Enhanced HIV-1 immunotherapy by commonly arising variants

Journal of Experimental Medicine 211, 2361-2372 DOI: 10.1084/jem.20141050

Citation Report

#	Article	IF	CITATIONS
1	A constant threat for HIV: Fcâ€engineering to enhance broadly neutralizing antibody activity for immunotherapy of the acquired immunodeficiency syndrome. European Journal of Immunology, 2015, 45, 2183-2190.	1.6	3
2	Can immunological principles and cross-disciplinary science illuminate the path to vaccines for HIV and other global health challenges?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140152.	1.8	4
3	Antibodies Targeting the Envelope of HIV-1. Microbiology Spectrum, 2015, 3, AID-0025-2014.	1.2	9
4	Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life. Current Opinion in HIV and AIDS, 2015, 10, 160-169.	1.5	21
5	Animal models in HIV-1 protection and therapy. Current Opinion in HIV and AIDS, 2015, 10, 170-176.	1.5	49
6	Rationally Targeted Mutations at the V1V2 Domain of the HIV-1 Envelope to Augment Virus Neutralization by Anti-V1V2 Monoclonal Antibodies. PLoS ONE, 2015, 10, e0141233.	1.1	10
7	FcγR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends in Immunology, 2015, 36, 325-336.	2.9	157
8	Amino acid interaction networks provide a new lens for therapeutic antibody discovery and anti-viral drug optimization. Current Opinion in Virology, 2015, 11, 122-129.	2.6	6
9	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	1.5	40
10	Coâ€evolution of the <scp>MHC</scp> class I and <scp>KIR</scp> gene families in rhesus macaques: ancestry and plasticity. Immunological Reviews, 2015, 267, 228-245.	2.8	35
11	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	13.5	239
12	Antibody responses to envelope glycoproteins in HIV-1 infection. Nature Immunology, 2015, 16, 571-576.	7.0	364
13	Strategies to guide the antibody affinity maturation process. Current Opinion in Virology, 2015, 11, 137-147.	2.6	76
14	Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature, 2015, 522, 487-491.	13.7	665
15	Dose–response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nature Communications, 2015, 6, 8443.	5.8	44
16	Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?. Trends in Microbiology, 2015, 23, 653-665.	3.5	97
17	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	5.1	66
18	Perspectives for immunotherapy: which applications might achieve an HIV functional cure?. Oncotarget, 2016, 7, 38946-38958.	0.8	12

#	Article	IF	CITATIONS
19	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	2.1	150
20	Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts―2015 Workshop Summary. AIDS Research and Human Retroviruses, 2016, 32, 109-119.	0.5	57
21	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	13.5	270
22	Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response. Journal of Virology, 2016, 90, 10993-11006.	1.5	33
23	Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity, 2016, 45, 1108-1121.	6.6	304
24	Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity. Journal of Virology, 2016, 90, 636-649.	1.5	70
25	Engineering broadly neutralizing antibodies for HIV prevention and therapy. Advanced Drug Delivery Reviews, 2016, 103, 157-173.	6.6	17
26	Broadly Neutralizing Antibodies for HIV Eradication. Current HIV/AIDS Reports, 2016, 13, 31-37.	1.1	72
27	HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution. Virus Research, 2016, 218, 57-70.	1.1	14
28	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	5.8	128
29	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	1.7	15
30	Lessons learned from humoral responses of HIV patients. Current Opinion in HIV and AIDS, 2017, 12, 195-202.	1.5	16
31	Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell, 2017, 169, 597-609.e11.	13.5	279
32	Plasticity and Epitope Exposure of the HIV-1 Envelope Trimer. Journal of Virology, 2017, 91, .	1.5	35
33	Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Research and Human Retroviruses, 2017, 33, 843-858.	0.5	15
34	Progress in HIV-1 antibody research using humanized mice. Current Opinion in HIV and AIDS, 2017, 12, 285-293.	1.5	12
35	Maternal Humoral Immune Correlates of Peripartum Transmission of Clade C HIV-1 in the Setting of Peripartum Antiretrovirals. Vaccine Journal, 2017, 24, .	3.2	14
36	The HIV-1 transmission bottleneck. Retrovirology, 2017, 14, 22.	0.9	73

#	ARTICLE	IF	Citations
37	Contrasting antibody responses to intrasubtype superinfection with CRF02_AG. PLoS ONE, 2017, 12, e0173705.	1.1	22
38	A single gp120 residue can affect HIV-1 tropism in macaques. PLoS Pathogens, 2017, 13, e1006572.	2.1	28
39	Humanized mouse models to study pathophysiology and treatment of HIV infection. Current Opinion in HIV and AIDS, 2018, 13, 143-151.	1.5	19
40	Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology, 2018, 15, 73.	0.9	53
41	Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nature Medicine, 2018, 24, 1701-1707.	15.2	195
42	Broadly neutralizing antibodies in HIV-1 treatment and prevention. , 2018, 6, 61-68.	1.4	34
43	Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules, 2018, 23, 335.	1.7	8
44	Harnessing Avidity: Quantifying the Entropic and Energetic Effects of Linker Length and Rigidity for Multivalent Binding of Antibodies to HIV-1. Cell Systems, 2019, 9, 466-474.e7.	2.9	20
45	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
46	Unusual Cysteine Content in V1 Region of gp120 From an Elite Suppressor That Produces Broadly Neutralizing Antibodies. Frontiers in Immunology, 2019, 10, 1021.	2.2	8
47	Immune Correlates of Disease Progression in Linked HIV-1 Infection. Frontiers in Immunology, 2019, 10, 1062.	2.2	14
48	eCD4-Ig Limits HIV-1 Escape More Effectively than CD4-Ig or a Broadly Neutralizing Antibody. Journal of Virology, 2019, 93, .	1.5	19
49	Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity, 2019, 50, 567-575.e5.	6.6	96
50	Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nature Medicine, 2019, 25, 547-553.	15.2	191
51	Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.	13.7	1,742
52	The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. MBio, 2020, 11, .	1.8	37
53	Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9865-9875.	3.3	7
54	Broadly neutralizing antibodies for HIV-1 prevention and therapy. Seminars in Immunology, 2021, 51, 101475.	2.7	28

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nature Communications, 2021, 12, 602.	5.8	48
57	Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. Journal of Experimental Medicine, 2021, 218, .	4.2	25
58	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	5.8	332
60	Antibodies Targeting the Envelope of HIV-1. , 0, , 191-208.		1
61	Towards HIV-1 remission: potential roles for broadly neutralizing antibodies. Journal of Clinical Investigation, 2016, 126, 415-423.	3.9	64
62	Maternal HIV-1 envelope–specific antibody responses and reduced risk of perinatal transmission. Journal of Clinical Investigation, 2015, 125, 2702-2706.	3.9	68
63	A new hypothesis on HIV cure. F1000Research, 2015, 4, 77.	0.8	4
64	Protection against SHIV Challenge by Subcutaneous Administration of the Plant-Derived PGT121 Broadly Neutralizing Antibody in Macaques. PLoS ONE, 2016, 11, e0152760.	1.1	11
67	Vectored antibody gene delivery restores host B and TÂcell control of persistent viral infection. Cell Reports, 2021, 37, 110061.	2.9	1
72	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	4.2	6
73	HIV Co-Receptor Usage, Broadly Neutralising Antibodies, and Treatment. European Medical Journal Allergy & Immunology, 0, , 117-125.	0.0	0
74	HIV-1 Vpu restricts Fc-mediated effector functions inÂvivo. Cell Reports, 2022, 41, 111624.	2.9	8
75	Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies. Frontiers in Immunology, 0, 13, .	2.2	0
76	The Humanized Mouse Model: What Added Value Does It Offer for HIV Research?. Pathogens, 2023, 12, 608.	1.2	5
78	HIV-1 replication and pathogenicity: lessons from macaque-tropic HIV-1 derivatives. , 0, , .		0

78