Improving Microbial Biogasoline Production in Escheric Engineering

MBio 5, e01932 DOI: 10.1128/mbio.01932-14

Citation Report

#	Article	IF	CITATIONS
1	Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei. Biotechnology for Biofuels, 2015, 8, 165.	6.2	22
2	Production of Basic Chemicals on the Basis of Renewable Resources as an Alternative to Petrochemistry?. ChemBioEng Reviews, 2015, 2, 315-334.	2.6	10
3	Increased Microbial Butanol Tolerance by Exogenous Membrane Insertion Molecules. ChemSusChem, 2015, 8, 3718-3726.	3.6	19
4	Converting Sugars to Biofuels: Ethanol and Beyond. Bioengineering, 2015, 2, 184-203.	1.6	55
5	Diatom Milking: A Review and New Approaches. Marine Drugs, 2015, 13, 2629-2665.	2.2	106
6	Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2015, 6, 487.	1.5	36
7	Getting pumped: membrane efflux transporters for enhanced biomolecule production. Current Opinion in Chemical Biology, 2015, 28, 15-19.	2.8	41
8	Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends in Microbiology, 2015, 23, 498-508.	3.5	207
9	Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Scientific Reports, 2015, 5, 11128.	1.6	125
10	Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Natural Product Reports, 2015, 32, 1508-1526.	5.2	131
11	Genetic Engineering Strategies for Enhanced Biodiesel Production. Molecular Biotechnology, 2015, 57, 606-624.	1.3	41
12	An ancient Chinese wisdom for metabolic engineering: Yin-Yang. Microbial Cell Factories, 2015, 14, 39.	1.9	36
13	Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends in Biotechnology, 2015, 33, 237-246.	4.9	167
14	RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microbial Pathogenesis, 2015, 89, 100-107.	1.3	22
15	Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels, 2015, 8, 91.	6.2	71
16	Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nature Communications, 2015, 6, 10005.	5.8	77
17	Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics, 2016, 146, 172-183.	1.2	2
18	Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. ChemBioEng Reviews, 2016, 3, 45-54.	2.6	16

CITATION REPORT

#	Article	IF	CITATIONS
19	Regulatory mechanisms related to biofuel tolerance in producing microbes. Journal of Applied Microbiology, 2016, 121, 320-332.	1.4	7
20	Engineering <i>Saccharomyces cerevisiae</i> to produce odd chainâ€length fatty alcohols. Biotechnology and Bioengineering, 2016, 113, 842-851.	1.7	30
21	Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2016, 9, 209.	6.2	30
22	Transporter and its engineering for secondary metabolites. Applied Microbiology and Biotechnology, 2016, 100, 6119-6130.	1.7	50
23	Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chemistry, 2016, 18, 4189-4197.	4.6	52
24	Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2016, 2, 16009.	1.4	187
25	Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1. World Journal of Microbiology and Biotechnology, 2016, 32, 112.	1.7	13
26	Characterization of acetic acid-detoxifying Escherichia coli evolved under phosphate starvation conditions. Microbial Cell Factories, 2016, 15, 42.	1.9	9
27	Efflux transporter engineering markedly improves amorphadiene production in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2016, 113, 1755-1763.	1.7	71
28	Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 595-604.	1.4	50
29	Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2016, 100, 4561-4571.	1.7	86
30	Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metabolic Engineering, 2016, 34, 36-43.	3.6	78
31	A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing. Biotechnology for Biofuels, 2017, 10, 42.	6.2	26
32	Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology, 2017, 101, 3991-4008.	1.7	117
33	Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresource Technology, 2017, 241, 430-438.	4.8	66
34	Evolution of a Biomass-Fermenting Bacterium To Resist Lignin Phenolics. Applied and Environmental Microbiology, 2017, 83, .	1.4	18
35	Reassessing Escherichia coli as a cell factory for biofuel production. Current Opinion in Biotechnology, 2017, 45, 92-103.	3.3	53
36	Expression of Heterologous Sigma Factor Expands the Searchable Space for Biofuel Tolerance Mechanisms. ACS Synthetic Biology, 2017, 6, 1343-1350.	1.9	10

#	Article	IF	Citations
	Improving membrane protein expression and function using genomic edits. Scientific Reports, 2017, 7,		
37	13030.	1.6	27
38	Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synthetic and Systems Biotechnology, 2017, 2, 167-175.	1.8	74
39	Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microbial Cell Factories, 2017, 16, 227.	1.9	22
40	Native efflux pumps of Escherichia coli responsible for short and medium chain alcohol. Biochemical Engineering Journal, 2018, 133, 149-156.	1.8	21
41	Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metabolic Engineering, 2018, 47, 60-72.	3.6	106
42	Identification and manipulation of a novel locus to improve cell tolerance to short-chain alcohols in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 589-598.	1.4	5
43	Mutations responsible for alcohol tolerance in the mutant of Synechococcus elongatus PCC 7942 (SY1043) obtained by single-cell screening system. Journal of Bioscience and Bioengineering, 2018, 125, 572-577.	1.1	8
44	Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresource Technology, 2018, 258, 302-309.	4.8	114
45	Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. Trends in Biotechnology, 2018, 36, 186-198.	4.9	38
46	Hybrid Biological–Chemical Approach Offers Flexibility and Reduces the Carbon Footprint of Biobased Plastics, Rubbers, and Fuels. ACS Sustainable Chemistry and Engineering, 2018, 6, 14523-14532.	3.2	7
47	Regulation Mechanism Mediated by Trans-Encoded sRNA Nc117 in Short Chain Alcohols Tolerance in Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2018, 9, 863.	1.5	7
48	A Pseudomonas putida efflux pump acts on short-chain alcohols. Biotechnology for Biofuels, 2018, 11, 136.	6.2	42
49	Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Systems, 2019, 9, 534-547.e5.	2.9	28
50	Engineering energetically efficient transport of dicarboxylic acids in yeast <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19415-19420.	3.3	61
51	Long-Chain Liquid Biofuels. , 2019, , 101-109.		1
52	Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metabolic Engineering, 2019, 56, 85-96.	3.6	46
53	Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends in Biotechnology, 2019, 37, 817-837.	4.9	345
54	Heterologous transporters from anaerobic fungi bolster fluoride tolerance in Saccharomyces cerevisiae. Metabolic Engineering Communications, 2019, 9, e00091.	1.9	15

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnology for Biofuels, 2019, 12, 41.	6.2	51
56	Applications and limitations of regulatory <scp>RNA</scp> elements in synthetic biology and biotechnology. Journal of Applied Microbiology, 2019, 127, 968-984.	1.4	20
57	Transcriptional regulation in model organisms: recent progress and clinical implications. Open Biology, 2019, 9, 190183.	1.5	21
58	Metabolic engineering strategies for caffeic acid production in Escherichia coli. Electronic Journal of Biotechnology, 2019, 38, 19-26.	1.2	24
59	The biological mechanisms of butanol tolerance and the application of solventâ€ŧolerant bacteria for environmental protection. Journal of Chemical Technology and Biotechnology, 2020, 95, 1290-1297.	1.6	6
60	Heterologous expression of heat shock proteins confers stress tolerance in Escherichia coli, an industrial cell factory: A short review. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101833.	1.5	7
61	Evolutionary engineering of E. coli MG1655 for tolerance against isoprenol. Biotechnology for Biofuels, 2020, 13, 183.	6.2	13
62	Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnology Advances, 2020, 43, 107605.	6.0	17
63	Harnessing the hierarchy of transcriptional regulation: engineering of the gene expression network for efficient production. , 2020, , 107-124.		0
64	Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microbial Cell Factories, 2020, 19, 167.	1.9	9
65	A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na+(Li+)/H+ Transport. Frontiers in Microbiology, 2020, 11, 556.	1.5	24
66	Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metabolic Engineering, 2020, 61, 120-130.	3.6	23
67	Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial <i>Clostridium</i> community. Biotechnology and Bioengineering, 2020, 117, 2008-2022.	1.7	27
68	Transporter Engineering for Microbial Manufacturing. Biotechnology Journal, 2020, 15, e1900494.	1.8	35
69	Alternative metabolic pathways and strategies to high-titre terpenoid production in <i>Escherichia coli</i> . Natural Product Reports, 2022, 39, 90-118.	5.2	38
70	Highâ€efficiency production of bisabolene from waste cooking oil by metabolically engineered <i>Yarrowia lipolytica</i> . Microbial Biotechnology, 2021, 14, 2497-2513.	2.0	31
71	Simultaneous Improvement of Limonene Production and Tolerance in <i>Yarrowia lipolytica</i> through Tolerance Engineering and Evolutionary Engineering. ACS Synthetic Biology, 2021, 10, 884-896.	1.9	35
72	Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synthetic Biology, 2021, 10, 646-669.	1.9	14

#	Article	IF	CITATIONS
73	Recent advances in the microbial production of isopentanol (3-Methyl-1-butanol). World Journal of Microbiology and Biotechnology, 2021, 37, 107.	1.7	9
74	Isopentenol Utilization Pathway for the Production of Linalool in <i>Escherichia coli</i> Using an Improved Bacterial Linalool/Nerolidol Synthase. ChemBioChem, 2021, 22, 2325-2334.	1.3	28
75	Improved Bioproduction of 1-Octanol Using Engineered <i>Synechocystis</i> sp. PCC 6803. ACS Synthetic Biology, 2021, 10, 1417-1428.	1.9	14
77	A systematic framework for using membrane metrics for strain engineering. Metabolic Engineering, 2021, 66, 98-113.	3.6	8
78	Developing fourth-generation biofuels secreting microbial cell factories for enhanced productivity and efficient product recovery; a review. Fuel, 2021, 298, 120858.	3.4	13
79	Biodegradation of aromatic pollutants meets synthetic biology. Synthetic and Systems Biotechnology, 2021, 6, 153-162.	1.8	17
80	Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Applied Microbiology and Biotechnology, 2021, 105, 877-889.	1.7	3
81	Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms, 2021, 9, 249.	1.6	8
82	Engineering transport systems for microbial production. Advances in Applied Microbiology, 2020, 111, 33-87.	1.3	12
83	Building cell factories for the production of advanced fuels. Biochemical Society Transactions, 2019, 47, 1701-1714.	1.6	6
84	Transporters Related to Stress Responses and Their Potential Application in Synechocystis sp. PCC 6803. Advances in Experimental Medicine and Biology, 2018, 1080, 27-53.	0.8	0
86	Strategies for the Biosynthesis of Pharmaceuticals and Nutraceuticals in Microbes from Renewable Feedstock. Current Medicinal Chemistry, 2020, 27, 4613-4621.	1.2	3
87	Progress and challenges for microbial fermentation processes within the biorefinery context. , 2022, , 447-471.		0
89	Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnology Advances, 2022, 55, 107912.	6.0	6
90	Strategies to improve the stress resistance of <i>Escherichia coli</i> in industrial biotechnology. Biofuels, Bioproducts and Biorefining, 2022, 16, 1130-1141.	1.9	12
91	Engineering for life in toxicity: Key to industrializing microbial synthesis of high energy density fuels. Engineering Microbiology, 2022, 2, 100013.	2.2	1
99	Microbial tolerance in metabolic engineering. , 2022, , 85-105.		0
100	Efflux Pumps among Urinary <i>E. coli</i> and <i>K. pneumoniae</i> Local Isolates in Hilla City, Iraq. , 0, , .		1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
101	Designing Microbial Cell Factories for the Production of Chemicals. Jacs Au, 2022, 2, 17	781-1799.	3.6	50
102	Improving isoprenol production <i>via</i> systematic CRISPRi screening in engineered< coli. Green Chemistry, 2022, 24, 6955-6964.	i>Escherichia	4.6	7
103	Design and construction of microbial cell factories based on systems biology. Synthetic Biotechnology, 2023, 8, 176-185.	c and Systems	1.8	7
104	Minicell-forming Escherichia coli mutant with increased chemical production capacity a to toxic compounds. Bioresource Technology, 2023, 371, 128586.	and tolerance	4.8	5
105	Metabolic engineering for the biosynthesis of bis-indolylquinone terrequinone A in Esch from L-tryptophan and prenol. , 2023, 16, .	herichia coli		1
106	Advances in biosynthesis of higher alcohols in Escherichia coli. World Journal of Microb Biotechnology, 2023, 39, .	viology and	1.7	4
108	Higher alcohols: metabolic pathways and engineering strategies for enhanced producti 19-65.	ion. , 2024, ,		0

TION RED