Impact of 5-aminolevulinic acid fluorescence-guided su meningiomas – With special regard to high-grade tun

Photodiagnosis and Photodynamic Therapy

11, 481-490

DOI: 10.1016/j.pdpdt.2014.07.008

Citation Report

#	Article	IF	CITATIONS
1	Pros, cons and future prospects of ALA-photodiagnosis, phototherapy and pharmacology in cancer therapy – A mini review. Photonics & Lasers in Medicine, 2015, 4, .	0.2	6
2	From Grey Scale B-Mode to Elastosonography: Multimodal Ultrasound Imaging in Meningioma Surgery—Pictorial Essay and Literature Review. BioMed Research International, 2015, 2015, 1-13.	1.9	47
3	Aminolevulinic Acid-Mediated Photodynamic Therapy of Human Meningioma: An in Vitro Study on Primary Cell Lines. International Journal of Molecular Sciences, 2015, 16, 9936-9948.	4.1	28
4	The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas—a critical review. Neurosurgical Review, 2015, 38, 619-628.	2.4	60
5	ALA-induced fluorescence image guided surgery of meningiomas: A meta-analyses. Photodiagnosis and Photodynamic Therapy, 2016, 15, 73-78.	2.6	26
6	Efficacy of 5-aminolevulinic acid based photodynamic therapy in pituitary adenomas—experimental study on rat and human cell cultures. Photodiagnosis and Photodynamic Therapy, 2016, 14, 77-83.	2.6	12
7	Analysis of the surgical benefits of 5-ALA–induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. Journal of Neurosurgery, 2016, 125, 1408-1419.	1.6	69
8	Multimodal optical analysis of meningioma and comparison with histopathology. Journal of Biophotonics, 2017, 10, 253-263.	2.3	22
9	Fluorescence-guided resection of extracranial soft tissue tumour infiltration in atypical meningioma. Acta Neurochirurgica, 2017, 159, 1027-1031.	1.7	13
11	Fluorescence-Guided Resection of Malignant Cliomas. , 2017, , 81-101.		2
12	Minispectrometer with handheld probe for 5-ALA based fluorescence-guided surgery of brain tumors: Preliminary study for clinical applications. Photodiagnosis and Photodynamic Therapy, 2017, 17, 147-153.	2.6	22
13	5-Aminolevulinic acid-based photodynamic therapy of chordoma: In vitro experiments on a human tumor cell line. Photodiagnosis and Photodynamic Therapy, 2017, 20, 111-115.	2.6	13
14	Fluorescence Imaging/Agents in Tumor Resection. Neurosurgery Clinics of North America, 2017, 28, 569-583.	1.7	62
15	Fluorescence Behavior and Dural Infiltration of Meningioma Analyzed by 5-Aminolevulinic Acid–Based Fluorescence: Operating Microscope Versus Mini-Spectrometer. World Neurosurgery, 2017, 108, 118-127.	1.3	21
16	Use of Sodium Fluorescein in Meningioma Surgery Performed Under the YELLOW-560 nm Surgical Microscope Filter: Feasibility and Preliminary Results. World Neurosurgery, 2017, 107, 966-973.	1.3	26
17	5-ALAâ~'Induced Fluorescence in Leptomeningeal Dissemination of Spinal Malignant Glioma. World Neurosurgery, 2018, 110, 345-348.	1.3	10
18	Various shades of red—a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery. Neurosurgical Review, 2018, 41, 3-18.	2.4	24
19	Wavelength-specific lighted suction instrument for 5-aminolevulinic acid fluorescence-guided resection of deep-seated malignant glioma: technical note. Journal of Neurosurgery, 2018, 128, 1448-1453.	1.6	10

ARTICLE IF CITATIONS # Photodynamic therapy for glioblastoma: A preliminary approach for practical application of light 20 2.110 propagation models. Lasers in Surgery and Medicine, 2018, 50, 523-534. Letter to the Editor. Usefulness of 5-ALA in resection of intracranial meningiomas. Journal of 1.6 Neurosurgery, 2018, 128, 951-953. 5-ALA fluorescence behavior of cerebral infectious and inflammatory disease. Neurosurgical Review, 22 2.4 3 2018, 41, 365-369. Quantification of ALA-fluorescence induced by a modified commercially available head lamp and a surgical microscope. Neurosurgical Review, 2018, 41, 1079-1083. 2.4 Enhancement of Cancer-Specific Protoporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK 24 10.0 39 Pathway. Theranostics, 2018, 8, 2134-2146. Is Visible Aminolevulinic Acid-Induced Fluorescence an Independent Biomarker for Prognosis in Histologically Confirmed (World Health Organization 2016) Low-Grade Gliomas?. Neurosurgery, 2019, 1.1 84, 1214-1224. Quantification of PpIX-fluorescence of cerebral metastases: a pilot study. Clinical and Experimental 26 3.3 9 Metastasis, 2019, 36, 467-475. Optimization of high-grade glioma resection using 5-ALA fluorescence-guided surgery: A literature review and practical recommendations from the neuro-oncology club of the French society of 1.2 19 neurosurgery. Neurochirurgie, 2019, 65, 164-177. Is the Intensity of 5-Aminolevulinic Acid–Derived Fluorescence Related to the Light Source?. World 28 1.3 12 Neurosurgery, 2019, 131, e271-e276. The Dark Side: Photosensitizer Prodrugs. Pharmaceuticals, 2019, 12, 148. 3.8 Technological and Ideological Innovations in Endoscopic Skull Base Surgery. World Neurosurgery, 30 1.3 14 2019, 124, 513-521. Surgery of Small Anterior Skull Base Meningiomas by Endoscopic 5-Aminolevulinic Acid Fluorescence 1.3 Guidance: First Clinical Experience. World Neurosurgery, 2019, 122, e890-e895. Established and emerging uses of 5-ALA in the brain: an overview. Journal of Neuro-Oncology, 2019, 141, 32 2.9 60 487-494. 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence guidance in meningioma surgery. Journal of Neuro-Oncology, 2019, 141, 555-565. The application of fluorescence techniques in meningioma surgeryâ€"a review. Neurosurgical Review, 34 2.4 23 2019, 42, 799-809. Label-free detection of brain invasion in meningiomas by multiphoton microscopy. Laser Physics Letters, 2019, 16, 015603. Letter to the Editor Regarding "A Novel Wavelength-Specific Blue Light-Emitting Headlamp for 5-Aminolevulinic Acid Fluorescence-Guided Resection of Glioblastomaâ€. World Neurosurgery, 2020, 36 1.31 133, 436-437. High Diagnostic Accuracy of Visible 5â€ALA Fluorescence in Meningioma Surgery According to Histopathological Analysis of Tumor Bulk and Peritumoral Tissue. Lasers in Surgery and Medicine, 2.1 2021, 53, 300-308.

CITATION REPORT

#	Article	IF	CITATIONS
38	Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncology, The, 2021, 22, e186-e195.	10.7	122
39	Ciprofloxacin enhances phototoxicity of 5-aminolevulinic acid mediated photodynamic treatment for chordoma cell lines. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102346.	2.6	2
40	Echographic Brain Semeiology and Topographic Anatomy According to Surgical Approaches. , 2016, , 29-39.		3
41	18 Brain tumor imaging with ALA. Series in Cellular and Clinical Imaging, 2017, , 347-384.	0.2	2
42	Experience Profiling of Fluorescence-Guided Surgery II: Non-Glioma Pathologies. Brain Tumor Research and Treatment, 2019, 7, 105.	1.0	9
43	Clinical guidelines for the use of intraoperative fluorescence diagnosis in brain tumor surgery. Zhurnal Voprosy Nejrokhirurgii Imeni N N Burdenko, 2015, 79, 91.	0.2	16
45	5-ALA fluorescence on tumors different from malignant gliomas. Review of the literature and our experience. Journal of Neurosurgical Sciences, 2020, 63, 661-669.	0.6	8
46	Label-free Imaging of Gliomas with Multiphoton Microscopy. , 2017, , .		0
49	Utility of 5-ALA for resection of CNS tumours other than high-grade gliomas: a protocol for a systematic review. BMJ Open, 2022, 12, e056059.	1.9	2
50	5-ALA fluorescence–guided resection of a recurrent anaplastic pleomorphic xanthoastrocytoma: illustrative case. Journal of Neurosurgery Case Lessons, 2022, 4, .	0.3	0
51	Protoporphyrin IX (PpIX) Fluorescence during Meningioma Surgery: Correlations with Histological Findings and Expression of Heme Pathway Molecules. Cancers, 2023, 15, 304.	3.7	1
52	Characterization of a fluorescence imaging probe that exploits metabolic dependency of ovarian clear cell carcinoma. Scientific Reports, 2023, 13, .	3.3	0