Northern European summer temperature variations ov treeâ€ring density records

Journal of Quaternary Science 29, 487-494 DOI: 10.1002/jqs.2726

Citation Report

#	Article	IF	CITATIONS
1	Signals and memory in tree-ring width and density data. Dendrochronologia, 2015, 35, 62-70.	2.2	112
2	Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 2015, 523, 543-549.	27.8	824
3	Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. Holocene, 2015, 25, 547-556.	1.7	54
4	Biases in RCS tree ring chronologies due to sampling heights of trees. Dendrochronologia, 2015, 36, 13-22.	2.2	15
5	Synoptic drivers of 400Âyears of summer temperature and precipitation variability on Mt. Olympus, Greece. Climate Dynamics, 2015, 45, 807-824.	3.8	37
6	Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach. Climate of the Past, 2016, 12, 849-869.	3.4	46
7	Variability of daily winter wind speed distribution over Northern Europe during the past millennium in regional and global climate simulations. Climate of the Past, 2016, 12, 317-338.	3.4	4
8	Climatic and environmental aspects of the Mongol withdrawal from Hungary in 1242 CE. Scientific Reports, 2016, 6, 25606.	3.3	63
9	Ecological and climatological signals in tree-ring width and density chronologies along a latitudinal boreal transect. Scandinavian Journal of Forest Research, 2016, 31, 750-757.	1.4	15
10	The impact of solar radiation and solar activity on climate variability after the end of the last glaciation. Geomagnetism and Aeronomy, 2016, 56, 908-913.	0.8	1
11	Integrating tree-ring and inventory-based measurements of aboveground biomass growth: research opportunities and carbon cycle consequences from a large snow breakage event in the Swiss Alps. European Journal of Forest Research, 2016, 135, 297-311.	2.5	33
12	Ranking of tree-ring based temperature reconstructions of the past millennium. Quaternary Science Reviews, 2016, 145, 134-151.	3.0	91
13	European summer temperatures since Roman times. Environmental Research Letters, 2016, 11, 024001.	5.2	260
14	Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 2016, 134, 1-18.	3.0	314
15	Direct transformation of tree-ring measurements into palaeoclimate reconstructions in three-dimensional space. Holocene, 2016, 26, 439-449.	1.7	10
16	Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 2017, 163, 1-22.	3.0	165
17	Reconstructing 800Âyears of summer temperatures in Scotland from tree rings. Climate Dynamics, 2017, 49, 2951-2974.	3.8	53
18	Reply to 'Limited Late Antique cooling'. Nature Geoscience, 2017, 10, 243-243.	12.9	13

		CITATION REPORT		
#	Article		IF	Citations
19	Paleoclimate of the Earth and solar activity. Geomagnetism and Aeronomy, 2017, 57, 5	24-528.	0.8	2
20	Multi-proxy dating of Iceland's major pre-settlement Katla eruption to 822–823 C 783-786.	E. Geology, 2017, 45,	4.4	22
21	Site-specific climatic signals in stable isotope records from Swedish pine forests. Trees - and Function, 2018, 32, 855-869.	Structure	1.9	22
22	Tree-ring growth shows that the significant population decline in Norway began decade Black Death. Dendrochronologia, 2018, 47, 23-29.	s before the	2.2	12
23	Different maximum latewood density and blue intensity measurements techniques reve results. Dendrochronologia, 2018, 49, 94-101.	al similar	2.2	36
24	A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden intensity from tree rings. Holocene, 2018, 28, 254-266.	, based on blue	1.7	45
25	Solar Radiation Change and Climatic Effects on Decennial–Centennial Scales. Geoma Aeronomy, 2018, 58, 1042-1049.	gnetism and	0.8	3
26	Climate and the Decline and Fall of the Western Roman Empire: A Bibliometric View on Interdisciplinary Approach to Answer a Most Classic Historical Question. Climate, 2018,		2.8	15
27	An 800-year high-resolution black carbon ice core record from Lomonosovfonna, Svalba Atmospheric Chemistry and Physics, 2018, 18, 12777-12795.	ırd.	4.9	34
28	Little Ice Age summer temperatures in western Norway from a 700-year tree-ring chrone Holocene, 2018, 28, 1609-1622.	ology.	1.7	11
29	Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochror 2018, 50, 81-90.	nologia,	2.2	83
30	Were medieval warm-season temperatures in JÃĦtland, central Scandinavian Mountain: previously estimated?. Dendrochronologia, 2019, 57, 125607.	s, lower than	2.2	9
31	East Africa: The Emergence of a Pre-Swahili Culture on the Azanian Coast. , 2019, , 582-	-594.		0
32	The Portuguese in the Indian Ocean. , 2019, , 602-616.			0
33	Arabia: Maritime Cultures and the Rise of the Caravan Trade. , 2019, , 566-581.			0
35	Southeast Asia: Era of the Merchant Sultanates. , 2019, , 496-514.			0
36	China: The Golden Age of the Song, the Mongol Conquest, and the Ming Revival. , 2019	9, , 178-215.		0
37	India: From the Chola Empire to the Delhi Sultanate. , 2019, , 216-251.			0

	Сіт	ation Report	
#	Article	IF	CITATIONS
38	Southeast Asia: From the Decline of Srīwijaya to the Rise of Mojopahit. , 2019, , 252-279.		0
39	Central and Western Asia: From the Seljuk Empire to the Ilkhanids. , 2019, , 280-298.		0
40	East Africa: The Rise of the Swahili Culture and the Expansion of Islam. , 2019, , 329-370.		0
41	Madagascar: The Development of Trading Ports and the Interior. , 2019, , 371-430.		0
43	Ming China: From Expansion to Withdrawal into Threatened Territory. , 2019, , 458-476.		0
44	India: The Flowering of the Sultanates and the Expansion of VijayanÄgara. , 2019, , 477-495.		0
45	Western Asia: Revival of the Persian Gulf. , 2019, , 515-521.		0
46	Egypt and Yemen: Advances in State Trade and the End of the <i>KÄrimÄ«</i> . , 2019, , 522-534.		0
47	East Africa and the Comoros. , 2019, , 535-554.		0
48	Madagascar (Fifteenth–Sixteenth Century): The Rise of Trading Ports and Development of the Highlands. , 2019, , 555-601.		0
51	Index of Geographical Names. , 2019, , 773-793.		0
54	Introduction: The Geography of the Indian Ocean and Its Navigation. , 2019, , 9-18.		1
55	Egypt and Yemen: The Jewish and <i>KÄrimÄ«</i> Networks. , 2019, , 299-328.		0
56	Islam: The Conquest of Lands and Oceans. , 2019, , 42-71.		0
57	Tang China and the Rise of the Silk Roads. , 2019, , 18-41.		0
58	India: A Core with Four Centers. , 2019, , 72-87.		0
59	Southeast Asia: The Rise of the Srīwijayan Thalassocracy and the Javanese Kingdoms. , 2019, , 88-105	j.	0
60	East Africa: Dawn of the Swahili Culture. , 2019, , 106-137.		0

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
61	Madagascar (Seventh–Eleventh Century): Early Cultural Hybridization. , 2019, , 138-144.		0
63	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
65	The Birth of the State. , 2019, , 47-78.		0
66	Early Bronze Age I in Western Asia and Egypt (<i>c.</i> 3000–2700 <scp>bce</scp>). , 2019, , 79-85.		0
67	Recent advances in dendroclimatology in China. Earth-Science Reviews, 2019, 194, 521-535.	9.1	43
68	Global Pattern of Temperature Variability in Greenland and Antarctica and the Cooling Trend in the Last Millennia. Geomagnetism and Aeronomy, 2019, 59, 918-925.	0.8	4
70	Early Bronze Age II (<i>c.</i> 2700–1950 <scp>bce</scp>). , 2019, , 86-134.		0
71	The New Spaces of the Middle Bronze Age in Asia and Egypt (<i>c</i> . 2000–1750 <scp>bce</scp>). , 2019, , 135-166.		0
72	The Late Bronze Age (<i>c</i> . 1600–1100 <scp>bce</scp>), an Area Unified around the Eastern Mediterranean. , 2019, , 167-196.		0
73	East Asia: From Villages to States (<i>c</i> . 5000–1027 <scp>bce</scp>). , 2019, , 197-219.		0
74	The Emergence of Intermediary Spaces. , 2019, , 220-249.		0
75	Were there World-Systems during the Bronze Age?. , 2019, , 250-272.		0
76	The Beginnings of the Iron Age. , 2019, , 348-373.		0
77	The Roads to the Orient. , 2019, , 374-434.		0
78	India: The Birth of a New Core. , 2019, , 435-483.		0
79	Southeast Asia, an Interface between Two Oceans. , 2019, , 484-520.		0
80	China: From Kingdoms to Unification. , 2019, , 521-565.		0
82	Index of Geographical names. , 2019, , 766-793.		0

#	Article	IF	CITATIONS
88	The Austronesian Expansion and the First Malagasy Cultures. , 2019, , 595-642.		0
89	Testing annual tree-ring chemistry by X-ray fluorescence for dendroclimatic studies in high-elevation forests from the Spanish Pyrenees. Quaternary International, 2019, 514, 130-140.	1.5	18
90	A 1200+ year reconstruction of temperature extremes for the northeastern Mediterranean region. International Journal of Climatology, 2019, 39, 2336-2350.	3.5	17
91	Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Climate Dynamics, 2020, 54, 1367-1382.	3.8	32
92	Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia, 2020, 64, 125757.	2.2	66
93	Temperature sensitivity of blue intensity, maximum latewood density, and ring width data of living black spruce trees in the eastern Canadian taiga. Dendrochronologia, 2020, 64, 125771.	2.2	12
94	Later Prehistoric and Norse Communities in the Northern Isles: Multi-Proxy Environmental Investigations on Orkney. Environmental Archaeology, 2020, , 1-22.	1.2	0
95	High-Resolution Temperature Variability Reconstructed from Black Pine Tree Ring Densities in Southern Spain. Atmosphere, 2020, 11, 748.	2.3	8
96	A sub-centennial-scale optically stimulated luminescence chronostratigraphy and late Holocene flood history from a temperate river confluence. Geology, 2020, 48, 819-825.	4.4	13
97	An annual-resolution stable isotope record from Swiss subfossil pine trees growing in the late Glacial. Quaternary Science Reviews, 2020, 247, 106550.	3.0	4
98	Highâ€Resolution Proxy Records From Two Simultaneously Grown Stalagmites From Zoolithencave (Southeastern Germany) and their Potential for Palaeoclimate Reconstruction. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008755.	2.5	4
99	Extreme climate after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15443-15449.	7.1	57
100	Differing pre-industrial cooling trends between tree rings and lower-resolution temperature proxies. Climate of the Past, 2020, 16, 729-742.	3.4	10
101	Maximum July–September temperatures derived from treeâ€ring densities on the western Loess Plateau, China. International Journal of Climatology, 2021, 41, 779-790.	3.5	4
102	Growth response of Betula pubescens Ehrh. to varying disturbance factors in northern Norway. Trees - Structure and Function, 2021, 35, 421-431.	1.9	8
103	Micro-site conditions affect Fennoscandian forest growth. Dendrochronologia, 2021, 65, 125787.	2.2	19
104	Preâ€instrumental summer precipitation variability in northwestern Greece from a highâ€elevation <i>Pinus heldreichii</i> network. International Journal of Climatology, 2021, 41, 2828-2839.	3.5	11
105	Orbital Forcing Strongly Influences Seasonal Temperature Trends During the Last Millennium. Geophysical Research Letters, 2021, 48, e2020GL088776.	4.0	10

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
106	The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.	12.8	59
107	Reduced Temperature Sensitivity of Maximum Latewood Density Formation in High-Elevation Corsican Pines under Recent Warming. Atmosphere, 2021, 12, 804.	2.3	11
108	Summer temperature variability since 1730 CE across the low-to-mid latitudes of western North America from a tree ring blue intensity network. Quaternary Science Reviews, 2021, 267, 107064.	3.0	11
110	Complex imprint of solar variability on tree rings. Environmental Research Communications, 2020, 2, 101003.	2.3	5
111	Reliability of temperature signal in various climate indicators from northern Europe. PLoS ONE, 2017, 12, e0180042.	2.5	5
112	On the hidden significance of differing micro-sites on tree-ring based climate reconstructions. Silva Fennica, 2015, 49, .	1.3	18
113	Chemical destaining and the delta correction for blue intensity measurements of stained lake subfossil trees. Biogeosciences, 2020, 17, 4559-4570.	3.3	10
120	The effect of provenance of historical timber on tree-ring based temperature reconstructions in the Western Central Alps. IForest, 2020, 13, 351-359.	1.4	3
121	Dendroarchaeology in Europe. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	12
122	Solar-type periodicities in the climate variability of Northern Fennoscandia during the last three centuries: Real influence of solar activity or natural instability in the climate system. Holocene, 2022, 32, 99-112.	1.7	5
123	Past millennium hydroclimate variability from Corsican pine treeâ€ring chronologies. Boreas, 0, , .	2.4	1
124	Climate Signals in Stable Isotope Tree-Ring Records. Tree Physiology, 2022, , 537-579.	2.5	6
125	Is the Pinus massoniana Lamb. Tree-Ring Latewood Formation Influenced by the Diurnal Temperature Range in Humid Subtropical China?. Forests, 2022, 13, 1439.	2.1	3
126	Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models. Hydrology and Earth System Sciences, 2022, 26, 5577-5604.	4.9	1
127	Maximum July–August temperatures for the middle of the southern Tien Shan inferred from tree-ring latewood maximum densities. International Journal of Biometeorology, 0, , .	3.0	1
128	Climatic controls on the survival and loss of ancient types of barley on North Atlantic Islands. Climatic Change, 2023, 176, .	3.6	4
129	Using machine learning on treeâ€ring data to determine the geographical provenance of historical construction timbers. Ecosphere, 2023, 14, .	2.2	2
130	Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate. Nature, 2023, 620, 97-103.	27.8	7

		Citatio	n Report	
#	Article		IF	CITATIONS
131	Wood-anatomy data refine the record of climate in Northern Europe. Nature, 0, , .		27.8	0
132	Rapid laminated clastic alluviation associated with increased Little Ice Age flooding co- climate variability and historic land-use in the middle Severn catchment, UK. Holocene,	driven by , 0, , .	1.7	0
133	Regional Characteristics of the Climatic Response of Tree-Ring Maximum Density in the Hemisphere. Forests, 2023, 14, 2122.	e Northern	2.1	0
134	Meghalayan Stage (Late Holocene, 4.2 ka–present). , 2024, , 105-126.			0
135	Increasing prevalence of hot drought across western North America since the 16th cer Advances, 2024, 10, .	ntury. Science	10.3	0
136	Braided motivations for Iceland's first wave of mass emigration to North America a eruption. Regional Environmental Change, 2024, 24, .	after the 1875 Askja	2.9	0