sensor. Sensors and Actuators B: Chemical, 2018, 257, 944-953.	7.8	37
332	Silane control of the electron injection and oxygen sensitivity of dye-silane-GaN hybrid materials for luminescent chemical sensing. Sensors and Actuators B: Chemical, 2018, 254, 926-934.	7.8	4
333	Influence of chlorine atoms in bay positions of perylene-tetracarboxylic acids on their spectral properties in Langmuir-Blodgett films. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 374-380.	3.9	9
334	The influence of molecular structure on collision radius for optical sensing of molecular oxygen based on cyclometalated Ir(<scp>iii</scp>) complexes. RSC Advances, 2018, 8, 41040-41047.	3.6	5
335	Potential for Real-Time Monitoring and Control of Dissolved Oxygen in the Injection Water Treatment Process. IFAC-PapersOnLine, 2018, 51, 170-177.	0.9	3
336	Amphiphilic Fluorine-Containing Block Copolymers as Carriers for Hydrophobic PtTFPP for Dissolved Oxygen Sensing, Cell Respiration Monitoring and In Vivo Hypoxia Imaging with High Quantum Efficiency and Long Lifetime. Sensors, 2018, 18, 3752.	3.8	8
337	Wearable, Luminescent Oxygen Sensor for Transcutaneous Oxygen Monitoring. ACS Applied Materials & Luminescent, 2018, 10, 41026-41034.	8.0	38
338	Inorganic Protection of Polymer Nanocapsules: A Strategy to Improve the Efficiency of Encapsulated Optically Active Molecules. Israel Journal of Chemistry, 2018, 58, 1356-1362.	2.3	5

#	Article	IF	CITATIONS
339	Functionalized Bioink with Optical Sensor Nanoparticles for O ₂ Imaging in 3Dâ€Bioprinted Constructs. Advanced Functional Materials, 2018, 28, 1804411.	14.9	63
340	Stability and Safety Assessment of Phosphorescent Oxygen Sensors for Use in Food Packaging Applications. Chemosensors, 2018, 6, 38.	3.6	11
341	Hydrogel-Based Fluorescent Dual pH and Oxygen Sensors Loaded in 96-Well Plates for High-Throughput Cell Metabolism Studies. Sensors, 2018, 18, 564.	3.8	30
342	Photoluminescent Phosphinine Cu(l) Halide Complexes: Temperature Dependence of the Photophysical Properties and Applications as a Molecular Thermometer. Inorganic Chemistry, 2018, 57, 13235-13245.	4.0	31
343	Jetâ€nozzle method for measuring response times of scalar sensors used in liquids and gases. Limnology and Oceanography: Methods, 2018, 16, 475-483.	2.0	4
344	Colorimetric Calcium Probe with Comparison to an Ion-Selective Optode. ACS Omega, 2018, 3, 12476-12481.	3.5	6
345	A background-subtraction strategy leads to ratiometric sensing of oxygen without recalibration. Analyst, The, 2018, 143, 5120-5126.	3.5	7
346	Fast-Response Flexible Photochromic Gels for Self-Erasing Rewritable Media and Colorimetric Oxygen Indicator Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33423-33433.	8.0	40
347	Cluster-Based Metal–Organic Frameworks: Modulated Singlet–Triplet Excited States and Temperature-Responsive Phosphorescent Switch. ACS Applied Materials & Diterfaces, 2018, 10, 34377-34384.	8.0	103
348	Mesoporous silica coating NaYF4:Yb,Er@NaYF4 upconversion nanoparticles loaded with ruthenium(II) complex nanoparticles: Fluorometric sensing and cellular imaging of temperature by upconversionAand ofAoxygenAby downconversion. Mikrochimica Acta, 2018, 185, 454.	5.0	30
349	Colorimetric oxygen sensor based on nano-sized black TiO2 catalysts: DFT modeling and experiments. Molecular Catalysis, 2018, 459, 16-20.	2.0	1
350	Optical oxygen sensing with quantum dot conjugates. Pure and Applied Chemistry, 2018, 90, 1359-1377.	1.9	7
351	Optical Sensing of Dissolved Oxygen. Smart Sensors, Measurement and Instrumentation, 2018, , 163-170.	0.6	0
352	Silver Nanowire-Induced Sensitivity Enhancement of Optical Oxygen Sensors Based on AgNWsâ€"Palladium Octaethylporphineâ€"Poly(methyl methacrylate) Microfiber Mats Prepared by Electrospinning. ACS Omega, 2018, 3, 5669-5677.	3.5	7
353	A complete evaluation from theoretical aspect on the phosphorescent efficiency improvement through ancillary ligands modifications of a blue Ir(III) complex. Organic Electronics, 2018, 59, 293-300.	2.6	17
355	Copolymer based multifunctional conducting polymer film for fluorescence sensing of glucose. Methods and Applications in Fluorescence, 2018, 6, 035012.	2.3	22
356	Microfluidic oxygen sensor based on silica gels for longterm experiments. , 2018, , .		1
357	New red-emitting Schiff base chelates: promising dyes for sensing and imaging of temperature and oxygen <i>via</i> phosphorescence decay time. Journal of Materials Chemistry C, 2018, 6, 8999-9009.	5.5	35

#	Article	IF	CITATIONS
358	Tuning photophysical properties of phosphorescent benzoporphyrin complexes via 1-step π-extension. Dyes and Pigments, 2018, 159, 610-618.	3.7	3
359	Real-Time Sensing of TET2-Mediated DNA Demethylation In Vitro by Metal–Organic Framework-Based Oxygen Sensor for Mechanism Analysis and Stem-Cell Behavior Prediction. Analytical Chemistry, 2018, 9330-9337.	6.5	12
360	Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes. Polymers, 2018, 10, 234.	4.5	21
361	Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project. Sensors, 2018, 18, 1130.	3.8	17
362	Assessment of Performance of the Industrial Process of Bulk Vacuum Packaging of Raw Meat with Nondestructive Optical Oxygen Sensing Systems. Sensors, 2018, 18, 1395.	3.8	10
363	Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter. Sensors, 2018, 18, 1953.	3.8	4
364	Spectrophotometric and Digital Colour Colourimetric (DCC) analysis of colour-based indicators. Sensors and Actuators B: Chemical, 2018, 273, 1187-1194.	7.8	27
365	Preparation and application of ratiometric polystyrene-based microspheres as oxygen sensors. Analytica Chimica Acta, 2018, 1030, 194-201.	5.4	14
366	Fully Reversible Optical Sensor for Hydrogen Peroxide with Fast Response. Analytical Chemistry, 2018, 90, 7544-7551.	6.5	15
367	Fluorescence-Based Nano-Oxygen Particles for Spatiometric Monitoring of Cell Physiological Conditions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30163-30171.	8.0	8
368	Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Frontiers in Physiology, 2018, 9, 815.	2.8	66
369	Luminescent supramolecular polymer nanoparticles for ratiometric hypoxia sensing, imaging and therapy. Materials Chemistry Frontiers, 2018, 2, 1893-1899.	5.9	39
370	Dual-Phosphorescent Iridium(III) Complexes Extending Oxygen Sensing from Hypoxia to Hyperoxia. Journal of the American Chemical Society, 2018, 140, 7827-7834.	13.7	151
371	Mn ^{II} -Doped Cesium Lead Chloride Perovskite Nanocrystals: Demonstration of Oxygen Sensing Capability Based on Luminescent Dopants and Host-Dopant Energy Transfer. ACS Applied Materials & Dopants (2018), 10, 23335-23343.	8.0	53
372	Fast luminescence from rare-earth-codoped BaSiF6 nanowires with high aspect ratios. Journal of Materials Chemistry C, 2018, 6, 7285-7294.	5.5	17
373	Reversible humidity-driven tuning of the light scattering properties of PS:PEG-based porous polymer films: Understanding derived from the cross-sensitivity of a luminescent oxygen sensor. Sensors and Actuators B: Chemical, 2019, 298, 126883.	7.8	2
374	Amplified Heavy-Atom Free Phosphorescence from <i>meta</i> -Dimethoxy Difluoroboron \hat{l}^2 -Diketonate Charge-Transfer Materials. Journal of Physical Chemistry C, 2019, 123, 20488-20496.	3.1	18
375	Planar optode: A two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil. Earth-Science Reviews, 2019, 197, 102916.	9.1	44

#	Article	IF	CITATIONS
376	Ratiometric Luminescent Nanoprobes Based on Ruthenium and Terbium-Containing Metallopolymers for Intracellular Oxygen Sensing. Polymers, 2019, 11, 1290.	4.5	9
377	Perylenebisimide-fullerene dyads as heavy atom free triplet photosensitizers with unique singlet oxygen generation efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 385, 112022.	3.9	12
378	Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS Applied Materials & Interfaces, 2019, 11, 33548-33558.	8.0	30
379	Freestanding laser induced graphene paper based liquid sensors. Carbon, 2019, 153, 472-480.	10.3	37
380	Oxygen-Sensitive Photoluminescence of Rare Earth Ions in TiO2Thin Films. Journal of Physical Chemistry C, 2019, 123, 17908-17914.	3.1	11
381	Ratiometric oxygen probes with a cell-penetrating peptide for imaging oxygen levels in living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111983.	3.9	12
382	NH2-MIL-125(Ti) and its emeraldine functionalized derivative as a chemical sensor for effective detection of dopamine. Microporous and Mesoporous Materials, 2019, 288, 109591.	4.4	14
383	Luminescent Silica Nanosensors for Lifetime Based Imaging of Intracellular Oxygen with Millisecond Time Resolution. Analytical Chemistry, 2019, 91, 15625-15633.	6.5	11
384	Effects of fluorine substituent on properties of cyclometalated iridium(III) complexes with a 2,2′-bipyridine ancillary ligand. Tetrahedron, 2019, 75, 130686.	1.9	12
385	Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection. Sensors, 2019, 19, 3995.	3.8	104
386	Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nature Communications, 2019, 10, 5117.	12.8	150
387	Porosity Control and Optical Characterization of Luminophore Layers Based on PtOEP., 2019,,.		0
388	Insight into the Origin of Competitive Emission of Copper(I) Complexes Bearing Diimine and Diphosphine Ligands. Bulletin of the Chemical Society of Japan, 2019, 92, 1684-1693.	3.2	12
389	Doping metal-organic framework with a series of europium-antenna cations: Obviously improved spectral response for O2 gas via long-range energy roll-back procedure. Sensors and Actuators B: Chemical, 2019, 299, 126978.	7.8	15
390	Review on the development of Eco-garden in China. IOP Conference Series: Earth and Environmental Science, 2019, 267, 062018.	0.3	0
391	Oxygen sensors for flow reactors – measuring dissolved oxygen in organic solvents. Reaction Chemistry and Engineering, 2019, 4, 2081-2087.	3.7	5
392	Wearable transcutaneous oxygen sensor for health monitoring. Sensors and Actuators A: Physical, 2019, 298, 111607.	4.1	10
393	In vitro metabolic zonation through oxygen gradient on a chip. Scientific Reports, 2019, 9, 13557.	3.3	52

#	Article	IF	CITATIONS
394	Rapid prototyping of a novel and flexible paper based oxygen sensing patch <i>via</i> additive inkjet printing process. RSC Advances, 2019, 9, 22695-22704.	3.6	30
395	The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules, 2019, 24, 3460.	3.8	48
396	Development of customized 3D printed stainless steel reactors with inline oxygen sensors for aerobic oxidation of Grignard reagents in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 393-401.	3.7	35
397	Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure. ACS Sensors, 2019, 4, 406-412.	7.8	46
398	A differentially selective probe for trivalent chemosensor upon single excitation with cell imaging application: potential applications in combinatorial logic circuit and memory devices. Photochemical and Photobiological Sciences, 2019, 18, 242-252.	2.9	27
399	Highly Sensitive Dissolved Oxygen Sensor with a Sustainable Antifouling, Antiabrasion, and Self-Cleaning Superhydrophobic Surface. ACS Omega, 2019, 4, 1715-1721.	3.5	21
400	Time-resolved FRET in AgInS ₂ /ZnS-CdSe/ZnS quantum dot systems. Nanotechnology, 2019, 30, 195501.	2.6	5
401	Nanoparticle- and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: a review. Mikrochimica Acta, 2019, 186, 126.	5.0	35
402	In Situ Enzyme Immobilization with Oxygenâ€Sensitive Luminescent Metal–Organic Frameworks to Realize "Allâ€inâ€One―Multifunctions. Chemistry - A European Journal, 2019, 25, 5463-5471.	3.3	15
403	Optimizing luminescence sensitivity and moisture stability of porous coordination frameworks by varying ligand side groups. Science China Chemistry, 2019, 62, 341-346.	8.2	9
404	Boosting the triplet activity of heavy-atom-free difluoroboron dibenzoylmethane <i>via</i> sp ³ oxygen-bridged electron donors. Chemical Communications, 2019, 55, 67-70.	4.1	27
405	Highly efficient luminescent benzoylimino derivative and fluorescent probe from a photochemical reaction of imidazole as an oxygen sensor. Chemical Communications, 2019, 55, 977-980.	4.1	29
406	Ratiometric O ₂ sensing based on selective self-sensitized photooxidation of donor–acceptor fluorophores. Chemical Communications, 2019, 55, 7017-7020.	4.1	34
407	High-resolution imaging of rhizosphere oxygen (O2) dynamics in Potamogeton crispus: effects of light, temperature and O2 content in overlying water. Plant and Soil, 2019, 441, 613-627.	3.7	12
408	Longâ€Lived Roomâ€Temperature Phosphorescence for Visual and Quantitative Detection of Oxygen. Angewandte Chemie - International Edition, 2019, 58, 12102-12106.	13.8	195
409	Longâ€Lived Roomâ€Temperature Phosphorescence for Visual and Quantitative Detection of Oxygen. Angewandte Chemie, 2019, 131, 12230-12234.	2.0	44
410	The dependence of oxygen sensitivity on the molecular structures of Ir(<scp>iii</scp>) complexes and their application for photostable and reversible luminescent oxygen sensing. RSC Advances, 2019, 9, 15370-15380.	3.6	10
411	Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores. Beilstein Journal of Nanotechnology, 2019, 10, 522-530.	2.8	4

#	Article	IF	CITATIONS
412	Multimodal temperature sensing using Zn2GeO4:Mn2+ phosphor as highly sensitive luminescent thermometer. Sensors and Actuators B: Chemical, 2019, 296, 126640.	7.8	90
413	Current progress in long-term and continuous cell metabolite detection using microfluidics. TrAC - Trends in Analytical Chemistry, 2019, 117, 263-279.	11.4	35
414	Bipolar thianthrene derivatives exhibiting room temperature phosphorescence for oxygen sensing. Dyes and Pigments, 2019, 170, 107605.	3.7	19
415	Optical Detection of Intracellular Quantities Using Nanoscale Technologies. Accounts of Chemical Research, 2019, 52, 1739-1749.	15.6	25
416	Theranostic biocomposite scaffold membrane. Biomaterials, 2019, 212, 17-27.	11.4	18
417	Platinum(<scp>ii</scp>) and palladium(<scp>ii</scp>) complexes with electron-deficient <i>meso</i> -diethoxyphosphorylporphyrins: synthesis, structure and tuning of photophysical properties by varying peripheral substituents. Dalton Transactions, 2019, 48, 8882-8898.	3.3	9
418	Tuning the Luminescent Properties of Ruthenium(II) Aminoâ€1,10â€Phenanthroline Complexes by Varying the Position of the Amino Group on the Heterocycle. ChemPlusChem, 2019, 84, 498-503.	2.8	6
419	Upconversion Nanoplatform for FRETâ€Based Sensing of Dopamine and pH. ChemistrySelect, 2019, 4, 5407-5414.	1.5	12
420	Light-Controlled Configurable Colorimetric Sensing Array. Analytical Chemistry, 2019, 91, 6632-6637.	6.5	10
421	Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today, 2019, 26, 16-56.	11.9	113
422	Alkaline-earth and aminonicotinate based coordination polymers with combined fluorescence/long-lasting phosphorescence and metal ion sensing response. Journal of Materials Chemistry C, 2019, 7, 6997-7012.	5.5	21
423	Optical microcrack sensor paints inspired by luminescent oxygen quenching phenomenon. MRS Communications, 2019, 9, 737-743.	1.8	0
424	Three new metal chalcogenide open frameworks built through co-assembly and/or hybrid assembly from supertetrahedral T5-InOS and T3-InS nanoclusters. Dalton Transactions, 2019, 48, 7537-7540.	3.3	5
425	POSS: A Morphology-Tuning Strategy To Improve the Sensitivity and Responsiveness of Dissolved Oxygen Sensor. Industrial & Engineering Chemistry Research, 2019, 58, 7761-7768.	3.7	5
426	Tailored luminescent sensing of NH3 in biomethane productions. Sensors and Actuators B: Chemical, 2019, 292, 210-216.	7.8	8
427	Luminescence-Based Sensors for Bioprocess Applications. Springer Series on Fluorescence, 2019, , 1-38.	0.8	3
428	Microfluidic oxygen sensor system as a tool to monitor the metabolism of mammalian cells. Sensors and Actuators B: Chemical, 2019, 289, 24-31.	7.8	13
429	Almost complete radiationless energy transfer from excited triplet state of a dim phosphor to a covalently linked adjacent fluorescent dye in purely organic tandem luminophores doped into PVA matrix. Journal of Materials Chemistry C, 2019, 7, 6571-6577.	5.5	8

#	Article	IF	CITATIONS
430	Partially Fluorinated Cu(I) Triazolate Frameworks with High Hydrophobicity, Porosity, and Luminescence Sensitivity. Inorganic Chemistry, 2019, 58, 3944-3949.	4.0	16
431	Fluorescent chemosensor for lethal cesium detection using thin film membrane. Separation Science and Technology, 2019, 54, 1687-1696.	2.5	4
432	Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples. Biosensors and Bioelectronics, 2019, 133, 39-47.	10.1	11
433	Optical Oxygen Sensing with Artificial Intelligence. Sensors, 2019, 19, 777.	3.8	14
434	State of Oxygen Molecules in Aqueous Supersaturated Solutions. Journal of Physical Chemistry B, 2019, 123, 4025-4043.	2.6	7
435	Multiresponsive Tetradentate Phosphorescent Metal Complexes as Highly Sensitive and Robust Luminescent Oxygen Sensors: Pd(II) Versus Pt(II) and 1,2,3-Triazolyl Versus 1,2,4-Triazolyl. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12666-12674.	8.0	26
436	Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sensors, 2019, 4, 984-991.	7.8	21
437	Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst, The, 2019, 144, 3190-3215.	3.5	33
438	A "Multiâ€Heavyâ€Atom―Approach toward Biphotonic Photosensitizers with Improved Singletâ€Oxygen Generation Properties. Chemistry - A European Journal, 2019, 25, 9026-9034.	3.3	34
439	Luminescent oxygen probes based on TbIII complexes chemically bonded to polydimethylsiloxane. Sensors and Actuators B: Chemical, 2019, 287, 557-568.	7.8	12
440	Monitoring energy distribution of nonradiative energy transfer and reabsorption process in an upconversion nanoparticle detection system. Journal of Luminescence, 2019, 210, 175-181.	3.1	6
441	Tricolor core/shell polymeric ratiometric nanosensors for intracellular glucose and oxygen dual sensing. Sensors and Actuators B: Chemical, 2019, 286, 437-444.	7.8	14
442	Evaluating CARâ€₹ Cell Therapy in a Hypoxic 3D Tumor Model. Advanced Healthcare Materials, 2019, 8, e1900001.	7.6	81
443	Benzo[ghi]perylene & Denzo (ghi]perylene & Denzo (ghi)perylene & D	7.8	11
444	Ambient-temperature near-IR phosphorescence and potential applications of rhenium-oxo corroles. Photochemical and Photobiological Sciences, 2019, 18, 1166-1170.	2.9	26
445	Luminescence Lifetime Imaging of Chemical Sensors—A Comparison between Time-Domain and Frequency-Domain Based Camera Systems. Analytical Chemistry, 2019, 91, 3233-3238.	6.5	30
446	Synthesis, photophysical, electrochemical and photoluminescent oxygen sensing studies of trans-Pt(II)-porphyrins. Dyes and Pigments, 2019, 165, 117-127.	3.7	8
447	Recent developments in stimuli-responsive luminescent films. Journal of Materials Chemistry C, 2019, 7, 3399-3412.	5. 5	96

#	Article	IF	CITATIONS
448	Formation of disulphide linkages restricts intramolecular motions of a fluorophore: detection of molecular oxygen in food packaging. Chemical Communications, 2019, 55, 3132-3135.	4.1	8
449	Multi-Task Learning for Multi-Dimensional Regression: Application to Luminescence Sensing. Applied Sciences (Switzerland), 2019, 9, 4748.	2.5	13
450	Indoor air quality monitoring sensors for the design of a simple, low cost, mobile e-nose for real time victim localization. , 2019 , , .		3
452	A colourimetric vacuum air-pressure indicator. Analyst, The, 2019, 144, 5947-5952.	3.5	5
453	A Near-Infrared Phosphorescent Nanoprobe Enables Quantitative, Longitudinal Imaging of Tumor Hypoxia Dynamics during Radiotherapy. Cancer Research, 2019, 79, 4787-4797.	0.9	20
454	Hydrogel Fluorescence Microsensor with Fluorescence Recovery for Prolonged Stable Temperature Measurements. Sensors, 2019, 19, 5247.	3.8	6
455	<i>In Vivo</i> Photoacoustic Lifetime Based Oxygen Imaging with Tumor Targeted G2 Polyacrylamide Nanosonophores. ACS Nano, 2019, 13, 14024-14032.	14.6	21
456	Selective sensing and visualization of pesticides by ABW-type metal–organic framework based luminescent sensors. RSC Advances, 2019, 9, 38469-38476.	3.6	25
457	Oxygen Sensors for Food Packaging. , 2019, , .		2
458	Carbon Nanotube Chemical Sensors. Chemical Reviews, 2019, 119, 599-663.	47.7	732
459	Measuring fluorescence-lifetime and bio-impedance sensors for cell based assays using a network analyzer integrated circuit. Biosensors and Bioelectronics, 2019, 129, 292-297.	10.1	2
460	A universal colorimetric PCR biosensor based upon triplex formation with the aid of Ru(phen)2dppx2+. Sensors and Actuators B: Chemical, 2019, 278, 39-45.	7.8	13
461	Unprecedented Reversible Real-Time Luminescent Sensing of H2S in the Gas Phase. Analytical Chemistry, 2019, 91, 2231-2238.	6.5	21
462	The oxygen sensing mechanism of a triphenylamine-based cyclometalated platinum(II) complex. Journal of Luminescence, 2019, 208, 46-50.	3.1	4
463	Efficient one-pot catalyst-free synthesis of novel coumarin- spiro[indoline-3,4'-pyran] conjugates via three-component domino reaction in aqueous medium. Green Chemistry Letters and Reviews, 2019, 12, 1-8.	4.7	13
464	Colourimetric plastic film indicator for the detection of the volatile basic nitrogen compounds associated with fish spoilage. Talanta, 2019, 194, 830-836.	5 . 5	88
465	Highly flexible and solution-processed organic photodiodes and their application to optical luminescent oxygen sensors. Organic Electronics, 2019, 65, 100-109.	2.6	11
466	Novel fluorescence assay using µ-wells coated by BODIPY dye as an enzymatic sensing platform. Measurement: Journal of the International Measurement Confederation, 2019, 135, 145-150.	5.0	6

#	Article	IF	CITATIONS
467	Impact of bidentate N,C-Chelate ligands on the performance of phosphorescent Pt(II) complexes as oxygen sensors. Journal of Organometallic Chemistry, 2019, 880, 300-311.	1.8	2
468	Microfluidic Sensors with Impregnated Fluorophores for Simultaneous Imaging of Spatial Structure and Chemical Oxygen Gradients. ACS Sensors, 2019, 4, 317-325.	7.8	5
469	Luminescent TOP Nanosensors for Simultaneously Measuring Temperature, Oxygen, and pH at a Single Excitation Wavelength. Analytical Chemistry, 2019, 91, 2337-2344.	6.5	49
470	Image of O2 dynamics released by oak wood submerged in model wine with nanoparticle sensors. Sensors and Actuators B: Chemical, 2019, 284, 337-345.	7.8	2
471	Rapid identification of homogeneous O2 evolution catalysts and comparative studies of Ru(II)-carboxamides vs. Ru(II)-carboxylates in water-oxidation. Journal of Catalysis, 2019, 369, 10-20.	6.2	11
472	Methoxyâ€Substituted Difluoroboron Benzoylacetonate Complexes with Colorâ€Tunable Phosphorescence. ChemPhotoChem, 2019, 3, 31-36.	3.0	13
473	Life sensors: current advances in oxygen sensing by lanthanide complexes. New Journal of Chemistry, 2019, 43, 1094-1116.	2.8	18
474	Hydrogen Sulfide (H ₂ S) Gas Sensor: A Review. IEEE Sensors Journal, 2019, 19, 2394-2407.	4.7	96
475	Photostability of oxygen-sensitive core-shell nanofibers. Sensors and Actuators B: Chemical, 2019, 283, 269-277.	7.8	6
476	Optical oxygen sensors based on microfibers formed from fluorinated copolymers. Sensors and Actuators B: Chemical, 2019, 282, 885-895.	7.8	25
477	Luminescent sensor for O2 detection in biomethane streams. Sensors and Actuators B: Chemical, 2019, 279, 458-465.	7.8	11
478	Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. Nano Letters, 2020, 20, 803-811.	9.1	92
479	Pesticide-induced photoluminescence quenching of ultra-small Eu3+-activated phosphate and vanadate nanoparticles. Journal of Materials Science and Technology, 2020, 38, 197-204.	10.7	8
480	Rare earth–doped oxide materials for photoluminescence-based gas sensors. , 2020, , 271-305.		3
481	An amine linker group modulates luminescent properties in a Rhenium(I) tricarbonyl complex. How can it be applied for ratiometric oxygen sensing?. Dyes and Pigments, 2020, 172, 107787.	3.7	10
482	A porous luminescent Zn-MOF for selective probing Fe3+ and nitrophenolic compounds. Inorganic Chemistry Communication, 2020, 111, 107644.	3.9	11
483	Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors. New Biotechnology, 2020, 56, 27-37.	4.4	12
484	Development of novel optical pH sensors based on coumarin 6 and nile blue A encapsulated in resin particles and specific support materials. Materials Science and Engineering C, 2020, 107, 110323.	7.3	23

#	Article	IF	CITATIONS
485	Extruded phosphorescence based oxygen sensors for large-scale packaging applications. Sensors and Actuators B: Chemical, 2020, 304, 127357.	7.8	18
486	Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Analytical Chemistry, 2020, 92, 397-430.	6.5	209
487	Application of O2 sensor technology to monitor performance of industrial beef samples packaged on three different vacuum packaging machines. Sensors and Actuators B: Chemical, 2020, 304, 127338.	7.8	13
488	Quinoline-annulated porphyrin platinum complexes as NIR emitters. Journal of Porphyrins and Phthalocyanines, 2020, 24, 386-393.	0.8	4
489	Effects of phenyl/thienyl substituents at acetylacetone auxiliary ligands on the properties of cyclometalated platinum(II) complexes. Dyes and Pigments, 2020, 173, 107949.	3.7	12
490	Multivariable oxygen sensing based on photoluminescence and photoconductivity of TiO2 nanoparticles. Sensors and Actuators B: Chemical, 2020, 303, 127236.	7.8	6
491	Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Journal of Physical Chemistry Letters, 2020, 11, 562-566.	4.6	36
492	Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature. RSC Advances, 2020, 10, 1007-1014.	3.6	46
493	Real-time physiological measurements of oxygen using a non-invasive self-referencing optical fiber microsensor. Nature Protocols, 2020, 15, 207-235.	12.0	20
494	A microfluidic organotypic device for culture of mammalian intestines <i>ex vivo</i> . Analytical Methods, 2020, 12, 297-303.	2.7	24
495	Eight Cd(<scp>ii</scp>) coordination polymers with persistent room-temperature phosphorescence: intriguing dual emission and time-resolved afterglow modulation. Inorganic Chemistry Frontiers, 2020, 7, 777-785.	6.0	34
496	A Comprehensive Study on Tetraaryltetrabenzoporphyrins. Chemistry - A European Journal, 2020, 26, 3287-3296.	3.3	17
497	Automation and opportunities for industry scale-up of microphysiological systems., 2020,, 441-462.		4
498	Synthesis, characterization, and reversible oxygen binding of β-diketonate–Eu(III) complexes bearing anthracene. Inorganic Chemistry Communication, 2020, 112, 107727.	3.9	6
499	Fluorometric sensing of oxygen using manganese(II)-doped zinc sulfide nanocrystals. Mikrochimica Acta, 2020, 187, 66.	5.0	5
500	Effects of fluorine and phenyl substituents on oxygen sensitivity and photostability of cyclometalated platinum(II) complexes. Sensors and Actuators B: Chemical, 2020, 304, 127378.	7.8	23
501	Proof of concept apparatus for the design of a simple, low cost, mobile e-nose for real-time victim localization (human presence) based on indoor air quality monitoring sensors. Sensing and Bio-Sensing Research, 2020, 27, 100312.	4.2	7
502	Humidityâ€Insensitive Tissue Oxygen Tension Sensing for Wearable Devices < sup >†< /sup > . Photochemistry and Photobiology, 2020, 96, 373-379.	2.5	13

#	Article	IF	CITATIONS
503	Imaging O ₂ dynamics and microenvironments in the seagrass leaf phyllosphere with magnetic optical sensor nanoparticles. Plant Journal, 2020, 104, 1504-1519.	5.7	15
504	Smart traceability for food safety. Critical Reviews in Food Science and Nutrition, 2022, 62, 905-916.	10.3	64
505	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	12.8	122
506	Luminescent Oxygen-Sensitive Ink to Produce Highly Secured Anticounterfeiting Labels by Inkjet Printing. Journal of the American Chemical Society, 2020, 142, 13558-13564.	13.7	104
507	Synthesis and properties of fluorinated cyclometalated Ir(III) complexes. Tetrahedron, 2020, 76, 131390.	1.9	1
508	Modified Screen Printed Electrode Suitable for Electrochemical Measurements in Gas Phase. Analytical Chemistry, 2020, 92, 3689-3696.	6.5	11
509	Novel Large π-Conjugated Coronene-Based Molecules: Diaryl-Substituted 1,2,7,8,13,14-Hexamethoxytribenzo[a,g,m]coronenes. Russian Journal of Organic Chemistry, 2020, 56, 1779-1783.	0.8	1
510	Polymer matrix: A good substrate material for oxygen probes used in pressure sensitive paints. Advances in Colloid and Interface Science, 2020, 283, 102240.	14.7	10
511	Long-Term Quantitatively Imaging Intracellular Chloride Concentration Using a Core-/Shell-Structured Nanosensor and Time-Domain Dual-Lifetime Referencing Method. ACS Sensors, 2020, 5, 3971-3978.	7.8	12
512	Understanding the impact of controlled oxygen delivery to 3D cancer cell culture., 2020,, 661-696.		0
513	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie - International Edition, 2020, 59, 23456-23460.	13.8	62
514	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie, 2020, 132, 23662-23666.	2.0	7
515	Development of a Ratiometric Fluorescent Glucose Sensor Using an Oxygen-Sensing Membrane Immobilized with Glucose Oxidase for the Detection of Glucose in Tears. Biosensors, 2020, 10, 86.	4.7	21
516	Lifetime-based nanothermometry <i>in vivo</i> with ultra-long-lived luminescence. Chemical Communications, 2020, 56, 10694-10697.	4.1	31
517	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	38.1	784
518	3D printed O ₂ indicators. Analyst, The, 2020, 145, 4124-4129.	3.5	6
519	An Europiumâ€(III) Luminophore with Pressureâ€Sensing Units: Effective Back Energy Transfer in Coordination Polymers with Hexadentate Porous Stable Networks. ChemPlusChem, 2020, 85, 1989-1993.	2.8	9
520	Recovery characteristics of different tube materials in relation to combustion products. International Journal for Ion Mobility Spectrometry, 2020, 23, 83-90.	1.4	2

#	ARTICLE	IF	CITATIONS
521	Encapsulated Nanodroplets for Enhanced Fluorescence Detection by Nanoâ€Extraction. Small, 2020, 16, 2004162.	10.0	7
522	Visualizing NH3 emission and the local O2 and pH microenvironment of soil upon manure application using optical sensors. Environment International, 2020, 144, 106080.	10.0	20
523	Vapochromic luminescence of a spin-coated copper(<scp>i</scp>) complex thin film by the direct coordination of vapour molecules. Dalton Transactions, 2020, 49, 16946-16953.	3.3	15
524	Aggregation-induced responses (AIR) of 2D-derived layered nanostructures enable emerging colorimetric and fluorescence sensors. Analyst, The, 2020, 145, 7464-7476.	3.5	3
525	Real time monitoring of oxygen uptake of hepatocytes in a microreactor using optical microsensors. Scientific Reports, 2020, 10, 13700.	3.3	9
526	Recombination mechanisms of luminescence type gas sensors. Physical Chemistry Chemical Physics, 2020, 22, 19948-19956.	2.8	2
527	Dual Oxygen and Temperature Luminescence Learning Sensor with Parallel Inference. Sensors, 2020, 20, 4886.	3.8	7
528	Lightâ∈Assisted and Gateâ∈Tunable Oxygen Gas Sensor Based on Rhenium Disulfide Fieldâ∈Effect Transistors. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000330.	2.4	7
529	Design and Development of a Mobile e-nose platform for Real Time Victim Localization in Confined Spaces During USaR Operations., 2020,,.		2
530	Use of an oxygen planar optode to assess the effect of high velocity microsprays on oxygen penetration in a human dental biofilms in-vitro. BMC Oral Health, 2020, 20, 230.	2.3	12
531	Mapping O2 concentration in ex-vivo tissue samples on a fast PLIM macro-imager. Scientific Reports, 2020, 10, 19006.	3.3	8
532	Versatile fabrication and integration method of optical oxygen sensors in organ-on-chips., 2020,,.		4
533	A new covalent organic polymer used to highly selective detection of Fe3+ ions. E3S Web of Conferences, 2020, 213, 01008.	0.5	0
534	Ratiometric Sensor Based on PtOEP-C6/Poly (St-TFEMA) Film for Automatic Dissolved Oxygen Content Detection. Sensors, 2020, 20, 6175.	3.8	10
535	Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews, 2020, 120, 12357-12489.	47.7	299
536	Encapsulation of Phosphorescent Pt(II) Complexes in Zn-Based Metal–Organic Frameworks toward Oxygen-Sensing Porous Materials. Inorganic Chemistry, 2020, 59, 7252-7264.	4.0	34
537	Intersystem crossing ⟨i>via⟨ i> charge recombination in a perylene–naphthalimide compact electron donor/acceptor dyad. Journal of Materials Chemistry C, 2020, 8, 8305-8319.	5 . 5	28
538	A biocompatible phosphorescent Ir(<scp>iii</scp>) oxygen sensor functionalized with oligo(ethylene) Tj ETQq1 1 Chemistry, 2020, 44, 10459-10471.	. 0.784314 2.8	1 rgBT /Over 22

#	Article	IF	CITATIONS
539	Covalent immobilization of luminescent oxygen indicators reduces cytotoxicity. Biomedical Microdevices, 2020, 22, 41.	2.8	5
540	Investigations of Low-Symmetrical Tetraaryltetrabenzoporphyrins Produced by Mixed Condensation Reactions. Journal of Organic Chemistry, 2020, 85, 7781-7792.	3.2	8
541	Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: From molecular structure design to photophysical properties and applications. Coordination Chemistry Reviews, 2020, 417, 213371.	18.8	79
542	Nanodiagnostics to monitor biofilm oxygen metabolism for antibiotic susceptibility testing. Analyst, The, 2020, 145, 3996-4003.	3.5	5
543	Efficient near-infrared luminescence from bis-cyclometalated iridium(<scp>iii</scp>) complexes with rigid quinoline-derived ancillary ligands. Chemical Communications, 2020, 56, 8754-8757.	4.1	24
544	Improving oxygen sensing performance via inner-molecular π-π stacking in a series of phosphorescent Cu(I) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118537.	3.9	3
545	Characterization of planar phosphorescence based oxygen sensors on a TCSPC-PLIM macro-imager. Sensors and Actuators B: Chemical, 2020, 321, 128459.	7.8	5
546	A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device. Microporous and Mesoporous Materials, 2020, 305, 110396.	4.4	24
547	Highly porous, soft, and flexible vapor-phase polymerized polypyrrole–styrene–ethylene–butylene–styrene hybrid scaffold as ammonia and strain sensor. RSC Advances, 2020, 10, 22533-22541.	3.6	12
548	White-Light Emission and Tunable Luminescence Colors of Polyimide Copolymers Based on FRET and Room-Temperature Phosphorescence. ACS Omega, 2020, 5, 14831-14841.	3.5	31
549	A New Non-invasive Technique for Measuring 3D-Oxygen Gradients in Wells During Mammalian Cell Culture. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595.	4.1	18
550	Fast Timing Techniques in FLIM Applications. Frontiers in Physics, 2020, 8, .	2.1	25
551	Crossâ€Linked Fluorinated Poly(Aryl Ether) (Câ€FPAE) Films: Preparation Strategy, Performance Study, and Low Dielectric Applications. Macromolecular Materials and Engineering, 2020, 305, 1900866.	3.6	11
552	Thiophenes, benzannulated forms, and analogs. , 2020, , 47-238.		0
553	Electricity-powered artificial root nodule. Nature Communications, 2020, 11, 1505.	12.8	19
554	Reversible Fluorescence Switching of Metal–Organic Framework Nanoparticles for Use as Security Ink and Detection of Pb ²⁺ Ions in Aqueous Media. ACS Applied Nano Materials, 2020, 3, 3684-3692.	5.0	45
555	TADF-Emitting Zn(II)-Benzoporphyrin: An Indicator for Simultaneous Sensing of Oxygen and Temperature. ACS Sensors, 2020, 5, 1020-1027.	7.8	32
556	Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant. Advanced Materials, 2020, 32, e2001592.	21.0	23

#	Article	IF	Citations
557	Dual emission fluorescence/room-temperature phosphorescence of phenothiazine and benzotrifluoride derivatives and its application for optical sensing of oxygen. Sensors and Actuators B: Chemical, 2020, 321, 128533.	7.8	32
558	Ratiometric Nanoparticle Probe Based on FRETâ€Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity. Small, 2020, 16, e2002494.	10.0	41
559	Decoupling Oxygen and Chlorine Evolution Reactions in Seawater using Iridiumâ€based Electrocatalysts. ChemCatChem, 2020, 12, 4526-4532.	3.7	28
560	Luminescent ruthenium(II)-containing metallopolymers with different ligands: synthesis and application as oxygen nanosensor for hypoxia imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 2579-2587.	3.7	5
561	Hydrobiogeochemical Function of Soil Based Onsite Wastewater Treatment Systems: Insights from High-Resolution O2 Imaging. Journal of Sustainable Water in the Built Environment, 2020, 6, 04020005.	1.6	4
562	Reversible Oxygen Sensing Based on Multi-Emission Fluorescence Quenching. Sensors, 2020, 20, 477.	3.8	9
563	Dual Emission from Precious Metalâ€Free Luminophores Consisting of C, H, O, Si, and S/P at Room Temperature. Chemistry - A European Journal, 2020, 26, 5162-5167.	3.3	19
564	Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology, 2020, 13, e2208.	2.4	34
565	Toward noninvasive quantification of adipose tissue oxygenation with MRI. International Journal of Obesity, 2020, 44, 1776-1783.	3.4	9
566	Quantitative Mapping of Liver Hypoxia in Living Mice Using Timeâ€Resolved Wideâ€Field Phosphorescence Lifetime Imaging. Advanced Science, 2020, 7, 1902929.	11.2	20
567	Reversible Ratiometric Probe Combined with the Time-Gated Method for Accurate <i>In Vivo</i> Gastrointestinal pH Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25557-25564.	8.0	13
568	Electrospun nanofiber-based cancer sensors: A review. International Journal of Pharmaceutics, 2020, 583, 119364.	5.2	43
569	POLYMERIC STRUCTURES OPTIMIZED FOR ORGANIC PASSIVE ELECTRONIC COMPONENTS., 2020, , 341-391.		1
570	MASS SPECTROMETRYâ€BASED TECHNIQUES FOR DIRECT QUANTIFICATION OF HIGH IONIZATION ENERGY ELEMENTS IN SOLID MATERIALS—CHALLENGES AND PERSPECTIVES. Mass Spectrometry Reviews, 2021, 40, 359-380.	5.4	6
571	Switchable and adjustable AIE activity of Pt(II) complexes achieving swift-responding and highly sensitive oxygen sensing. Sensors and Actuators B: Chemical, 2021, 326, 128987.	7.8	20
572	Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS Photonics, 2021, 8, 3-17.	6.6	31
573	Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. Materials Chemistry Frontiers, 2021, 5, 458-464.	5.9	5
574	Ultrasensitive and reversible room-temperature resistive humidity sensor based on layered two-dimensional titanium carbide. Ceramics International, 2021, 47, 6463-6469.	4.8	27

#	ARTICLE	IF	CITATIONS
575	Combining metalloporphyrins and cyclometalated complexes $\hat{a} \in A$ luminous pair? Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113046.	3.9	4
576	NIR fluorescence of A–D–A type functional dyes modulated by terminal Lewis basic groups. Dyes and Pigments, 2021, 184, 108768.	3.7	6
577	Portable Oxygen-Sensing Device for the Improved Assessment of Compartment Syndrome and other Hypoxia-Related Conditions. ACS Sensors, 2021, 6, 43-53.	7.8	15
578	Impact of morphology on O2 permeability in silicone hydrogel membranes: new insights into domain percolation from experiments and simulations. Journal of Membrane Science, 2021, 621, 118970.	8.2	10
579	Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cellular and Molecular Life Sciences, 2021, 78, 1887-1907.	5.4	11
580	Optimal parameters in variableâ€velocity scanning luminescence lifetime microscopy. Microscopy Research and Technique, 2021, 84, 71-78.	2.2	1
581	Ru(ii)/BODIPY core co-encapsulated ratiometric nanotools for intracellular O2 sensing in live cancer cells. RSC Chemical Biology, 2021, 2, 1520-1533.	4.1	6
582	Advances in understanding the gas sensing mechanisms by <i>in situ</i> and <i>operando</i> spectroscopy. Journal of Materials Chemistry A, 2021, 9, 18175-18207.	10.3	29
583	Imaging the oxygen wave with a single bioluminescent bacterium. Chemical Science, 2021, 12, 12400-12406.	7.4	9
584	Optical Oxygen Measurements Within Cell Tissue Using Phosphorescent Microbeads and a Laser for Excitation. Series in Bioengineering, 2021, , 107-129.	0.6	1
585	Chapter 10. Porphyrins and Hydroporphyrins for In Vivo Bioimaging. RSC Smart Materials, 2021, , 292-327.	0.1	0
586	Optimization of bright, highly flexible, and humidity insensitive porphyrin-based oxygen-sensing materials. Journal of Materials Chemistry C, 2021, 9, 7555-7567.	5.5	12
587	Time-resolved analysis of photoluminescence at a single wavelength for ratiometric and multiplex biosensing and bioimaging. Chemical Science, 2021, 12, 11020-11027.	7.4	15
588	Optical Oxygen Sensor Patch Printed with Polystyrene Microparticles-based Ink on Flexible Substrate. IEEE Sensors Journal, 2021, 21, 1-1.	4.7	1
589	Design of polyazamacrocyclic Gd ³⁺ theranostic agents combining magnetic resonance imaging and two-photon photodynamic therapy. Inorganic Chemistry Frontiers, 2021, 8, 2213-2224.	6.0	8
590	Antimicrobial susceptibility testing by measuring bacterial oxygen consumption on an integrated platform. Lab on A Chip, 2021, 21, 3520-3531.	6.0	8
591	Viologen-derived material showing photochromic, visually oxygen responsive, and photomodulated luminescence behaviors. CrystEngComm, 2021, 23, 1019-1024.	2.6	27
592	Enzyme Cascade Reaction Monitoring and Control. , 2021, , 141-163.		0

#	Article	IF	CITATIONS
593	Automated 3D Microphysiometry Facilitates High-Content and Highly Reproducible Oxygen Measurements within 3D Cell Culture Models. ACS Sensors, 2021, 6, 1248-1260.	7.8	9
594	Oxygen consumption of individual cable bacteria. Science Advances, 2021, 7, .	10.3	28
596	New Autonomous Intelligent Sensor Design Approach for Multiple Parameter Inference. Engineering Proceedings, 2020, 2, 96.	0.4	1
597	An MOFâ€Based Luminescent Sensor Array for Pattern Recognition and Quantification of Metal Ions. Advanced Optical Materials, 2021, 9, 2002180.	7.3	48
599	Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nature Biotechnology, 2021, 39, 855-864.	17.5	74
600	Thermoâ€Sensitive Eu ^{III} Coordination Polymers with Amorphous Networks. ChemistrySelect, 2021, 6, 2812-2816.	1.5	5
601	Automated Miniaturized Digital Microfluidic Antimicrobial Susceptibility Test Using a Chip-Integrated Optical Oxygen Sensor. ACS Sensors, 2021, 6, 1147-1156.	7.8	39
602	A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform. Micromachines, 2021, 12, 281.	2.9	10
603	High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. Biofabrication, 2021, 13, 035037.	7.1	26
604	A pilot study of the dynamics of tissue oxygenation <i>in vivo</i> using time-resolved phosphorescence imaging. Journal of Innovative Optical Health Sciences, 2021, 14, .	1.0	4
605	Optode Based Chemical Imaging—Possibilities, Challenges, and New Avenues in Multidimensional Optical Sensing. ACS Sensors, 2021, 6, 1671-1680.	7.8	24
606	Instant Ultrasound-Evoked Precise Nanobubble Explosion and Deep Photodynamic Therapy for Tumors Guided by Molecular Imaging. ACS Applied Materials & Empty Interfaces, 2021, 13, 21097-21107.	8.0	26
607	Correcting a major error in assessing organic carbon pollution in natural waters. Science Advances, 2021, 7, .	10.3	37
608	Samarium doped calcium silicate derived from agro-food wastes and their structural, optical and luminescent properties. Ceramics International, 2021, 47, 21588-21598.	4.8	5
609	Luminescence lifetime imaging of three-dimensional biological objects. Journal of Cell Science, 2021, 134, 1-17.	2.0	30
610	Ultralong Room-Temperature Phosphorescence of Silicon-Based Pure Organic Crystal for Oxygen Sensing. CCS Chemistry, 2022, 4, 1007-1015.	7.8	22
611	Biocompatible Ir(III) Complexes as Oxygen Sensors for Phosphorescence Lifetime Imaging. Molecules, 2021, 26, 2898.	3.8	18
612	Redâ€toâ€NIR Iridium(III) Emitters: Synthesis, Photophysical and Computational Study, the Effects of Cyclometallating and βâ€Diketonate Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 2163-2170.	2.0	11

#	Article	IF	CITATIONS
613	Luminescence and sensitivity enhancement of oxygen sensors through tuning the spectral overlap between luminescent dyes and SiO 2 @Ag nanoparticles. Nano Select, 0, , .	3.7	1
614	Hydrogelâ€based composites: Unlimited platforms for biosensors and diagnostics. View, 2021, 2, 20200165.	5. 3	31
615	Luminescent intensity enhancement of pressure-sensitive paint by optimization of mole fraction of oxygen. Aerospace Science and Technology, 2021, 112, 106627.	4.8	1
616	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	7.3	39
617	Oxygen indicator films of acrylate photopolymers and TiO ₂ nanoparticles with tunable response times. Optical Materials Express, 2021, 11, 2244.	3.0	8
618	In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomaterials Science and Engineering, 2021, 7, 2926-2948.	5.2	95
619	Mesoporous TiO2 from Metal-Organic Frameworks for Photoluminescence-Based Optical Sensing of Oxygen. Catalysts, 2021, 11, 795.	3.5	13
620	Cost-Effective Real-Time Metabolic Profiling of Cancer Cell Lines for Plate-Based Assays. Chemosensors, 2021, 9, 139.	3.6	7
621	Implementation of multi-task learning neural network architectures for robust industrial optical sensing. , 2021, , .		0
622	Optical Sensing of Molecular Oxygen (O2) via Metal Oxide Photoluminescence: A Comparative Study of TiO2, SnO2 and ZnO. Chemosensors, 2021, 9, 163.	3.6	2
623	Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement. Measurement: Journal of the International Measurement Confederation, 2021, 178, 109323.	5.0	28
624	Noninvasive Urine Oxygen Monitoring and the Risk of Acute Kidney Injury in Cardiac Surgery. Anesthesiology, 2021, 135, 406-418.	2.5	42
625	How to Minimize Light–Organic Matter Interactions for All-Optical Sub-Cutaneous Temperature Sensing. ACS Omega, 2021, 6, 18860-18867.	3.5	1
626	High-performance polyethylene dissolved oxygen sensor with a petallike surface. Colloid and Polymer Science, 2021, 299, 1439-1446.	2.1	1
628	Development of Gas Sensor Array for Methane Reforming Process Monitoring. Sensors, 2021, 21, 4983.	3.8	9
629	Hybrid nano―and microgels doped with photoacoustic contrast agents for cancer theranostics. View, 2021, 2, 20200176.	5.3	7
630	Intracranial Sensors for Continuous Monitoring of Neurophysiology. Advanced Materials Technologies, 2021, 6, 2100339.	5.8	7
631	A sensorâ€based system for rapid onâ€site testing of microbial contamination in meat samples and carcasses. Journal of Applied Microbiology, 2022, 132, 1210-1220.	3.1	9

#	Article	IF	CITATIONS
632	Self-powered flexible oxygen sensors for intelligent food packaging. Food Packaging and Shelf Life, 2021, 29, 100713.	7.5	18
633	Synthesis, Structure, Photophysics, and Singlet Oxygen Sensitization by a Platinum(II) Complex of ⟨i⟩Meso⟨ i⟩â€Tetraâ€Acenaphthyl Porphyrin. European Journal of Inorganic Chemistry, 2021, 2021, 4089-4095.	2.0	8
634	A novel gas assay for ultra-small amounts of molecular oxygen based on the chemiluminescence of divalent europium. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113430.	3.9	6
635	Derivatives of Bis(trifluoromethyl)biphenyl and Various Donor Noieties Exhibiting Dual State Emission. Journal of Luminescence, 2022, 241, 118502.	3.1	6
636	Hydrogel-incorporated colorimetric sensors with high humidity tolerance for environmental gases sensing. Sensors and Actuators B: Chemical, 2021, 345, 130404.	7.8	26
637	Lifetime oxygen sensors based on block copolymer micelles and non-covalent human serum albumin adducts bearing phosphorescent near-infrared iridium(III) complex. European Polymer Journal, 2021, 159, 110761.	5.4	6
638	Oxygen sensing properties of thianthrene and phenothiazine derivatives exhibiting room temperature phosphorescence: Effect of substitution of phenothiazine moieties. Sensors and Actuators B: Chemical, 2021, 345, 130369.	7.8	22
639	Luminescence sensing of oxygen using copper iodide hybrid material. Sensors and Actuators B: Chemical, 2021, 346, 130566.	7.8	10
640	A shining proposal for the detection of dissolved O2 in aqueous medium: Self-calibrated optical sensing via a covalent hybrid structure of carbon-dots&Ru. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120003.	3.9	3
641	ReSe2/metal interface for hydrogen gas sensing. Journal of Colloid and Interface Science, 2021, 603, 511-517.	9.4	12
642	Difluoroboron \hat{l}^2 -diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging. Scientific Reports, 2021, 11, 1076.	3.3	11
643	Wireless Wearable Sensor Paired With Machine Learning for the Quantification of Tissue Oxygenation. IEEE Internet of Things Journal, 2021, 8, 17557-17567.	8.7	10
644	Fast-response oxygen sensitive transparent coating for inner pressure ratiometric optical mapping. Journal of Materials Chemistry C, 2021, 9, 3919-3927.	5.5	4
645	Red to near-infrared phosphorescent Ir(<scp>iii</scp>) complexes with electron-rich chelating ligands. Chemical Communications, 2021, 57, 1975-1988.	4.1	46
646	Photoinduced <i>versus</i> spontaneous host–guest electron transfer within a MOF and chromic/luminescent response. Inorganic Chemistry Frontiers, 2021, 8, 4828-4837.	6.0	16
647	Fluorescence Lifetime Imaging (FLIM): Basic Concepts and Recent Applications. Springer Series in Chemical Physics, 2015, , 119-188.	0.2	9
648	Molecular Probes. Smart Sensors, Measurement and Instrumentation, 2018, , 35-48.	0.6	1
649	Precious Metal-Free Organic Small Molecule Luminophores That Exhibit Room Temperature Phosphorescence., 2019,, 43-76.		4

#	Article	IF	CITATIONS
650	Oxygen Sensors for Food Packaging. , 2019, , 507-522.		2
651	Development of highly sensitive [Ru(bpy)3]2+ - Based optical oxygen sensing thin films in the presence with Fe3O4 and Fe3O4@Ag NPs. Optical Materials, 2020, 101, 109772.	3.6	9
652	Metal-Organic Frameworks as Chemical Sensors. RSC Smart Materials, 2015, , 192-245.	0.1	2
653	Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. Nanotechnology, 2021, 32, 062001.	2.6	10
654	Fast response time fiber optical pH and oxygen sensors. , 2020, , .		2
655	Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas. PLoS ONE, 2017, 12, e0184250.	2.5	16
656	Radiotherapy Using High-Intensity Pulsed Radiation Beams (FLASH): A Radiation-Chemical Perspective. Radiation Research, 2020, 194, 607-617.	1.5	57
657	Technical note: Measurements and data analysis of sediment–water oxygen flux using a new dual-optode eddy covariance instrument. Biogeosciences, 2020, 17, 4459-4476.	3.3	8
658	High-resolution ultrasonic spectroscopy. Journal of Sensors and Sensor Systems, 2018, 7, 207-217.	0.9	23
659	Optical fiber sensors based on sol–gel materials: design, fabrication and application in concrete structures. Materials Advances, 2021, 2, 7237-7276.	5.4	14
660	Time-Resolved and Temperature-Dependent Fractional Amplitude Contributions to the Broadband Emission of CdSe Quantum Dots. Crystals, 2021, 11, 1284.	2.2	0
661	Computational Protocol to Calculate the Phosphorescence Energy of Pt(II) Complexes: Is the Lowest Triplet Excited State Always Involved in Emission? A Comprehensive Benchmark Study. Inorganic Chemistry, 2021, 60, 17230-17240.	4.0	11
662	Effect of Sodium Dodecyl Sulfate on the Photoinduced Electron Transfer Reactions of Ruthenium(II)–Polypyridine Complexes with Phenolate Ions. Russian Journal of Physical Chemistry A, 2021, 95, 2074-2082.	0.6	1
663	Red Light-Emitting Water-Soluble Luminescent Iridium-Containing Polynorbornenes: Synthesis, Characterization and Oxygen Sensing Properties in Biological Tissues In Vivo. Molecules, 2021, 26, 6349.	3.8	4
664	Mechanistic details of the catalytic degradation of methylene blue by hydrogen peroxide in basic solution. The unexpected innocence of percarbonate. Polyhedron, 2021, 210, 115507.	2.2	4
665	Temperature-control for optical vapor sensors based on photoluminescence quenching. , 2015, , .		1
666	Focusing on Targets., 2015,, 551-601.		0
667	Luminescence Properties of Anthracene Chromophores in Cyclosiloxane-Based Hybrid Polymer Films. Rapid Communication in Photoscience, 2015, 4, 16-18.	0.1	0

#	Article	IF	CITATIONS
668	Hybrid Intelligence Nano-enriched Sensing and Management System for Efficient Water-Quality Monitoring. Lecture Notes in Networks and Systems, 2018, , 584-604.	0.7	O
670	QCM-OCS: Optochemical Sensing of Temperature and pO2 in the Cell Surface Junction. Springer Theses, 2018, , 295-343.	0.1	0
671	Optical Phenomenology for Materials Health Monitoring. Smart Sensors, Measurement and Instrumentation, $2018, 3-18.$	0.6	0
672	Nanotechnology at the Rescue of Neurodegenerative Diseases: Tools for Early Diagnostic. , 2019, , 19-48.		1
673	New approach for luminescence sensing based on machine learning. , 2019, , .		0
674	Fabrication of fluorescent oxygen gas-sensor probe module based on asymmetric 1 $\tilde{A}-2$ optical waveguides using UV imprint lithography. Optical Engineering, 2019, 58, 1.	1.0	3
676	A photometric pH assay for microplate bacterial cultures. Journal of Microbiological Methods, 2020, 172, 105910.	1.6	1
677	Surface Plasmon-Coupled Dual Emission Platform for Ultrafast Oxygen Monitoring after SARS-CoV-2 Infection. ACS Sensors, 2021, 6, 4360-4368.	7.8	10
678	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	10.0	170
679	Single crystal X-ray structure determination and enantiomeric recognition of chiral dinuclear europium (III) complexes towards BINOL. Inorganic Chemistry Communication, 2021, 134, 109025.	3.9	2
680	New Approach for Temperature-Immune Oxygen Sensing based on Pt-TFPP., 2021, , .		0
681	Ultrabright AIE of Ir(III) complexes achieving expeditious monitoring of oxygen and high-definition development of latent fingerprints. Sensors and Actuators B: Chemical, 2022, 350, 130894.	7.8	16
682	Incorporating fluorescent nanomaterials in organically modified sol–gel materials – creating single composite optical pH sensors. Sensors & Diagnostics, 2022, 1, 185-192.	3.8	7
683	Large-scale sensitivity adjustment for Gd-HMME room temperature phosphorescence oxygen sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120490.	3.9	5
684	Deep-learning for Multi-Parameter Luminescence Sensing: Demonstration of dual Sensor., 2020,,.		0
685	ВлиÑĐ½Đ¸Đµ Đ¼Đ¾ĐиÑ"Đ¸Ñ†Đ¸Ñ€Đ¾Đ²Đ°Đ½Đ¸Ñ•Đ½Đ°Đ½Đ¾Đ°Đ»Đ¼Đ°ĐĐĐ Đа Đ½Đ° ÑĐ¼Đ°Ñ‡Đ¸Đ	² Ð8ÐquÐ1⁄4	Đ¾ÑÑ,ÑŒ Đ
686	Estimation of Cortical Oxygen Metabolism in Awake Mice using Two-photon Imaging of Oxyphor 2P., 2020, , .		1
688	Wireless wearable device for detection of transcutaneous tissue oxygenation based on phase phosphorimetry., 2021,,.		0

#	Article	IF	CITATIONS
689	Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring. Chemosensors, 2021, 9, 316.	3.6	13
690	Wearable device for remote monitoring of transcutaneous tissue oxygenation. Biomedical Optics Express, 2020, 11, 6989.	2.9	24
691	Advanced multi-modal, multi-analyte optochemical sensing platform for cell analysis. Sensors and Actuators B: Chemical, 2022, 355, 131116.	7.8	5
692	Hypoxia-sensitive drug delivery to tumors. Journal of Controlled Release, 2022, 341, 431-442.	9.9	11
693	Wearable devices for remote monitoring of transcutaneous tissue oxygenation. , 2021, , .		0
694	Porphyrin based metal–organic frameworks: highly sensitive materials for optical sensing ofÂoxygen in gas phase. Journal of Materials Chemistry C, 2021, 9, 17099-17112.	5.5	20
695	Bright red emission with high color purity from Eu(<scp>iii</scp>) complexes with π-conjugated polycyclic aromatic ligands and their sensing applications. RSC Advances, 2021, 12, 810-821.	3.6	17
696	Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chemical Society Reviews, 2022, 51, 71-127.	38.1	45
697	Design and comprehensive characterization of novel fiber-optic sensor systems using fast-response luminescence-based O2 probes. Measurement: Journal of the International Measurement Confederation, 2022, 189, 110670.	5.0	4
698	Progress in the development of photoactivated materials for smart and active food packaging: Photoluminescence and photocatalysis approaches. Chemical Engineering Journal, 2022, 432, 134301.	12.7	18
699	A highly sensitive and flexible photonic crystal oxygen sensor. Sensors and Actuators B: Chemical, 2022, 355, 131326.	7.8	10
700	Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 2022, 375, 131738.	8.2	115
701	CHITOSAN-DERIVATIVES IN COMBINATIONS WITH SELECTED PORPHYRINOIDS AS NOVEL HYBRID MATERIALS FOR MEDICINE AND PHARMACY. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 63-78.	0.1	1
702	Efficient Room-Temperature Phosphorescence from Discrete Molecules Based on Thianthrene Derivatives for Oxygen Sensing and Detection. Frontiers in Chemistry, 2021, 9, 810304.	3.6	15
703	SensPIV: Simultaneous Visualization of Flow Fields and Oxygen Concentrations to Unravel Metabolic Exchange Fluxes. SSRN Electronic Journal, 0, , .	0.4	0
704	A near-infrared optical nanosensor for measuring aerobic respiration in microbial systems. Analyst, The, 2021, 147, 120-129.	3.5	8
705	Luminescent Eu(III)-based Coordination Polymers for Photonic Materials. Chemistry Letters, 2022, 51, 185-196.	1.3	3
706	Demonstration of temperature-sensitive paints with rigorously controlled thickness applied to variously shaped metal substrates with a highly stable connection based on a demulsification-induced fast solidification strategy. New Journal of Chemistry, 2022, 46, 3623-3630.	2.8	0

#	ARTICLE	IF	CITATIONS
707	Halide-containing organic persistent luminescent materials for environmental sensing applications. Chemical Science, 2022, 13, 2184-2201.	7.4	20
708	Thermally activated delayed fluorescence in an optically accessed soft matter environment. Journal of Materials Chemistry C, 2022, 10, 4533-4545.	5 . 5	3
709	Fastâ€Response Oxygen Optical Fiber Sensor based on PEA ₂ SnI ₄ Perovskite with Extremely Low Limit of Detection. Advanced Science, 2022, 9, e2104708.	11.2	20
710	Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Mikrochimica Acta, 2022, 189, 83.	5.0	25
711	Luminescent lanthanide coordination polymers with transformative energy transfer processes for physical and chemical sensing applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100485.	11.6	32
712	Smart sensing technologies for wastewater treatment plants. , 2022, , 1-17.		0
713	Development of novel handheld optical fiber dissolved oxygen sensor and its applications. Analytica Chimica Acta, 2022, 1200, 339587.	5 . 4	12
714	Microwave-Assisted Synthesis of Silver Nanoparticles for Multimode Colorimetric Sensing of Multiplex Metal Ions and Molecular Informatization Applications. ACS Applied Materials & Emp; Interfaces, 2022, 14, 9480-9491.	8.0	14
715	Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. Advanced Materials, 2022, 34, e2107876.	21.0	29
717	Luminescence-Based Sensors in Water Quality Analysis. , 2022, , .		0
718	An oxygen-sensitive probe and a hydrogel for optical imaging and photodynamic antimicrobial chemotherapy of chronic wounds. Biomaterials Science, 2022, 10, 2054-2061.	5.4	20
719	Phosphorescent Ir(<scp>iii</scp>) complexes derived from purine nucleobases. Dalton Transactions, 2022, 51, 5138-5150.	3.3	7
720	Photoluminescent properties of rare-earth doped perovskite calcium silicates and related systems. , 2022, , 89-113.		0
721	Ciliary Flows in Corals Ventilate Target Areas of High Photosynthetic Oxygen Production. SSRN Electronic Journal, 0, , .	0.4	1
722	Dual-lifetime luminescent probe for time-resolved ratiometric oxygen sensing and imaging. Dalton Transactions, 2022, 51, 6095-6102.	3.3	3
724	Ruthenium(II) Complexes with (3-Polyamino)phenanthrolines: Synthesis and Application in Sensing of Cu(II) Ions. Chemosensors, 2022, 10, 79.	3.6	4
725	Orthogonal Multiplexed NIR-II Imaging with Excitation-Selective Lanthanide-Based Nanoparticles. Analytical Chemistry, 2022, 94, 3661-3668.	6. 5	14
726	Crystal Structures and Fluorescent Properties of Two Distinct 2D Ag(I)/Cd(II) Coordination Polymers Based on Isonicotinic Acid Derivative and Dipyridyl Coligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 118-126.	1.0	0

#	Article	IF	CITATIONS
727	Noise versus Resolution in Optical Chemical Imaging─How Reliable Are Our Measurements?. ACS Omega, 2022, 7, 11829-11838.	3.5	0
728	Oxygen Gas Sensing Using a Hydrogel-Based Organic Electrochemical Transistor for Work Safety Applications. Polymers, 2022, 14, 1022.	4.5	6
729	Colorimetric oxygen indicator films based on $\hat{l}^2 \hat{a} \in \mathcal{E}$ yclodextrin grafted chitosan/montmorillonite with redox system for intelligent food packaging. Packaging Technology and Science, 0, , .	2.8	5
730	Metal Complexes of Porphyrinoids Containing Nonpyrrolic Heterocycles. Chemical Reviews, 2022, 122, 7990-8052.	47.7	26
731	Porous matrix materials in optical sensing of gaseous oxygen. Analytical and Bioanalytical Chemistry, 2022, 414, 4311-4330.	3.7	10
732	Internal Referencing Photoluminescence Probes for Simultaneous Sensing of O ₂ Gas and Temperature Based on Mn:MAPb(Br/Cl) ₃ Perovskite. Advanced Photonics Research, 2022, 3, .	3.6	3
733	A fluorescent dissolved oxygen sensor with autocalibration based on ruthenium (II) tris-bathophenanthroline complex. Journal of Physics: Conference Series, 2021, 2131, 052094.	0.4	0
734	Silica Nanoparticles Coated with Smaller Au Nanoparticles for the Enhancement of Optical Oxygen Sensing. ACS Applied Nano Materials, 2021, 4, 14146-14152.	5.0	4
735	Self-Sensitized and Reversible O ₂ Reactivity with Bisphenalenyls for Simple, Tunable, and Multicycle Colorimetric Oxygen-Sensing Films. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1817-1825.	8.0	13
736	Microfluidic-Based Oxygen (O2) Sensors for On-Chip Monitoring of Cell, Tissue and Organ Metabolism. Biosensors, 2022, 12, 6.	4.7	26
737	Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues. Accounts of Chemical Research, 2021, 54, 4565-4575.	15.6	20
738	Dualâ€Emission of Fluorescence and Roomâ€Temperature Phosphorescence for Ratiometric and Colorimetric Oxygen Sensing and Detection Based on Dispersion of Pure Organic Thianthrene Dimer in Polymer Host. Advanced Optical Materials, 2022, 10, .	7.3	24
739	Red Lightâ€Emitting Thermallyâ€Activated Delayed Fluorescence of Naphthalimideâ€Phenoxazine Electron Donorâ€Acceptor Dyad: Timeâ€Resolved Optical and Magnetic Spectroscopic Studies. Chemistry - A European Journal, 2022, 28, .	3.3	12
743	Effective Detection of Phenylalanine Using Pyridine Based Sensor. Journal of Fluorescence, 2022, 32, 1481-1488.	2.5	4
744	A Patient-Ready Wearable Transcutaneous CO2 Sensor. Biosensors, 2022, 12, 333.	4.7	15
745	Perspectives of different colourâ€emissive nanomaterials in fluorescent ink, LEDs, cell imaging, and sensing of various analytes. Luminescence, 2023, 38, 867-895.	2.9	9
746	Oxygen-sensitive luminescence of ultrathin CdWO4:Sm3+ films. Optical Materials, 2022, 128, 112383.	3.6	1
747	Probing Chemical Environment Using Polymeric Reverse Micellar Solutions Which Sequester Inorganic Coordination Complex Fluorophores. Journal of the Pennsylvania Academy of Science, 2016, 90, 1-6.	0.1	0

#	Article	IF	CITATIONS
748	Development of Dissolved Oxygen Sensor Based on Timeâ€domain Lifetime Measurement with a Sensing Film Fabricated by Embedding PtOEP in Highly Stable and Highly Hydrophobic Fluorinated Matrix. Chemistry - an Asian Journal, 2022, 17, .	3.3	1
749	Magnetically Reusable and Well-dispersed Nanoparticles for Oxygen Detection in Water. Journal of Fluorescence, 0, , .	2.5	1
750	Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems. Cell Reports Methods, 2022, 2, 100216.	2.9	12
751	Ensemble density-dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes. AIMS Microbiology, 2022, 8, 208-225.	2.2	1
752	Efficient monomolecular white emission of phenothiazine boronic ester derivatives with room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 10347-10355.	5.5	8
7 53	Advanced Multimodal Solid-State Optochemical Ph and Dual Ph/O2 Sensors for Cell Analysis. SSRN Electronic Journal, 0, , .	0.4	0
754	Oxygen Measurement in Microdevices. Annual Review of Analytical Chemistry, 2022, 15, 221-246.	5.4	5
755	Acriflavine in aqueous solution: excitation and hydration. Journal of Molecular Modeling, 2022, 28, .	1.8	1
756	Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Analytical Chemistry, 2022, 94, 9656-9664.	6.5	13
757	Advances in the development of Cu(I) complexes as optical oxygen-sensitive probes. Journal of Coordination Chemistry, 2022, 75, 876-893.	2.2	3
758	Rare earth metal-organic framework hybrid materials for luminescence responsive chemical sensing of general molecules., 2022,, 283-325.		0
759	Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle. Sensors, 2022, 22, 4811.	3.8	7
760	Ratiometric Oxygen Sensing with H-NOX Protein Conjugates. Inorganic Chemistry, 2022, 61, 10521-10532.	4.0	3
761	Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites. Chemosensors, 2022, 10, 290.	3.6	7
762	Single bond activated AIE of platinum(II) complex achieving expeditious oxygen monitoring and high-efficiency felodipine identification. Dyes and Pigments, 2022, 205, 110582.	3.7	5
763	Development of a NIR iridium(III) complex for self-calibrated and luminogenic detection of boron trifluoride. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121658.	3.9	7
764	Self-Assembled Porous Polymer Films for Improved Oxygen Sensing. SSRN Electronic Journal, 0, , .	0.4	0
765	Exploring the Cobalt–Histidine Complex for Wide-Ranging Colorimetric O ₂ Detection. ACS Omega, 2022, 7, 27734-27741.	3.5	3

#	ARTICLE	IF	CITATIONS
766	Distinctive Aspects in Aquation, Proton-Coupled Redox, and Photoisomerization Reactions between Geometric Isomers of Mononuclear Ruthenium Complexes with a Large-Ï€-Conjugated Tetradentate Ligand. Inorganic Chemistry, 2022, 61, 13956-13967.	4.0	2
767	Photoelectron Storages in Functionalized Carbon Nitrides for Colorimetric Sensing of Oxygen. ACS Sensors, 2022, 7, 2328-2337.	7.8	11
769	Machine learning–based inverse design for electrochemically controlled microscopic gradients of O ₂ and H ₂ O ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
770	Phosphorescence lifetime measurements with sensor materials: Comparison of the four different detection platforms. Sensors and Actuators B: Chemical, 2022, 371, 132496.	7.8	1
771	Advanced multimodal solid-state optochemical pH and dual pH/O2 sensors for cell analysis. Sensors and Actuators B: Chemical, 2022, 371, 132486.	7.8	2
772	Effects of NiO, SnO2, and Ni-doped SnO2 semiconductor metal oxides on the oxygen sensing capacity of H2TPP. Analytica Chimica Acta, 2022, 1229, 340387.	5.4	1
773	Highly sensitive trace oxygen sensing based on far-ultraviolet absorption spectroscopy. Analyst, The, 2022, 147, 4365-4370.	3.5	4
774	Optical 4D oxygen mapping of microperfused tissue models with tunable <i>in vivo</i> -like 3D oxygen microenvironments. Lab on A Chip, 2022, 22, 4167-4179.	6.0	7
775	Experimental and numerical optimization of optical wearable devices to measure tissue oxygenation. , 2022, , .		0
776	Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold. Chemical Science, 2022, 13, 11368-11375.	7.4	4
777	Optimization of the output polarization state in multi-pass cell enhanced Faraday rotation spectrometers, , 2022, , .		0
778	NIR-emissive, singlet-oxygen-sensitizing gold tetra(thiocyano)corroles. Dalton Transactions, 2022, 51, 13236-13245.	3.3	4
779	Fitting nonlinear models to continuous oxygen data with oscillatory signal variations via a loss based on Dynamic Time Warping*. IFAC-PapersOnLine, 2022, 55, 216-221.	0.9	0
780	Dual-mode nanophotonic upconversion oxygen sensors. Nanoscale, 2022, 14, 13362-13372.	5.6	4
781	Penetration Depth of Propylene Glycol, Sodium Fluorescein and Nile Red into the Skin Using Non-Invasive Two-Photon Excited FLIM. Pharmaceutics, 2022, 14, 1790.	4.5	6
782	Optical Oxygen Sensors Show Reversible Cross-Talk and/or Degradation in the Presence of Nitrogen Dioxide. ACS Sensors, 0, , .	7.8	1
783	Strongly Improving the Sensitivity of Phosphorescence-Based Optical Oxygen Sensors by Exploiting Nano-Porous Substrates. Biosensors, 2022, 12, 774.	4.7	3
784	Self-assembled porous polymer films for improved oxygen sensing. Sensors and Actuators B: Chemical, 2023, 374, 132794.	7.8	1

#	ARTICLE	IF	CITATIONS
785	Molecular engineering of ruthenium(<scp>ii</scp>) complexes with (3-polyamino)phenanthroline ligands for developing reusable optical sensors for Cu(<scp>ii</scp>) ions. Journal of Materials Chemistry C, 2022, 10, 17266-17280.	5.5	0
786	Heterosubstituted Derivatives of PtPFPP for O ₂ Sensing and Cell Analysis: Structure–Activity Relationships. Bioconjugate Chemistry, 2022, 33, 2161-2169.	3.6	2
787	Amphiphilic Diblock Copolymers Bearing Poly(Ethylene Glycol) Block: Hydrodynamic Properties in Organic Solvents and Water Micellar Dispersions, Effect of Hydrophobic Block Chemistry on Dispersion Stability and Cytotoxicity. Polymers, 2022, 14, 4361.	4.5	1
788	Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nature Chemistry, 2023, 15, 83-90.	13.6	52
789	Optical O ₂ Sensors Also Respond to Redox Active Molecules Commonly Secreted by Bacteria. MBio, 2022, 13 , .	4.1	3
790	Enhanced deep red to near-infrared (DR-NIR) phosphorescence in cyclometalated iridium(<scp>iii</scp>) complexes. Inorganic Chemistry Frontiers, 2022, 9, 6544-6553.	6.0	6
791	Photoactive Copper Complexes: Properties and Applications. Chemical Reviews, 2022, 122, 16365-16609.	47.7	81
792	Panchromatic Excited-State Absorption in Bis-Cyclometalated Iridium Isocyanide Complexes. Inorganic Chemistry, 2022, 61, 19344-19353.	4.0	3
793	Hollow-core fiber cavity-enhanced photothermal spectroscopy for oxygen detection., 2022,,.		0
794	A high-performance optical trace oxygen sensor based on the room-temperature phosphorescence from palladium (II) octaethylporphyrin. Measurement: Journal of the International Measurement Confederation, 2023, 206, 112275.	5.0	6
795	Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. Lab on A Chip, 2022, 22, 4758-4773.	6.0	8
796	Bifunctional Temperature and Oxygen Dual Probe Based on Anthracene and Europium Complex Luminescence. International Journal of Molecular Sciences, 2022, 23, 14526.	4.1	3
797	A One-Dimensional Cu(I) Coordination Polymer with Optical Sensing of Oxygen and Temperature. Inorganics, 2022, 10, 253.	2.7	2
798	The Challenges of O2 Detection in Biological Fluids: Classical Methods and Translation to Clinical Applications. International Journal of Molecular Sciences, 2022, 23, 15971.	4.1	2
799	Recent Advances in Luminescent Metal-Organic Frameworks for Detection of Gas and Volatile Organic Molecules. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	4.7	0
800	Synthesis, optical properties and DFT-TDDFT computational study of phenothiazine dye: donor-acceptor molecules. Pigment and Resin Technology, 2022, ahead-of-print, .	0.9	0
801	Luminescent Porphyrinic Metal–Organic Frameworks for Oxygen Sensing: Correlation of Nanostructure and Sensitivity. ACS Applied Nano Materials, 2023, 6, 248-260.	5.0	4
802	Biosensors for organs-on-a-chip and organoids. , 2023, , 471-514.		0

#	Article	IF	CITATIONS
803	Rapid photo-oxidation reactions of imidazole derivatives accelerated by planar quinoid oxidation-state structures. Journal of Materials Chemistry A, 2023, 11, 5067-5075.	10.3	3
804	Mechanochemical Synthesis of TiO2-CeO2 Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor. Sensors, 2023, 23, 1313.	3.8	3
805	Balanced Wavelength Modulated Zeeman Spectroscopy for Oxygen Detection. Optics Express, 0, , .	3.4	2
806	A portable electrochemical microsensor for in-site measurement of dissolved oxygen and hydrogen sulfide in natural water. Talanta, 2023, 256, 124269.	5. 5	6
807	Detection and Imaging of Small Molecules of Biological Significance., 2023,, 329-365.		0
808	Platinum(<scp>ii</scp>) diimine complexes containing phenylpyridine ligands decorated with anionic <i>closo</i> -monocarborane clusters [CB ₁₁ H ₁₂] ^{â^'} . Dalton Transactions, 2023, 52, 3249-3253.	3.3	1
809	Performance assessment of the two oxygen sensor based respirometric platforms with complex media and in selective bacterial assays. Sensors and Actuators B: Chemical, 2023, 383, 133582.	7.8	5
810	Recent advances of cyclometalated Ir(III) complexes for optical oxygen sensing. Inorganica Chimica Acta, 2023, 550, 121435.	2.4	1
811	Skin pH in the Elderly and Appropriate Skin Care. EMJ Dermatology, 0, , 86-94.	0.0	6
812	Self-optimized single-nanowire photoluminescence thermometry. Light: Science and Applications, 2023, 12, .	16.6	15
813	Norbornene-Substituted Cationic Iridium(III) Complex and Water-Soluble Luminescent Polymers Based on It: Synthesis, Photophysical and Cytotoxic Properties. Russian Journal of General Chemistry, 2022, 92, 2666-2675.	0.8	0
814	Luminescent Lanthanide Complexes for Effective Oxygenâ€Sensing and Singlet Oxygen Generation. ChemPlusChem, 2023, 88, .	2.8	4
815	Fluorescence Sensing of Physical Parameters and Chemical Composition in Gases and Condensed Media., 2023,, 237-294.		0
816	Metal-organic frameworks (MOF)-based sensors for detection of toxic gases: A review of current status and future prospects. Materials Chemistry and Physics, 2023, 299, 127512.	4.0	29
817	O2-sensitive microcavity arrays: A new platform for oxygen measurements in 3D cell cultures. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	4
818	Janus-type emission from a cyclometalated iron(iii) complex. Nature Chemistry, 2023, 15, 468-474.	13.6	19
819	An oxygen-sensitive cyclometalated platinum(II) complex with a triphenylamine modified acetylacetone derivative. Tetrahedron Letters, 2023, 119, 154427.	1.4	3
820	Novel Au Nanoparticle-Modified ZnO Nanorod Arrays for Enhanced Photoluminescence-Based Optical Sensing of Oxygen. Sensors, 2023, 23, 2886.	3.8	2

#	Article	IF	CITATIONS
821	Synthesis of fluorinated copolymers and their applications as pressureâ€responsive materials. Journal of Applied Polymer Science, 2023, 140, .	2.6	2
822	Morphological effect of fabricated surfaces obtained from fluorinated porphyrin based copolymer for oxygen and pressure sensing applications. European Polymer Journal, 2023, , 112081.	5.4	2
823	Cytocentric measurement for regenerative medicine. Frontiers in Medical Technology, 0, 5, .	2.5	1
824	Oxygen Sensor-Based Respirometry and the Landscape of Microbial Testing Methods as Applicable to Food and Beverage Matrices. Sensors, 2023, 23, 4519.	3.8	6
825	A Microfluidic, Flow-Through, Liquid Reagent Fluorescence Sensor Applied to Oxygen Concentration Measurement. Sensors, 2023, 23, 4984.	3.8	1
826	High-throughput optical sensing of peri-cellular oxygen in cardiac cells: system characterization, calibration, and testing. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	0
827	Lead-free double perovskite halide fluorescent oxygen sensor with high stability. Ceramics International, 2023, 49, 30266-30272.	4.8	3
828	Efficient degassing and ppm-level oxygen monitoring flow chemistry system. Reaction Chemistry and Engineering, 2023, 8, 2052-2059.	3.7	0
829	An Optical Fiber Sensor for Simultaneous Measurement of pO ₂ and pH. Open Journal of Applied Sciences, 2023, 13, 579-590.	0.4	0
833	Achieving simultaneous sensing of oxygen and temperature with metalloporphyrins featuring efficient thermally activated delayed fluorescence and phosphorescence. Sensors and Actuators B: Chemical, 2023, 393, 134236.	7.8	4
834	Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Frontiers in Physiology, 0, 14 , .	2.8	1
836	Tuning the Photochromic Properties of WO ₃ -Based Materials toward High-Performance Light-Responsive Textiles., 2023, 1, 1434-1451.		2
837	Dualâ€emissive Iridium(III) Complexes as Phosphorescent Probes with Orthogonal Responses to Analyte Binding and Oxygen Quenching. Angewandte Chemie, 0, , .	2.0	0
838	Dualâ€emissive Iridium(III) Complexes as Phosphorescent Probes with Orthogonal Responses to Analyte Binding and Oxygen Quenching. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
839	Photochargeable Semiconductors: in "Dark Photocatalysis―and Beyond. Advanced Functional Materials, 2023, 33, .	14.9	4
840	Photostable and high-brightness aggregation-induced emission of iridium luminogen achieving reliable and sensitive continuous luminescent quantification of molecular oxygen. Talanta, 2024, 266, 125059.	5.5	0
841	Engineered porosity for tissue-integrating, bioresorbable lifetime-based phosphorescent oxygen sensors. Biomaterials, 2023, 301, 122286.	11.4	1
842	Fluorinated Polymer Brush- <i>Grafted</i> Silica Nanoparticles: Robust and Durable Self-Cleaning Coating Materials. ACS Applied Polymer Materials, 0, , .	4.4	1

#	Article	IF	Citations
843	5-(2-Pyridyl)tetrabenzoporphyrin and Its Complexes with Zinc, Cobalt, Copper, and Iron. Synthesis, Spectral, Electrochemical, and Electrocatalytic Properties. Russian Journal of General Chemistry, 2023, 93, 1751-1759.	0.8	0
844	Recent Development on Sensing Strategies for Small Molecules Detections. Journal of Fluorescence, 0, , .	2.5	3
845	A functional unit combination strategy for enhancing red room-temperature phosphorescence. Chemical Science, 2023, 14, 9733-9743.	7.4	1
846	A strategy for designing temperature-sensitive complexes based on ligand vibration rotation mode control. Journal of Luminescence, 2023, 264, 120172.	3.1	0
847	Design strategies and applications of responsive metal-based luminescence probes in the bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 168, 117338.	11.4	0
848	Recent Advances in Triplet–Triplet Annihilation Upconversion for Bioimaging and Biosensing. Journal of Analysis and Testing, 2023, 7, 327-344.	5.1	2
849	Game of Crowns: Na ⁺ ls Coming! Red NIR-Emissive Hybrid Liquid Crystals Containing Discotic Crown Ethers and Na ₂ Mo ₆ X ₈ ⁱ Cl ₆ (X ⁱ = Cl or Br). ACS Applied Materials & Discotic Crown Ethers and Na _{300, 300, 300, 300, 300, 300, 300, 300,}	8.0	1
850	A cyclometalated N-heterocyclic carbene and acetylacetonate ligands in a phosphorescent Pt(II) dye for sensing glucose. Dyes and Pigments, 2023, 219, 111630.	3.7	0
851	Ratiometric fluorescent sensor with large pseudo-Stokes shifts for precise sensing and imaging of pH without interferential background fluorescence. Talanta, 2024, 266, 125041.	5.5	0
852	On the validity of rapid optical sensing of dioxygen by means of sensitivity, stability, and reversibility for archetype MOFs post-synthetically modified with $Eu < sup > 3 + < /sup >$. Journal of Materials Chemistry A, 0, , .	10.3	0
853	Direct Measurements of FLASH-Induced Changes in Intracellular Oxygenation. International Journal of Radiation Oncology Biology Physics, 2024, 118, 781-789.	0.8	0
854	Advances in sensor developments for cell culture monitoring. , 2023, 1, .		2
856	Photoâ€Responsive Dynamic Organic Roomâ€Temperature Phosphorescence Materials Based on a Functional Unit Combination Strategy. Advanced Materials, 2024, 36, .	21.0	2
858	Physiological oxygen measurements in vitro-Schrödinger's cat in 3D cell biology. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
859	Phosphinine vs Pyridine in Luminescent Cu ^I Complexes and Application in Lifetimeâ€Based Molecular Thermometer. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	0
860	From Pixels to Voxels: A Mechanistic Perspective on Volumetric 3D-Printing. Progress in Polymer Science, 2023, , 101755.	24.7	0
861	Nanomedicine Strategies in Conquering and Utilizing the Cancer Hypoxia Environment. ACS Nano, 2023, 17, 20875-20924.	14.6	4
862	A lanthanide metal-organic framework for highly selective and sensitive fluorescence detection of ciprofloxacin. Inorganic Chemistry Communication, 2023, 158, 111641.	3.9	0

#	Article	IF	CITATIONS
863	Optical sensors (optodes) for multiparameter chemical imaging: classification, challenges, and prospects. Analyst, The, 2023, 149, 29-45.	3.5	2
864	Highâ€Brightness, Hundredâ€Second Level Ultralong Afterglow Polymers Built via Ultrasoundâ€Synchronized Bâ€Oâ€Click Strategy. Advanced Optical Materials, 0, , .	7. 3	0
865	Optical hydrogen peroxide sensor for measurements in flow. Sensors and Actuators B: Chemical, 2024, 400, 134904.	7.8	0
866	Integrated Electrochemical and Optical Biosensing in Organsâ€onâ€Chip. ChemBioChem, 0, , .	2.6	0
867	Impact of Eucalyptus residue leaching on iron distribution in reservoir sediments assessed by high-resolution DGT technique. Environmental Science and Pollution Research, 0, , .	5.3	0
868	Combination of Organic and Inorganic Semiconductor for Sensing Applications. , 2023, , .		1
869	Urinary oxygen tension and its role in predicting acute kidney injury: A narrative review. Journal of Clinical Anesthesia, 2024, 93, 111359.	1.6	0
870	Polymer inclusion membranes based Optode: Recent advances and perspectives. TrAC - Trends in Analytical Chemistry, 2024, 171, 117498.	11.4	0
871	Preparation and characterization of dually fluorescent core–shell particles and dual-sensing membranes for simultaneous detection of pH and dissolved oxygen. Journal of Industrial and Engineering Chemistry, 2023, , .	5.8	0
872	Evaluation and optimization of the performance characteristics of fast response fiber optic oxygen gas probes. Sensors and Actuators A: Physical, 2024, 365, 114933.	4.1	O
873	[Ru(dpp) ₃]Cl ₂ â€Embedded Oxygen Nano Polymeric Sensors: A Promising Tool for Monitoring Intracellular and Intratumoral Oxygen Gradients with High Quantum Yield and Long Lifetime. Small, 0, , .	10.0	0
874	Highly sensitive detection of oxygen based on light-induced thermoelastic spectroscopy with a high power diode laser. Infrared Physics and Technology, 2024, 136, 105118.	2.9	0
875	A wireless optoelectronic probe to monitor oxygenation in deep brain tissue. Nature Photonics, 0, , .	31.4	1
876	Dopants Induce Persistent Room Temperature Phosphorescence in Triarylamine Boronate Esters. Angewandte Chemie, 2024, 136, .	2.0	0
877	Dopants Induce Persistent Room Temperature Phosphorescence in Triarylamine Boronate Esters. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
878	Triboelectric Spectroscopy for In Situ Chemical Analysis of Liquids. Journal of the American Chemical Society, 2024, 146, 6125-6133.	13.7	0
879	Rapid time-lapse 3D oxygen tension measurements within hydrogels using widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) and image segmentation. Analyst, The, 2024, 149, 1727-1737.	3.5	0
880	Novel dual-responsive phenothiazine-based probes for moisture detection and Cu2+ sensing. Microchemical Journal, 2024, 198, 110171.	4.5	O

#	Article	IF	CITATIONS
881	Tunable Self-Referenced Molecular Thermometers via Manipulation of Dual Emission in Platinum(II) Pyridinedipyrrolide Complexes. ACS Applied Materials & Samp; Interfaces, 2024, 16, 11930-11943.	8.0	0
882	The Art of Fluorescence Imaging with Chemical Sensors: The Next Decade 2012–2022. Chemosensors, 2024, 12, 31.	3.6	0
883	The Impact of Molecular Packing on Organic Room Temperature Phosphorescence and Corresponding Stimulus Response Effect. Advanced Functional Materials, 0, , .	14.9	0
884	Developments in sensor materials, technologies and applications. , 2024, , .		O
885	In-plane oxygen diffusion measurements in polymer films using time-resolved imaging of programmable luminescent tags. Scientific Reports, 2024, 14, .	3.3	0
886	Nâ€Doped Carbonâ€Quantumâ€Dotâ€Integrated Colorimetric System for Visible Photoprinting and Oxygen Sensing. Advanced Optical Materials, 2024, 12, .	7.3	0