Laser-induced porous graphene films from commercial

Nature Communications 5, 5714

DOI: 10.1038/ncomms6714

Citation Report

#	Article	IF	CITATIONS
1	Marker Pen Lithography for Flexible and Curvilinear On hip Energy Storage. Advanced Functional Materials, 2015, 25, 4976-4984.	7.8	50
2	Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework. ACS Central Science, 2015, 1, 68-76.	5.3	207
3	Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Research, 2015, 8, 3934-3943.	5.8	164
4	Is graphene a good transparent electrode for photovoltaics and display applications?. IET Circuits, Devices and Systems, 2015, 9, 403-412.	0.9	30
5	Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy and Environmental Science, 2015, 8, 1390-1403.	15.6	364
6	Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3414-3419.	4.0	352
7	Transient laser heating induced hierarchical porous structures from block copolymer–directed self-assembly. Science, 2015, 349, 54-58.	6.0	145
8	Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano, 2015, 9, 5868-5875.	7.3	542
9	<i>In Situ</i> Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene. ACS Nano, 2015, 9, 9244-9251.	7.3	198
10	Chemically modified graphene based supercapacitors for flexible and miniature devices. Electronic Materials Letters, 2015, 11, 719-734.	1.0	47
11	A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene. Nanomaterials, 2016, 6, 112.	1.9	18
12	Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors. Electrochemistry Communications, 2016, 70, 51-55.	2.3	46
13	Siliciumâ€kompatible Mikroâ€Superkondensatoren. Angewandte Chemie, 2016, 128, 6244-6246.	1.6	2
14	Exfoliating and Dispersing Fewâ€Layered Graphene in Lowâ€Boilingâ€Point Organic Solvents towards Solutionâ€Processed Optoelectronic Device Applications. Chemistry - an Asian Journal, 2016, 11, 1441-1446.	1.7	4
15	Siliconâ€Compatible Carbonâ€Based Microâ€Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 6136-6138.	7.2	27
16	Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Scientific Reports, 2016, 6, 27975.	1.6	112
17	Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Scientific Reports, 2016, 6, 39617.	1.6	26
18	Applications of graphene for communication, electronics and medical fields: A review. , 2016, , .		6

#	Article	IF	CITATIONS
19	Thermal conductivity enhancement of laser induced graphene foam upon P3HT infiltration. Applied Physics Letters, 2016, 109, .	1.5	24
20	<i>In situ</i> MoS ₂ Decoration of Laser-Induced Graphene as Flexible Supercapacitor Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10459-10465.	4.0	228
21	Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon, 2016, 104, 47-55.	5.4	92
22	Incorporating Graphene into Fuel Cell Design. Nanoscience and Technology, 2016, , 293-312.	1.5	0
23	Analytical methodologies using carbon substrates developed by pyrolysis. Analytical Methods, 2016, 8, 4163-4176.	1.3	16
24	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372.	10.2	368
25	Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy, 2016, 30, 790-800.	8.2	138
26	Flexible humidity sensors composed of graphite-like carbon micro-pinecone arrays. RSC Advances, 2016, 6, 95342-95348.	1.7	21
27	"Brick-and-mortar―sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V sâ^1 for supercapacitors. Nano Energy, 2016, 30, 84-92.	8.2	84
28	Rapid, Large-Area Synthesis of Hierarchical Nanoporous Silica Hybrid Films on Flexible Substrates. Journal of the American Chemical Society, 2016, 138, 13473-13476.	6.6	33
29	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016, 1, 1600166.	3.0	48
30	All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy and Environmental Science, 2016, 9, 2847-2854.	15.6	551
31	Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. Journal of Analytical and Applied Pyrolysis, 2016, 121, 275-286.	2.6	64
32	Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Advances, 2016, 6, 84769-84776.	1.7	77
33	Highly Efficient Laser Scribed Graphene Electrodes for Onâ€Chip Electrochemical Sensing Applications. Advanced Electronic Materials, 2016, 2, 1600185.	2.6	202
34	A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. Journal of Materials Chemistry A, 2016, 4, 16213-16218.	5.2	86
35	Highâ€Performance Solidâ€State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Advanced Energy Materials, 2016, 6, 1600909.	10.2	139
36	A Flexible Integrated System Containing a Microsupercapacitor, a Photodetector, and a Wireless Charging Coil. ACS Nano, 2016, 10, 11249-11257.	7.3	166

#	ARTICLE	IF	CITATIONS
37	Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing. Scientific Reports, 2016, 6, 33526.	1.6	144
38	CO ₂ Laser Direct Written MOF-Based Metal-Decorated and Heteroatom-Doped Porous Graphene for Flexible All-Solid-State Microsupercapacitor with Extremely High Cycling Stability. ACS Applied Materials & Director (1988) Applied Materials &	4.0	72
39	Highâ€Performance Pseudocapacitive Microsupercapacitors from Laserâ€Induced Graphene. Advanced Materials, 2016, 28, 838-845.	11.1	439
40	Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16907-16913.	4.0	87
41	Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films. Acta Materialia, 2016, 111, 315-320.	3.8	9
42	Bisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17784-17792.	4.0	106
43	A Highly Stretchable Supercapacitor Using Laserâ€Induced Graphene Electrodes onto Elastomeric Substrate. Advanced Energy Materials, 2016, 6, 1600050.	10.2	207
44	Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. Journal of Materials Chemistry A, 2016, 4, 1671-1679.	5.2	117
45	Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy, 2016, 21, 90-105.	8.2	65
46	Effect of layer number and layer stacking registry on the formation and quantification of defects in graphene. Carbon, 2016, 98, 592-598.	5.4	16
47	Flexible carbon micro-supercapacitors prepared by direct cw-laser writing. Proceedings of SPIE, 2016, ,	0.8	1
48	Laser induced MoS ₂ /carbon hybrids for hydrogen evolution reaction catalysts. Journal of Materials Chemistry A, 2016, 4, 6824-6830.	5.2	134
49	All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage. Chemical Communications, 2016, 52, 3919-3922.	2.2	56
50	Trends of elemental adsorption on graphene. Canadian Journal of Physics, 2016, 94, 437-447.	0.4	10
51	Laser induced domino exfoliation of graphite to graphene in spheroidal graphite cast iron. Surface and Coatings Technology, 2016, 285, 235-241.	2.2	7
52	Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon, 2016, 96, 522-531.	5.4	215
53	Insights into the Oxidation Mechanism of sp ² â€"sp ³ Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation. Langmuir, 2017, 33, 913-919.	1.6	33
54	Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbonâ [^] Polyaniline Composite. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9015-9023.	4.0	146

#	ARTICLE	IF	CITATIONS
55	An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nature Communications, 2017, 8, 14579.	5.8	396
56	Service Behavior of Multifunctional Triboelectric Nanogenerators. Advanced Materials, 2017, 29, 1606703.	11.1	106
57	Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors. Proceedings of SPIE, 2017, , .	0.8	5
58	A 1000-Volt planar micro-supercapacitor by direct-write laser engraving of polymers. , 2017, , .		4
59	Programmable high crystallinity carbon patterns. 2D Materials, 2017, 4, 025011.	2.0	2
60	Photonic nanomanufacturing of high performance energy device on flexible substrate. Proceedings of SPIE, 2017, , .	0.8	1
61	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie, 2017, 129, 3978-3982.	1.6	22
62	Coordination Polymer Framework Based Onâ€Chip Microâ€Supercapacitors with AC Lineâ€Filtering Performance. Angewandte Chemie - International Edition, 2017, 56, 3920-3924.	7.2	140
63	Direct laser scribed graphene/PVDF-HFP composite electrodes with improved mechanical water wear and their electrochemistry. Applied Materials Today, 2017, 8, 35-43.	2.3	18
64	Laserâ€Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Advanced Materials, 2017, 29, 1700496.	11.1	227
65	Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet. Applied Surface Science, 2017, 419, 893-900.	3.1	47
66	Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sensors, 2017, 2, 616-620.	4.0	153
67	High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochimica Acta, 2017, 241, 153-161.	2.6	93
68	Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18238-18247.	4.0	176
69	Magnetic Composite Hydrodynamic Pump With Laser-Induced Graphene Electrodes. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	22
70	Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 221, 17-34.	1.7	195
71	Scalable Fabrication of Photochemically Reduced Graphene-Based Monolithic Micro-Supercapacitors with Superior Energy and Power Densities. ACS Nano, 2017, 11, 4283-4291.	7.3	176
72	Bioinspired fractal electrodes for solar energy storages. Scientific Reports, 2017, 7, 45585.	1.6	54

#	Article	IF	CITATIONS
73	Monolithic and Flexible ZnS/SnO ₂ Ultraviolet Photodetectors with Lateral Graphene Electrodes. Small, 2017, 13, 1604197.	5.2	67
74	Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Materials, 2017, 7, 216-221.	9.5	94
75	New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology, 2017, 28, 174002.	1.3	80
76	Stimulusâ€Responsive Microâ€Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window. Advanced Materials, 2017, 29, 1604491.	11.1	153
77	Conversion of Langmuir–Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene. 2D Materials, 2017, 4, 014005.	2.0	6
78	Flexible Microâ€Supercapacitor Based on Graphene with 3D Structure. Small, 2017, 13, 1603114.	5.2	131
79	High-performance all-solid-state flexible carbon/TiO ₂ micro-supercapacitors with photo-rechargeable capability. RSC Advances, 2017, 7, 415-422.	1.7	53
80	High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode. Journal of Materials Chemistry A, 2017, 5, 24585-24593.	5.2	71
81	Singleâ€Step Reagentless Laser Scribing Fabrication of Electrochemical Paperâ€Based Analytical Devices. Angewandte Chemie, 2017, 129, 15309-15313.	1.6	39
82	Recent Progress in Microâ€Supercapacitors with Inâ€Plane Interdigital Electrode Architecture. Small, 2017, 13, 1701989.	5.2	180
83	Singleâ€Step Reagentless Laser Scribing Fabrication of Electrochemical Paperâ€Based Analytical Devices. Angewandte Chemie - International Edition, 2017, 56, 15113-15117.	7.2	122
84	A silk fabric derived carbon fibre net for transparent capacitive touch pads and all-solid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20608-20614.	5.2	35
85	Grapheneâ€Based Linear Tandem Microâ€Supercapacitors with Metalâ€Free Current Collectors and Highâ€Voltage Output. Advanced Materials, 2017, 29, 1703034.	11.1	132
86	Direct-write graphene resistors on aromatic polyimide for transparent heating glass. Sensors and Actuators A: Physical, 2017, 267, 327-333.	2.0	26
87	Laser-assisted selective lithography of reduced graphene oxide for fabrication of graphene-based out-of-plane tandem microsupercapacitors with large capacitance. Applied Physics Letters, 2017, 111, .	1.5	6
88	Advanced Photonic Processes for Photovoltaic and Energy Storage Systems. Advanced Materials, 2017, 29, 1700335.	11.1	61
89	Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30900-30908.	4.0	38
90	Miniature graphene-based supercapacitors fabricated by laser ablation. Microelectronic Engineering, 2017, 182, 1-7.	1.1	15

#	ARTICLE	IF	CITATIONS
91	A Survey of Graphene-Based Field Effect Transistors for Bio-sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 165-200.	0.5	2
92	Highly Catalytic Pt Nanoparticles Grown in Two-Dimensional Conducting Polymers at the Air–Water Interface. ACS Applied Materials & Diterfaces, 2017, 9, 30278-30282.	4.0	21
93	Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20422-20427.	5.2	48
94	Hierarchical porous graphene film: An ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon, 2017, 125, 308-317.	5.4	47
95	Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility. Journal of Power Sources, 2017, 367, 34-41.	4.0	32
96	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	6.4	222
97	Magnetic composite based magneto hydrodynamic pump., 2017,,.		1
98	Polyimide derived laser-induced graphene as adsorbent for cationic and anionic dyes. Carbon, 2017, 124, 515-524.	5.4	88
99	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
100	All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance. ACS Applied Materials & Diterfaces, 2017, 9, 26151-26160.	4.0	69
101	Laserâ€Induced Graphene Formation on Wood. Advanced Materials, 2017, 29, 1702211.	11.1	397
102	Direct Creation of Highly Conductive Laserâ€Induced Graphene Nanocomposites from Polymer Blends. Macromolecular Rapid Communications, 2017, 38, 1700176.	2.0	16
103	Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26840-26847.	4.0	103
104	Flexible Harsh environment micro supercapacitors using direct-write 2D transition metal carbides. , 2017, , .		1
105	High resolution flexible strain sensors for biological signal measurements. , 2017, , .		12
106	High performance hybrid supercapacitors on flexible polyimide sheets using femtosecond laser 3D writing. Journal of Laser Applications, 2017, 29, .	0.8	13
107	Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. Journal of Colloid and Interface Science, 2017, 507, 271-278.	5.0	72
108	Sensing system for salinity testing using laser-induced graphene sensors. Sensors and Actuators A: Physical, 2017, 264, 107-116.	2.0	84

#	Article	IF	CITATIONS
109	Highâ€Resolution Patterning and Transferring of Grapheneâ€Based Nanomaterials onto Tape toward Rollâ€toâ€Roll Production of Tapeâ€Based Wearable Sensors. Advanced Materials Technologies, 2017, 2, 1700223.	3.0	79
110	SEM and TEM Study of a Ceramic Membrane/Laser Induced Graphene Composite. Microscopy and Microanalysis, 2017, 23, 1742-1743.	0.2	0
111	Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41505-41511.	4.0	23
112	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
113	Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40645-40654.	4.0	32
114	Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy, 2017, 39, 306-320.	8.2	86
115	Graphene Coated Microfiltration Ceramic Membrane Fabricated by Photothermic Conversion of Polyimide. MRS Advances, 2017, 2, 2489-2495.	0.5	4
116	All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Materials, 2017, 4, 035012.	2.0	92
117	Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology, 2017, 12, 7-15.	15.6	753
118	Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cutâ€andâ€Transfer Strategy. Advanced Energy Materials, 2017, 7, 1601257.	10.2	7 5
119	Flexible temperature and flow sensor from laser-induced graphene. , 2017, , .		18
120	A wireless smart UV accumulation patch based on conductive polymer and CNT composites. RSC Advances, 2017, 7, 54741-54746.	1.7	6
121	Laser printed graphene on polyimide electrodes for magnetohydrodynamic pumping of saline fluids. , 2017, , .		3
122	Influence of temperature and humidity on carbon based printed flexible sensors., 2017,,.		3
123	Urinary incontinence monitoring system using laser-induced graphene sensors., 2017,,.		7
124	Membraneless microfluidic redox battery for wearable electronics applications., 2017,,.		5
125	Laser direct writing of reduced graphene oxide microelectrodes and the device application. , 2017, , .		0
126	Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 2018, 57, 04FA01.	0.8	19

#	Article	IF	CITATIONS
127	Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage. Journal of Power Sources, 2018, 384, 145-155.	4.0	19
128	Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy and Environmental Science, 2018, 11, 1717-1722.	15.6	79
129	Graphitized hierarchically porous carbon nanosheets derived from bakelite induced by high-repetition picosecond laser. Applied Surface Science, 2018, 450, 155-163.	3.1	27
130	Ultrafast catalytic synthesis of carbon nanofibers on a surface of commercial chlorinated polymers under the action of a high power ion beam of nanosecond duration. Applied Surface Science, 2018, 448, 642-645.	3.1	11
131	Three-dimensional direct laser written graphitic electrical contacts to randomly distributed components. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	2
132	Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Applied Surface Science, 2018, 445, 197-203.	3.1	49
133	Force and humidity dual sensors fabricated by laser writing on polyimide/paper bilayer structure for pulse and respiration monitoring. Journal of Materials Chemistry C, 2018, 6, 4727-4736.	2.7	59
134	Oxidized Laserâ€Induced Graphene for Efficient Oxygen Electrocatalysis. Advanced Materials, 2018, 30, e1707319.	11.1	94
135	Laser-Induced Graphene Biofilm Inhibition: Texture Does Matter. ACS Applied Nano Materials, 2018, 1, 1713-1720.	2.4	57
136	Laserâ€Reduced Graphene: Synthesis, Properties, and Applications. Advanced Materials Technologies, 2018, 3, 1700315.	3.0	116
137	In Situ Synthesis of Efficient Water Oxidation Catalysts in Laser-Induced Graphene. ACS Energy Letters, 2018, 3, 677-683.	8.8	91
138	Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano, 2018, 12, 2176-2183.	7.3	607
139	All-solid-state pseudocapacitive micro-supercapacitors from laser-treated polymer derivatives. Chinese Chemical Letters, 2018, 29, 596-598.	4.8	5
140	Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosensors and Bioelectronics, 2018, 107, 184-191.	5.3	238
141	High performance, environmentally benign and integratable Zn//MnO ₂ microbatteries. Journal of Materials Chemistry A, 2018, 6, 3933-3940.	5.2	53
142	Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nature Chemistry, 2018, 10, 126-131.	6.6	67
143	4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials, 2018, 12, 191-196.	9.5	51
144	Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 915-924.	4.0	71

#	Article	IF	CITATIONS
145	Laser-Induced Conversion of Teflon into Fluorinated Nanodiamonds or Fluorinated Graphene. ACS Nano, 2018, 12, 1083-1088.	7.3	91
146	A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications. Advanced Materials, 2018, 30, 1704449.	11.1	302
147	MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45, 266-272.	8.2	333
148	Performance analysis of flexible printed sensors for robotic arm applications. Sensors and Actuators A: Physical, 2018, 276, 226-236.	2.0	35
149	Highly Tunable and Scalable Fabrication of 3D Flexible Graphene Micropatterns for Directing Cell Alignment. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17704-17713.	4.0	17
150	Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 268, 260-267.	2.2	39
151	F-Doped carbon nano-onion films as scaffold for highly efficient and stable Li metal anodes: a novel laser direct-write process. Nanoscale, 2018, 10, 7630-7638.	2.8	20
152	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	7.8	144
153	Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Progress in Energy and Combustion Science, 2018, 67, 115-157.	15.8	271
154	Laser-induced graphene: preparation, functionalization and applications. Materials Technology, 2018, 33, 340-356.	1.5	92
155	Ultrafast All-Optical Switching Incorporating $\langle i \rangle$ in Situ $\langle i \rangle$ Graphene Grown along an Optical Fiber by the Evanescent Field of a Laser. ACS Photonics, 2018, 5, 445-455.	3.2	28
156	Laser-induced graphene fibers. Carbon, 2018, 126, 472-479.	5.4	287
157	An instant responsive polymer driven by anisotropy of crystal phases. Materials Horizons, 2018, 5, 99-107.	6.4	50
158	Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS Nano, 2018, 12, 289-297.	7.3	211
159	Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laserâ€Induced Graphene. Small, 2018, 14, 1702249.	5.2	179
160	A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sensors and Actuators A: Physical, 2018, 269, 79-90.	2.0	85
161	Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon, 2018, 127, 287-296.	5.4	163
162	Nanoionic transport and electric double layer formation at the electrode/polymer interface for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23650-23658.	5.2	14

#	Article	IF	CITATIONS
163	Flexible Carbon-based Urea Sensor by Laser Induced Carbonisation of Polyimide. , 2018, , .		1
164	Laserâ€Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide. Advanced Functional Materials, 2018, 28, 1805271.	7.8	228
165	Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS Applied Materials & Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes.	4.0	49
166	Mechanically Assembled, Three-Dimensional Hierarchical Structures of Cellular Graphene with Programmed Geometries and Outstanding Electromechanical Properties. ACS Nano, 2018, 12, 12456-12463.	7.3	48
167	Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices. Engineering, 2018, 4, 779-786.	3.2	46
168	Experimental and modeling study of CO2 laser writing induced polyimide carbonization process. Materials and Design, 2018, 160, 1168-1177.	3.3	64
169	A Simple Graphene NH3 Gas Sensor via Laser Direct Writing. Sensors, 2018, 18, 4405.	2.1	46
170	Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsystems and Nanoengineering, 2018, 4, 36.	3.4	68
171	Development of Printed Sensors for Shoe Sensing Applications. , 2018, , .		1
172	Mechanically Guided Assembly of Monolithic Three-Dimensional Structures from Elastomer Composites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44716-44721.	4.0	7
173	Synthesis of amorphous carbon nanofibers on a surface of commercial polymers under the action of a high power ion beam of nanosecond duration. Journal of Physics: Conference Series, 2018, 1115, 032088.	0.3	0
174	Recent Progress in Microâ€Supercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	4.6	154
175	Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials. Springer Series in Materials Science, 2018, , 1-37.	0.4	1
176	In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nanomaterials, 2018, 8, 517.	1.9	53
177	Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components. NPG Asia Materials, 2018, 10, 959-969.	3.8	56
178	Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39124-39133.	4.0	117
179	Laser Direct Writing of Heteroatom (N and S)â€Doped Graphene from a Polybenzimidazole Ink Donor on Polyethylene Terephthalate Polymer and Glass Substrates. Small, 2018, 14, e1803143.	5.2	26
180	Gasâ€Permeable, Multifunctional Onâ€Skin Electronics Based on Laserâ€Induced Porous Graphene and Sugarâ€Templated Elastomer Sponges. Advanced Materials, 2018, 30, e1804327.	11.1	269

#	Article	IF	CITATIONS
181	Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flexible and Printed Electronics, 2018, 3, 044002.	1.5	37
182	Flexible and Biofouling Independent Salinity Sensor. Advanced Materials Interfaces, 2018, 5, 1801110.	1.9	29
183	Stress/strain and curvature analysis of laser-scribed polyethylene terephthalate films with multiple grooves using finite element method. Advances in Mechanical Engineering, 2018, 10, 168781401879323.	0.8	4
184	Laser-Induced Reduction of Graphene Oxide by Intensity-Modulated Line Beam for Supercapacitor Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39777-39784.	4.0	56
185	Fabrication and Characterization of Laser Scribed Supercapacitor Based on Polyimide for Energy Storage. Key Engineering Materials, 0, 778, 181-186.	0.4	6
186	Laser-Induced Carbon-Based Smart Flexible Sensor Array for Multiflavors Detection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34005-34012.	4.0	43
187	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
188	Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). Journal of Electroanalytical Chemistry, 2018, 828, 41-49.	1.9	50
189	A Laser Scribed Graphene Oxide and Polyimide Hybrid Strain Sensor. Key Engineering Materials, 0, 778, 169-174.	0.4	6
190	A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of $Cd(II)$ and $Pb(II)$. Mikrochimica Acta, 2018, 185, 438.	2.5	42
191	The electrorheological performance of polyaniline-based hybrid particles suspensions in silicone oil: influence of the dispersing medium viscosity. Smart Materials and Structures, 2018, 27, 075001.	1.8	12
192	Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Microâ€5upercapacitors with Ultrahigh Power Output. Advanced Materials, 2018, 30, e1801384.	11.1	178
193	A Kirigami-inspired, extremely stretchable, high areal-coverage micro-supercapacitor patch. , 2018, , .		6
194	Direct Semiconductor Laser Writing of Few‣ayer Graphene Polyhedra Networks for Flexible Solidâ€State Supercapacitor. Advanced Electronic Materials, 2018, 4, 1800092.	2.6	22
195	Laser Scribed Graphene Cathode for Next Generation of High Performance Hybrid Supercapacitors. Scientific Reports, 2018, 8, 8179.	1.6	46
196	Laminated Object Manufacturing of 3Dâ€Printed Laserâ€Induced Graphene Foams. Advanced Materials, 2018, 30, e1707416.	11.1	172
197	Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 2018, 279, 46-52.	2.0	96
198	All-solid-state flexible planar lithium ion micro-capacitors. Energy and Environmental Science, 2018, 11, 2001-2009.	15.6	160

#	Article	IF	CITATIONS
199	Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50, 479-488.	8.2	176
200	Graphene-Based Flexible Energy Storage Devices. , 2018, , 175-199.		6
201	Laserâ€Induced Molybdenum Carbide–Graphene Composites for 3D Foldable Paper Electronics. Advanced Materials, 2018, 30, e1800062.	11.1	135
202	Facile laser fabrication of high quality graphene-based microsupercapacitors with large capacitance. Carbon, 2018, 137, 136-145.	5.4	29
203	Recent Progress on Laser Manufacturing of Microsize Energy Devices on Flexible Substrates. Jom, 2018, 70, 1816-1822.	0.9	6
204	Selective vacuum filtration-induced microelectrode patterning on paper for high-performance planar microsupercapacitor. Journal of Power Sources, 2018, 396, 632-638.	4.0	15
205	Laser Direct Writing of a High-Performance All-Graphene Humidity Sensor Working in a Novel Sensing Mode for Portable Electronics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23987-23996.	4.0	85
206	Laser direct writing of carbon-based micro-supercapacitors and electronic devices. Journal of Laser Applications, 2018, 30, .	0.8	4
207	A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosensors and Bioelectronics, 2018, 120, 160-167.	5.3	108
208	Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon, 2018, 139, 880-887.	5.4	91
209	Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. Journal of Materials Chemistry B, 2018, 6, 5415-5423.	2.9	76
210	Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials. Biosensors, 2018, 8, 42.	2.3	85
212	Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon, 2018, 139, 492-499.	5.4	25
213	Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20, 3689-3695.	4.6	98
214	The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects. Materials, 2018, 11, 36.	1.3	36
215	One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application. Sensors, 2018, 18, 1857.	2.1	33
216	Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. Npj 2D Materials and Applications, 2018, 2, .	3.9	117
217	Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors, 2018, 18, 645.	2.1	258

#	Article	IF	Citations
218	Graphene-based neurotechnologies for advanced neural interfaces. Current Opinion in Biomedical Engineering, 2018, 6, 138-147.	1.8	35
219	Electrochemical sensor based on palladium loaded laser scribed graphitic carbon nanosheets for ultrasensitive detection of hydrazine. New Journal of Chemistry, 2018, 42, 13744-13753.	1.4	12
220	High-Voltage Flexible Microsupercapacitors Based on Laser-Induced Graphene. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 26357-26364.	4.0	70
221	Monolithic electrochemical cells for overall water splitting. Journal of Power Sources, 2018, 397, 37-43.	4.0	16
222	Processing and manufacturing of graphene-based microsupercapacitors. Materials Chemistry Frontiers, 2018, 2, 1750-1764.	3.2	36
223	Laser-Induced Graphene from Wood Impregnated with Metal Salts and Use in Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 5053-5061.	2.4	95
224	Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology, 2018, 29, 445401.	1.3	44
225	Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application. Applied Surface Science, 2018, 462, 353-361.	3.1	51
226	Bioelectronics with nanocarbons. Journal of Materials Chemistry B, 2018, 6, 7159-7178.	2.9	36
227	Graphene-Anchored Cuprous Oxide Nanoparticles from Waste Electric Cables for Electrochemical Sensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 12176-12186.	3.2	36
228	Laserâ€Induced Freestanding Graphene Papers: A New Route of Scalable Fabrication with Tunable Morphologies and Properties for Multifunctional Devices and Structures. Small, 2018, 14, e1802350.	5.2	97
229	Lignin Laser Lithography: A Directâ€Write Method for Fabricating 3D Graphene Electrodes for Microsupercapacitors. Advanced Energy Materials, 2018, 8, 1801840.	10.2	179
230	Flexible micro-supercapacitors assembled via chemically reduced graphene oxide films assisted by a laser printer. Nanotechnology, 2018, 29, 43LT01.	1.3	8
231	Direct Laser Writing of Supercapacitors. , 0, , .		1
232	3Dâ€Printed, Superelastic Polypyrrole–Graphene Electrodes with Ultrahigh Areal Capacitance for Electrochemical Energy Storage. Advanced Materials Technologies, 2018, 3, 1800053.	3.0	51
233	Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing. Analyst, The, 2018, 143, 3327-3334.	1.7	29
234	Recent Development of Fabricating Flexible Microâ€Supercapacitors for Wearable Devices. Advanced Materials Technologies, 2018, 3, 1800028.	3.0	69
235	Laser-Induced Graphene. Accounts of Chemical Research, 2018, 51, 1609-1620.	7.6	441

#	Article	IF	CITATIONS
236	Facile Patterning of Laserâ€Induced Graphene with Tailored Li Nucleation Kinetics for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1901796.	10.2	76
237	Multifunctional Flexible Sensor Based on Laser-Induced Graphene. Sensors, 2019, 19, 3477.	2.1	66
238	Polyimide-derived laser-induced porous graphene-incorporated microwave resonator for high-performance humidity sensing. Applied Physics Express, 2019, 12, 106501.	1.1	23
239	Graphene decorated polymeric flexible materials for lightweight high areal energy lithium-ion batteries. Applied Materials Today, 2019, 17, 123-129.	2.3	43
240	Flexible and Multi-Functional Graphene Sensor Platform. , 2019, , .		2
241	Wearable multifunctional printed graphene sensors. Npj Flexible Electronics, 2019, 3, .	5.1	84
242	PDMS/Polyimide Composite as an Elastomeric Substrate for Multifunctional Laser-Induced Graphene Electrodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33221-33230.	4.0	78
243	Scalable fabrication of high-performance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale, 2019, 11, 19772-19782.	2.8	7
244	All-solid-state supercapacitors from natural lignin-based composite film by laser direct writing. Applied Physics Letters, 2019, 115, .	1.5	46
245	Laser Fabrication of Graphene-Based Electronic Skin. Frontiers in Chemistry, 2019, 7, 461.	1.8	38
246	Freestanding laser induced graphene paper based liquid sensors. Carbon, 2019, 153, 472-480.	5.4	37
247	Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. Journal of Materials Chemistry C, 2019, 7, 9609-9617.	2.7	124
248	Directâ€Laserâ€Writing of Metal Sulfideâ€Graphene Nanocomposite Photoelectrode toward Sensitive Photoelectrochemical Sensing. Advanced Functional Materials, 2019, 29, 1904000.	7.8	135
249	Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nature Communications, 2019, 10, 3112.	5.8	91
250	One-step process for direct laser writing carbonization of NH4H2PO4 treated cellulose paper and its use for facile fabrication of multifunctional force sensors with corrugated structures. Cellulose, 2019, 26, 7423-7435.	2.4	19
251	Upgrading coal to multifunctional graphene-based materials by direct laser scribing. Carbon, 2019, 153, 585-591.	5.4	44
252	ZnO decorated laser-induced graphene produced by direct laser scribing. Nanoscale Advances, 2019, 1, 3252-3268.	2.2	23
253	Transforming lignin into porous graphene <i>via</i> direct laser writing for solid-state supercapacitors. RSC Advances, 2019, 9, 22713-22720.	1.7	52

#	Article	IF	CITATIONS
254	Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy, 2019, 64, 103938.	8.2	49
255	Controlling the electronic properties of 2D/3D pillared graphene and glass-like carbon <i>via</i> metal atom doping. Nanoscale, 2019, 11, 16414-16427.	2.8	13
256	Natural Carbon Byâ€Products for Transparent Heaters: The Case of Steamâ€Cracker Tar. Advanced Materials, 2019, 31, e1900331.	11.1	13
257	Tiâ€rich TiO ₂ Tubular Nanolettuces by Electrochemical Anodization for Allâ€Solidâ€State Highâ€Rate Supercapacitor Devices. ChemSusChem, 2019, 12, 4064-4073.	3.6	33
258	Fabrication of Nanostructured Carbon on the Surface of Commercial Polymers Using a High-Energy Ion Beam. Journal of Surface Investigation, 2019, 13, 387-389.	0.1	0
259	A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat. ACS Nano, 2019, 13, 8639-8647.	7.3	80
260	Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors. Nanoscale, 2019, 11, 14392-14399.	2.8	30
261	A Dualâ€Functional Grapheneâ€Based Selfâ€Alarm Healthâ€Monitoring Eâ€Skin. Advanced Functional Materials, 2019, 29, 1904706.	7.8	88
262	Laser-Graving-Assisted Fabrication of Foldable Supercapacitors for On-Chip Energy Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42172-42178.	4.0	9
263	Onâ€Chip Microsupercapacitors: From Material to Fabrication. Energy Technology, 2019, 7, 1900820.	1.8	20
264	A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochimica Acta, 2019, 328, 135066.	2.6	79
265	On the Formation of Nanostructured Carbon Layers on the Surface of Organic Polymers under the Action of a High-Power Ion Beam. Journal of Surface Investigation, 2019, 13, 624-627.	0.1	4
266	Allâ€Solidâ€State Planar Sodiumâ€Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways. Advanced Science, 2019, 6, 1902147.	5.6	34
267	Radio Frequency Heating of Laser-Induced Graphene on Polymer Surfaces for Rapid Welding. ACS Applied Nano Materials, 2019, 2, 7032-7042.	2.4	28
268	Laser-Induced Graphene Stamp for High Performacne Elecrochemical Sensing Applications. , 2019, , .		2
269	Stimulus Responsive 3D Assembly for Spatially Resolved Bifunctional Sensors. Small, 2019, 15, e1904224.	5.2	31
270	Highly Sensitive and Reliable Strain Sensor Based on MoS ₂ -Decorated Laser-Scribed Graphene for Wearable Electronics., 2019,,.		2
271	Laser-Patternable Graphene Field Emitters for Plasma Displays. Nanomaterials, 2019, 9, 1493.	1.9	5

#	Article	IF	CITATIONS
272	Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications. Journal of Power Sources, 2019, 441, 227199.	4.0	52
273	Oneâ€Step Scalable Fabrication of Grapheneâ€Integrated Microâ€Supercapacitors with Remarkable Flexibility and Exceptional Performance Uniformity. Advanced Functional Materials, 2019, 29, 1902860.	7.8	104
274	Graphene Nanoarchitectonics: Recent Advances in Grapheneâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1903415.	11.1	289
275	Microcontact Printing with Laser Direct Writing Carbonization for Facile Fabrication of Carbonâ€Based Ultrathin Disk Arrays and Ordered Holey Films. Small, 2019, 15, e1902819.	5.2	5
276	Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitors. Journal of Power Sources, 2019, 438, 227044.	4.0	32
277	Three-Dimensional Reduced Graphene Oxide/Poly(3,4-Ethylenedioxythiophene) Composite Open Network Architectures for Microsupercapacitors. Nanoscale Research Letters, 2019, 14, 267.	3.1	12
278	Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. Journal of Materials Chemistry A, 2019, 7, 21496-21506.	5.2	63
279	Direct Laser Writing of Functional Strain Sensors in Polyimide Tubes. ACS Applied Polymer Materials, 2019, 1, 2914-2923.	2.0	14
280	Graphene-based wearable sensors. Nanoscale, 2019, 11, 18923-18945.	2.8	98
281	Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. Journal of Membrane Science, 2019, 591, 117322.	4.1	52
282	Poly(Ionic Liquid)-Derived Graphitic Nanoporous Carbon Membrane Enables Superior Supercapacitive Energy Storage. ACS Nano, 2019, 13, 10261-10271.	7.3	46
283	Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film. Journal of Materials Chemistry A, 2019, 7, 21168-21175.	5.2	32
284	Supercapacitors Fabricated via Laser-Induced Carbonization of Biomass-Derived Poly(furfuryl) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 262
285	Graphene at Fifteen. ACS Nano, 2019, 13, 10872-10878.	7.3	92
286	Self-Sterilizing Laser-Induced Graphene Bacterial Air Filter. ACS Nano, 2019, 13, 11912-11920.	7.3	112
287	Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy and Environmental Science, 2019, 12, 1534-1541.	15.6	192
288	3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. Journal of Materials Chemistry A, 2019, 7, 4055-4062.	5.2	63
289	Porous Fe3O4 thin films by pulsed laser assisted chemical solution deposition at room temperature. Applied Surface Science, 2019, 478, 408-411.	3.1	9

#	Article	IF	CITATIONS
290	Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane. ACS Applied Materials & Interfaces, 2019, 11, 6195-6200.	4.0	82
291	3D Laser Scribed Graphene Derived from Carbon Nanospheres: An Ultrahighâ€Power Electrode for Supercapacitors. Small Methods, 2019, 3, 1900005.	4.6	64
292	Inkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy storage. Materials Today Energy, 2019, 12, 155-160.	2.5	35
293	Wettability of graphene: from influencing factors and reversible conversions to potential applications. Nanoscale Horizons, 2019, 4, 339-364.	4.1	103
294	3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 2019, 7, 4230-4258.	5.2	232
295	The Road Towards Planar Microbatteries and Microâ€Supercapacitors: From 2D to 3D Device Geometries. Advanced Materials, 2019, 31, e1900583.	11.1	160
296	Patching laser-reduced graphene oxide with carbon nanodots. Nanoscale, 2019, 11, 12712-12719.	2.8	23
297	Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy and Environmental Science, 2019, 12, 2507-2517.	15.6	105
298	Strategies to Enhance the Performance of Electrochemical Capacitors Based on Carbon Materials. Frontiers in Materials, $2019, 6, .$	1.2	58
299	Ultrafast Laser Pulses Enable Oneâ€Step Graphene Patterning on Woods and Leaves for Green Electronics. Advanced Functional Materials, 2019, 29, 1902771.	7.8	138
300	Multifunctional Green Sensor Prepared by Direct Laser Writing of Modified Wood Component. Industrial & Direct Laser Writing of Modified Wood Component.	1.8	13
301	A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Research, 2019, 12, 1789-1795.	5.8	7 5
302	MoS ₂ -Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22531-22542.	4.0	120
303	Biomimetic Turbinate-like Artificial Nose for Hydrogen Detection Based on 3D Porous Laser-Induced Graphene. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24386-24394.	4.0	64
304	Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring. Npj Flexible Electronics, 2019, 3, .	5.1	35
305	Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano, 2019, 13, 7166-7174.	7.3	181
306	Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy, 2019, 179, 676-684.	4.5	82
307	Co(OH)2/Ag based interdigital micro-supercapacitor fabricated via laser welding and electrodeposition with excellent bendability. Inorganic Chemistry Communication, 2019, 104, 150-154.	1.8	11

#	Article	IF	CITATIONS
308	Wettability-Driven Assembly of Electrochemical Microsupercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20905-20914.	4.0	37
309	Laserâ€Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1900162.	3.0	55
310	Laser-induced nitrogen-doped hierarchically porous graphene for advanced electrochemical energy storage. Carbon, 2019, 150, 396-407.	5.4	46
312	Graphene Art. ACS Applied Nano Materials, 2019, 2, 3007-3011.	2.4	26
313	Direct conversion of waste tires into three-dimensional graphene. Energy Storage Materials, 2019, 23, 499-507.	9.5	61
314	Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for Onâ€Chip Energy Storage. Advanced Materials, 2019, 31, e1807450.	11.1	32
315	Status review on the MEMS-based flexible supercapacitors. Journal of Micromechanics and Microengineering, 2019, 29, 093001.	1.5	11
316	UV Laserâ€Induced Polyimideâ€toâ€Graphene Conversion: Modeling, Fabrication, and Application. Small Methods, 2019, 3, 1900208.	4.6	76
317	A laser-induced TiO ₂ -decorated graphene photoelectrode for sensitive photoelectrochemical biosensing. Chemical Communications, 2019, 55, 4945-4948.	2.2	38
318	Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano, 2019, 13, 3474-3482.	7.3	226
319	Direct Laser Writing-Assisted Method for Template-Free Fabrication of Biomass-Based Porous Carbon Platelets with Uniform Size and Arbitrarily Designed Shapes. ACS Omega, 2019, 4, 5870-5878.	1.6	6
320	Laser-Assisted Printed Flexible Sensors: A Review. Sensors, 2019, 19, 1462.	2.1	50
321	Low-temperature synthesis of graphene derivatives: mechanism and characterization. Chemical Papers, 2019, 73, 1997-2006.	1.0	6
322	Holey graphene synthesized by electrochemical exfoliation for high-performance flexible microsupercapacitors. Journal of Materials Chemistry A, 2019, 7, 7852-7858.	5.2	34
323	High-performance asymmetric micro-supercapacitors based on electrodeposited MnO ₂ and N-doped graphene. Nanotechnology, 2019, 30, 235403.	1.3	13
324	Graphite-Polyimide Sensor. Smart Sensors, Measurement and Instrumentation, 2019, , 129-168.	0.4	0
325	Laserâ€induced Grapheneâ€based Nonâ€enzymatic Sensor for Detection of Hydrogen Peroxide. Electroanalysis, 2019, 31, 1334-1341.	1.5	30
326	Shedding Light on Pseudocapacitive Active Edges of Single-Layer Graphene Nanoribbons as High-Capacitance Supercapacitors. ACS Applied Energy Materials, 2019, 2, 3665-3675.	2.5	18

#	Article	IF	CITATIONS
327	Conductive Metal–Organic Frameworks Selectively Grown on Laserâ€Scribed Graphene for Electrochemical Microsupercapacitors. Advanced Energy Materials, 2019, 9, 1900482.	10.2	142
328	Nonsaturating negative magnetoresistance in laser-induced graphene. Materials Letters, 2019, 248, 43-47.	1.3	14
329	Laser-Induced Graphene–PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10914-10921.	4.0	78
330	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
331	Laser-Induced Graphene Composites as Multifunctional Surfaces. ACS Nano, 2019, 13, 2579-2586.	7.3	127
332	Design, fabrication and characterization of capacitive humidity sensors based on emerging flexible technologies. Sensors and Actuators B: Chemical, 2019, 287, 459-467.	4.0	46
333	Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2019, 544, 155-163.	5.0	63
334	Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9947-9954.	4.0	27
335	Structural Design for Stretchable Microstrip Antennas. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8867-8877.	4.0	61
336	Laser Scribed Carbon Layers: Process Optimization & Sensor Applications. , 2019, , .		0
337	Laser-induced Flexible Graphene Bioelectrodes for Enzymatic Biofuel Cell., 2019,,.		2
338	Performance of Pressure Sensors based on Laser Induced Graphene Material on Polymeric Coated Substrate., 2019,,.		2
339	Graphene Based Futuristic Green Batteries For Energy Harvesting. , 2019, , .		1
340	Graphene Acoustic Devices. , 2019, , .		1
341	A Flexible Non-Enzymatic Electrochemical Glucose Sensor Using Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode., 2019,,.		0
342	Photochemical reduction of carbonyl group of polyimide by 450 nm diode laser. Journal of Physics: Conference Series, 2019, 1371, 012003.	0.3	0
343	Acoustic characterization of laser-induced graphene film thermoacoustic loudspeakers., 2019,,.		4
344	Research on sound pressure level of graphene loudspeaker with AC and AC/DC excitation. Japanese Journal of Applied Physics, 2019, 58, 116502.	0.8	6

#	Article	IF	CITATIONS
345	Flexible and Highly Sensitive Strain Sensor Based on Laser-Induced Graphene Pattern Fabricated by 355 nm Pulsed Laser. Sensors, 2019, 19, 4867.	2.1	40
346	The Fabrication of Micro/Nano Structures by Laser Machining. Nanomaterials, 2019, 9, 1789.	1.9	80
347	Laser induced molybdenum sulphide loading on doped graphene cathode for highly stable lithium sulphur battery. Communications Chemistry, 2019, 2, .	2.0	18
348	Synthesis of Laser Scribed Graphene Electrode with Optimized Power for Biosensing. , 2019, , .		0
349	Synthesis and Characterization of Laser Induced Graphene (LIG) and laser Reduced Graphene Oxide (IrGO) by using a pulsed CO2 laser. MRS Advances, 2019, 4, 3327-3335.	0.5	6
350	Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser. Carbon, 2019, 141, 83-91.	5.4	68
351	Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Applied Materials & Device Active Temperature Control.	4.0	37
352	Laser-Induced Graphitization of Cellulose Nanofiber Substrates under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 2270-2275.	3.2	52
353	Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24, 81-102.	6.2	138
354	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
355	Block Copolymer Self-Assembly Directed Hierarchically Structured Materials from Nonequilibrium Transient Laser Heating. Macromolecules, 2019, 52, 395-409.	2.2	45
356	lonic liquid/poly-l-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochimica Acta, 2019, 295, 514-523.	2.6	52
357	Blowing Route towards Advanced Inorganic Foams. Bulletin of the Chemical Society of Japan, 2019, 92, 245-263.	2.0	38
358	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
359	Znâ€lon Hybrid Microâ€Supercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	11.1	266
360	The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Composites Part B: Engineering, 2019, 165, 10-46.	5.9	162
361	A Supramolecular Coordinationâ€Polymerâ€Derived Electrocatalyst for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 4036-4039.	1.7	30
362	Direct laser writing of graphene films from a polyether ether ketone precursor. Journal of Materials Science, 2019, 54, 4192-4201.	1.7	37

#	Article	IF	CITATIONS
363	High-performance ionic polymer–metal composite actuators fabricated with microneedle roughening. Smart Materials and Structures, 2019, 28, 015007.	1.8	13
364	Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2019, 11, 6166-6173.	4.0	64
365	Laser-Induced Graphene Hybrid Catalysts for Rechargeable Zn-Air Batteries. ACS Applied Energy Materials, 2019, 2, 1460-1468.	2.5	55
366	Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. Npj Flexible Electronics, 2019, 3, .	5.1	87
367	Laser-Induced Graphene on Additive Manufacturing Parts. Nanomaterials, 2019, 9, 90.	1.9	24
368	Selective Oxidation and Carbonization by Laser Writing into Porous Silicon. Advanced Materials Technologies, 2019, 4, 1800334.	3.0	3
369	Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosensors and Bioelectronics, 2019, 124-125, 167-175.	5.3	135
370	Rapid and low-cost laser synthesis of hierarchically porous graphene materials as high-performance electrodes for supercapacitors. Journal of Materials Science, 2019, 54, 5658-5670.	1.7	21
371	Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon, 2019, 144, 116-126.	5.4	144
372	Rapid Synthesis of Zeolitic Imidazole Frameworks in Laserâ€Induced Graphene Microreactors. ChemSusChem, 2019, 12, 473-479.	3.6	17
373	Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation. Applied Surface Science, 2019, 471, 154-161.	3.1	52
374	Laserâ€Induced Graphene: From Discovery to Translation. Advanced Materials, 2019, 31, e1803621.	11.1	512
375	Nanomaterials., 2020,, 515-539.		3
376	A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon, 2020, 156, 506-513.	5.4	235
377	Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon, 2020, 156, 453-462.	5.4	25
378	Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Materials Today, 2020, 34, 115-131.	8.3	77
379	Laser induced graphene /ceramic membrane composite: Preparation and characterization. Journal of Membrane Science, 2020, 595, 117537.	4.1	14
380	Miniaturized Energy Storage Devices Based on Twoâ€Dimensional Materials. ChemSusChem, 2020, 13, 1420-1446.	3.6	30

#	Article	IF	CITATIONS
381	Laser-induced graphene as the microporous layer in proton exchange membrane fuel cells. Applied Surface Science, 2020, 504, 144096.	3.1	22
382	Laser direct writing of heteroatom-doped porous carbon for high-performance micro-supercapacitors. Energy Storage Materials, 2020, 25, 404-415.	9.5	62
383	Laser Fabrication of Grapheneâ€Based Flexible Electronics. Advanced Materials, 2020, 32, e1901981.	11.1	312
384	Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors. Applied Surface Science, 2020, 504, 144487.	3.1	79
385	Fabrication and Electrochemical Properties of Three-Dimensional (3D) Porous Graphitic and Graphenelike Electrodes Obtained by Low-Cost Direct Laser Writing Methods. ACS Omega, 2020, 5, 1540-1548.	1.6	35
386	Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. Journal of Materials Chemistry A, 2020, 8, 6487-6500.	5.2	135
387	Direct laser writing of graphene electrodes. Journal of Applied Physics, 2020, 127, .	1.1	56
388	Fabrication of Smart Components by 3D Printing and Laser-Scribing Technologies. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3928-3935.	4.0	50
389	Attachable micropseudocapacitors using highly swollen laser-induced-graphene electrodes. Chemical Engineering Journal, 2020, 386, 123972.	6.6	11
390	Reprogrammable 3D Shaping from Phase Change Microstructures in Elastic Composites. ACS Applied Materials & Composites amp; Interfaces, 2020, 12, 4014-4021.	4.0	6
391	Laser-Scribed Graphene Electrodes Derived from Lignin for Biochemical Sensing. ACS Applied Nano Materials, 2020, 3, 1166-1174.	2.4	74
392	Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 205-213.	3.3	131
393	Surface Engineering of Laser-Scribed Graphene Sensor Enables Non-Enzymatic Glucose Detection in Human Body Fluids. ACS Applied Nano Materials, 2020, 3, 391-398.	2.4	56
394	Stable Wearable Strain Sensors on Textiles by Direct Laser Writing of Graphene. ACS Applied Nano Materials, 2020, 3, 283-293.	2.4	7 3
395	Facile and Scalable Preparation of Ruthenium Oxideâ€Based Flexible Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903136.	10.2	74
396	Reagentless fabrication of a porous graphene-like electrochemical device from phenolic paper using laser-scribing. Carbon, 2020, 159, 110-118.	5.4	47
397	Laser-induced MnO/Mn3O4/N-doped-graphene hybrid as binder-free anodes for lithium ion batteries. Chemical Engineering Journal, 2020, 385, 123720.	6.6	56
398	Wavelength effect of ns-pulsed radiation on the reduction of graphene oxide. Applied Surface Science, 2020, 506, 144808.	3.1	29

#	Article	IF	CITATIONS
399	Low cost synthesis of reduced graphene oxide using biopolymer for influenza virus sensor. Materials Science and Engineering C, 2020, 108, 110465.	3.8	66
400	Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosensors and Bioelectronics, 2020, 150, 111896.	5.3	99
401	A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature Biotechnology, 2020, 38, 217-224.	9.4	683
402	Laser induced graphene fibers for multifunctional aramid fiber reinforced composite. Carbon, 2020, 158, 146-156.	5. 4	35
403	Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosensors and Bioelectronics, 2020, 168, 112565.	5.3	113
404	Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@rGO nanocomposites. Materials Today Physics, 2020, 15, 100265.	2.9	40
405	A direct-write method for preparing a bimetal sulfide/graphene composite as a free-standing electrode for high-performance microsupercapacitors. RSC Advances, 2020, 10, 35490-35498.	1.7	1
406	Laser-Induced Biochar Formation through 355 nm Pulsed Laser Irradiation of Wood, and Application to Eco-Friendly pH Sensors. Nanomaterials, 2020, 10, 1904.	1.9	16
407	Laser-induced nano-bismuth decorated CdS–graphene hybrid for plasmon-enhanced photoelectrochemical analysis. Chemical Communications, 2020, 56, 13784-13787.	2.2	8
408	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45
409	Recent advances in preparation and application of laser-induced graphene in energy storage devices. Materials Today Energy, 2020, 18, 100569.	2.5	43
410	Fabrication of UV Laser-Induced Porous Graphene Patterns with Nanospheres and Their Optical and Electrical Characteristics. Materials, 2020, 13, 3930.	1.3	8
411	Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement. Journal of Environmental Chemical Engineering, 2020, 8, 104407.	3.3	20
412	Controllable layer-by-layer assembly of metal-organic frameworks/polyaniline membranes for flexible solid-state microsupercapacitors. Journal of Power Sources, 2020, 474, 228681.	4.0	12
413	Smart plant-wearable biosensor for in-situ pesticide analysis. Biosensors and Bioelectronics, 2020, 170, 112636.	5.3	111
414	Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. Nano Energy, 2020, 77, 105058.	8.2	72
415	Strategies for development of nanoporous materials with 2D building units. Chemical Society Reviews, 2020, 49, 6039-6055.	18.7	30
416	Laser-Assisted Fabrication of Nanostructured Substrate Supported Electrodes for Highly Active Supercapacitors. Frontiers in Materials, 2020, 7, .	1.2	6

#	ARTICLE	IF	CITATIONS
417	A self-converted strategy toward multifunctional composites with laser-induced graphitic structures. Composites Science and Technology, 2020, 199, 108334.	3.8	12
418	A Bioinspired, Durable, and Nondisposable Transparent Graphene Skin Electrode for Electrophysiological Signal Detection., 2020, 2, 999-1007.		44
419	Prussian blue based vertical graphene 3D structures for high frequency electrochemical capacitors. Energy Storage Materials, 2020, 32, 30-36.	9.5	31
420	Preparation of graphene directly on liquid EB curing ink film by femtosecond laser. Optik, 2020, 223, 165485.	1.4	3
421	Self-sustained solid-state exothermic reaction for scalable graphene production. Materials and Design, 2020, 196, 109135.	3.3	9
422	Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nature Communications, 2020, 11, 6185.	5.8	93
423	Integrated Sensing and Warning Multifunctional Devices Based on the Combined Mechanical and Thermal Effect of Porous Graphene. ACS Applied Materials & Interfaces, 2020, 12, 53049-53057.	4.0	16
424	Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbonization and Copper Electroplating. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53193-53205.	4.0	20
425	Defect topology and annihilation by cooperative movement of atoms in neutron-irradiated graphite. Physical Review B, 2020, 102, .	1.1	7
426	Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano, 2020, 14, 12045-12053.	7.3	191
427	Triboelectric effect of surface morphology controlled laser induced graphene. Journal of Materials Chemistry A, 2020, 8, 19822-19832.	5.2	34
428	<i>In situ</i> formation of phosphorus-doped porous graphene <i>via</i> laser induction. RSC Advances, 2020, 10, 23953-23958.	1.7	20
429	Laser induced graphene for biosensors. Sustainable Materials and Technologies, 2020, 25, e00205.	1.7	59
430	Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber. Sensors, 2020, 20, 4266.	2.1	50
431	Engineered porous borophene with tunable anisotropic properties. Composites Part B: Engineering, 2020, 200, 108260.	5.9	19
432	Recent progresses of 3D printing technologies for structural energy storage devices. Materials Today Nano, 2020, 12, 100094.	2.3	42
433	Laser induced graphene in fiberglass-reinforced composites for strain and damage sensing. Composites Science and Technology, 2020, 199, 108367.	3.8	27
434	Laser Pyrolysis of Imprinted Furan Pattern for the Precise Fabrication of Microsupercapacitor Electrodes. Micromachines, 2020, 11, 746.	1.4	3

#	Article	IF	CITATIONS
435	Laser-Scribed <i>N</i> -Doped Graphene for Integrated Flexible Enzymatic Biofuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 12437-12442.	3.2	25
436	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
437	Hierarchically Structured Laser-Induced Graphene for Enhanced Boiling on Flexible Substrates. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37784-37792.	4.0	32
438	Laser-Induced Graphene: En Route to Smart Sensing. Nano-Micro Letters, 2020, 12, 157.	14.4	123
439	Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. Sensors, 2020, 20, 4484.	2.1	27
440	Multisensory graphene-skin for harsh-environment applications. Applied Physics Letters, 2020, 117, .	1.5	24
441	Versatile Strategy to Design Flexible Planar-Integrated Microsupercapacitors Based on Co ₃ O ₄ -Decorated Laser-Induced Graphene. ACS Applied Energy Materials, 2020, 3, 10676-10684.	2.5	32
442	A High Energy Density 2D Microsupercapacitor Based on an Interconnected Network of a Horizontally Aligned Carbon Nanotube Sheet. ACS Applied Materials & Interfaces, 2020, 12, 50011-50023.	4.0	9
443	Electromicrofluidic Device on Multilayered Laser-Induced Polyamide Substrate for Diverse Electrochemical Applications. IEEE Transactions on Electron Devices, 2020, 67, 5097-5103.	1.6	9
444	Biohybrid Cells for Photoelectrochemical Conversion Based on the HCOO∢sup>–⟨/sup>–CO∢sub>2⟨/sub> Circulation Approach. ACS Applied Bio Materials, 2020, 3, 8069-8074.	2.3	6
445	Formation of Microcrystals on a Surface of Commercial Chlorinated Polyvinyl Chloride under the Action of a High-Power Ion Beam of Nanosecond Duration. Crystal Growth and Design, 2020, 20, 6302-6305.	1.4	0
446	Flash Graphene from Plastic Waste. ACS Nano, 2020, 14, 15595-15604.	7.3	132
447	Self-Sealing Carbon Patterns by One-Step Direct Laser Writing and Their Use in Multifunctional Wearable Sensors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50600-50609.	4.0	9
448	Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective. Small, 2020, 16, e2003251.	5.2	48
449	Visible Laser Scribing Fabrication of Porous Graphitic Carbon Electrodes: Morphologies, Electrochemical Properties, and Applications as Disposable Sensor Platforms. ACS Applied Electronic Materials, 2020, 2, 3279-3288.	2.0	22
450	Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes. Journal of Materials Science, 2020, 55, 17108-17119.	1.7	28
451	Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13850-13858.	3.2	57
452	3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 120, 10336-10453.	23.0	319

#	ARTICLE	IF	CITATIONS
453	Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics. Npj Flexible Electronics, $2020, 4, .$	5.1	32
454	A Flexible Low-Pass Filter Based on Laser-Induced Graphene. Journal of Electronic Materials, 2020, 49, 6348-6357.	1.0	0
455	High Voltage Microsupercapacitors Fabricated and Assembled by Laser Carving. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 45541-45548.	4.0	16
456	Laserâ€Induced Carbonization of Natural Organic Precursors for Flexible Electronics. Advanced Electronic Materials, 2020, 6, 2000463.	2.6	22
457	Recent Advances in Nanomaterialâ€Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. Small, 2020, 16, e2002681.	5.2	133
458	Top–Down Direct Preparation of Orange–Yellow Dye Similar to Psittacofulvins from Commercial Polymer by Laser Writing. ACS Applied Materials & Discrete Spaces (2020, 12, 58339-58348).	4.0	6
459	High Performance Supercapacitor Based on Laser Induced Graphene for Wearable Devices. IEEE Access, 2020, 8, 200573-200580.	2.6	18
460	Electronic Nasal Pod: A 3D Printed Device to Filter and Electrochemically Detect pollutants., 2020,,.		1
461	Densified Laser-Induced Graphene for Flexible Microsupercapacitors. Energies, 2020, 13, 6567.	1.6	12
462	A Comparative Study of Laser-Induced Graphene by CO2 Infrared Laser and 355 nm Ultraviolet (UV) Laser. Micromachines, 2020, 11, 1094.	1.4	52
463	Direct Laser Writing of Transparent Polyimide Film for Supercapacitor. Nanomaterials, 2020, 10, 2547.	1.9	12
464	Flexible Hybrid Sensor Systems with Feedback Functions. Advanced Functional Materials, 2021, 31, 2007436.	7.8	80
465	Highly Aligned Carbon Nanowire Array by E-Field Directed Assembly of PAN-Containing Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 58113-58121.	4.0	6
466	Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nature Communications, 2020, 11 , 6325.	5.8	113
467	Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51864-51872.	4.0	64
468	Laserâ€Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Advanced Materials Technologies, 2020, 5, 2000630.	3.0	53
469	Bioelectronics with graphene nanostructures. APL Materials, 2020, 8, .	2.2	18
470	Ionâ€Selective Sensors Based on Laserâ€Induced Graphene for Evaluating Human Hydration Levels Using Urine Samples. Advanced Materials Technologies, 2020, 5, 1901037.	3.0	34

#	Article	IF	Citations
471	New fabrication method for producing reduced graphene oxide flexible electrodes by using a low-power visible laser diode engraving system. Nanotechnology, 2020, 31, 325402.	1.3	7
472	Allâ€Carbon Hybrid Mobile Ion Capacitors Enabled by 3D Laserâ€Scribed Graphene. Energy Technology, 2020, 8, 2000193.	1.8	2
473	Highly Linear and Stable Flexible Temperature Sensors Based on Laserâ€Induced Carbonization of Polyimide Substrates for Personal Mobile Monitoring. Advanced Materials Technologies, 2020, 5, 2000014.	3.0	48
474	High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 74, 104928.	8.2	96
475	Cyclic Voltammetry Studies of Inkjet-printed NiO supercapacitors: Effect of Substrates, Printing and Materials. Electrochimica Acta, 2020, 353, 136539.	2.6	18
476	Airflow Enhanced Solar Evaporation Based on Janus Graphene Membranes with Stable Interfacial Floatability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25435-25443.	4.0	93
477	An Ultrafast Supercapacitor Based on 3D Ordered Porous Graphene Film with AC Line Filtering Performance. ACS Applied Energy Materials, 2020, 3, 5182-5189.	2.5	13
478	Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chemical Society Reviews, 2020, 49, 4405-4465.	18.7	257
479	The investigation of electrothermal response and reliability of flexible graphene micro-heaters. Microelectronic Engineering, 2020, 228, 111334.	1.1	10
480	Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Science Bulletin, 2020, 65, 1659-1666.	4.3	57
481	Toxicity assessment of laser-induced graphene by zebrafish during development. JPhys Materials, 2020, 3, 034008.	1.8	28
482	Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance. Chemical Engineering Journal, 2020, 399, 125818.	6.6	68
483	Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes. Nano Energy, 2020, 75, 104958.	8.2	76
484	Recent advances in sensors for electrochemical analysis of nitrate in food and environmental matrices. Analyst, The, 2020, 145, 5400-5413.	1.7	41
485	Comparison of Laser-Synthetized Nanographene-Based Electrodes for Flexible Supercapacitors. Micromachines, 2020, 11, 555.	1.4	5
486	Carbonized Bark by Laser Treatment for Efficient Solar-Driven Interface Evaporation. ACS Omega, 2020, 5, 13482-13488.	1.6	13
487	Direct Fabrication of Ultra-Sensitive Humidity Sensor Based on Hair-Like Laser-Induced Graphene Patterns. Micromachines, 2020, 11, 476.	1.4	15
488	Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors. Electrochemical Energy Reviews, 2020, 3, 581-612.	13.1	26

#	Article	IF	CITATIONS
489	Electronic Functionality Encoded Laser-Induced Graphene for Paper Electronics. ACS Applied Nano Materials, 2020, 3, 6899-6904.	2.4	27
490	Industrial Waste Residue Converted into Value-Added ZnO for Optoelectronic Applications. ACS Applied Electronic Materials, 2020, 2, 1960-1969.	2.0	12
491	Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors. ACS Omega, 2020, 5, 14611-14618.	1.6	56
492	Laser-Induced Graphene on a Polyimide Film: Observation of the Photon Drag Effect. Technical Physics Letters, 2020, 46, 458-461.	0.2	10
493	Laserâ€Printed, Flexible Graphene Pressure Sensors. Global Challenges, 2020, 4, 2000001.	1.8	34
494	Laser-Induced Graphene-Based Platforms for Dual Biorecognition of Molecules. ACS Applied Nano Materials, 2020, 3, 2795-2803.	2.4	43
495	Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon, 2020, 163, 85-94.	5.4	66
496	Laser-Induced Flexible Electronics (LIFE) for Resistive, Capacitive and Electrochemical Sensing Applications. IEEE Sensors Journal, 2020, 20, 7392-7399.	2.4	49
497	Review—Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and Integrations. Journal of the Electrochemical Society, 2020, 167, 037573.	1.3	74
498	Ultrafast photo-annealed carbon-coated SiO2 sphere electrodes for NO2 gas sensing. Carbon, 2020, 162, 562-569.	5.4	1
499	PDMS-Based Microfluidic Glucose Biofuel Cell Integrated With Optimized Laser-Induced Flexible Graphene Bioelectrodes. IEEE Transactions on Electron Devices, 2020, 67, 1832-1838.	1.6	44
500	Graphene-Based Thermoacoustic Sound Source. ACS Nano, 2020, 14, 3779-3804.	7.3	33
501	Design of a high performance electrode composed of porous nickel–cobalt layered double hydroxide nanosheets supported on vertical graphene fibers for flexible supercapacitors. New Journal of Chemistry, 2020, 44, 6623-6634.	1.4	29
502	Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon, 2020, 163, 385-394.	5.4	118
503	The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Advanced Functional Materials, 2020, 30, 1909035.	7.8	181
504	Laserâ€Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human–Soft Actuators Interaction. Advanced Materials, 2020, 32, e1908475.	11.1	118
505	Recycled Red Mud–Decorated Porous 3D Graphene for Highâ€Energy Flexible Microâ€Supercapacitor. Advanced Sustainable Systems, 2020, 4, 1900133.	2.7	25
506	Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon, 2020, 162, 570-578.	5.4	50

#	Article	IF	CITATIONS
507	Recent Developments of Planar Microâ€Supercapacitors: Fabrication, Properties, and Applications. Advanced Functional Materials, 2020, 30, 1910000.	7.8	86
508	Laser-induced and KOH-activated 3D graphene: A flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chemical Engineering Journal, 2020, 393, 124672.	6.6	93
509	Improved conductivity of carbonized polyimide by CO2 laser graphitization. Journal of Materials Chemistry C, 2020, 8, 4493-4501.	2.7	20
510	Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sensors and Actuators B: Chemical, 2020, 321, 128443.	4.0	23
511	Engineering defect concentrations of multiwalled carbon nanotubes by microwave irradiation for tunable electromagnetic absorption properties. Journal of Materials Science, 2020, 55, 13871-13880.	1.7	14
512	Laser pyrolysis for controlled morphing and chemical modification on 3D microlattices. Journal of Micromechanics and Microengineering, 2020, 30, 055008.	1.5	6
513	One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosensors and Bioelectronics, 2020, 165, 112360.	5.3	186
514	Laser-induced graphene enabled 1D fiber electronics. Carbon, 2020, 168, 308-318.	5.4	30
515	Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter, 2020, 3, 95-126.	5.0	74
516	Interdigital electrodes of air@NiO porous nanoshells for high performance microsupercapacitors by thermally-assisted 3D printing. Nanotechnology, 2020, 31, 375301.	1.3	3
517	Laserâ€Induced Silicon Oxide for Anodeâ€Free Lithium Metal Batteries. Advanced Materials, 2020, 32, e2002850.	11.1	92
518	ReaxFF Simulations of Laser-Induced Graphene (LIG) Formation for Multifunctional Polymer Nanocomposites. ACS Applied Nano Materials, 2020, 3, 1881-1890.	2.4	76
519	Bean Pod-Inspired Ultrasensitive and Self-Healing Pressure Sensor Based on Laser-Induced Graphene and Polystyrene Microsphere Sandwiched Structure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9710-9717.	4.0	69
520	Enhancing the Performance of Polygon Monopole Antenna Using Graphene/TMDCs Heterostructures. IEEE Nanotechnology Magazine, 2020, 19, 269-273.	1.1	13
521	A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sensors and Actuators B: Chemical, 2020, 311, 127866.	4.0	178
522	Rapid prototyping of electrochemical energy storage devices based on two dimensional materials. Current Opinion in Electrochemistry, 2020, 20, 36-45.	2.5	5
523	Sensor-as-a-Service: Convergence of Sensor Analytic Point Solutions (SNAPS) and Pay-A-Penny-Per-Use (PAPPU) Paradigm as a Catalyst for Democratization of Healthcare in Underserved Communities. Diagnostics, 2020, 10, 22.	1.3	11
524	Direct Grapheneâ€Carbon Nanotube Composite Ink Writing Allâ€Solidâ€State Flexible Microsupercapacitors with High Areal Energy Density. Advanced Functional Materials, 2020, 30, 1907284.	7.8	79

#	Article	IF	CITATIONS
525	FIBâ€Patterned Nanoâ€Supercapacitors: Minimized Size with Ultrahigh Performances. Advanced Materials, 2020, 32, e1908072.	11.1	25
526	Fabrication of Two-Dimensional and Three-Dimensional High-Resolution Binder-Free Graphene Circuits Using a Microfluidic Approach for Sensor Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13529-13539.	4.0	4
527	Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. ACS Nano, 2020, 14, 3219-3226.	7.3	159
528	Advanced porous graphene materials: from in-plane pore generation to energy storage applications. Journal of Materials Chemistry A, 2020, 8, 6125-6143.	5.2	65
529	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113
530	Redox active coating on graphite surface of hierarchically porous wood electrodes for supercapacitor application. Materials Today Communications, 2020, 24, 101045.	0.9	8
531	Size-Tunable Flowerlike MoS ₂ Nanospheres Combined with Laser-Induced Graphene Electrodes for NO ₂ Sensing. ACS Applied Nano Materials, 2020, 3, 2545-2553.	2.4	36
532	High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10902-10907.	4.0	129
533	Shear Exfoliated Metal–Organic Framework Nanosheet-Enabled Flexible Sensor for Real-Time Monitoring of Superoxide Anion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5429-5436.	4.0	49
534	Carbon-based nanomaterials and ZnO ternary compound layers grown by laser technique for environmental and energy storage applications. Applied Surface Science, 2020, 509, 145359.	3.1	11
535	Gram-scale bottom-up flash graphene synthesis. Nature, 2020, 577, 647-651.	13.7	438
536	lon Transport in Laser-Induced Graphene Cation-Exchange Membrane Hybrids. Journal of Physical Chemistry Letters, 2020, 11, 1397-1403.	2.1	12
537	Improved Performance of Flexible Graphene Heater Based on Repeated Laser Writing. IEEE Electron Device Letters, 2020, 41, 501-504.	2.2	26
538	A Highly Stretchable Microsupercapacitor Using Laserâ€Induced Graphene/NiO/Co ₃ O ₄ Electrodes on a Biodegradable Waterborne Polyurethane Substrate. Advanced Materials Technologies, 2020, 5, 1900903.	3.0	53
539	Processing–structure–property relationship in direct laser writing carbonization of polyimide. Journal of Applied Polymer Science, 2020, 137, 48978.	1.3	8
540	Locally Controllable Surface Foaming of Polymers Induced by Graphene via Near-Infrared Pulsed Laser. ACS Sustainable Chemistry and Engineering, 2020, 8, 2498-2511.	3.2	19
541	Graphene Fabrication by Using Femtosecond Pulsed Laser and Its Application on Passively Q-Switched Solid-State Laser as Saturable Absorber. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	2
542	Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of <i>Salmonella enterica (i) in Chicken Broth. ACS Sensors, 2020, 5, 1900-1911.</i>	4.0	148

#	ARTICLE	IF	Citations
543	A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy, 2020, 73, 104738.	8.2	65
544	One-step electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor. Sensors and Actuators B: Chemical, 2020, 314, 128026.	4.0	91
545	A Hierarchical Three-Dimensional Porous Laser-Scribed Graphene Film for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. ACS Applied Materials & Supplied Materials & 12, 18833-18839.	4.0	37
546	Synthesis of silicon carbide nanocrystals and multilayer graphitic carbon by femtosecond laser irradiation of polydimethylsiloxane. Nanoscale Advances, 2020, 2, 1886-1893.	2.2	13
547	Laser-engineered heavy hydrocarbons: Old materials with new opportunities. Science Advances, 2020, 6, eaaz5231.	4.7	40
548	Laser-Induced Graphene Paper Heaters with Multimodally Patternable Electrothermal Performance for Low-Energy Manufacturing of Composites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23284-23297.	4.0	50
549	High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light: Science and Applications, 2020, 9, 69.	7.7	110
550	Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination. Carbon, 2020, 164, 349-356.	5.4	51
551	Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing. Materials Chemistry and Physics, 2020, 251, 123083.	2.0	11
552	Flexible laser-induced-graphene omnidirectional sound device. Chemical Physics Letters, 2020, 745, 137275.	1.2	15
553	Electromagnetic interference shielding with laser induced molybdenum carbide-graphene paper. Materials Letters, 2020, 271, 127784.	1.3	10
554	Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS Applied Materials & Description (1985) (1	4.0	71
555	Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst, The, 2020, 145, 4041-4049.	1.7	17
556	Digital manufacturing of functional materials for wearable electronics. Journal of Materials Chemistry C, 2020, 8, 10587-10603.	2.7	41
557	One-step laser induced conversion of a gelatin-coated polyimide film into graphene: Tunable morphology, surface wettability and microsupercapacitor applications. Science China Technological Sciences, 2021, 64, 1030-1040.	2.0	17
558	Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications. Science China Technological Sciences, 2021, 64, 651-661.	2.0	19
559	Periodic nanopatterning and reduction of graphene oxide by femtosecond laser to construct high-performance micro-supercapacitors. Carbon, 2021, 172, 144-153.	5.4	20
560	Miniaturized polymeric enzymatic biofuel cell with integrated microfluidic device and enhanced laser ablated bioelectrodes. International Journal of Hydrogen Energy, 2021, 46, 3183-3192.	3.8	34

#	Article	IF	CITATIONS
561	Laser-induced nitrogen-self-doped graphite nanofibers from cyanate ester for on-chip micro-supercapacitors. Chemical Engineering Journal, 2021, 404, 126375.	6.6	33
562	Laserâ€Induced Graphene Tapes as Origami and Stickâ€On Labels for Photothermal Manipulation via Marangoni Effect. Advanced Functional Materials, 2021, 31, .	7.8	78
563	Fs-laser based hybrid micromachining for polymer micro-opto electrical systems. Optics and Lasers in Engineering, 2021, 137, 106362.	2.0	9
564	Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: Highly sensitive electrochemical determination of hydrogen peroxide and glucose. Journal of Hazardous Materials, 2021, 402, 123774.	6.5	91
565	Scalable fabrication of inkless, transfer-printed graphene-based textile microsupercapacitors with high rate capabilities. Journal of Power Sources, 2021, 481, 228939.	4.0	28
566	Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Analytical and Bioanalytical Chemistry, 2021, 413, 763-777.	1.9	37
567	Non-thermal radiation heating synthesis of nanomaterials. Science Bulletin, 2021, 66, 386-406.	4.3	29
568	Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites. Composites Science and Technology, 2021, 201, 108493.	3.8	34
569	Laser induced graphene for in-situ ballistic impact damage and delamination detection in aramid fiber reinforced composites. Composites Science and Technology, 2021, 202, 108551.	3.8	19
570	Laser Scribing of Fluorinated Polyimide Films to Generate Microporous Structures for High-Performance Micro-supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 208-214.	2.5	39
571	Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1323-1346.	2.7	35
572	Conductive carbonaceous membranes: recent progress and future opportunities. Journal of Materials Chemistry A, 2021, 9, 3270-3289.	5.2	28
573	Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. Journal of Electroanalytical Chemistry, 2021, 880, 114893.	1.9	90
574	High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy, 2021, 81, 105609.	8.2	148
575	Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy, 2021, 81, 105627.	8.2	86
576	Flappingâ€Wing Dynamics as a Natural Detector of Wind Direction. Advanced Intelligent Systems, 2021, 3, 2000174.	3.3	14
577	Laser fabrication of functional micro-supercapacitors. Journal of Energy Chemistry, 2021, 59, 642-665.	7.1	35
578	Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Applied Electronic Materials, 2021, 3, 68-100.	2.0	46

#	Article	IF	Citations
579	Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene Electrodes for Multiple Biosensing. IEEE Transactions on Nanobioscience, 2021, 20, 79-85.	2.2	28
580	Recent progress on laser fabrication of on-chip microsupercapacitors. Journal of Energy Storage, 2021, 34, 101994.	3.9	9
581	Facile and rapid one-step mass production of flexible 3D porous graphene nanozyme electrode via direct laser-writing for intelligent evaluation of fish freshness. Microchemical Journal, 2021, 162, 105855.	2.3	28
582	Laser induced graphene for in situ damage sensing in aramid fiber reinforced composites. Composites Science and Technology, 2021, 201, 108541.	3.8	18
583	Onion-inspired MXene/chitosan-quercetin multilayers: Enhanced response to H2O molecules for wearable human physiological monitoring. Sensors and Actuators B: Chemical, 2021, 329, 129209.	4.0	31
584	Millisecond photothermal carbonization for in-situ fabrication of mesoporous graphitic carbon nanocomposite electrode films. Carbon, 2021, 174, 439-444.	5 . 4	8
585	Copperâ€nanostructureâ€modified laserâ€scribed electrodes based on graphitic carbon for electrochemical detection of dopamine and glucose. Journal of Chemical Technology and Biotechnology, 2021, 96, 1086-1095.	1.6	15
586	High-quality laser-assisted biomass-based turbostratic graphene for high-performance supercapacitors. Carbon, 2021, 172, 750-761.	5. 4	65
587	Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Advanced Functional Materials, 2021, 31, 2005957.	7.8	37
588	Double-Sided Laser-Induced Graphene Based Smart Bracelet for Sensing and Energy. , 2021, , .		2
589	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
590	Ultraâ€Robust Flexible Electronics by Laserâ€Driven Polymerâ€Nanomaterials Integration. Advanced Functional Materials, 2021, 31, 2008818.	7.8	49
591	Laser scribed graphene for supercapacitors. Opto-Electronic Advances, 2021, 4, 200079-200079.	6.4	45
592	Transmissible Plasma-Evolved Suspended Graphene for TEM Observation Window. ACS Applied Nano Materials, 2021, 4, 1485-1494.	2.4	0
593	Laser-Induced MoO <i></i> /Sub>/Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir, 2021, 37, 1596-1604.	1.6	8
594	Flexible Capacitive Pressure Sensor Based on Laser–Induced Graphene and Polydimethylsiloxane Foam. IEEE Sensors Journal, 2021, 21, 12048-12056.	2.4	25
595	<i>In situ</i> synthesis of Co–B-doped porous carbon through laser thermal reduction for an efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 15562-15570.	1.4	1
596	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	2.2	18

#	Article	IF	CITATIONS
597	Intelligent analysis of maleic hydrazide using a simple electrochemical sensor coupled with machine learning. Analytical Methods, 2021, 13, 4662-4673.	1.3	15
599	Laserâ€Assisted Printing of Electrodes Using Metal–Organic Frameworks for Microâ€Supercapacitors. Advanced Functional Materials, 2021, 31, 2009057.	7.8	75
600	Laser direct preparation and processing of graphene/MnO nanocomposite electrodes for microsupercapacitors. Journal of Energy Storage, 2021, 33, 102162.	3.9	10
601	Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy and Fuels, 2021, 5, 1235-1254.	2.5	105
602	Unraveling the dependency on multiple passes in laser-induced graphene electrodes for supercapacitor and H2O2 sensing. Materials Science for Energy Technologies, 2021, 4, 407-412.	1.0	6
603	Miniaturized energy storage: microsupercapacitor based on two-dimensional materials. , 2021, , 311-358.		3
604	Biomass-derived porous graphene for electrochemical sensing of dopamine. RSC Advances, 2021, 11, 15410-15415.	1.7	33
605	Direct laser writing of pure lignin on carbon cloth for highly flexible supercapacitors with enhanced areal capacitance. Sustainable Energy and Fuels, 2021, 5, 3744-3754.	2.5	8
606	One-step fabrication of a laser-induced forward transfer graphene/Cu _x O nanocomposite-based electrocatalyst to promote hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 16470-16478.	5. 2	18
607	An electrocatalytic active AuNPs/5-Amino-2-mercaptobenzimidazole/rGO/SPCE composite electrode for ultrasensitive detection of progesterone. Journal of Electroanalytical Chemistry, 2021, 882, 115023.	1.9	15
608	Damage localization in fiberglass-reinforced composites using laser induced graphene. Smart Materials and Structures, 2021, 30, 035006.	1.8	4
609	Laser induced graphene sensors for assessing pH: Application to wound management. Electrochemistry Communications, 2021, 123, 106914.	2.3	25
610	Siteâ€Specific Selective Bending of Actuators using Radio Frequency Heating. Advanced Engineering Materials, 2021, 23, 2000873.	1.6	7
611	One-step selective laser-induced plasma-assisted ablation-based deposition of pseudocapacitance on ITO conductive glass surface. Ionics, 2021, 27, 1689-1698.	1.2	2
612	Laser scribing of Ag-decorated graphene for high-performance and flexible heaters. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 224-231.	2.7	13
613	Facile Post-deposition Annealing of Graphene Ink Enables Ultrasensitive Electrochemical Detection of Dopamine. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11185-11194.	4.0	50
614	Laser-induced porous graphene on Polyimide/PDMS composites and its kirigami-inspired strain sensor. Theoretical and Applied Mechanics Letters, 2021, 11, 100240.	1.3	20
615	Femtosecond Laser-Induced Graphitization of Transparent Cellulose Nanofiber Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 2955-2961.	3.2	21

#	ARTICLE	IF	CITATIONS
616	Electrical Resistance Reduction Induced with CO2 Laser Single Line Scan of Polyimide. Micromachines, 2021, 12, 227.	1.4	6
617	A Journey of Laser-Induced Graphene in Water Treatment. , 2021, 6, 159.		20
618	Graphene: A Disruptive Opportunity for COVIDâ€19 and Future Pandemics?. Advanced Materials, 2021, 33, e2007847.	11.1	34
619	Thermal Reductive Perforation of Graphene Cathode for Highâ€Performance Aluminumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2010569.	7.8	41
620	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	4.6	25
621	Multitasking MXene Inks Enable Highâ€Performance Printable Microelectrochemical Energy Storage Devices for Allâ€Flexible Selfâ€Powered Integrated Systems. Advanced Materials, 2021, 33, e2005449.	11.1	182
622	Rational Control of Topological Defects in Porous Carbon for Highâ€Efficiency Carbon Dioxide Conversion. Advanced Materials Interfaces, 2021, 8, 2100051.	1.9	14
623	A rime ice-inspired bismuth-based flexible sensor for zinc ion detection in human perspiration. Mikrochimica Acta, 2021, 188, 97.	2.5	10
624	Open Flow Reactors Prepared by Laser Sintering. Advanced Materials Interfaces, 2021, 8, 2001944.	1.9	0
625	Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10210-10221.	4.0	115
626	Planar Grapheneâ€Based Microsupercapacitors. Small, 2021, 17, e2006827.	5.2	24
627	Parametric study of laserâ€induced graphene conductive traces and their application as flexible heaters. International Journal of Energy Research, 2021, 45, 13712-13725.	2.2	12
628	Flexible Highâ€Resolution Triboelectric Sensor Array Based on Patterned Laserâ€Induced Graphene for Selfâ€Powered Realâ€Time Tactile Sensing. Advanced Functional Materials, 2021, 31, 2100709.	7.8	152
629	Laser-Induced Graphene on a Quartz Crystal Microbalance for Humidity Sensing. Crystals, 2021, 11, 289.	1.0	5
630	Highly selective laser-induced graphene (LIG)/polysulfone composite membrane for hydrogen purification. Applied Materials Today, 2021, 22, 100971.	2.3	5
631	In-Plane Flexible Microsystems Integrated with High-Performance Microsupercapacitors and Photodetectors. Journal of Electronic Materials, 2021, 50, 3517-3526.	1.0	2
632	Fluence-Dependent Morphological Transitions in Laser-Induced Graphene Electrodes on Polyimide Substrates for Flexible Devices. ACS Applied Nano Materials, 2021, 4, 2973-2986.	2.4	49
633	3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochemical Energy Reviews, 2021, 4, 269-335.	13.1	108

#	Article	IF	CITATIONS
634	Thermally Controlled Localized Porous Graphene for Integrated Grapheneâ€Paper Electronics. Advanced Materials Technologies, 2021, 6, 2001156.	3.0	9
635	Substrate-Independent Laser-Induced Graphene Electrodes for Microfluidic Electroanalytical Systems. ACS Applied Nano Materials, 2021, 4, 3114-3121.	2.4	22
636	Mass Transport Behaviors in Graphene and Polyaniline Heterostructure–Based Microsupercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100006.	2.8	1
637	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	6.8	45
638	The Functional Chameleon of Materials Chemistry—Combining Carbon Structures into Allâ€Carbon Hybrid Nanomaterials with Intrinsic Porosity to Overcome the "Functionalityâ€Conductivityâ€Dilemma―in Electrochemical Energy Storage and Electrocatalysis. Small, 2021, 17, e2007508.	5 . 2	10
639	Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene. ACS Applied Polymer Materials, 2021, 3, 1809-1818.	2.0	25
640	Mechanical analysis of flexible integrated energy storage devices under bending by the finite element method. Science China Materials, 2021, 64, 2182-2192.	3 . 5	8
641	A Wearable Body Condition Sensor System with Wireless Feedback Alarm Functions. Advanced Materials, 2021, 33, e2008701.	11.1	104
642	Porous monoliths of 3D graphene for electric doubleâ€layer supercapacitors. , 2021, 3, 193-224.		46
643	An Intelligent Fire-Protection Coating Based on Ammonium Polyphosphate/Epoxy Composites and Laser-Induced Graphene. Polymers, 2021, 13, 984.	2.0	4
644	3D Printing Carbonaceous Objects from Polyimide Pyrolysis. ACS Macro Letters, 2021, 10, 412-418.	2.3	14
645	Laserâ€Induced Graphene/MoO ₂ Coreâ€Shell Electrodes on Carbon Cloth for Integrated, Highâ€Voltage, and Inâ€Planar Microsupercapacitors. Advanced Materials Technologies, 2021, 6, 2000991.	3.0	24
646	Electrochemiluminescence sensing of vitamin B12 using laser-induced graphene based bipolar and single electrodes in a 3D-printed portable system. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	19
647	Electrochemical Detection of Glucose Molecules Using Laser-Induced Graphene Sensors: A Review. Sensors, 2021, 21, 2818.	2.1	14
648	Laser Induced Graphene Patterns on a Thin Polyimide Film via a cooling plate., 2021,,.		1
649	Metal-Free Multilayer Hybrid PENG Based on Soft Electrospun/-Sprayed Membranes with Cardanol Additive for Harvesting Energy from Surgical Face Masks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20606-20621.	4.0	44
650	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
651	Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications. ACS Nano, 2021, 15, 8907-8918.	7.3	110

#	Article	IF	CITATIONS
653	Laser-induced graphene for bioelectronics and soft actuators. Nano Research, 2021, 14, 3033-3050.	5.8	62
654	Integrated Magnetohydrodynamic Pump with Magnetic Composite Substrate and Laser-Induced Graphene Electrodes. Polymers, 2021, 13, 1113.	2.0	3
655	Digitally Patterned Mesoporous Carbon Nanostructures of Colorless Polyimide for Transparent and Flexible Micro-Supercapacitor. Energies, 2021, 14, 2547.	1.6	6
656	Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Mikrochimica Acta, 2021, 188, 159.	2.5	38
657	High-Resolution Laser-Induced Graphene from Photoresist. ACS Nano, 2021, 15, 8976-8983.	7.3	43
658	Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Research, 2021, 14, 3096-3111.	5.8	37
659	Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks. New Carbon Materials, 2021, 36, 322-335.	2.9	13
660	Wireless Battery-Free Broad-Band Sensor for Wearable Multiple Physiological Measurement. ACS Applied Electronic Materials, 2021, 3, 1681-1690.	2.0	7
661	Highly Skin-Conformal Laser-Induced Graphene-Based Human Motion Monitoring Sensor. Nanomaterials, 2021, 11, 951.	1.9	33
662	Fabrication of laser scribed graphene stretchable supercapacitor by laser-assisted transfer printing strategy., 2021,,.		0
663	Fabrication of Carbon Nanomaterials Using Laser Scribing on Copper Nanoparticles-Embedded Polyacrylonitrile Films and Their Application in a Gas Sensor. Polymers, 2021, 13, 1423.	2.0	2
664	Laser-assisted doping of graphene for transparent conducting electrodes. Materials Chemistry and Physics, 2021, 263, 124348.	2.0	3
665	IR and UV Laserâ€Induced Graphene: Application as Dopamine Electrochemical Sensors. Advanced Materials Technologies, 2021, 6, 2100007.	3.0	58
666	Energetic-Materials-Driven Synthesis of Graphene-Encapsulated Tin Oxide Nanoparticles for Sodium-Ion Batteries. Materials, 2021, 14, 2550.	1.3	0
667	In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors. Carbon, 2021, 176, 296-306.	5.4	37
668	Dual Transduction of H2O2 Detection Using ZnO/Laser-Induced Graphene Composites. Chemosensors, 2021, 9, 102.	1.8	13
669	High-energy all-in-one micro-supercapacitors based on ZnO mesoporous nanosheet-decorated laser-induced porous graphene foams. Journal of Materials Research, 2021, 36, 1927-1936.	1.2	3
670	Fabrication of solution-processed SnO2–Based flexible ReRAM using laser-induced graphene transferred onto PDMS. Current Applied Physics, 2021, 25, 70-74.	1.1	7

#	Article	IF	CITATIONS
671	Portable wireless intelligent sensing of ultra-trace phytoregulator $\hat{l}\pm$ -naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosensors and Bioelectronics, 2021, 179, 113062.	5.3	68
672	Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8. Micromachines, 2021, 12, 564.	1.4	6
673	Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review. Analytical and Bioanalytical Chemistry, 2021, 413, 6079-6099.	1.9	19
674	Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosensors and Bioelectronics, 2021, 180, 113116.	5.3	84
675	Laser-Induced Carbon Electrodes in a Three-Dimensionally Printed Flow Reactor for Detecting Lead Ions. ACS Omega, 2021, 6, 12470-12479.	1.6	4
677	A Review of the Use of Carbon Nanotubes and Graphene-Based Sensors for the Detection of Aflatoxin M1 Compounds in Milk. Sensors, 2021, 21, 3602.	2.1	17
678	Electrical performance and reliability assessment of silver inkjet printed circuits on flexible substrates. Journal of Materials Science: Materials in Electronics, 2021, 32, 16024-16037.	1.1	5
679	Top-down synthesis of graphene: A comprehensive review. FlatChem, 2021, 27, 100224.	2.8	143
680	Preparation of Laserâ€Induced Graphene Fabric from Silk and Its Application Examples for Flexible Sensor. Advanced Engineering Materials, 2021, 23, 2100195.	1.6	24
681	Polyimide-Derived Carbon-Coated Li4Ti5O12 as High-Rate Anode Materials for Lithium Ion Batteries. Polymers, 2021, 13, 1672.	2.0	10
682	Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped)carbons. Carbon, 2021, 176, 500-510.	5.4	16
683	The effect of laser in-situ induced graphene-like micro-texture on the friction and wear properties of ductile cast iron. Journal of Materials Research and Technology, 2021, 12, 2407-2413.	2.6	5
684	Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications. Scientific Reports, 2021, 11, 9750.	1.6	19
685	Facile and Scalable Fabrication of High-Performance Microsupercapacitors Based on Laser-Scribed <i>In Situ</i> Heteroatom-Doped Porous Graphene. ACS Applied Materials & Diterfaces, 2021, 13, 22426-22437.	4.0	35
686	Direct-laser-writing of electrochemiluminescent electrode on glassy carbon for iodide sensing in aqueous solution. Sensors and Actuators B: Chemical, 2021, 337, 129766.	4.0	10
687	Virus Inactivation in Water Using Laser-Induced Graphene Filters. Materials, 2021, 14, 3179.	1.3	26
688	Direct Pattern Growth of Carbon Nanomaterials by Laser Scribing on Spin-Coated Cu-Pl Composite Films and Their Gas Sensor Application. Materials, 2021, 14, 3388.	1.3	4
689	A Flexible Integrated Bending Strain and Pressure Sensor System for Motion Monitoring. Sensors, 2021, 21, 3969.	2.1	16

#	Article	IF	CITATIONS
690	Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Applied Materials & Sensing. ACS Applied Materials & Sensing. 13, 30245-30260.	4.0	128
691	Physical Sensors Based on Laser-Induced Graphene: A Review. IEEE Sensors Journal, 2021, 21, 12426-12443.	2.4	50
692	Nanoporous Carbon Aerogels for Laser-Printed Wearable Sensors. ACS Applied Nano Materials, 2021, 4, 6796-6804.	2.4	13
693	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	5.2	105
694	Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor. Applied Surface Science, 2021, 551, 149438.	3.1	40
695	Novel multi-walled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor. Sensors and Actuators A: Physical, 2021, 323, 112658.	2.0	21
696	Artificial neural networks and phenomenological degradation models for fatigue damage tracking and life prediction in laser induced graphene interlayered fiberglass composites. Smart Materials and Structures, 2021, 30, 085010.	1.8	7
697	Design of Experiments and Optimization of Laser-Induced Graphene. ACS Omega, 2021, 6, 16736-16743.	1.6	24
698	Ultrafast and Controllable Phase Evolution by Flash Joule Heating. ACS Nano, 2021, 15, 11158-11167.	7.3	38
699	Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges. InformaÄnÃ-Materiály, 2021, 3, 1393-1421.	8.5	46
700	Accurate Flexible Temperature Sensor Based on Laser-Induced Graphene Material. Shock and Vibration, 2021, 2021, 1-7.	0.3	12
701	An Interdigital Strain Sensor Through Laser Carbonization of PI and PDMS Transfer. , 2021, , .		3
702	Facile Fabrication of Robust and Reusable PDMS Supported Graphene Dry Electrodes for Wearable Electrocardiogram Monitoring. Advanced Materials Technologies, 2021, 6, 2100262.	3.0	32
703	Electrically Conductive Porous Carbon Structures Fabricated by Laser Direct Carbonization of Bamboo., 2021,,.		1
704	Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene. Nanomaterials, 2021, 11, 1893.	1.9	17
705	A Review on the Applications of Graphene in Mechanical Transduction. Advanced Materials, 2022, 34, e2101326.	11.1	59
706	Laser Synthesized Graphene and Its Applications. Applied Sciences (Switzerland), 2021, 11, 6304.	1.3	10
707	Emerging materials for the electrochemical detection of COVID-19. Journal of Electroanalytical Chemistry, 2021, 893, 115289.	1.9	40

#	Article	IF	CITATIONS
708	Laser Direct Writing of Flexible Heaters on Polymer Substrates. Industrial & Engineering Chemistry Research, 2021, 60, 11161-11170.	1.8	11
709	Functionalized Masks: Powerful Materials against COVIDâ€19 and Future Pandemics. Small, 2021, 17, e2102453.	5.2	82
710	An Aqueous Antiâ€Freezing and Heatâ€Tolerant Symmetric Microsupercapacitor with 2.3ÂV Output Voltage. Advanced Energy Materials, 2021, 11, 2101523.	10.2	28
711	Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Interfaces, 2021, 13, 37433-37444.	4.0	30
712	Generic Fabrication Technique of Graphene Based RF Sensor towards Biological Application. International Journal of Recent Technology and Engineering, 2021, 10, 68-74.	0.2	0
713	Waterproof Mechanically Robust Multifunctional Conformal Sensors for Underwater Interactive Human–Machine Interfaces. Advanced Intelligent Systems, 2021, 3, 2100056.	3.3	27
714	Laserâ€Induced Graphene Assisting Selfâ€Conversion Reaction for Sulfurâ€Free Aqueous Cuâ€S Battery. Advanced Functional Materials, 2021, 31, 2103893.	7.8	27
715	Tuning the Electrical Properties of Cellulose Nanocrystals through Laser-Induced Graphitization for UV Photodetectors. ACS Applied Nano Materials, 2021, 4, 8262-8272.	2.4	23
716	Laser-Induced Graphene Printed Wearable Flexible Antenna-Based Strain Sensor for Wireless Human Motion Monitoring. IEEE Transactions on Electron Devices, 2021, 68, 3189-3194.	1.6	44
717	3D Printed Microâ€Electrochemical Energy Storage Devices: From Design to Integration. Advanced Functional Materials, 2021, 31, 2104909.	7.8	66
718	Electrochemical and photoluminescence response of laser-induced graphene/electrodeposited ZnO composites. Scientific Reports, 2021, 11, 17154.	1.6	13
719	Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers, 2021, 13, 2795.	2.0	31
720	An Integrated Luminescent Information Encryption–Decryption and Anticounterfeiting Chip Based on Laser Induced Graphene. Advanced Functional Materials, 2021, 31, 2103255.	7.8	21
721	Laser Scribing Fabrication of Graphitic Carbon Biosensors for Label-Free Detection of Interleukin-6. Nanomaterials, 2021, 11, 2110.	1.9	14
722	Zincophilic Laserâ€Scribed Graphene Interlayer for Homogeneous Zinc Deposition and Stable Zincâ€Ion Batteries. Energy Technology, 2021, 9, 2100490.	1.8	21
723	In Situ Synthesis of Molybdenum Carbide Nanoparticles Incorporated into Laserâ€Patterned Nitrogenâ€Doped Carbon for Room Temperature VOC Sensing. Advanced Functional Materials, 2021, 31, 2104061.	7.8	12
724	Status and Prospects of Laserâ€Induced Graphene for Battery Applications. Energy Technology, 2021, 9, 2100454.	1.8	27
725	Wearable Supercapacitors, Performance, and Future Trends. , 0, , .		0

#	ARTICLE	IF	CITATIONS
726	Low-resistance laser-induced graphitic carbon by maximizing energy delivery and pulse overlap. Carbon, 2021, 181, 310-322.	5 . 4	13
727	Nanoenabled Bioelectrical Modulation. Accounts of Materials Research, 2021, 2, 895-906.	5.9	3
728	One-step laser fabrication of phosphorus-doped porous graphene electrodes for high-performance flexible microsupercapacitor. Carbon, 2021, 180, 56-66.	5.4	59
729	Highly sensitive piezoresistive pressure sensors based on laser-induced graphene with molybdenum disulfide nanoparticles. Science China Technological Sciences, 2021, 64, 2408-2414.	2.0	17
730	Potentiometric ion-selective sensors based on UV-ozone irradiated laser-induced graphene electrode. Electrochimica Acta, 2021, 387, 138341.	2.6	16
731	Binary transition metal oxide modified laser-scribed graphene electrochemical aptasensor for the accurate and sensitive screening of acute myocardial infarction. Electrochimica Acta, 2021, 386, 138489.	2.6	34
732	Phase transition mechanism of hexagonal graphite to hexagonal and cubic diamond: ab initio simulation. Journal of Physics Condensed Matter, 2021, 33, 425403.	0.7	1
733	Fatigue damage tracking and life prediction of fiberglass composites using a laser induced graphene interlayer. Composites Part B: Engineering, 2021, 218, 108935.	5.9	16
734	Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites. Composites Part B: Engineering, 2021, 219, 108932.	5.9	24
735	N, P co-doped porous graphene with high electrochemical properties obtained via the laser induction of cellulose nanofibrils. Chinese Journal of Chemical Engineering, 2022, 47, 31-38.	1.7	3
736	Laser solid-phase synthesis of single-atom catalysts. Light: Science and Applications, 2021, 10, 168.	7.7	27
737	One-Step Fabrication of Low-Resistance Conductors on 3D-Printed Structures by Laser-Induced Graphene. ACS Applied Electronic Materials, 2021, 3, 3867-3875.	2.0	9
738	Flexible and high precision thermal metasurface. Communications Materials, 2021, 2, .	2.9	4
739	Interfacial Laserâ€Induced Graphene Enabling Highâ€Performance Liquidâ^'Solid Triboelectric Nanogenerator. Advanced Materials, 2021, 33, e2104290.	11.1	120
740	In-plane micro-supercapacitor using polymer nanosheet assembly as a weak acid solid electrolyte. Molecular Crystals and Liquid Crystals, 0, , 1-6.	0.4	0
741	Laser-engraved graphene for flexible and wearable electronics. Trends in Chemistry, 2021, 3, 969-981.	4.4	34
742	Enhanced Graphene Sensors via Multi-Lasing Fabrication. IEEE Sensors Journal, 2021, 21, 18562-18570.	2.4	3
743	Research on Frequency Doubling Effect of Thermoacoustic Speaker Based on Graphene Film. Sensors, 2021, 21, 6030.	2.1	0

#	ARTICLE	IF	CITATIONS
744	Transferred Laserâ€Scribed Grapheneâ€Based Durable and Permeable Strain Sensor. Advanced Materials Interfaces, 2021, 8, 2100625.	1.9	5
745	Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Analytical and Bioanalytical Chemistry, 2021, 413, 6201-6212.	1.9	16
746	E-beam direct synthesis of macroscopic thick 3D porous graphene films. Carbon, 2021, 182, 393-403.	5.4	17
747	Phosphor copper-based flexible high voltage supercapacitors fabricated via laser irradiation and three-dimensional packaging. Journal of Power Sources, 2021, 507, 230257.	4.0	10
748	Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy, 2021, 87, 106184.	8.2	50
749	High-Performance Washable PM2.5 Filter Fabricated with Laser-Induced Graphene. Materials, 2021, 14, 5551.	1.3	3
750	Sustainable synthesis, reduction and applications of graphene obtained from renewable resources. Sustainable Materials and Technologies, 2021, 29, e00310.	1.7	23
751	Modification of aluminum current collectors with laser-scribed graphene for enhancing the performance of lithium ion batteries. Journal of Power Sources, 2021, 506, 230060.	4.0	10
752	A top-down cutting method for construction of high-performance fiber-shaped quasi-solid-state asymmetric supercapacitors. Materials Today Energy, 2021, 21, 100758.	2.5	0
753	Laserâ€induced Graphene in Facts, Numbers, and Notes in View of Electroanalytical Applications: A Review. Electroanalysis, 2022, 34, 574-589.	1.5	28
754	Laser-Induced fluorinated graphene for superhydrophobic surfaces with anisotropic wetting and switchable adhesion. Applied Surface Science, 2022, 574, 151339.	3.1	17
755	Optical anisotropy of laser-induced graphene films. Optics and Laser Technology, 2021, 141, 107143.	2.2	11
756	Polarity dependent electrowetting for directional transport of water through patterned superhydrophobic laser induced graphene fibers. Carbon, 2021, 182, 605-614.	5.4	21
757	Fabrication of fanlike L-shaped graphene nanostructures with enhanced thermal/electrochemical properties via laser irradiation. Carbon, 2021, 182, 691-699.	5.4	16
758	Multifunctional Laserâ€Induced Graphene Papers with Combined Defocusing and Grafting Processes for Patternable and Continuously Tunable Wettability from Superlyophilicity to Superlyophobicity. Small, 2021, 17, e2103322.	5.2	25
7 59	Conductive Writing with High Precision by Laserâ€Induced Pointâ€toâ€Line Carbonization Strategy for Flexible Supercapacitors. Advanced Optical Materials, 2021, 9, 2100793.	3.6	9
760	Exergetic Performance of a PEM Fuel Cell with Laser-Induced Graphene as the Microporous Layer. Energies, 2021, 14, 6232.	1.6	0
761	Photothermochemical Nanoassembly of 3D Porous Graphene and Palladium Nanoparticles for High-Performance Hydrogen Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49128-49136.	4.0	6

#	ARTICLE	IF	CITATIONS
762	Carbon nanotube modified laser-induced graphene electrode for hydrogen peroxide sensing. Materials Letters, 2021, 300, 130106.	1.3	20
763	Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon, 2021, 183, 600-611.	5.4	44
764	Molecular dynamics simulation of evolution of nanostructures and functional groups in glassy carbon under pyrolysis. Carbon, 2021, 184, 627-640.	5.4	12
765	Three-dimensional laser-induced holey graphene and its dry release transfer onto Cu foil for high-rate energy storage in lithium-ion batteries. Applied Surface Science, 2021, 564, 150416.	3.1	12
766	Evolution and application of all-in-one electrochemical energy storage system. Energy Storage Materials, 2021, 41, 677-696.	9.5	25
767	The combined use of wrinkling and cracking for the characterization of the mechanical properties of the laser-fabricated nanometer-thick amorphous carbon films. Carbon, 2021, 184, 864-874.	5.4	5
768	SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors. Carbon, 2021, 183, 128-137.	5.4	43
769	Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding. Chemical Engineering Journal, 2021, 421, 129763.	6.6	59
770	Combined extrusion-printed and laser-induced graphene enabled self-sensing composites with a strategic roadmap toward optimization of piezoresistivity. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106553.	3.8	5
771	Laser-induced micro-explosion to construct hierarchical structure as efficient polysulfide mediators for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 421, 129707.	6.6	11
772	Scalable fabrication of vanadium carbide/graphene electrodes for high-energy and flexible microsupercapacitors. Carbon, 2021, 183, 840-849.	5.4	16
773	Laser synthesis of superhydrophilic O/S co-doped porous graphene derived from sodium lignosulfonate for enhanced microsupercapacitors. Journal of Power Sources, 2021, 513, 230558.	4.0	36
774	Fabrication of LIG coating on SiC/SiC composites with femtosecond laser. Optik, 2021, 245, 167628.	1.4	7
775	Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor. Sensors and Actuators B: Chemical, 2021, 347, 130653.	4.0	42
776	Laser conversion of biomass into porous carbon composite under ambient condition for pH-Universal electrochemical hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 604, 885-893.	5.0	12
777	High-entropy carbons: From high-entropy aromatic species to single-atom catalysts for electrocatalysis. Chemical Engineering Journal, 2021, 426, 131320.	6.6	14
778	Boosting the performance of flexible in-plane micro-supercapacitors by engineering MoS2 nanoparticles embedded in laser-induced graphene. Journal of Alloys and Compounds, 2021, 887, 161514.	2.8	26
779	A brief review on miniaturized electrochemiluminescence devices: From fabrication to applications. Current Opinion in Electrochemistry, 2021, 30, 100800.	2.5	28

#	Article	IF	CITATIONS
780	Phosphoric acid involved laser induced microporous graphene via proton conducting polybenzimidazole for high-performance micro-supercapacitors. Journal of Power Sources, 2021, 514, 230579.	4.0	16
781	Facile fabrication of rGO/LIG-based temperature sensor with high sensitivity. Materials Letters, 2021, 304, 130637.	1.3	23
782	Mechanically-compensated bending-strain measurement of multilayered paper-like electronics via surface-mounted sensor. Composite Structures, 2021, 277, 114652.	3.1	6
783	Monolithic digital patterning of polyimide by laser-induced pyrolytic jetting. Chemical Engineering Journal, 2022, 428, 131050.	6.6	20
784	Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors. Applied Surface Science, 2022, 571, 151385.	3.1	26
785	A Multi-functional NO2 gas monitor and Self-Alarm based on Laser-Induced graphene. Chemical Engineering Journal, 2022, 428, 131079.	6.6	33
786	Laser-enabled flexible electrochemical sensor on finger for fast food security detection. Journal of Hazardous Materials, 2022, 423, 127014.	6.5	28
787	Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications. Chemical Engineering Journal, 2022, 428, 131119.	6.6	64
788	Fabrication of Interdigitated Sensors: Issues and Resolution. Smart Sensors, Measurement and Instrumentation, 2021, , 35-69.	0.4	0
789	Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Advances, 2021, 3, 6271-6293.	2.2	27
790	Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. Nano-Micro Letters, 2021, 13, 49.	14.4	82
791	Laser-induced graphene for environmental applications: progress and opportunities. Materials Chemistry Frontiers, 2021, 5, 4874-4891.	3.2	35
792	Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene-Based Single Electrode for Interference-Free Sensing of Dopamine, Xanthine, and Glucose. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	19
793	A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Advances, 2021, 11, 6544-6576.	1.7	83
794	Electrochemical Removal of Organic and Inorganic Pollutants Using Robust Laser-Induced Graphene Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1452-1462.	4.0	44
795	Laser-Induced Carbonization and Graphitization. , 2021, , 1-22.		1
796	Titanium Oxide Composites with Graphene and Laser-Induced Graphene for the Environmental Applications. Energy, Environment, and Sustainability, 2021, , 27-58.	0.6	1
797	A multiple laser-induced hybrid electrode for flexible triboelectric nanogenerators. Sustainable Energy and Fuels, 2021, 5, 3737-3743.	2.5	17

#	ARTICLE	IF	CITATIONS
798	Nanosupercapacitors with fractal structures: searching designs to push the limit. Journal of Materials Chemistry A, 2021, 9, 17400-17414.	5.2	7
799	Ultra-high thermal conductivities of tetrahedral carbon allotropes with non-simple structures. Physical Chemistry Chemical Physics, 2021, 23, 24550-24556.	1.3	2
800	Bioimpedance Sensors: A Tutorial. IEEE Sensors Journal, 2021, 21, 22190-22219.	2.4	24
801	Highly Doped 3D Graphene Naâ€lon Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient. Advanced Energy Materials, 2018, 8, 1800353.	10.2	83
802	Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. Small Methods, 2020, 4, 1900824.	4.6	56
803	PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 2020, 518, 146193.	3.1	23
804	Using Carbon Laser Patterning to Produce Flexible, Metal-Free Humidity Sensors. ACS Applied Electronic Materials, 2020, 2, 4146-4154.	2.0	9
805	Laminated Laser-Induced Graphene Composites. ACS Nano, 2020, 14, 7911-7919.	7.3	64
806	Carbon-based Nanomaterials in Analytical Chemistry. RSC Detection Science, 2018, , 1-36.	0.0	10
807	Wave-vector direction-sensitive photocurrent in laser-induced graphene. Journal of Physics: Conference Series, 2020, 1695, 012113.	0.3	1
808	Laser induced graphene on phenolic resin and alcohol composite sheet for flexible electronics applications. Flexible and Printed Electronics, 2020, 5, 042001.	1.5	15
809	Optimization and Characterization of Laser-Induced Graphene Electrodes for Chemical Fuel Cell to Realize a Microfluidic Platform. , 2020, , .		1
810	3D printing with light: towards additive manufacturing of soft, electroactive structures. , 2018, , .		5
811	DIY Fabrication of High Performance Multi-Layered Flexible PCBs. , 2020, , .		6
812	Patterned laser-induced graphene for terahertz wave modulation. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 546.	0.9	20
813	Strain sensing using electrically conductive structures fabricated by femtosecond-laser-based modification of PDMS. Optical Materials Express, 2019, 9, 2672.	1.6	10
814	Laser fabrication of graphene-based supercapacitors. Photonics Research, 2020, 8, 577.	3.4	35
815	Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnology Reviews, 2020, 9, 1284-1314.	2.6	72

#	Article	IF	Citations
816	Review of the Direct Laser Synthesis of Functionalized Graphene and its Application in Sensor Technology. Applied Science and Convergence Technology, 2019, 28, 148-154.	0.3	6
817	Laser-Induced Graphene-Functionalized Field-Effect Transistor-Based Biosensing: A Potent Candidate for COVID-19 Detection. IEEE Transactions on Nanobioscience, 2022, 21, 232-245.	2.2	16
818	Enhancement of antibacterial function by incorporation of silver-doped ZnO nanocrystals onto a laser-induced graphene surface. RSC Advances, 2021, 11, 33883-33889.	1.7	8
819	Formation of Carbon Nanofibers on the Surface of a Photoresist under the Action of a Powerful Ion Beam of Nanosecond Duration. Journal of Surface Investigation, 2021, 15, 1087-1091.	0.1	1
820	Laser-Induced Microstructuring of Polymers in Gaseous, Liquid and Supercritical Media. Polymers, 2021, 13, 3525.	2.0	1
821	Fabrication and Performance of Graphene Flexible Pressure Sensor with Micro/Nano Structure. Sensors, 2021, 21, 7022.	2.1	4
822	Largeâ€Scale Syntheses of 2D Materials: Flash Joule Heating and Other Methods. Advanced Materials, 2022, 34, e2106970.	11.1	66
823	La ₃ Ga ₃ Ge ₂ S ₃ O ₁₀ : An Ultraviolet Nonlinear Optical Oxysulfide Designed by Anionâ€Directed Band Gap Engineering. Angewandte Chemie, 2021, 133, 26765-26769.	1.6	13
824	Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors. Nanomaterials, 2021, 11, 2828.	1.9	3
825	CVD Synthesis of 3D-Shaped 3D Graphene Using a 3D-Printed Nickel–PLGA Catalyst Precursor. ACS Omega, 2021, 6, 29009-29021.	1.6	9
826	Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. Nanomaterials, 2021, 11, 2700.	1.9	26
827	Laserâ€Induced Graphene on Paper toward Efficient Fabrication of Flexible, Planar Electrodes for Electrochemical Sensing. Advanced Materials Interfaces, 2021, 8, 2101502.	1.9	48
828	Laser-assisted transformation of a phenol-based resin to high quality graphene-like powder for supercapacitor applications. Chemical Engineering Journal, 2022, 430, 133179.	6.6	16
829	The Future of Flash Graphene for the Sustainable Management of Solid Waste. ACS Nano, 2021, 15, 15461-15470.	7.3	40
830	La ₃ Ga ₃ Ge ₂ S ₃ O ₁₀ : An Ultraviolet Nonlinear Optical Oxysulfide Designed by Anionâ€Directed Band Gap Engineering. Angewandte Chemie - International Edition, 2021, 60, 26561-26565.	7.2	37
831	Molecular Engineering of Laserâ€Induced Graphene for Potentialâ€Driven Broadâ€Spectrum Antimicrobial and Antiviral Applications. Small, 2021, 17, e2102841.	5.2	19
832	Laser direct write of heteroatom-doped graphene on molecularly controlled polyimides for electrochemical biosensors with nanomolar sensitivity. Carbon, 2022, 188, 209-219.	5.4	20
833	Direct laser writing carbonization based on internal-reflection setup for fabricating shape-tailorable and sealed in-situ carbon features. Materials and Design, 2021, 211, 110162.	3.3	5

#	Article	IF	Citations
834	In-Plane Supercapacitor Formed by Laser Carbonization of Polymer Surface. The Review of Laser Engineering, 2017, 45, 627.	0.0	0
835	Laser direct writing of reduced graphene oxide micropatterns and sensor applications. , 2018, , .		0
836	Laser direct writing using nanomaterials and device applications towards IoT technology. , 2018, , .		1
837	Laser-induced hierarchically-structured materials from block copolymer self-assembly. , 2019, , .		0
838	Flexible planar supercapacitors by straightforward filtration and laser processing steps. Nanotechnology, 2020, 31, 495403.	1.3	4
839	Nanosecond Laser Patterned Porous Graphene from Monolithic Mesoporous Carbon for Highâ€Performance Solar Thermal Interfacial Evaporation. Advanced Materials Technologies, 2021, 6, 2101052.	3.0	9
840	Preparation of high-performance flexible microsupercapacitors based on papermaking and laser-induced graphene techniques. Electrochimica Acta, 2022, 401, 139490.	2.6	12
841	Simple laser-induced graphene fiber electrode fabrication for high-performance heavy-metal sensing. Microchemical Journal, 2022, 172, 106950.	2.3	16
842	One-Step Formation of Reduced Graphene Oxide from Insulating Polymers Induced by Laser Writing Method. Crystals, 2021, 11, 1308.	1.0	11
843	Permeable Conductors for Wearable and Onâ€Skin Electronics. Small Structures, 2022, 3, 2100135.	6.9	46
844	Accelerate Synthesis of Metal–Organic Frameworks by a Robotic Platform and Bayesian Optimization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53485-53491.	4.0	28
845	Development of a simple disposable laser-induced porous graphene flexible electrode for portable wireless intelligent votammetric nanosensing of salicylic acid in agro-products. Computers and Electronics in Agriculture, 2021, 191, 106502.	3.7	11
846	First report on graphene oxide free, ultrafast fabrication of reduced graphene oxide on paper via visible light laser irradiation. Diamond and Related Materials, 2021, 120, 108680.	1.8	6
847	Laser-Induced Patterned Photonic Crystal Heterostructure for Multimetal Ion Recognition. ACS Applied Materials & Description (2021), 13, 4330-4339.	4.0	8
848	Laser-Induced Carbonization and Graphitization. , 2021, , 857-878.		0
849	In-situ joule heating-triggered nanopores generation in laser-induced graphene papers for capacitive enhancement. Carbon, 2022, 186, 215-226.	5.4	23
850	A disposable and flexible electrochemical sensor for the sensitive detection of heavy metals based on a one-step laser-induced surface modification: A new strategy for the batch fabrication of sensors. Sensors and Actuators B: Chemical, 2022, 350, 130834.	4.0	36
851	Electrochemical paper-based analytical devices. , 2022, , 81-116.		6

#	Article	IF	CITATIONS
852	Graphene growth kinetics for CO2 laser carbonization of polyimide. Materials Letters, 2022, 307, 131097.	1.3	3
853	Electrodeposited with FeOOH and MnO2 on laser-induced graphene for multi-assembly supercapacitors. Journal of Alloys and Compounds, 2022, 893, 162230.	2.8	12
854	Influence of Catalytic Additives on the Formation of Nanostructured Carbon Layers on the Surface of Chlorinated Polyvinyl Chloride under a High-Power Ion Beam. Journal of Surface Investigation, 2020, 14, 347-350.	0.1	1
855	2.4 GHz Microstrip Patch Antenna Fabricated by Means of Laser Induced Graphitization of a Cellulose-based Paper Substrate. , 2021, , .		7
856	Thermal Properties of Laser-induced Graphene Films Photothermally Scribed on Bare Polyimide Substrates., 2021,,.		0
857	Paper-based optimized chemical fuel cell with laser-scribed graphene electrodes for energy harvesting. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	3
858	Graphene Materials for Miniaturized Energy Harvest and Storage Devices. Small Structures, 2022, 3, .	6.9	23
859	Boosting Electric Double Layer Capacitance in Laserâ€Induced Grapheneâ€Based Supercapacitors. Advanced Sustainable Systems, 2022, 6, 2100228.	2.7	58
860	Conducting Polymer-Reinforced Laser-Irradiated Graphene as a Heterostructured 3D Transducer for Flexible Skin Patch Biosensors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54456-54465.	4.0	26
861	Nitrogen and phosphorous Co-Doped Laser-Induced Graphene: A High-Performance electrode material for supercapacitor applications. Applied Surface Science, 2022, 576, 151714.	3.1	26
862	Effect of the Preliminary Heat Treatment of Chlorinated Polyvinyl Chloride on the Formation of Carbon Nanofibers on its Surface under High-Power Ion-Beam Irradiation. Journal of Surface Investigation, 2020, 14, 691-695.	0.1	2
863	Femtosecond Laser-induced Modification of Polymers to Conductive Materials. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 684-688.	0.1	0
864	Fast-printed, large-area and low-cost terahertz metasurface using laser-induced graphene. Carbon, 2022, 187, 256-265.	5.4	20
865	Direct laser writing of polyimide for flexible graphene photodetectors. , 2021, , .		1
866	Laser In-Situ synthesis of metallic cobalt decorated porous graphene for flexible In-Plane microsupercapacitors. Journal of Colloid and Interface Science, 2022, 610, 775-784.	5.0	10
867	Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors. Chinese Chemical Letters, 2022, 33, 3921-3924.	4.8	13
868	Laser ablation behavior and mechanism of polyimide by UV irradiation. Materials and Manufacturing Processes, 0, , 1-7.	2.7	9
869	Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS Nano, 2021, 15, 19490-19502.	7.3	90

#	Article	IF	CITATIONS
870	Laser-Induced Graphene Heater Pad for De-Icing. Nanomaterials, 2021, 11, 3093.	1.9	10
871	Highly responsive screen-printed asymmetric pressure sensor based on laser-induced graphene. Journal of Micromechanics and Microengineering, 2022, 32, 015002.	1.5	15
872	Highly efficient detection of Cd(II) ions by a stannum and cerium bimetal-modified laser-induced graphene electrode in water. Chemical Engineering Journal, 2022, 433, 133791.	6.6	17
873	Inherent Surface Activation of Laser-Scribed Graphene Decorated with Au and Ag Nanoparticles: Simultaneous Electrochemical Behavior toward Uric Acid and Dopamine. Langmuir, 2021, 37, 13890-13902.	1.6	18
874	Different approaches for fabrication of low-cost electrochemical sensors. Current Opinion in Electrochemistry, 2022, 32, 100893.	2.5	43
875	Laserâ€Induced Graphenization of PDMS as Flexible Electrode for Microsupercapacitors. Advanced Materials Interfaces, 2021, 8, 2101046.	1.9	11
876	A Redox-Mediator-Integrated Flexible Micro-Supercapacitor with Improved Energy Storage Capability and Suppressed Self-Discharge Rate. Nanomaterials, 2021, 11, 3027.	1.9	8
877	Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules, 2021, 26, 6947.	1.7	22
878	Simultaneous laser in-situ generation of graphene and micro-textures on ductile iron and their effects on tribological properties. Journal of Materials Research and Technology, 2021, 15, 6541-6550.	2.6	4
879	Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. Biomicrofluidics, 2021, 15, 061502.	1.2	8
880	Laser-fabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate. Applied Catalysis B: Environmental, 2022, 307, 120991.	10.8	26
881	Printed pH Sensors for Textileâ€Based Wearables: A Conceptual and Experimental Study on Materials, Deposition Technology, and Sensing Principles. Advanced Engineering Materials, 2022, 24, 2101087.	1.6	10
882	Laser In Situ Preparation of S-Doped Porous Graphene for Flexible Microsupercapacitors. IEEE Electron Device Letters, 2022, 43, 327-330.	2.2	3
883	A Novel Micro-Pressure Graphene Sensor Array With Double-Layer Mesh Structure. IEEE Sensors Journal, 2022, 22, 1964-1971.	2.4	4
884	Laser Induced Graphene: New Sensing Applications. , 2021, , .		0
885	Laserâ€Induced Graphene from Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors. Advanced Materials Technologies, 2022, 7, .	3.0	39
886	Laser-scribed graphene sensors on nail polish with tunable composition for electrochemical detection of nitrite and glucose. Sensors and Actuators B: Chemical, 2022, 357, 131394.	4.0	26
887	Controllable Nanoparticle Aggregation through a Superhydrophobic Laser-Induced Graphene Dynamic System for Surface-Enhanced Raman Scattering Detection. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3504-3514.	4.0	13

#	Article	IF	CITATIONS
888	Fabrication of laser-induced graphene-based multifunctional sensing platform for sweat ion and human motion monitoring. Sensors and Actuators A: Physical, 2022, 334, 113320.	2.0	26
889	Preparation of Platinum Decorated Laser-Induced Graphene Flexible Electrode and Its Application for Clenbuterol Detection. International Journal of Electrochemical Science, 0, , ArticleID:220241.	0.5	0
890	Flexible large e-skin array based on patterned laser-induced graphene for tactile perception. Sensors and Actuators A: Physical, 2022, 334, 113308.	2.0	16
891	Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosensors and Bioelectronics, 2022, 199, 113906.	5.3	76
892	Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today, 2022, 26, 101350.	2.3	15
893	Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes. Materials Today Sustainability, 2022, 17, 100096.	1.9	18
894	Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy, 2022, 94, 106902.	8.2	23
895	Specific Laser Cutter Settings. , 2020, , 77-83.		0
896	Compared EC-AFM Analysis of Laser-Induced Graphene and Graphite Electrodes in Sulfuric Acid Electrolyte. Molecules, 2021, 26, 7333.	1.7	0
897	Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic Fuel Cell and Electrochemical Sensor. IEEE Transactions on Electron Devices, 2022, 69, 1333-1340.	1.6	4
898	Laser-Induced Graphene and Its Applications in Soft (Bio)Sensors. Carbon Materials, 2022, , 111-133.	0.2	1
899	Rapid Synthesis of Patterned Silicon Carbide Coatings Using Laserâ€Induced Pyrolysis and Crystallization of Polycarbosilane. Advanced Engineering Materials, 2022, 24, .	1.6	4
900	3D Porous Graphene Films with Largeâ€Area Inâ€Plane Exterior Skins. Advanced Materials Interfaces, 2022, 9, .	1.9	3
901	Laser processing of graphene and related materials for energy storage: State of the art and future prospects. Progress in Energy and Combustion Science, 2022, 91, 100981.	15.8	124
902	One-Step Ultraviolet Laser-Induced Fluorine-Doped Graphene Achieving Superhydrophobic Properties and Its Application in Deicing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4647-4655.	4.0	53
903	Sounds of Synthesis: Acoustic Realâ€Time Analysis of Laserâ€Induced Graphene. Advanced Functional Materials, 2022, 32, .	7.8	7
905	Recent progress of carbon-based electrocatalytic materials in Lithium-based batteries. Sustainable Materials and Technologies, 2022, 32, e00384.	1.7	0
906	Recent progress in the development of porous carbon-based electrodes for sensing applications. Analyst, The, 2022, 147, 767-783.	1.7	25

#	Article	IF	Citations
907	Electronic, Structural, and Magnetic Upgrading of Coal-Based Products through Laser Annealing. ACS Nano, 2022, 16, 2101-2109.	7.3	9
908	Darkening of Laserâ€Induced Graphene in Wet for Readable In Situ Real Time Sweating Rate Analysis. Advanced Materials Interfaces, 0, , 2102026.	1.9	0
909	A Low-Cost Wireless Intelligent Portable Sensor Based on Disposable Laser-Induced Porous Graphene Flexible Electrode Decorated by Gold Nanoshells for Rapid Detection of Sulfonamides in Aquatic Products. Food Analytical Methods, 2022, 15, 1471-1481.	1.3	13
910	Trained laser-patterned carbon as high-performance mechanical sensors. Npj Flexible Electronics, 2022, 6, .	5.1	5
911	Laser-Induced Graphene Based Flexible Electronic Devices. Biosensors, 2022, 12, 55.	2.3	44
912	Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Mikrochimica Acta, 2022, 189, 54.	2.5	50
913	Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene-Prussian Blue Hybrid Microsupercapacitors by Water Lift-Off Lithography. ACS Nano, 2022, 16, 1974-1985.	7.3	25
914	In situ formation of Co3O4 nanocrystals embedded in laser-induced graphene foam for high-energy flexible micro-supercapacitors. Dalton Transactions, 2022, , .	1.6	2
915	Structural and electronic properties of nonconventional \hat{l}_{\pm} -graphyne nanocarbons. Physical Review Materials, 2022, 6, .	0.9	2
916	Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. Advanced Materials, 2022, 34, e2110013.	11.1	75
917	High-Performance Flexible Heater With Command-Responding Function Attained by Direct Laser Writing on Nomex Paper. IEEE Electron Device Letters, 2022, 43, 462-465.	2.2	10
918	Recent Progress in Printed Physical Sensing Electronics for Wearable Health-Monitoring Devices: A Review. IEEE Sensors Journal, 2022, 22, 3844-3859.	2.4	33
919	Atomic Structure Modification of Feâ€'Nâ€'C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithiumâ€"Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
920	Magnetoresponsive Optical Fiber with Fuseâ€Effectâ€Induced Fluorinated Graphene Oxide Core. Advanced Photonics Research, 0, , 2100209.	1.7	1
921	Review on Microscale Sensors with 3D Engineered Structures: Fabrication and Applications. Small Methods, 2022, 6, e2101384.	4.6	9
922	Cellulose Nanocrystals in Sustainable Energy Systems. Advanced Sustainable Systems, 2022, 6, .	2.7	15
923	Upgrading carbonaceous materials: Coal, tar, pitch, and beyond. Matter, 2022, 5, 430-447.	5.0	24
924	Underfocus Laser Induced Ni Nanoparticles Embedded Metallic MoN Microrods as Patterned Electrode for Efficient Overall Water Splitting. Advanced Science, 2022, 9, e2105869.	5.6	43

#	ARTICLE	IF	CITATIONS
925	Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS Omega, 2022, 7, 5112-5130.	1.6	26
926	Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diamond and Related Materials, 2022, 123, 108855.	1.8	20
927	Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams. Applied Physics Reviews, 2022, 9, .	5.5	77
928	Large-scale and low-cost synthesis of porous carbon on the surface of commercial chlorinated polymers under the action of an intense electron beam of microsecond duration. Vacuum, 2022, 198, 110885.	1.6	4
929	Laser direct writing of graphene/MnO-Mn3O4 doped with sulfur for high-performance microsupercapacitors. Journal of Energy Storage, 2022, 49, 104118.	3.9	9
930	One-step fabrication of nitrogen-doped laser-induced graphene derived from melamine/polyimide for enhanced flexible supercapacitors. CrystEngComm, 2022, 24, 1866-1876.	1.3	14
931	Angular Accelerometer with Integrated Liquid Spiral Channel and lig Sensing Element on Polyimide Film. , 2022, , .		0
932	Multi-Axial Tactile Sensor Using Standing Lig Cantilevers on Polyimide Film. , 2022, , .		2
933	Subâ€Zero Temperature Sensor Based on Laserâ€Written Carbon. Advanced Electronic Materials, 0, , 2101252.	2.6	2
934	Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors. Optics Letters, 2022, 47, 1502.	1.7	6
935	Highly Stretchable and Self-Adhesive Elastomers Based on Polymer Chain Rearrangement for High-Performance Strain Sensors. ACS Omega, 2022, 7, 5825-5835.	1.6	9
936	Laser-induced graphene coated hollow-core fiber for humidity sensing. Sensors and Actuators B: Chemical, 2022, 359, 131530.	4.0	7
937	Laser Directâ∈Write Sensors on Carbonâ∈Fiberâ∈Reinforced Polyâ∈Etherâ∈"Etherâ∈"Ketone for Smart Orthopedi Implants. Advanced Science, 2022, 9, e2105499.	^C 5.6	10
938	Recent studies on polymeric materials for supercapacitor development. Journal of Energy Storage, 2022, 49, 104149.	3.9	77
939	Green Flexible Graphene–Inorganicâ€Hybrid Microâ€Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses. Advanced Functional Materials, 2022, 32, .	7.8	46
940	Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort. Small, 2022, 18, e2104810.	5.2	42
941	Laserâ€Induced Graphene Superhydrophobic Surface Transition from Pinning to Rolling for Multiple Applications. Small Methods, 2022, 6, e2200096.	4.6	13
942	A Portable Molecularly Imprinted Sensor for On-Site and Wireless Environmental Bisphenol A Monitoring. Frontiers in Chemistry, 2022, 10, 833899.	1.8	14

#	Article	IF	CITATIONS
943	Laser-Assisted Selective Fabrication of Copper Traces on Polymers by Electroplating. Polymers, 2022, 14, 781.	2.0	12
944	Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochimica Acta, 2022, 189, 122.	2.5	8
945	Laser-Induced N- and B-Codoped Graphene Nanozymes with Intrinsic Peroxidase-Like Activities for Bactericidal Application. ACS Sustainable Chemistry and Engineering, 2022, 10, 2750-2760.	3. 2	18
946	Humidity-Based Human–Machine Interaction System for Healthcare Applications. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 12606-12616.	4.0	22
947	Neutron irradiation induced magnetization and persistent defects at high temperatures in graphite. Physical Review B, 2022, 105, .	1.1	1
948	Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1229.	0.9	5
949	Laser-Induced Graphene Supercapacitors by Direct Laser Writing of Cork Natural Substrates. ACS Applied Electronic Materials, 2022, 4, 1541-1551.	2.0	28
950	Reusable, magnetic laser-induced graphene for efficient removal of organic pollutants from water. Carbon Letters, 2022, 32, 1047-1064.	3.3	9
951	Electrically Controlled Aquatic Soft Actuators with Desynchronized Actuation and Light-Mediated Reciprocal Locomotion. ACS Applied Materials & Interfaces, 2022, 14, 12936-12948.	4.0	13
952	3Dâ€Laminated Graphene with Combined Laser Irradiation and Resin Infiltration toward Designable Macrostructure and Multifunction. Advanced Science, 2022, 9, e2200362.	5 . 6	7
953	A perspective on laser-induced graphene for micro-supercapacitor application. Applied Physics Letters, 2022, 120, .	1.5	19
954	Pitaya-Structured Microspheres with Dual Laser Wavelength Responses for Polymer Laser Direct Writing. ACS Applied Materials & Interfaces, 2022, 14, 14817-14833.	4.0	4
955	Crosstalkâ€Free, Highâ€Resolution Pressure Sensor Arrays Enabled by Highâ€Throughput Laser Manufacturing. Advanced Materials, 2022, 34, e2200517.	11.1	27
956	Self-Folding PCB Kirigami: Rapid Prototyping of 3D Electronics via Laser Cutting and Forming. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14774-14782.	4.0	10
957	Green Synthesis of Laser-Induced Graphene with Copper Oxide Nanoparticles for Deicing Based on Photo-Electrothermal Effect. Nanomaterials, 2022, 12, 960.	1.9	3
958	Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. Surfaces, 2022, 5, 187-201.	1.0	15
959	Stretchable and Flexible Nonâ€Enzymatic Glucose Sensor Based on Poly(ether sulfone)â€Derived Laserâ€Induced Graphene for Wearable Skin Diagnostics. Advanced Materials Technologies, 2022, 7, .	3.0	12
960	Work function tunable laser induced graphene electrodes for Schottky type solar-blind photodetectors. Applied Physics Letters, 2022, 120, .	1.5	95

#	Article	IF	Citations
961	Modified UNet++ with attention gate for graphene identification by optical microscopy. Carbon, 2022, 195, 246-252.	5.4	10
962	Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing. Mikrochimica Acta, 2022, 189, 185.	2.5	11
963	Electrooculography and Tactile Perception Collaborative Interface for 3D Human–Machine Interaction. ACS Nano, 2022, 16, 6687-6699.	7.3	44
964	Manifestations of Laser-Induced Graphene under Ultraviolet Irradiation of Polyimide with Varied Optical Fluence. Nanomaterials, 2022, 12, 1241.	1.9	6
965	New Structural Insights into Densely Assembled Reduced Graphene Oxide Membranes. Advanced Functional Materials, 2022, 32, .	7.8	27
966	Carbon science perspective in 2022: Current research and future challenges. Carbon, 2022, 195, 272-291.	5.4	19
967	Intrinsically Breathable and Flexible NO ₂ Gas Sensors Produced by Laser Direct Writing of Self-Assembled Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17818-17825.	4.0	39
968	Synthesis of three-dimensional boron carbon nitrogen/reduced grapheme oxide broccoli as electrode material for flexible micro-supercapacitors. Surfaces and Interfaces, 2022, 30, 101873.	1.5	4
969	Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Advances in Colloid and Interface Science, 2022, 304, 102664.	7.0	102
970	Facile fabrication of a flexible laser induced gold nanoparticle/chitosan/ porous graphene electrode for uric acid detection. Talanta, 2022, 243, 123319.	2.9	32
971	Nomex paper-based double-sided laser-induced graphene for multifunctional human-machine interfaces. Carbon, 2022, 193, 68-76.	5.4	13
972	Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors. Chemical Engineering Journal, 2022, 437, 135493.	6.6	12
973	A facile and efficient nitrite electrochemical sensor based on N, O co-doped porous graphene film. Microchemical Journal, 2022, 178, 107361.	2.3	16
974	Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta, 2022, 244, 123419.	2.9	28
975	Advanced triboelectric nanogenerators based on low-dimension carbon materials: A review. Carbon, 2022, 194, 81-103.	5.4	37
976	A stretchable, high-voltage and biobased microsupercapacitor using laser induced graphene/MnOx electrodes on cotton cloth. Journal of Energy Storage, 2022, 51, 104458.	3.9	12
977	Laser induced 3D porous graphene dots: Bottom-up growth mechanism, multi-physics coupling effect and surface wettability. Applied Surface Science, 2022, 592, 153242.	3.1	19
978	Recent progress in aircraft smart skin for structural health monitoring. Structural Health Monitoring, 2022, 21, 2453-2480.	4.3	26

#	Article	IF	CITATIONS
979	Structuring and functionalization of non-metallic materials using direct laser interference patterning: a review. Nanophotonics, 2022, 11, 203-240.	2.9	28
980	Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano, 2021, 15, 18708-18741.	7.3	70
981	Nano- and Microstructured Copper/Copper Oxide Composites on Laser-Induced Carbon for Enzyme-Free Glucose Sensors. ACS Applied Nano Materials, 2021, 4, 13747-13760.	2.4	27
982	Laser-Induced Graphene Electrodes Modified with a Molecularly Imprinted Polymer for Detection of Tetracycline in Milk and Meat. Sensors, 2022, 22, 269.	2.1	11
984	Large-Pore Ordered Mesoporous Turbostratic Carbon Films Prepared Using Rapid Thermal Annealing for High-Performance Micro-pseudocapacitors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 61027-61038.	4.0	10
985	Electrochemical Sensor for Methamphetamine Detection Using Laser-Induced Porous Graphene Electrode. Nanomaterials, 2022, 12, 73.	1.9	17
986	Graphene nanostructures for input–output bioelectronics. Biophysics Reviews, 2021, 2, 041304.	1.0	7
987	Effects of laser processing parameters on properties of laser-induced graphene by irradiating CO2 laser on polyimide. Science China Technological Sciences, 2022, 65, 41-52.	2.0	24
988	Laser Direct Writing of Graphene Quantum Dots inside a Transparent Polymer. Nano Letters, 2022, 22, 775-782.	4.5	18
989	Comparing Structure and Sorption Characteristics of Laser-Induced Graphene (LIG) from Various Polymeric Substrates. ACS ES&T Water, 2022, 2, 75-87.	2.3	14
990	3D Printed Ti ₃ C ₂ T <i>_x</i> MXene/Cellulose Nanofiber Architectures for Solidâ€State Supercapacitors: Ink Rheology, 3D Printability, and Electrochemical Performance. Advanced Functional Materials, 2022, 32, .	7.8	85
991	Compacted Laserâ€Induced Graphene with Bambooâ€Like Carbon Nanotubes for Transformable Capacitive Energy Storage Electrodes. Advanced Materials Technologies, 2022, 7, .	3.0	10
992	Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1315-1325.	4.0	56
993	Influence of Preliminary UV Irradiation on the Formation of Carbon Nanofibers on the Surface of Chlorinated Polyvinyl Chloride Under the Action of a High-Power Ion Beam. Journal of Surface Investigation, 2021, 15, S37-S41.	0.1	0
994	Laser-Induced Graphene, Fused Filament Fabrication, and Aerosol Jet Printing for Realizing Conductive Elements of UHF RFID Antennas. IEEE Journal of Radio Frequency Identification, 2022, 6, 601-609.	1.5	11
995	Polyaniline Modified Laser-Scribed Graphene for High-Performance Microsupercapacitors. IEEE Electron Device Letters, 2022, 43, 966-969.	2.2	6
996	Fabrication of ultra-thin laser induced graphene electrodes over negative photoresist on glass for various electronic applications. Microelectronic Engineering, 2022, 259, 111790.	1.1	2
997	A Multitasking Flexible Sensor via Reservoir Computing. Advanced Materials, 2022, 34, e2201663.	11.1	21

#	Article	IF	CITATIONS
998	Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings, 2022, 12, 558.	1.2	28
999	Prussian blue-modified laser-induced graphene platforms for detection of hydrogen peroxide. Mikrochimica Acta, 2022, 189, 188.	2.5	15
1000	Laser-Sculptured Hierarchical Spinous Structures for Ultra-High-Sensitivity Iontronic Sensors with a Broad Operation Range. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19672-19682.	4.0	18
1001	Mechanical and thermal characterizations of nanoporous two-dimensional boron nitride membranes. Scientific Reports, 2022, 12, 6306.	1.6	3
1002	Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Science China Materials, 2022, 65, 2412-2420.	3.5	11
1003	Flexible broadband photodetector based on laser-induced graphene/CH3NH3PbI3 composite. Optical Materials, 2022, 128, 112364.	1.7	8
1004	Dual nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials integrated with a smartphone portable electrochemical system for point-of-care non-enzymatic glucose diagnosis. Materials Today Chemistry, 2022, 24, 100895.	1.7	7
1005	Combination of chemical foaming strategy and laser-induced graphene technology for enhanced paper-based microsupercapacitor. Journal of Power Sources, 2022, 535, 231488.	4.0	9
1006	Dual Defocused Laser Pyrolysis: A Lasingâ€Centric Strategy for Defect and Morphological Optimization in Microsupercapacitor Electrodes. Small Methods, 2022, , 2101616.	4.6	2
1007	Recent trends in covalent functionalization of 2D materials. Physical Chemistry Chemical Physics, 2022, 24, 10684-10711.	1.3	20
1008	Graphene-Based Bioelectronics. , 2022, , 129-145.		1
1009	Electronic Tattoos., 2022,,.		1
1010	Flexible Paper and Cloth Substrates With Conductive Laser Induced Graphene Traces for Electroanalytical Sensing, Energy Harvesting and Supercapacitor Applications. IEEE Sensors Journal, 2023, 23, 24078-24085.	2.4	6
1011	Miniaturized Electrochemical (Bio)sensing Devices Going Wearable. , 2022, , 51-90.		1
1012	A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate. Npj Flexible Electronics, 2022, 6, .	5.1	41
1013	Deep Learning Enabled High-Performance Speech Command Recognition on Graphene Flexible Microphones. ACS Applied Electronic Materials, 2022, 4, 2306-2312.	2.0	5
1014	Laser-scribed Graphene Electrodes Functionalized with Nafion/Fe ₃ O ₄ Nanohybrids for the Ultrasensitive Detection of Neurotoxin Drug Clioquinol. ACS Omega, 2022, 7, 15936-15950.	1.6	14
1015	Mass-Producible 2D Nanocomposite-Based Temperature-Independent All-Printed Relative Humidity Sensor. ACS Omega, 2022, 7, 16605-16615.	1.6	7

#	Article	IF	CITATIONS
1016	A nanocomposite-decorated laser-induced graphene-based multi-functional hybrid sensor for simultaneous detection of water contaminants. Analytica Chimica Acta, 2022, 1209, 339872.	2.6	9
1017	Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. Advanced Materials, 2022, 34, e2201046.	11.1	26
1018	Terahertz surface plasmon polaritons travelling on laser-induced porous graphene. Applied Physics Letters, 2022, 120, .	1.5	4
1019	Direct Laser Writing of Graphitic Carbon from Liquid Precursors. Chemistry of Materials, 2022, 34, 4602-4612.	3.2	7
1020	A brief review on stretchable, compressible, and deformable supercapacitor for smart devices. Chemical Engineering Journal, 2022, 446, 136876.	6.6	39
1021	3D Binderâ€free Integrated Electrodes Prepared by Phase Separation and Laser Induction (PSLI) Method for Oxygen Electrocatalysis and Zinc–Air Battery. Advanced Energy Materials, 2022, 12, .	10.2	12
1022	Infrared laserâ€induced graphene sensor for tyrosine detection. ChemElectroChem, 0, , .	1.7	3
1023	Advanced new in-plane device configuration for thin film supercapacitors. Journal of Energy Storage, 2022, 50, 104636.	3.9	2
1024	Self-powered and multi-mode flexible sensing film with patterned conductive network for wireless monitoring in healthcare. Nano Energy, 2022, 98, 107327.	8.2	30
1025	Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection. Chemical Engineering Journal, 2022, 444, 136631.	6.6	69
1027	Direct laser writing carbonization of polyimide films enabled multilayer structures for the use in interfacial solar-driven water evaporation. Journal of Materials Chemistry A, 2022, 10, 12692-12701.	5.2	7
1028	Copper matrix composites reinforced by three-dimensional netlike graphene towards enhanced mechanical property and wear resistance. Composites Communications, 2022, 32, 101187.	3.3	11
1029	Laser induced graphene-based out-of-autoclave curing of fiberglass reinforced polymer matrix composites. Composites Science and Technology, 2022, 226, 109529.	3.8	10
1030	Asymmetric Activation of the Nitro Group over a Ag/Graphene Heterointerface to Boost Highly Selective Electrocatalytic Reduction of Nitrobenzene. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25478-25489.	4.0	13
1031	Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. Environmental Science and Pollution Research, 2023, 30, 42643-42657.	2.7	14
1032	Scalable synthesis and electrochemical performance of mesoporous graphene from calcium carbonate by magnesiothermic reaction. Progress in Natural Science: Materials International, 2022, , .	1.8	О
1033	Siloxeneâ€Functionalized Laserâ€Induced Graphene via COSi Bonding for Highâ€Performance Heavy Metal Sensing Patch Applications. Small, 2022, 18, .	5.2	9
1034	Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochimica Acta, 2022, 189, .	2.5	35

#	Article	IF	CITATIONS
1035	A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606, 94-101.	13.7	162
1036	Rechargeable Microâ€Batteries for Wearable and Implantable Applications. Small Structures, 2022, 3, .	6.9	16
1037	Laserâ€Based Growth and Treatment of Graphene for Advanced Photo―and Electroâ€Related Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	16
1038	3D printing stretchable core-shell laser scribed graphene conductive network for self-powered wearable devices. Composites Part B: Engineering, 2022, 240, 110000.	5.9	15
1039	Laser-induced porous graphene from PEDOT:PSS films for dye-sensitized solar cells. Materials Letters, 2022, 323, 132537.	1.3	2
1040	An electrochemical membrane-based aptasensor for detection of severe acute respiratory syndrome coronavirus-2 receptor-binding domain. Applied Surface Science, 2022, 598, 153867.	3.1	11
1043	<i>In situ</i> growth of laser-induced graphene micro-patterns on arbitrary substrates. Nanoscale, 2022, 14, 8914-8918.	2.8	44
1044	Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon, 2022, 197, 253-263.	5 . 4	32
1045	Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials. Journal of Composites Science, 2022, 6, 176.	1.4	6
1046	Advanced manufacturing approaches for electrochemical energy storage devices. International Materials Reviews, 2023, 68, 323-364.	9.4	10
1047	A review of humidity-driven actuator: toward high response speed and practical applications. Journal of Materials Science, 2022, 57, 12202-12235.	1.7	18
1048	Laser-Induced Graphene-Based Wearable Epidermal Ion-Selective Sensors for Noninvasive Multiplexed Sweat Analysis. Biosensors, 2022, 12, 397.	2.3	18
1049	Ultra-foldable integrated high-performance in-plane micro-supercapacitors from laser-induced selective metallization. Energy Storage Materials, 2022, 51, 139-148.	9.5	8
1050	Surface Engineering of Laser-Induced Graphene Enables Long-Term Monitoring of On-Body Uric Acid and pH Simultaneously. Nano Letters, 2022, 22, 5451-5458.	4.5	25
1051	Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators. Science Advances, 2022, 8, .	4.7	20
1052	Is precarbonization necessary for effective laser graphitization?. Carbon, 2022, 199, 208-214.	5.4	7
1053	Differentiating structure of in situ and ex situ formation of laser-induced graphene hybrids. Rare Metals, 2022, 41, 3035-3044.	3.6	4
1054	An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor. Npj Flexible Electronics, 2022, 6, .	5.1	25

#	Article	IF	CITATIONS
1055	A direct transfer process for laser-induced graphene sensors on any substrate. , 2022, , .		1
1056	Recent advances on graphene: Synthesis, properties and applications. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107051.	3.8	90
1057	Ultrasensitive and self-alarm pressure sensor based on laser-induced graphene and sea urchin-shaped Fe2O3 sandwiched structure. Chemical Engineering Journal, 2022, 448, 137664.	6.6	17
1058	Recycling and applications of ammonium polyphosphate/polycarbonate/acrylonitrile butadiene styrene by laser-scribing technologies for supercapacitor electrode materials. RSC Advances, 2022, 12, 19055-19062.	1.7	2
1059	Intelligent Process Monitoring of Laser-Induced Graphene Production With Deep Transfer Learning. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	8
1060	Controllable synthesis of NiCo layered double hydroxide sheets on laser-induced graphene as electrodes for high-performance supercapacitors. CrystEngComm, 0, , .	1.3	4
1061	Lignin-derived porous graphene for wearable and ultrasensitive strain sensors. Journal of Materials Chemistry C, 2022, 10 , $11730-11738$.	2.7	9
1062	Selective Electroreduction of Levulinic Acid Via Controlling the Crystalline Structure of Pbo on Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
1063	Femtosecond Laser Oneâ€Step Direct Writing Electrodes with Ag NPsâ€Graphite Carbon Composites for Electrochemical Sensing. Advanced Materials Technologies, 2022, 7, .	3.0	6
1064	Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nature Communications, 2022, 13, .	5.8	34
1065	Anomalous Selfâ€Optimizing Microporous Grapheneâ€Based Lithiumâ€ion Battery Anode from Laser Activation of Small Organic Molecules. Small Methods, 0, , 2200280.	4.6	2
1066	Tuning the Laserâ€Induced Processing of 3D Porous Graphenic Nanostructures by Boronâ€Doped Diamond Particles for Flexible Microsupercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	25
1067	Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene. ACS Applied Materials & Samp; Interfaces, 2022, 14, 31109-31120.	4.0	16
1068	Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Analytica Chimica Acta, 2022, 1223, 340165.	2.6	13
1069	Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS Nano, 2022, 16, 10088-10129.	7.3	31
1070	Development of a Biosensor Based on Angiotensinâ€Converting Enzyme II for Severe Acute Respiratory Syndrome Coronavirus 2 Detection in Human Saliva. Frontiers in Sensors, 0, 3, .	1.7	5
1072	Laser writing of graphene on cellulose paper and analogous material for green and sustainable electronic: a concise review. Carbon Letters, 2022, 32, 1227-1245.	3.3	8
1073	A Status Update on the Development of Polymer and Metal-Based Graphene Electrochemical Sensors for Detection and Quantitation of Bisphenol A. Critical Reviews in Analytical Chemistry, 0, , 1-22.	1.8	4

#	Article	IF	CITATIONS
1074	Photonâ€Pen Writing for Metal Oxideâ€Based Versatile Nanosensors. Advanced Functional Materials, 0, , 2204821.	7.8	2
1075	Lasered Graphene Microheaters Modified with Phase-Change Composites: New Approach to Smart Patch Drug Delivery. Micromachines, 2022, 13, 1132.	1.4	5
1076	Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials, 2022, 12, 2336.	1.9	24
1077	Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon. Nanotechnology, 2022, 33, 405204.	1.3	1
1078	A wearable enzyme-free glucose sensor based on nickel nanoparticles decorated laser-induced graphene. Journal of Electroanalytical Chemistry, 2022, 920, 116585.	1.9	15
1079	Local pattern growth of carbon nanomaterials on flexible polyimide films using laser scribing and its sensor application. Journal of the Korean Physical Society, 0, , .	0.3	0
1080	Microbial biofilms for electricity generation from water evaporation and power to wearables. Nature Communications, 2022, 13 , .	5.8	44
1081	Electrochemical Sensors Based on MoS _x â€Functionalized Laserâ€Induced Graphene for Realâ€Time Monitoring of Phenazines Produced by <i>Pseudomonas aeruginosa</i> Advanced Healthcare Materials, 2022, 11, .	3.9	8
1082	Wettability Controlled Surface for Energy Conversion. Small, 2022, 18, .	5.2	17
1083	Enzymatic Laserâ€Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate. Global Challenges, 2022, 6, .	1.8	10
1084	Fabrication of metallic patterns on ordinary polymer substrates by laser direct activation and electroless plating. Surfaces and Interfaces, 2022, 33, 102209.	1.5	6
1085	Laser-induced graphene Janus membrane for electrothermal membrane distillation. Desalination, 2022, 540, 115994.	4.0	12
1086	Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Applied Materials Today, 2022, 29, 101589.	2.3	24
1087	Miniaturized sensor for electroanalytical and electrochemiluminescent detection of pathogens enabled through laser-induced graphene electrodes embedded in microfluidic channels. Lab on A Chip, 2022, 22, 3721-3733.	3.1	7
1088	Electronic Fibers/Textiles for Healthâ€Monitoring: Fabrication and Application. Advanced Materials Technologies, 2023, 8, .	3.0	25
1089	Terahertz modulation devices based on patterned laser-induced graphene. , 2022, , .		0
1090	Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. Micromachines, 2022, 13, 1220.	1.4	6
1091	Concentrated Solar Induced Graphene. ACS Omega, 2022, 7, 27263-27271.	1.6	7

#	Article	IF	Citations
1092	Lignin derived carbon materials: current status and future trends. , 2022, 1, .		87
1093	Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system. Nano Research, 2023, 16, 1228-1241.	5.8	13
1094	Stacked Laser-Induced Graphene Joule Heaters for Desalination and Water Recycling. ACS Applied Nano Materials, 2022, 5, 10991-11002.	2.4	14
1095	Highly Sensitive and Ultra-Responsive Humidity Sensors Based on Graphene Oxide Active Layers and High Surface Area Laser-Induced Graphene Electrodes. Nanomaterials, 2022, 12, 2684.	1.9	13
1096	Graphene paper based liquid sensor for micro volume acetone detecting. Journal of Physics: Conference Series, 2022, 2324, 012012.	0.3	0
1097	Laser-Induced Graphene for Heartbeat Monitoring with HeartPy Analysis. Sensors, 2022, 22, 6326.	2.1	9
1098	Polymer infiltration and pyrolysis cycling for creating dense, conductive laser-induced graphene. Carbon, 2022, 200, 264-270.	5.4	3
1099	Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. Biosensors, 2022, 12, 630.	2.3	26
1100	Excimer Laser Patterned Holey Graphene Oxide Films for Nonenzymatic Electrochemical Sensing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37149-37160.	4.0	13
1101	A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. Journal of Materials Science, 2022, 57, 14543-14578.	1.7	35
1102	NiO Nanoparticles Anchored on N-Doped Laser-Induced Graphene for Flexible Planar Micro-Supercapacitors. ACS Applied Nano Materials, 2022, 5, 11314-11323.	2.4	7
1103	CO ₂ Laser Direct-Write Process for Micro-Gradient-Patterned Carbon Composed of Graphene-like and Disordered Carbon Forms for a Robust Anode-Free Li–Metal Battery. ACS Applied Energy Materials, 2022, 5, 10940-10951.	2.5	2
1104	The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchemical Journal, 2022, 182, 107898.	2.3	8
1105	Beyond High-Voltage Capacitors: Supercapacitor Arrays Based on Laser-Scribed Subwavelength-Featured Graphene Patterns. ACS Applied Energy Materials, 2022, 5, 9315-9323.	2.5	6
1106	Femtosecond Laser Bessel Beam Fabrication of a Supercapacitor with a Nanoscale Electrode Gap for High Specific Volumetric Capacitance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 39220-39229.	4.0	10
1107	Highâ€Performance Electrothermal Film Based on Laserâ€Induced Graphene. Advanced Engineering Materials, 2022, 24, .	1.6	2
1108	Polyimide adhesive tapes as a versatile and disposable substrate to produce CO2 laser-induced carbon sensors for batch and microfluidic analysis. Microchemical Journal, 2022, 182, 107893.	2.3	11
1109	Functional Laser-Induced Graphene Composite Art. ACS Applied Nano Materials, 2022, 5, 11923-11931.	2.4	5

#	Article	IF	CITATIONS
1110	From Materials to Devices: Graphene toward Practical Applications. Small Methods, 2022, 6, .	4.6	16
1111	Laser-assisted explosive synthesis and transfer of turbostratic graphene-related materials for energy conversion applications. Npj 2D Materials and Applications, 2022, 6, .	3.9	6
1112	Electromicrofluidic device with integrated PDMS microchannel and laser-induced graphene electrodes for electrochemical detection of cardiac biomarker in a point-of-care platform. Journal of Micromechanics and Microengineering, 2022, 32, 104001.	1.5	5
1113	Structurally integrated 3D carbon tube grid–based high-performance filter capacitor. Science, 2022, 377, 1004-1007.	6.0	52
1114	Recent Advances in Laserâ€Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Advanced Functional Materials, 2022, 32, .	7.8	72
1115	Understanding alkaline hydrogen evolution promoted by mesopores in three-dimensional graphene-like materials from perspective of capacitance effects. Carbon, 2022, 199, 13-22.	5.4	8
1116	Efficient and sustainable electro-sorption of rare earth by laser-induced graphene film. Separation and Purification Technology, 2022, 300, 121853.	3.9	0
1117	Fast-printed laser-induced-graphene pattern enabling directional thermal manipulation. International Journal of Heat and Mass Transfer, 2022, 197, 123303.	2.5	2
1118	Electronic structure modulation of multi-walled carbon nanotubes using azo dye for inducing non-radical reaction: Effect of graphitic nitrogen and structural defect. Chemosphere, 2022, 307, 136023.	4.2	6
1119	Rapid fabrication of ultra-wear-resistant graphene nanocrystallite film by direct laser writing. Applied Surface Science, 2022, 604, 154658.	3.1	5
1120	Lightweight Flexible Polyimide-Derived Laser-Induced Graphenes for High-Performance Thermal Management Applications. Chemical Engineering Journal, 2023, 451, 138656.	6.6	10
1121	(Bio)electrodes on Paper Platforms as Simple and Portable Analytical Tools for Bioanalytical Applications., 2023,, 181-202.		2
1122	Graphitic surface layer formation on organic substrates for electronics using a concentrated solar simulator. MRS Advances, 2022, 7, 641-648.	0.5	2
1123	Micro-electrochemical capacitors: Progress and future status. Journal of Energy Storage, 2022, 55, 105702.	3.9	7
1124	Laser-induced graphene based visible and near-infrared radiation detector. Optical Materials, 2022, 133, 112957.	1.7	3
1125	A performance improvement of enzyme-based electrochemical lactate sensor fabricated by electroplating novel PdCu mediator on a laser induced graphene electrode. Bioelectrochemistry, 2022, 148, 108259.	2.4	13
1126	A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy, 2022, 103, 107803.	8.2	20
1127	Reduced graphene oxide-modified aluminum foils as highly conductive and corrosion-resistant cathode current collectors for Li-ion batteries. Applied Surface Science, 2022, 606, 155002.	3.1	4

#	Article	IF	Citations
1128	Sputter-deposited nickel nanoparticles on Kevlar fabrics with laser-induced graphene for efficient solar evaporation. Chemical Engineering Journal, 2023, 452, 139403.	6.6	22
1129	Stretchable Sensors and Electro-Thermal Actuators with Self-Sensing Capability Using the Laser-Induced Graphene Technology. ACS Applied Materials & Samp; Interfaces, 2022, 14, 41283-41295.	4.0	17
1130	Microsized Electrochemical Energy Storage Devices and Their Fabrication Techniques For Portable Applications. Advanced Materials Technologies, 2023, 8, .	3.0	11
1131	In situ depositing Fe ₃ O ₄ nanoparticles on laser-induced graphene for high performance microsupercapacitors., 2022,,.		0
1132	Upgrading Lignocellulose to Porous Graphene Enabled by Deep Eutectic Solvent Pretreatment: Insights into the Role of Lignin and Pseudo-lignin. ACS Sustainable Chemistry and Engineering, 2022, 10, 11501-11511.	3.2	9
1133	Double-Sided Wearable Multifunctional Sensing System with Anti-interference Design for Human–Ambience Interface. ACS Nano, 2022, 16, 14679-14692.	7.3	16
1134	Steering the Topological Defects in Amorphous Laser-Induced Graphene for Direct Nitrate-to-Ammonia Electroreduction. ACS Catalysis, 2022, 12, 11639-11650.	5. 5	33
1135	Freestanding Laser-Induced Graphene Ultrasensitive Resonative Viral Sensors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44713-44723.	4.0	8
1136	Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Analytica Chimica Acta, 2022, 1233, 340362.	2.6	34
1137	Sweat analysis with a wearable sensing platform based on laser-induced graphene. APL Bioengineering, 2022, 6, .	3.3	7
1138	A Selfâ€Powered Wearable Sensor for Continuous Wireless Sweat Monitoring. Small Methods, 2022, 6, .	4.6	51
1139	Biosensors Based on Graphene Nanomaterials. Moscow University Chemistry Bulletin, 2022, 77, 307-321.	0.2	4
1140	Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS Nanoscience Au, 2022, 2, 450-485.	2.0	27
1141	Polystyrene/Fluorinated Polyurethane Electrospinning Nanofiber Membranes Incorporated with Graphene Oxide–Halamine as Mask Filter Materials for Reusable Antibacterial Applications. ACS Applied Nano Materials, 2022, 5, 13573-13582.	2.4	13
1142	Upcycling of Polybenzoxazine to Magnetic Metal Nanoparticle-Doped Laser-Induced Graphene for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 13158-13170.	2.4	9
1143	Carbon and Carbon/Metal Hybrid Structures Enabled by Ultrafast Heating Methods. Small Structures, 2022, 3, .	6.9	5
1144	Laser-induced galfenol embedded multi-layer graphene-oxide in solution. AIP Advances, 2022, 12, .	0.6	1
1145	Cork derived laser-induced graphene for sustainable green electronics. Flexible and Printed Electronics, 2022, 7, 035021.	1.5	10

#	Article	IF	CITATIONS
1146	Effect of Substrate Roughness on the Friction and Wear Behaviors of Laser-Induced Graphene Film. Lubricants, 2022, 10, 239.	1.2	4
1147	A machine learning-based multimodal electrochemical analytical device based on eMoSx-LIG for multiplexed detection of tyrosine and uric acid in sweat and saliva. Analytica Chimica Acta, 2022, 1232, 340447.	2.6	17
1148	Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. ACS Applied Materials & Structure. ACS	4.0	10
1149	Direct laser-assisted fabrication of turbostratic graphene electrodes: Comparing symmetric and zinc-ion hybrid supercapacitors. Carbon, 2023, 201, 941-951.	5.4	11
1150	Graphene and Liquid Metal Integrated Multifunctional Wearable Platform for Monitoring Motion and Human–Machine Interfacing. ACS Nano, 2022, 16, 20305-20317.	7.3	25
1151	Simultaneous laser-based graphitization and microstructuring of bamboo for supercapacitors derived from renewable resources. RSC Advances, 2022, 12, 29647-29652.	1.7	3
1152	Energy Storage Applications. , 2022, , 233-267.		0
1153	Progress and prospects of graphene for in-plane micro-supercapacitors. New Carbon Materials, 2022, 37, 781-801.	2.9	5
1154	Graphene Coated Liquid Metal Dropletâ€Enabled Dualâ€Axis Integrated Accelerometer. Advanced Materials Technologies, 2023, 8, .	3.0	4
1155	In situ preparation of FeOx nanoparticles embedded N-doped laser-induced graphene for flexible in-plane micro-supercapacitors. Ionics, 2023, 29, 419-427.	1.2	2
1156	Parametric investigation on laser interaction with polyimide for graphene synthesis towards flexible devices. Journal Physics D: Applied Physics, 2023, 56, 015305.	1.3	2
1157	Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications. ACS Applied Materials & Diction 14, 46427-46438.	4.0	14
1158	Wholeâ€Device Massâ€Producible Perovskite Photodetector Based on Laserâ€Induced Graphene Electrodes. Advanced Optical Materials, 2022, 10, .	3.6	7
1159	Ultraâ∈Broadband Photoluminescent Carbon Dots Synthesized by Laserâ∈Induced Thermal Shock. Laser and Photonics Reviews, 0, , 2200295.	4.4	1
1160	Direct Freeform Laser Fabrication of 3D Conformable Electronics. Advanced Functional Materials, 2023, 33, .	7.8	23
1161	Porous Grapheneâ€Based Photothermal Superhydrophobic Surface for Robust Antiâ€lcing and Efficient Deâ€lcing. Advanced Materials Interfaces, 2022, 9, .	1.9	16
1162	Modular Assembly of MXene Frameworks for Noninvasive Disease Diagnosis via Urinary Volatiles. ACS Nano, 2022, 16, 17376-17388.	7.3	20
1163	Antimicrobial and Antibiofouling Electrically Conducting Laserâ€Induced Graphene Spacers in Reverse Osmosis Membrane Modules. Advanced Materials Interfaces, 2022, 9, .	1.9	1

#	Article	IF	CITATIONS
1164	Laser-Induced Graphene from SU-8 Photoresist: Toward Functional Micromolding. , 2023, 1, 222-228.		4
1165	Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. Inorganics, 2022, 10, 169.	1.2	35
1166	Double-layered laser induced graphene (LIG) porous composites with interlocked wave-shaped array for large linearity range and highly pressure-resolution sensor. Composites Science and Technology, 2022, 230, 109790.	3.8	6
1167	Investigation of micro/nano formation mechanism of porous graphene induced by CO2 laser processing on polyimide film. Journal of Manufacturing Processes, 2022, 84, 555-564.	2.8	5
1168	A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosensors and Bioelectronics, 2023, 219, 114846.	5.3	19
1169	Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly(ether-ether-ketone). Sensors and Actuators B: Chemical, 2023, 375, 132846.	4.0	46
1170	Laser-scribed phosphorus-doped graphene derived from Kevlar textile for enhanced wearable micro-supercapacitor. Journal of Colloid and Interface Science, 2023, 630, 586-594.	5.0	16
1171	Experimental and modeling study of laser induced silicon carbide/graphene on cotton cloth for superhydrophobic applications. Optics and Laser Technology, 2023, 158, 108782.	2.2	4
1172	Laser direct writing O/N/S Co-doped hierarchically porous graphene on carboxymethyl chitosan/lignin-reinforced wood for boosted microsupercapacitor. Carbon, 2023, 202, 296-304.	5.4	27
1173	Controllable construction of laser-induced colorful patterns based on thermal energy transfer between carbon nanotubes substrate and polymer interface. Applied Surface Science, 2023, 610, 155591.	3.1	5
1174	Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring. Chemical Engineering Journal, 2023, 453, 139898.	6.6	37
1175	High-Resolution Femtosecond Laser-Induced Carbon and Ag Hybrid Structure for Bend Sensing. ACS Omega, 2022, 7, 42256-42263.	1.6	1
1176	Unitarity relation and unitarity bounds for scalars with different sound speeds. Physics-Uspekhi, 0, , .	0.8	0
1177	Magnéli-Phase Ti ₄ O ₇ -Doped Laser-Induced Graphene Surfaces and Filters for Pollutant Degradation and Microorganism Removal. ACS Applied Materials & Diterfaces, 2022, 14, 52448-52458.	4.0	10
1178	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	16.0	19
1179	A Mediated Enzymatic Electrochemical Sensor Using Paper-Based Laser-Induced Graphene. Biosensors, 2022, 12, 995.	2.3	3
1180	Laser-Induced Graphene Film and Its Applications in Flexible Electronics. Applied Sciences (Switzerland), 2022, 12, 11233.	1.3	3
1181	Self-reduction of bimetallic nanoparticles on flexible MXene-graphene electrodes for simultaneous detection of ascorbic acid, dopamine, and uric acid. Microchemical Journal, 2023, 185, 108177.	2.3	23

#	Article	IF	CITATIONS
1182	High Power-Density WO3-x–Grafted Corannulene-Modified graphene nanostructures for Micro-Supercapacitors. Journal of Electroanalytical Chemistry, 2023, 928, 116990.	1.9	1
1183	Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics. ACS Nano, 2022, 16, 20633-20646.	7.3	14
1184	Screen-Printing Preparation of High-Performance Nonenzymatic Glucose Sensors Based on Co ₃ O ₄ Nanoparticles-Embedded N-Doped Laser-Induced Graphene. ACS Applied Nano Materials, 2022, 5, 16655-16663.	2.4	7
1185	High-performance self-powered integrated system of pressure sensor and supercapacitor based on Cu@Cu2O/graphitic carbon layered porous structure. Journal of Colloid and Interface Science, 2023, 632, 140-150.	5.0	4
1186	Dopamineâ€assisted wet spinning and mechanical reinforcement of graphene oxide fibers. Bulletin of the Korean Chemical Society, 2023, 44, 60-66.	1.0	6
1187	Fabrication, properties, and performance of graphene-based textile fabrics for supercapacitor applications: A review. Journal of Energy Storage, 2022, 56, 105988.	3.9	12
1188	Soft fully-printed rGO/Fe2O3-based supercapacitors for wearable electronics. Journal of Energy Storage, 2022, 56, 106136.	3.9	11
1189	Sustainable carbon sources for green laser-induced graphene: A perspective on fundamental principles, applications, and challenges. Applied Physics Reviews, 2022, 9, .	5 . 5	23
1190	Direct mask-free fabrication of patterned hierarchical graphene electrode for on-chip micro-supercapacitors. Journal of Materials Science and Technology, 2023, 143, 12-19.	5.6	6
1191	Introducing oxidant to expand laser-induced in-plane microsupercapacitor in depth. Journal of Power Sources, 2023, 555, 232394.	4.0	3
1192	Facile engineering 3-D photothermal laser induced graphene for efficient steam generation. Solar Energy Materials and Solar Cells, 2023, 250, 112104.	3.0	3
1193	Design of laser-induced graphene electrodes for water splitting. International Journal of Hydrogen Energy, 2023, 48, 4158-4172.	3.8	7
1194	Two-Beam Ultrafast Laser Scribing of Graphene Patterns with 90-nm Subdiffraction Feature Size. Ultrafast Science, 2022, 2022, .	5.8	9
1195	Thermal reactive modifications of polymer surfaces by infrared laser radiation. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105819.	2.6	1
1196	In situ laser-assisted synthesis and patterning of graphene foam composites as a flexible gas sensing platform. Chemical Engineering Journal, 2023, 456, 140956.	6.6	10
1197	Laser-Induced graphene electrodes for highly sensitive detection of DNA hybridization via consecutive cytosines (polyC)-DNA-based electrochemical biosensors. Microchemical Journal, 2023, 185, 108208.	2.3	10
1198	Progress and roadmap for graphene films in electromagnetic interference shielding., 2023, 2, 11-38.		3
1199	Extensive reduction of graphene oxide on thin polymer substrates by ultrafast laser for robust flexible sensor applications. Applied Surface Science, 2023, 613, 156067.	3.1	8

#	Article	IF	CITATIONS
1200	Laser-induced graphene from commercial polyimide coated optical fibers for sensor development. Optics and Laser Technology, 2023, 160, 109047.	2.2	8
1201	Cellulose-based laser-induced graphene devices for electrochemical monitoring of bacterial phenazine production and viability. Sensors and Actuators B: Chemical, 2023, 378, 133090.	4.0	2
1202	Green Wearable Electronics, Sensors and Applications. , 2022, , 1-10.		0
1203	Wearable and Flexible Multifunctional Sensor Based on Laser-Induced Graphene for the Sports Monitoring System. ACS Applied Materials & Samp; Interfaces, 2022, 14, 54170-54181.	4.0	27
1204	Laserâ€Induced Graphene Enabled Additive Manufacturing of Multifunctional 3D Architectures with Freeform Structures. Advanced Science, 2023, 10, .	5.6	12
1205	Flexible Graphene-Copper Nanocomposite for Potential Wearable Electronics Applications. Materials Science Forum, 0, 1075, 39-47.	0.3	1
1206	Laser-scribed graphene on polyetherimide substrate: an electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples. Mikrochimica Acta, 2022, 189, .	2.5	7
1208	Metal-incorporated laser-induced graphene for high performance supercapacitors. Electrochimica Acta, 2023, 441, 141719.	2.6	9
1210	Influence of lasing parameters on the morphology and electrical resistance of polyimide-based laser-induced graphene (LIG). Carbon Letters, 2023, 33, 587-595.	3.3	6
1211	Laser Micro/Nanoâ€Structuring Pushes Forward Smart Sensing: Opportunities and Challenges. Advanced Functional Materials, 2023, 33, .	7.8	19
1212	Direct Conversion of Liquid Organic Precursor into 3D Laserâ€Induced Graphene Materials. Advanced Materials, 2023, 35, .	11.1	9
1213	Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices. Micromachines, 2022, 13, 2214.	1.4	2
1214	Threeâ€inâ€One Portable Electronic Sensory System Based on Lowâ€impedance Laserâ€induced Graphene Onâ€Skin Electrode Sensors for Electrophysiological Signal Monitoring. Advanced Materials Interfaces, 2023, 10, .	1.9	9
1215	Laser reduction of graphene oxide: tuning local material properties. Physics-Uspekhi, 0, , .	0.8	1
1216	Laser induced graphanized microfluidic devices. Biomicrofluidics, 2022, 16, 061505.	1.2	2
1217	Porous 3D Graphene from Sustainable Materials: Laser Graphitization of Chitosan. Advanced Materials Technologies, 2023, 8, .	3.0	7
1218	Tandem Electroreduction of CO ₂ to Programmable Acetate and Syngas via Single-Nickel-Atom-Encapsulated Copper Nanocatalysts., 2023, 5, 85-94.		9
1219	Zero to Three Dimension Structure Evolution from Carbon Allotropes to Phosphorus Allotropes. Advanced Materials Interfaces, 2023, 10, .	1.9	7

#	Article	IF	CITATIONS
1220	Developing High-Performance In-Plane Flexible Aqueous Zinc-Ion Batteries with Laser-Scribed Carbon-Supported All Electrodeposited Electrodes. Langmuir, 2022, 38, 16203-16213.	1.6	3
1221	Wearable LIG Flexible Stress Sensor Based on Spider Web Bionic Structure. Coatings, 2023, 13, 155.	1.2	5
1222	Combined Additive and Laser-Induced Processing of Functional Structures for Monitoring under Deformation. Polymers, 2023, 15, 443.	2.0	3
1223	Ion-selective electrodes based on laser-induced graphene as an alternative method for nitrite monitoring. Mikrochimica Acta, 2023, 190, .	2.5	3
1224	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	4.6	25
1225	Ultrasensitive, Fast-Responsive, Directional Airflow Sensing by Bioinspired Suspended Graphene Fibers. Nano Letters, 2023, 23, 597-605.	4.5	14
1226	Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing. Journal of Functional Biomaterials, 2023, 14, 35.	1.8	4
1227	Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Research, 2023, 16, 7600-7608.	5.8	17
1228	Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays. Biomimetics, 2023, 8, 26.	1.5	4
1229	Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chemical Society Reviews, 2023, 52, 1103-1128.	18.7	30
1230	Laser-induced graphitized electrodes enabled by a 3D printer/diode laser setup for voltammetric detection of hormones. Electrochimica Acta, 2023, , 141874.	2.6	2
1231	Laser-induced graphene (LIG)-based Au@CuO/V2CTx MXene non-enzymatic electrochemical sensors for the urine glucose test. Chemical Engineering Journal, 2023, 457, 141303.	6.6	30
1232	Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2023, 6, 013001.	1.7	1
1233	Flexible temperature sensors based on two-dimensional materials for wearable devices. Journal Physics D: Applied Physics, 2023, 56, 063001.	1.3	6
1234	Ultrathin, Grapheneâ€inâ€Polyimide Strain Sensor via Laserâ€Induced Interfacial Ablation of Polyimide. Advanced Electronic Materials, 2023, 9, .	2.6	4
1235	Wetting sub-nanochannels via ionic hydration effect for improving charging dynamics. Green Energy and Environment, 2024, 9, 473-480.	4.7	4
1236	Engineering Geometric Electrodes for Electric Fieldâ€Enhanced Highâ€Performance Flexible Inâ€Plane Microâ€Supercapacitors. Energy and Environmental Materials, 2023, 6, .	7. 3	3
1237	Functional Piezoresistive Polymer Composites Based on CO2 Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties. Nanomaterials, 2023, 13, 168.	1.9	1

#	Article	IF	CITATIONS
1238	Carbon-Based Janus Films toward Flexible Sensors, Soft Actuators, and Beyond. Accounts of Materials Research, 2023, 4, 334-347.	5.9	4
1239	Recent advances in single crystal narrow band-gap semiconductor nanomembranes and their flexible optoelectronic device applications: Ge, GeSn, InGaAs, and 2D materials. Journal of Materials Chemistry C, 2023, 11, 2430-2448.	2.7	6
1240	Anatomically Designed Triboelectric Wristbands with Adaptive Accelerated Learning for Human–Machine Interfaces. Advanced Science, 2023, 10, .	5.6	19
1241	Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors, 2023, 8, 482-514.	4.0	24
1242	Fano-Like Resonance of Heat-Reconfigurable Silicon Grating Metasurface Tuned by Laser-Induced Graphene. Nanomaterials, 2023, 13, 492.	1.9	1
1243	Rapid Laser-Induced Highly Dispersed and Ultrafine N-Doped Graphene-Wrapped FeCo ₂ O ₄ Nanoparticles for Nearly 100% Utilization and Conversion of Peroxymonosulfate into Singlet Oxygen. ACS ES&T Water, 2023, 3, 542-555.	2.3	5
1244	Preparation and characterization of laser-induced graphene derived from polyimide for dye-sensitized solar cell applications. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-8.	1.0	0
1245	Sustainable upcycling of post-consumer waste to metal-graphene catalysts for green chemicals and clean water. Cell Reports Physical Science, 2023, , 101256.	2.8	0
1246	Laser-Induced Graphene Capacitive Killing of Bacteria. ACS Applied Bio Materials, 2023, 6, 883-890.	2.3	2
1247	Free-standing laser-induced graphene heaters for efficient curing and repairing of composites. Journal of Materials Science, 2023, 58, 2604-2618.	1.7	0
1248	Direct Writing of Fluorescent Semiconducting Nanoparticles on Polydimethylsiloxane by Ultrashort-Pulsed Laser Processing: Implications for Electronic and Photonic Device Fabrication. ACS Applied Nano Materials, 2023, 6, 2125-2132.	2.4	0
1249	Femtosecond infra-red laser carbonization and ablation of polyimide for fabrication of Kirigami inspired strain sensor. Journal Physics D: Applied Physics, 2023, 56, 085101.	1.3	1
1250	One-Step Laser Nanostructuration of Reduced Graphene Oxide Films Embedding Metal Nanoparticles for Sensing Applications. ACS Sensors, 2023, 8, 598-609.	4.0	16
1251	Simultaneous detection of ultraviolet irradiation and vitamin C using an all-carbon-based integrated wearable system powering by a micro-supercapacitor. Talanta, 2023, 256, 124306.	2.9	2
1252	Two-step thermal treatment of electrochemical graphene oxide films for high-performance electrical heating and electromagnetic interference shielding. Applied Surface Science, 2023, 618, 156669.	3.1	4
1253	In situ formed and fully integrated laser-induced graphene electrochemical chips for rapid and simultaneous determination of bioflavonoids in citrus fruits. Microchemical Journal, 2023, 188, 108474.	2.3	3
1254	Flexible in-plane Micro-Supercapacitor Prepared by Laser Annealing and Ablation of a Graphene/Polyamide Acid Composite. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2022, 35, 143-146.	0.1	0
1255	Comparative Evaluation of Laser-Induced Graphene (LIG) Traces on Polyimide Under Soft and Hard Stress for IoT Applications., 2023, 2, 256-264.		3

#	Article	IF	CITATIONS
1256	Doping of Laserâ€Induced Graphene and Its Applications. Advanced Materials Technologies, 2023, 8, .	3.0	6
1257	A general way to manipulate electrical conductivity of graphene. Chemical Engineering Journal, 2023, 462, 142139.	6.6	13
1258	Laser carbonization of lignin-based fiber membranes with heating treatment for flexible supercapacitors. Applied Surface Science, 2023, 619, 156757.	3.1	3
1259	One-step laser synthesis platinum nanostructured 3D porous graphene: A flexible dual-functional electrochemical biosensor for glucose and pH detection in human perspiration. Talanta, 2023, 257, 124362.	2.9	19
1260	Nitrogen and sulfur co-doping carbon in different dimensions as electrode for supercapacitor applications. Journal of Alloys and Compounds, 2023, 947, 169654.	2.8	7
1261	Roles of molecular structure of carbon-based materials in energy storage. Materials Today Sustainability, 2023, 22, 100375.	1.9	3
1262	Electrical thermo-optic tuning of ultrahigh-Q silica microsphere with laser-induced graphene. Optics Communications, 2023, 536, 129371.	1.0	1
1263	Laser direct writing of graphene photodetector with a wide spectral detection from the visible to the infrared. Carbon Trends, 2023, 11, 100255.	1.4	1
1264	Preserved subsurface morphology in NIPS and VIPS laser-induced graphene membranes affects electrically-dependent microbial decontamination. Journal of Membrane Science, 2023, 673, 121481.	4.1	7
1265	Increasing coverage of mono-layer graphene grown on hexagonal boron nitride. Nanotechnology, 2023, 34, 165601.	1.3	1
1266	Selective electroreduction of levulinic acid by controlling the crystalline structure of PbO on electrodes. Applied Surface Science, 2023, 616, 156464.	3.1	4
1267	Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS Applied Materials & Early; Interfaces, 2023, 15, 7899-7910.	4.0	15
1268	Laser-Induced Graphitization of Lignin/PLLA Composite Sheets for Biodegradable Triboelectric Nanogenerators. ACS Sustainable Chemistry and Engineering, 2023, 11, 3114-3122.	3.2	6
1269	Ultrasensitive Humidity Sensors with Synergy between Superhydrophilic Porous Carbon Electrodes and Phosphorus-Doped Dielectric Electrolyte. ACS Applied Materials & Samp; Interfaces, 2023, 15, 9740-9750.	4.0	4
1270	Recent advances in interfacial solar vapor generation: clean water production and beyond. Journal of Materials Chemistry A, 2023, 11, 5978-6015.	5.2	19
1271	Design of phase change composite with hierarchical energy-transfer pathway via laser-induced graphene for efficient energy storage, conversion, and utilization. Chemical Engineering Journal, 2023, 460, 141882.	6.6	6
1272	Charged laser-induced graphene electrodes exhibit strong capacitance-based antibacterial and antiviral properties. Applied Materials Today, 2023, 31, 101753.	2.3	4
1273	Laser Reduced Graphene Oxide Electrode for Pathogenic <i>Escherichia coli</i> Materials & Interfaces, 2023, 15, 9024-9033.	4.0	17

#	Article	IF	CITATIONS
1274	Salt-Induced Doping and Templating of Laser-Induced Graphene Supercapacitors. ACS Applied Materials & Early: Interfaces, 2023, 15, 10570-10584.	4.0	7
1275	Subnanometric Stacking of Two-Dimensional Nanomaterials: Insights from the Nanotexture Evolution of Dense Reduced Graphene Oxide Membranes. ACS Nano, 2023, 17, 5072-5082.	7.3	7
1276	Ultrasensitive and Reliable SERS Chip Based on Facile Assembly of AgNPs on Porous LIG to Enhance the Local Electromagnetic Field. Journal of Physical Chemistry C, 2023, 127, 4195-4202.	1.5	5
1277	Direct Synthesis of Ammonia from Nitrate on Amorphous Graphene with Near 100% Efficiency. Advanced Materials, 2023, 35, .	11.1	33
1278	Nonmodified Laser-Induced Graphene Sensors for Lead-Ion Detection. ACS Applied Nano Materials, 2023, 6, 3599-3607.	2.4	5
1279	Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance. Nanomaterials, 2023, 13, 788.	1.9	8
1280	Electrodeposition cobalt sulfide nanosheet on laser-induced graphene as capacitive deionization electrodes for uranium adsorption. Chemical Engineering Journal, 2023, 461, 142080.	6.6	8
1281	Bayesian-Optimization-Assisted Laser Reduction of Poly(acrylonitrile) for Electrochemical Applications. ACS Nano, 2023, 17, 4999-5013.	7.3	0
1282	Laserâ€Carbonization – A Powerful Tool for Microâ€Fabrication of Patterned Electronic Carbons. Advanced Materials, 2023, 35, .	11,1	12
1283	Large Area Millisecond Preparation of High-Quality, Few-Layer Graphene Films on Arbitrary Substrates via Xenon Flash Lamp Photothermal Pyrolysis and Their Application for High-Performance Micro-supercapacitors. ACS Applied Materials & Samp; Interfaces, 2023, 15, 13495-13507.	4.0	4
1284	Laser-induced graphene supercapacitors on flex substrates for package-integrated power supply. , 2023, , .		2
1285	Electromechanically Stable Interconnection between LIG and Thick Dam-Shaped Metallic Electrode via Stored AG Microparticle Solution., 2023,,.		0
1286	Recent advances on the development of grapheneâ€based fieldâ€effect transistors, electrochemical biosensors and electrochemiluminescence biosensors. Electroanalysis, 2023, 35, .	1.5	1
1287	Synthesis of Poly(ether carbonate)-Based Polyurethane for Biodegradable–Recyclable Pressure Sensors. ACS Sustainable Chemistry and Engineering, 2023, 11, 4258-4268.	3.2	2
1288	Direct Patterning of Conductive Structures on Hydrogels by Laserâ€Based Graphitization for Supercapacitor Fabrication. Advanced Electronic Materials, 2023, 9, .	2.6	3
1289	Machine learning accelerates the investigation of targeted MOFs: Performance prediction, rational design and intelligent synthesis. Nano Today, 2023, 49, 101802.	6.2	9
1290	Highly Sensitive Strain Sensor Fabricated by Direct Laser Writing on Lignin Paper with Strain Engineering. Advanced Engineering Materials, 2023, 25, .	1.6	7
1291	The recent progress of laser-induced graphene based device applications. Journal of Semiconductors, 2023, 44, 031701.	2.0	4

#	Article	IF	CITATIONS
1292	Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances. Sensors, 2023, 23, 3140.	2.1	4
1293	A laser-induced graphene-based flexible and all-carbon organic electrochemical transistor. Journal of Materials Chemistry C, 2023, 11, 4916-4928.	2.7	7
1294	Direct writing of conductive and semiconductive structures via the femtosecond laser-induced carbonization of a silicone elastomer. , 2023, , .		0
1295	Investigating nanocatalyst-embedding laser-induced carbon nanofibers for non-enzymatic electrochemical sensing of hydrogen peroxide. Analytical and Bioanalytical Chemistry, 0, , .	1.9	0
1296	Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. Nanomaterials, 2023, 13, 1110.	1.9	5
1297	Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsystems and Nanoengineering, 2023, 9, .	3.4	16
1298	Advances in graphene-based flexible and wearable strain sensors. Chemical Engineering Journal, 2023, 464, 142576.	6.6	52
1299	Laser as a Tool for Fabrication of Supercapacitor Electrodes. Springer Series in Materials Science, 2023, , 89-122.	0.4	1
1300	Surface Morphological Growth Characteristics of Laser-Induced Graphene with UV Pulsed Laser and Sensor Applications., 2023, 5, 1261-1270.		3
1301	Materials and Structural Designs for Neural Interfaces. ACS Applied Electronic Materials, 2023, 5, 1926-1946.	2.0	5
1302	Recent developments in 2D materials for energy harvesting applications. JPhys Energy, 2023, 5, 032001.	2.3	4
1303	Pattern-Dependent Radio Frequency Heating of Laser-Induced Graphene Flexible Heaters. ACS Applied Materials & Interfaces, 2023, 15, 18074-18086.	4.0	3
1304	Functional Carbon from Nature: Biomassâ€Derived Carbon Materials and the Recent Progress of Their Applications. Advanced Science, 2023, 10, .	5.6	30
1305	A nonenzymatic laser-induced flexible amperometric graphene electrode for glucose detection in saliva. Carbon Letters, 2023, 33, 1767-1780.	3.3	5
1306	Laser Processing of Crumpled Porous Graphene/MXene Nanocomposites for a Standalone Gas Sensing System. Nano Letters, 2023, 23, 3435-3443.	4.5	12
1307	Multifunctional Ultraviolet Laser Induced Graphene for Flexible Artificial Sensory Neuron. Advanced Materials Technologies, 0, , .	3.0	2
1308	Selfâ€Powered Integrated Sensing System with Inâ€Plane Microâ€Supercapacitors for Wearable Electronics. Small, 2023, 19, .	5.2	8
1309	Fabrication, Comparison, Optimization, and Applications of Conductive Graphene Patterns Induced via CO2 and Diode Lasers. Lasers in Manufacturing and Materials Processing, 2023, 10, 276-295.	1.2	0

#	Article	IF	CITATIONS
1310	Integrative design of laser-induced graphene array with lithiophilic MnOx nanoparticles enables superior lithium metal batteries. EScience, 2023, 3, 100134.	25.0	8
1311	Electrodeposition of manganese dioxide coatings onto graphene foam substrates for electrochemical capacitors. Electrochimica Acta, 2023, 455, 142433.	2.6	4
1312	Plasma enhanced planar crystal growth of laser induced graphene. Materials Letters, 2023, 343, 134362.	1.3	0
1313	Laser-scribed graphene for sensors: preparation, modification, applications, and future prospects. , 2023, 4, 1.		1
1314	Solid-state, reagent-free and one-step laser-induced synthesis of graphene-supported metal nanocomposites from metal leaves and application to glucose sensing. Analytica Chimica Acta, 2023, , 341248.	2.6	O
1323	Laser Induced Graphene as a Cost-effective and Bioagent-free Tactile Pressure Sensor. , 2023, , .		0
1333	Laser-Induced Graphene as Electrode Material in Proton-Exchange Membrane Fuel Cells. , 0, , .		0
1353	Wireless Sensing of Plant Chemical Communication Using Laser-Induced Graphene. , 2023, , .		0
1370	Laser-Induced Transfer of Functional Materials. Topics in Current Chemistry, 2023, 381, .	3.0	4
1371	Nanosensors for crop protection. , 2023, , 323-349.		0
1387	Broad applications of sensors based on laser-scribed graphene. Light: Science and Applications, 2023, 12, .	7.7	5
1393	Direct Solar-Thermal Formation of Graphitic Heat Spreaders on Organic Substrates. , 2023, , .		0
1397	Fast and Low-Cost Fabrication of Large-Area Terahertz Metasurface Devices Using Laser-Induced Graphene Technology., 2022,,.		0
1433	Pulsed laser welding of macroscopic 3D graphene materials. Materials Horizons, 2023, 10, 5597-5606.	6.4	2
1438	A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research. MRS Advances, $0, \dots$	0.5	0
1464	3D Graphene for Flexible Sensors. Carbon Nanostructures, 2023, , 131-149.	0.1	O
1468	Fabrication of Blue Laser-Induced Graphene Electrodes and Evaluation of Their Electroanalytical Performance. Lecture Notes in Electrical Engineering, 2024, , 241-249.	0.3	0
1491	Nanodevices for Food-Borne Pathogens and Toxin Detection. , 2024, , 161-178.		0

#	Article	IF	Citations
1510	A Metal Nanoparticles and 2D-Siloxene Sheets Incorporated Laser-Ablated Graphene-Based Epidermal Patch for Electrolytes Analysis and Monitoring. , 2023, , .		0
1527	Design of Experiments based Study to Optimize Laser Induced Graphene Surfaces for Electrochemical Sensor Applications. , 2023, , .		0
1531	Laser-Induced Graphene for Wearable Respiratory Monitoring. , 2023, , .		0
1533	Flexible Sensor Utilizing Polypyrrole Laser-Induced Graphene Nanocomposite for Room Temperature Ammonia Detection. , 2023, , .		0
1542	Fabrication of laser induced high-quality porous graphene electrode on patterned metal electrode for electrochemical energy device. , 2023, , .		0
1547	Novel Frequency Selective Surface made of Laser-Induced Graphene. , 2023, , .		0
1548	Selective Patterning of Liquid Metal-Based Soft Electronics via Laser-Induced Graphene Residue. , 2023, , .		0
1552	Encapsulated Laser-Induced Graphene Flexible Piezo-resistive Sensors for Speech Recognition., 2023,,.		0
1553	Wearable, epidermal devices for assessment of swallowing function. Npj Flexible Electronics, 2023, 7, .	5.1	0
1557	Technological trends in medical robotic sensing with soft electronic skin. Sensors & Diagnostics, 2024, 3, 218-237.	1.9	0
1565	Polyimide/carbon black nanocomposite films for electrochemical sensor applications., 2024,, 293-323.		0
1566	Graphene-Based Nanocomposites in Electrochemical Sensing. Engineering Materials, 2024, , 189-225.	0.3	0
1569	Performance Evaluation of Laser-Induced Screen Printed Electrodes for Electrochemical Detection. , 2023, , .		0
1576	Stretchable interfaces come in from the cold. Nature Electronics, 2024, 7, 4-5.	13.1	0
1589	Transfer-printed devices for biomedical applications. , 2024, , 279-323.		0
1622	Study of Femtosecond Laser Pulse-Induced Carbonization of Polyimide. Lecture Notes in Networks and Systems, 2024, , 249-255.	0.5	0
1623	Fast and Low-Cost Fabrication of Large-Area Terahertz Metasurface Devices Using Laser-Induced Graphene Technology., 2022,,.		0