Antitumor Activity of the Glutaminase Inhibitor CB-839

Molecular Cancer Therapeutics 13, 890-901 DOI: 10.1158/1535-7163.mct-13-0870

Citation Report

#	Article	IF	CITATIONS
1	Redox control of glutamine utilization in cancer. Cell Death and Disease, 2014, 5, e1561-e1561.	6.3	113
2	Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nature Communications, 2014, 5, 4900.	12.8	63
3	Action at a Distance: Allostery and the Development of Drugs to Target Cancer Cell Metabolism. Chemistry and Biology, 2014, 21, 1143-1161.	6.0	39
4	Emerging approaches to target tumor metabolism. Current Opinion in Pharmacology, 2014, 17, 22-29.	3.5	18
5	Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood, 2015, 126, 1346-1356.	1.4	303
6	Mutant KRAS associated malic enzyme 1 expression is a predictive marker for radiation therapy response in non-small cell lung cancer. Radiation Oncology, 2015, 10, 145.	2.7	47
7	Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways. Clinical Pharmacology: Advances and Applications, 2015, 7, 57.	1.2	12
8	Targeting Clutamine Induces Apoptosis: A Cancer Therapy Approach. International Journal of Molecular Sciences, 2015, 16, 22830-22855.	4.1	118
9	Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy. BioMed Research International, 2015, 2015, 1-13.	1.9	88
10	Glutaminolysis and autophagy in cancer. Autophagy, 2015, 11, 1198-1208.	9.1	104
11	The GLU that Holds Cancer Together: Targeting GLUtamine Transporters in Breast Cancer. Cancer Cell, 2015, 27, 317-319.	16.8	13
12	Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocrine-Related Cancer, 2015, 22, 577-591.	3.1	79
13	Troglitazone suppresses glutamine metabolism through a PPAR-independent mechanism. Biological Chemistry, 2015, 396, 937-947.	2.5	5
14	Metabolic signatures of human breast cancer. Molecular and Cellular Oncology, 2015, 2, e992217.	0.7	56
15	Seek and Destroy: Relating Cancer Drivers to Therapies. Cancer Cell, 2015, 27, 319-321.	16.8	5
16	Targeting glutamine metabolism in myeloproliferative neoplasms. Blood Cells, Molecules, and Diseases, 2015, 55, 241-247.	1.4	22
17	Organ-Specific Cancer Metabolism and Its Potential for Therapy. Handbook of Experimental Pharmacology, 2015, 233, 321-353.	1.8	86
18	Metabolic Dependencies in <i>RAS</i> -Driven Cancers. Clinical Cancer Research, 2015, 21, 1828-1834.	7.0	192

ATION REDO

#	Article	IF	CITATIONS
19	Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5425-5430.	7.1	190
20	The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism?. Acta Biochimica Et Biophysica Sinica, 2016, 48, 17-26.	2.0	13
21	Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by AŸ-lapachone. Cancer & Metabolism, 2015, 3, 12.	5.0	104
22	Amino acid management in cancer. Seminars in Cell and Developmental Biology, 2015, 43, 22-32.	5.0	96
23	Research into cancer metabolomics: Towards a clinical metamorphosis. Seminars in Cell and Developmental Biology, 2015, 43, 52-64.	5.0	36
24	MYC, Metabolism, and Cancer. Cancer Discovery, 2015, 5, 1024-1039.	9.4	919
25	A motor relay on ciliary tracks. Nature Cell Biology, 2015, 17, 1517-1519.	10.3	2
26	MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nature Communications, 2015, 6, 8873.	12.8	119
27	Rethinking glutamine addiction. Nature Cell Biology, 2015, 17, 1515-1517.	10.3	30
28	Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase. Neurochemistry International, 2015, 88, 10-14.	3.8	10
29	Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochemical and Biophysical Research Communications, 2015, 456, 452-458.	2.1	82
30	Glutamate enrichment as new diagnostic opportunity in breast cancer. International Journal of Cancer, 2015, 136, 1619-1628.	5.1	103
31	On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer. Oncotarget, 2016, 7, 67626-67649.	1.8	42
32	Oncogenic regulation of tumor metabolic reprogramming. Oncotarget, 2016, 7, 62726-62753.	1.8	116
33	Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget, 2016, 7, 79722-79735.	1.8	133
34	Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine. Cell, 2016, 166, 126-139.	28.9	187
36	Glutamine Metabolism in Gliomas. Advances in Neurobiology, 2016, 13, 259-273.	1.8	7
37	Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood, 2016, 128, 667-679.	1.4	128

		CITATION RE	PORT	
#	Article		IF	CITATIONS
38	Mechanistic Basis of Glutaminase Activation. Journal of Biological Chemistry, 2016, 291, 2090)0-20910.	3.4	28
39	Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells. Cell Reports, 2016, 17, 821-836.		6.4	132
40	Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OG Reports, 2016, 17, 876-890.	DH. Cell	6.4	54
41	Specific Detection of Cellular Glutamine Hydrolysis in Live Cells Using HNCO Triple Resonance ACS Chemical Biology, 2016, 11, 3140-3145.	NMR.	3.4	3
42	Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. , 2016, 167, 60-73.	2		34
43	From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews Cancer, 2016,	16, 619-634.	28.4	1,367
44	Discovery of 6-Diazo-5-oxo- <scp>l</scp> -norleucine (DON) Prodrugs with Enhanced CSF Deliv Monkeys: A Potential Treatment for Glioblastoma. Journal of Medicinal Chemistry, 2016, 59, 8	very in 3621-8633.	6.4	98
45	Metabolism in Cancer. Recent Results in Cancer Research, 2016, , .		1.8	5
46	Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer & Metabolis 4, 14.	im, 2016,	5.0	64
47	Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterog pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of A 2016, 113, E5328-36.	eneity of merica,	7.1	180
48	Tissue-Based Metabolomics to Analyze the Breast Cancer Metabolome. Recent Results in Can Research, 2016, 207, 157-175.	cer	1.8	25
49	Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Communications, 2016, 7, 11457.	Nature	12.8	386
50	Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discovery, 20 1315-1333.	16, 6,	9.4	137
51	The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells glutaminase-targeted therapy. Nature Communications, 2016, 7, 11321.	to	12.8	132
52	Targeting glutamine metabolism in PIK3CA mutant colorectal cancers. Genes and Diseases, 20 241-243.)16, 3,	3.4	13
53	Cancer metabolism at a glance. Journal of Cell Science, 2016, 129, 3367-3373.		2.0	176
55	NQO1 Bioactivatable Drugs Enhance Radiation Responses. , 2016, , 225-252.			1
56	Targeting Stromal Clutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regula Cancer Cell Growth. Cell Metabolism, 2016, 24, 685-700.	ted	16.2	293

#	Article	IF	CITATIONS
57	Oligomeric interface modulation causes misregulation of purine 5´-nucleotidase in relapsed leukemia. BMC Biology, 2016, 14, 91.	3.8	9
58	Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. International Journal of Oncology, 2016, 48, 399-408.	3.3	70
59	Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene, 2016, 35, 3955-3964.	5.9	76
60	Allosteric Glutaminase Inhibitors Based on a 1,4-Di(5-amino-1,3,4-thiadiazol-2-yl)butane Scaffold. ACS Medicinal Chemistry Letters, 2016, 7, 520-524.	2.8	50
62	Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biology, 2016, 8, 136-148.	9.0	15
63	Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metabolism, 2016, 23, 517-528.	16.2	616
64	Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids. Journal of Neuro-Oncology, 2016, 128, 57-66.	2.9	26
65	Design and evaluation of novel glutaminase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1819-1839.	3.0	50
66	Glutaminolysis as a target for cancer therapy. Oncogene, 2016, 35, 3619-3625.	5.9	311
67	Clinical development of cancer therapeutics that target metabolism. QJM - Monthly Journal of the Association of Physicians, 2016, 109, 367-372.	0.5	29
68	ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 2016, 35, 3201-3208.	5.9	430
69	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	27.6	1,028
70	Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer. Cell Reports, 2017, 18, 601-610.	6.4	125
71	Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascular Pharmacology, 2017, 90, 8-18.	2.1	41
72	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017, 31, 181-193.	16.8	532
73	Biomolecular Interaction Assays Identified Dual Inhibitors of Glutaminase and Glutamate Dehydrogenase That Disrupt Mitochondrial Function and Prevent Growth of Cancer Cells. Analytical Chemistry, 2017, 89, 1689-1696.	6.5	38
74	Physapubescin, a natural withanolide as a kidney-type glutaminase (KGA) inhibitor. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1243-1246.	2.2	22
75	A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Medicinal Chemistry, 2017, 9, 223-243.	2.3	109

#	Article	IF	CITATIONS
76	Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators. Journal of Biological Chemistry, 2017, 292, 6095-6107.	3.4	21
77	[18F](2 <i>S</i> ,4 <i>R</i>)4-Fluoroglutamine PET Detects Glutamine Pool Size Changes in Triple-Negative Breast Cancer in Response to Glutaminase Inhibition. Cancer Research, 2017, 77, 1476-1484.	0.9	75
78	Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends in Cancer, 2017, 3, 169-180.	7.4	472
79	Clinical development landscape in GIST: from novel agents that target accessory pathways to revisiting non-targeted therapies. Expert Opinion on Investigational Drugs, 2017, 26, 427-443.	4.1	1
80	Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 2017, 19, 163-194.	12.3	528
81	Glutamine Addiction In Gliomas. Neurochemical Research, 2017, 42, 1735-1746.	3.3	64
82	Energy metabolism in skin cancers: A therapeutic perspective. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 712-722.	1.0	26
83	Harnessing Preclinical Molecular Imaging to Inform Advances in Personalized Cancer Medicine. Journal of Nuclear Medicine, 2017, 58, 689-696.	5.0	15
84	Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO Journal, 2017, 36, 1302-1315.	7.8	424
85	c―MYC mRNA tail tale about glutamine control of transcription. EMBO Journal, 2017, 36, 1806-1808.	7.8	4
86	Metabolic reprogramming in clear cell renal cell carcinoma. Nature Reviews Nephrology, 2017, 13, 410-419.	9.6	323
87	Hopefully devoted to Q: targeting glutamine addiction in cancer. British Journal of Cancer, 2017, 116, 1375-1381.	6.4	93
88	Argininosuccinate synthetase 1 (ASS1) is a common metabolic marker of chemosensitivity for targeted arginine- and glutamine-starvation therapy. Cancer Letters, 2017, 388, 54-63.	7.2	32
89	From Prokaryotes to Cancer: Glutamine Flux in Multicellular Units. Trends in Endocrinology and Metabolism, 2017, 28, 637-644.	7.1	16
90	Division enzyme regulates metabolism. Nature, 2017, 546, 357-358.	27.8	28
91	Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxidants and Redox Signaling, 2017, 27, 1217-1234.	5.4	79
92	Patent highlights December 2016–January 2017. Pharmaceutical Patent Analyst, 2017, 6, 97-104.	1.1	1
93	Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Trends in Pharmacological Sciences, 2017, 38, 669-686.	8.7	155

#	Article	IF	CITATIONS
94	Design, Synthesis, and Evaluation of Thiazolidine-2,4-dione Derivatives as a Novel Class of Glutaminase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 5599-5612.	6.4	30
95	How to suck like an octopus. Nature, 2017, 546, 358-359.	27.8	15
96	Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature Reviews Cancer, 2017, 17, 79-92.	28.4	686
97	Metabolomic analysis identifies differentially produced oral metabolites, including the oncometabolite 2-hydroxyglutarate, in patients with head and neck squamous cell carcinoma. BBA Clinical, 2017, 7, 8-15.	4.1	24
98	Integrated Metabolomics and Proteomics Highlight Altered Nicotinamide- and Polyamine Pathways in Lung Adenocarcinoma. Carcinogenesis, 2017, 38, bgw205.	2.8	56
99	Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 498-506.	4.1	15
100	Targeting amino acid metabolism for cancer therapy. Drug Discovery Today, 2017, 22, 796-804.	6.4	215
101	Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncology Letters, 2017, 14, 3117-3123.	1.8	40
102	<i>De novo</i> <scp>MYC</scp> addiction as an adaptive response of cancer cells to <scp>CDK</scp> 4/6 inhibition. Molecular Systems Biology, 2017, 13, 940.	7.2	43
103	Glutamine Addiction in Kidney Cancer Suppresses Oxidative Stress and Can Be Exploited for Real-Time Imaging. Cancer Research, 2017, 77, 6746-6758.	0.9	85
104	Targeting Metabolism for Cancer Therapy. Cell Chemical Biology, 2017, 24, 1161-1180.	5.2	677
105	Downregulation of SIRT2 Inhibits Invasion of Hepatocellular Carcinoma by Inhibiting Energy Metabolism. Translational Oncology, 2017, 10, 917-927.	3.7	43
106	Metabolic Enzymes in Sarcomagenesis: Progress Toward Biology and Therapy. BioDrugs, 2017, 31, 379-392.	4.6	8
107	Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity. Clinical Cancer Research, 2017, 23, 6292-6304.	7.0	69
108	Deciphering metabolic rewiring in breast cancer subtypes. Translational Research, 2017, 189, 105-122.	5.0	45
109	ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis, 2017, 6, e367-e367.	4.9	57
110	The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Science Signaling, 2017, 10, .	3.6	80
111	Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer. Scientific Reports, 2017, 7, 16159.	3.3	53

#	Article	IF	CITATIONS
112	Brachyantheraoside A ₈ , a new natural nor-oleanane triterpenoid as a kidney-type glutaminase inhibitor from <i>Stauntonia brachyanthera</i> . RSC Advances, 2017, 7, 52533-52542.	3.6	7
113	Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nature Communications, 2017, 8, 15965.	12.8	231
114	Nature and Nurture: What Determines Tumor Metabolic Phenotypes?. Cancer Research, 2017, 77, 3131-3134.	0.9	60
115	Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO Journal, 2017, 36, 2334-2352.	7.8	195
116	Bioluminescent Assays for Glucose and Glutamine Metabolism: High-Throughput Screening for Changes in Extracellular and Intracellular Metabolites. SLAS Discovery, 2017, 22, 366-377.	2.7	14
117	Non-Invasive Glutamine PET Reflects Pharmacological Inhibition of BRAFV600E In Vivo. Molecular Imaging and Biology, 2017, 19, 421-428.	2.6	17
118	Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene, 2017, 36, 1991-2001.	5.9	54
119	Hepatitis C virus infection triggers a tumorâ€like glutamine metabolism. Hepatology, 2017, 65, 789-803.	7.3	48
120	Search for Inhibitors of Ras-Driven Cancers. , 2017, , 135-154.		1
121	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells. , 2017, , 193-212.		1
121 122	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells. , 2017, , 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219.	3.6	1 98
121 122 123	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells. , 2017, , 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 2017, 1, 1296-1305.	3.6 5.2	1 98 28
121 122 123 124	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells. , 2017, , 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 2017, 1, 1296-1305. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in Physiology, 2017, 8, 217.	3.6 5.2 2.8	1 98 28 47
121 122 123 124	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells. , 2017, , 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 2017, 1, 1296-1305. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in Physiology, 2017, 8, 217. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43.	3.6 5.2 2.8 2.4	1 98 28 47
121 122 123 124 125 126	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells., 2017, 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 2017, 1, 1296-1305. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in Physiology, 2017, 8, 217. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43. Metabolic Portraits of Breast Cancer by HR MAS MR Spectroscopy of Intact Tissue Samples. Metabolites, 2017, 7, 18.	3.6 5.2 2.8 2.4 2.9	1 98 28 47 40 35
121 122 123 124 125 126	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells. , 2017, , 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 2017, 1, 1296-1305. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in Physiology, 2017, 8, 217. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43. Metabolic Portraits of Breast Cancer by HR MAS MR Spectroscopy of Intact Tissue Samples. Metabolites, 2017, 7, 18. MYC-Driven Pathways in Breast Cancer Subtypes. Biomolecules, 2017, 7, 53.	3.6 5.2 2.8 2.4 2.9 4.0	1 98 28 47 40 35
 121 122 123 124 125 126 127 128 	Targeting Metabolic Vulnerabilities in RAS-Mutant Cells., 2017, , 193-212. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biology, 2017, 7, 170219. Red blood cells in hemorrhagic shock: a critical role for glutaminolysis in fueling alanine transamination in rats. Blood Advances, 2017, 1, 1296-1305. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Frontiers in Physiology, 2017, 8, 217. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43. Metabolic Portraits of Breast Cancer by HR MAS MR Spectroscopy of Intact Tissue Samples. Metabolites, 2017, 7, 18. MYC-Driven Pathways in Breast Cancer Subtypes. Biomolecules, 2017, 7, 53. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Frontiers in Oncology, 2017, 7, 40.	3.6 5.2 2.8 2.4 2.9 4.0	1 98 28 47 30 101

#	Article	IF	CITATIONS
130	Post-Transcriptional and Post-translational Regulation of Central Carbon Metabolic Enzymes in Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1456-1465.	1.7	7
131	Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS ONE, 2017, 12, e0185092.	2.5	114
132	Regulation of hepatic stellate cell proliferation and activation by glutamine metabolism. PLoS ONE, 2017, 12, e0182679.	2.5	40
133	Drug-induced amino acid deprivation as strategy for cancer therapy. Journal of Hematology and Oncology, 2017, 10, 144.	17.0	117
134	Metabolic Alterations in Cancer and Their Potential as Therapeutic Targets. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 825-832.	3.8	25
135	Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget, 2017, 8, 35863-35876.	1.8	94
136	Clutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood, 2018, 131, 1639-1653.	1.4	114
137	Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Research, 2018, 28, 655-669.	12.0	51
138	Clutamineâ€utilizing transaminases are a metabolic vulnerability of TAZ/YAPâ€activated cancer cells. EMBO Reports, 2018, 19, .	4.5	70
139	Dependence on the Pyrimidine Biosynthetic Enzyme DHODH Is a Synthetic Lethal Vulnerability in Mutant KRAS-Driven Cancers. Cell Chemical Biology, 2018, 25, 705-717.e11.	5.2	79
140	Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy. Journal of Cellular Biochemistry, 2018, 119, 6136-6145.	2.6	47
141	In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of ¹⁸ F-(2 <i>S</i> ,4 <i>R</i>)-4-Fluoroglutamine. Radiology, 2018, 287, 667-675.	7.3	80
142	Clutamine metabolism regulates FLIP expression and sensitivity to TRAIL in triple-negative breast cancer cells. Cell Death and Disease, 2018, 9, 205.	6.3	22
143	Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature Communications, 2018, 9, 545.	12.8	114
145	Clutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 1343-1353.	0.7	21
146	Expression of the glutamine metabolismâ€related proteins glutaminase 1 and glutamate dehydrogenase in canine mammary tumours. Veterinary and Comparative Oncology, 2018, 16, 239-245.	1.8	5
147	Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. Journal of Biological Chemistry, 2018, 293, 3535-3545.	3.4	70
148	Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nature Medicine, 2018, 24, 194-202.	30.7	303

#	Article	IF	CITATIONS
149	Autophagy Sustains Pancreatic Cancer Growth through Both Cell-Autonomous and Nonautonomous Mechanisms. Cancer Discovery, 2018, 8, 276-287.	9.4	248
150	Glutaminase 1 regulates the release of extracellular vesicles during neuroinflammation through key metabolic intermediate alpha-ketoglutarate. Journal of Neuroinflammation, 2018, 15, 79.	7.2	32
151	Caudatan A, an undescribed human kidney-type glutaminase inhibitor with tetracyclic flavan from Ohwia caudata. Phytochemistry, 2018, 152, 22-28.	2.9	9
152	Metabolomics and Metabolic Reprogramming in Kidney Cancer. Seminars in Nephrology, 2018, 38, 175-182.	1.6	66
153	Dual targeting of EGFR and glutaminase in lung cancer. Molecular and Cellular Oncology, 2018, 5, e1297883.	0.7	1
154	Glutaminolysis Promotes Collagen Translation and Stability via α-Ketoglutarate–mediated mTOR Activation and Proline Hydroxylation. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 378-390.	2.9	92
155	Metabolite Profiling Reveals the Glutathione Biosynthetic Pathway as a Therapeutic Target in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 264-275.	4.1	43
156	MYC regulation of glutamine–proline regulatory axis is key in luminal B breast cancer. British Journal of Cancer, 2018, 118, 258-265.	6.4	74
157	Exploiting Metabolic Vulnerabilities of Cancer with Precision and Accuracy. Trends in Cell Biology, 2018, 28, 201-212.	7.9	94
158	Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology, 2018, 72, 183-190.	2.9	60
159	Metabolic Reprogramming of Non-Hodgkin's B-Cell Lymphomas and Potential Therapeutic Strategies. Frontiers in Oncology, 2018, 8, 556.	2.8	67
160	Therapeutic strategies to target RAS-mutant cancers. Nature Reviews Clinical Oncology, 2018, 15, 709-720.	27.6	274
161	Clutaminase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2018, 28, 823-835.	5.0	23
162	Arginine reprogramming in ADPKD results in arginine-dependent cystogenesis. American Journal of Physiology - Renal Physiology, 2018, 315, F1855-F1868.	2.7	28
163	Liver cancer cell lines distinctly mimic the metabolic gene expression pattern of the corresponding human tumours. Journal of Experimental and Clinical Cancer Research, 2018, 37, 211.	8.6	99
164	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	28.9	234
165	We're Not "DON―Yet: Optimal Dosing and Prodrug Delivery of <i>6-Diazo-5-oxo-L-norleucine</i> . Molecular Cancer Therapeutics, 2018, 17, 1824-1832.	4.1	148
166	Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy. Frontiers in Oncology, 2018, 8, 284.	2.8	80

#	Article	IF	CITATIONS
167	Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Letters, 2018, 430, 133-147.	7.2	54
168	Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. Journal of Molecular Medicine, 2018, 96, 777-790.	3.9	26
169	The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, 2018, , .	1.6	7
170	Altered Metabolism of Leukemic Cells: New Therapeutic Opportunity. International Review of Cell and Molecular Biology, 2018, 336, 93-147.	3.2	8
171	Pan-Cancer Metabolic Signature Predicts Co-Dependency on Glutaminase and De Novo Glutathione Synthesis Linked to a High-Mesenchymal Cell State. Cell Metabolism, 2018, 28, 383-399.e9.	16.2	62
172	Glutamine Metabolism in Cancer. Advances in Experimental Medicine and Biology, 2018, 1063, 13-32.	1.6	153
173	Cancer Metabolism: Current Understanding and Therapies. Chemical Reviews, 2018, 118, 6893-6923.	47.7	161
174	Interplay between ShcA Signaling and PGC-1α Triggers Targetable Metabolic Vulnerabilities in Breast Cancer. Cancer Research, 2018, 78, 4826-4838.	0.9	10
175	Targeting cancer metabolism through synthetic lethality-based combinatorial treatment strategies. Current Opinion in Oncology, 2018, 30, 338-344.	2.4	7
176	Emerging roles of Myc in stem cell biology and novel tumor therapies. Journal of Experimental and Clinical Cancer Research, 2018, 37, 173.	8.6	189
177	Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Current Topics in Medicinal Chemistry, 2018, 18, 494-504.	2.1	180
178	Glutamate-Weighted Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Detects Glutaminase Inhibition in a Mouse Model of Triple-Negative Breast Cancer. Cancer Research, 2018, 78, 5521-5526.	0.9	19
179	PET Imaging of ¹⁸ F-(2 <i>S</i> ,4 <i>R</i>)4-Fluoroglutamine Accumulation in Breast Cancer: From Xenografts to Patients. Molecular Pharmaceutics, 2018, 15, 3448-3455.	4.6	18
180	Oligodendroglioma Cells Lack Glutamine Synthetase and Are Auxotrophic for Glutamine, but Do not Depend on Glutamine Anaplerosis for Growth. International Journal of Molecular Sciences, 2018, 19, 1099.	4.1	20
181	Flexibility in metabolism bestows tenacious viability on cancer. Life Sciences, 2018, 208, 20-25.	4.3	4
182	Amino Acid Transporters and Glutamine Metabolism in Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 907.	4.1	103
183	The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 67-75.	7.4	93
184	Asparagine, a critical limiting metabolite during glutamine starvation. Molecular and Cellular Oncology, 2018, 5, e1441633.	0.7	16

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
185	Targeting Glutamine Metabolism for Cancer Treatment. Biomolecules and Therapeutics, 2018, 26, 19-28.	2.4	218
186	Glutaminase-1 stimulates the proliferation, migration, and survival of human endothelial cells. Biochemical Pharmacology, 2018, 156, 204-214.	4.4	30
187	Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer. Clinical Cancer Research, 2018, 24, 6433-6446.	7.0	54
188	A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metabolism, 2018, 28, 721-736.e6.	16.2	159
189	Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting. Cell Metabolism, 2018, 28, 706-720.e6.	16.2	132
190	Increased glutamine anabolism sensitizes non-small cell lung cancer to gefitinib treatment. Cell Death Discovery, 2018, 4, 24.	4.7	15
191	Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	96
192	Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, 2018, 420, 175-210.	1.1	2
193	EWSâ€FLl1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serineâ€glycine biosynthesis. Molecular Carcinogenesis, 2018, 57, 1342-1357.	2.7	40
194	Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Medicinal Research Reviews, 2019, 39, 70-113.	10.5	65
195	Recent Progress in the Discovery of Allosteric Inhibitors of Kidney-Type Glutaminase. Journal of Medicinal Chemistry, 2019, 62, 46-59.	6.4	41
196	Overview of the Development of Glutaminase Inhibitors: Achievements and Future Directions. Journal of Medicinal Chemistry, 2019, 62, 1096-1115.	6.4	77
197	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	46.4	176
198	Metabolic Plasticity of Acute Myeloid Leukemia. Cells, 2019, 8, 805.	4.1	103
199	Glutamine Metabolism Drives Growth in Advanced Hormone Receptor Positive Breast Cancer. Frontiers in Oncology, 2019, 9, 686.	2.8	41
200	Metabolic Regulation of Redox Balance in Cancer. Cancers, 2019, 11, 955.	3.7	80
201	Inhibition of Glucose Transporters and Glutaminase Synergistically Impairs Tumor Cell Growth. Cell Chemical Biology, 2019, 26, 1214-1228.e25.	5.2	97
202	Inhibition of Anaplerotic Glutaminolysis Underlies Selenite Toxicity in Human Lung Cancer. Proteomics, 2019, 19, e1800486.	2.2	15

#	Article	IF	CITATIONS
203	Design and synthesis of biotinylated Hexylselen as a probe to identify KGA allosteric inhibitors by a convenient biomolecular interaction assay. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2498-2502.	2.2	2
204	Development and Characterization of a Fluorescent Probe for GLS1 and the Application for High-Throughput Screening of Allosteric Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 9642-9657.	6.4	19
205	UGCG influences glutamine metabolism of breast cancer cells. Scientific Reports, 2019, 9, 15665.	3.3	23
206	eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nature Communications, 2019, 10, 5151.	12.8	64
207	Fifty Shades of α-Ketoglutarate on Cellular Programming. Molecular Cell, 2019, 76, 1-3.	9.7	29
208	Glutamine Metabolism in Brain Tumors. Cancers, 2019, 11, 1628.	3.7	53
209	An Improved Indicator System for Evaluating the Progress of Sustainable Development Goals (SDGs) Sub-Target 9.1 in County Level. Sustainability, 2019, 11, 4783.	3.2	12
210	Modern Perspective on Metabolic Reprogramming in Malignant Neoplasms. Biochemistry (Moscow), 2019, 84, 1129-1142.	1.5	14
211	Inhibition of cancer metabolism: a patent landscape. Pharmaceutical Patent Analyst, 2019, 8, 117-138.	1.1	4
212	Defining and targeting wild-type BRCA high-grade serous ovarian cancer: DNA repair and cell cycle checkpoints. Expert Opinion on Investigational Drugs, 2019, 28, 771-785.	4.1	9
213	Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells. Molecular and Cellular Oncology, 2019, 6, e1536843.	0.7	19
214	Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism. Cell Communication and Signaling, 2019, 17, 99.	6.5	46
215	The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients, 2019, 11, 2092.	4.1	85
216	Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2019, 18, 1937-1946.	4.1	19
217	Liver-Type Clutaminase GLS2 Is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer. Cell Reports, 2019, 29, 76-88.e7.	6.4	66
218	Warburg and Krebs and related effects in cancer. Expert Reviews in Molecular Medicine, 2019, 21, e4.	3.9	22
219	Fe-Catalyzed Reductive Couplings of Terminal (Hetero)Aryl Alkenes and Alkyl Halides under Aqueous Micellar Conditions. Journal of the American Chemical Society, 2019, 141, 17117-17124.	13.7	41
220	<p>Effect of glutaminase inhibition on cancer-induced bone pain</p> . Breast Cancer: Targets and Therapy, 2019, Volume 11, 273-282.	1.8	3

#	Article	IF	CITATIONS
221	Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase. Bioorganic Chemistry, 2019, 92, 103186.	4.1	16
222	Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nature Communications, 2019, 10, 4509.	12.8	93
223	Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine. Clinical Cancer Research, 2019, 25, 5925-5936.	7.0	22
224	Efficacy of Dual Inhibition of Glycolysis and Glutaminolysis for Therapy of Renal Lesions in Tsc2+/â^' Mice. Neoplasia, 2019, 21, 230-238.	5.3	13
225	Targeting Metabolic–Redox Circuits for Cancer Therapy. Trends in Biochemical Sciences, 2019, 44, 401-414.	7.5	138
226	Recombinantl-glutaminase obtained fromGeobacillus thermodenitrificansDSM-465: characterization andin silicoelucidation of conserved structural domains. RSC Advances, 2019, 9, 4258-4267.	3.6	2
227	Inhibition of GLS suppresses proliferation and promotes apoptosis in prostate cancer. Bioscience Reports, 2019, 39, .	2.4	40
228	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	6.4	29
229	Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster?. Cancers, 2019, 11, 804.	3.7	75
230	The Pleiotropic Effects of Glutamine Metabolism in Cancer. Cancers, 2019, 11, 770.	3.7	89
231	Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis?. Journal of Clinical Medicine, 2019, 8, 753.	2.4	32
232	Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. Molecular Cancer Therapeutics, 2019, 18, 1374-1385.	4.1	26
233	Discovery of a Thiadiazole–Pyridazine-Based Allosteric Glutaminase 1 Inhibitor Series That Demonstrates Oral Bioavailability and Activity in Tumor Xenograft Models. Journal of Medicinal Chemistry, 2019, 62, 6540-6560.	6.4	21
234	Mitochondrial Flexibility of Breast Cancers: A Growth Advantage and a Therapeutic Opportunity. Cells, 2019, 8, 401.	4.1	51
235	Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis. Clinical and Experimental Metastasis, 2019, 36, 211-224.	3.3	11
236	Novel Therapeutics Affecting Metabolic Pathways. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, e79-e87.	3.8	9
237	Glutamine to proline conversion is associated with response to glutaminase inhibition in breast cancer. Breast Cancer Research, 2019, 21, 61.	5.0	42
238	The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers, 2019, 11, 675.	3.7	119

#	Article	IF	CITATIONS
239	Immunometabolism: A new target for improving cancer immunotherapy. Advances in Cancer Research, 2019, 143, 195-253.	5.0	30
240	GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Experimental Cell Research, 2019, 381, 1-9.	2.6	32
241	The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opinion on Therapeutic Targets, 2019, 23, 511-524.	3.4	19
242	Role of Metabolic Reprogramming in Epithelial–Mesenchymal Transition (EMT). International Journal of Molecular Sciences, 2019, 20, 2042.	4.1	93
243	LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in <i>KRAS</i> -Mutant Lung Adenocarcinoma. Cancer Research, 2019, 79, 3251-3267.	0.9	196
244	Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition–resistant triple-negative breast cancer cells. Journal of Biological Chemistry, 2019, 294, 9342-9357.	3.4	53
245	Concurrent Targeting of Glutaminolysis and Metabotropic Glutamate Receptor 1 (GRM1) Reduces Glutamate Bioavailability in GRM1+ Melanoma. Cancer Research, 2019, 79, 1799-1809.	0.9	29
246	Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 425-441.	27.6	452
247	Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer. Journal of Clinical Medicine, 2019, 8, 355.	2.4	60
248	Targeting Glutamine Metabolism and Redox State for Leukemia Therapy. Clinical Cancer Research, 2019, 25, 4079-4090.	7.0	113
249	The †Achilles Heel' of Metabolism in Renal Cell Carcinoma: Glutaminase Inhibition as a Rational Treatment Strategy. Kidney Cancer, 2019, 3, 15-29.	0.4	50
250	AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3604-3613.	7.1	96
251	Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism. Oncogene, 2019, 38, 4729-4738.	5.9	47
252	Metabolic Pathways Fueling the Endothelial Cell Drive. Annual Review of Physiology, 2019, 81, 483-503.	13.1	91
253	CircHMGCS1 Promotes Hepatoblastoma Cell Proliferation by Regulating the IGF Signaling Pathway and Glutaminolysis. Theranostics, 2019, 9, 900-919.	10.0	60
254	Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer. Asian Journal of Urology, 2019, 6, 91-98.	1.2	6
255	Oncogenic KRAS Sensitizes Lung Adenocarcinoma to GSK-J4–Induced Metabolic and Oxidative Stress. Cancer Research, 2019, 79, 5849-5859.	0.9	26
256	Metabolic Regulation of Epithelial to Mesenchymal Transition: Implications for Endocrine Cancer. Frontiers in Endocrinology, 2019, 10, 773.	3.5	25

#	Article	IF	CITATIONS
257	The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Medicinal Chemistry, 2019, 11, 2333-2352.	2.3	43
258	Amino Acid-Mediated Metabolism: A New Power to Influence Properties of Stem Cells. Stem Cells International, 2019, 2019, 1-9.	2.5	8
259	Knock-down of PSAT1 Enhances Sensitivity of NSCLC Cells to Glutamine-limiting Conditions. Anticancer Research, 2019, 39, 6723-6730.	1.1	16
260	Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Scientific Reports, 2019, 9, 19180.	3.3	37
261	Intramitochondrial Src kinase links mitochondrial dysfunctions and aggressiveness of breast cancer cells. Cell Death and Disease, 2019, 10, 940.	6.3	23
262	The tumor microenvironment in renal cell cancer. Current Opinion in Oncology, 2019, 31, 194-199.	2.4	36
263	GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Human Molecular Genetics, 2019, 28, 96-104.	2.9	23
264	A unique metabolic dependency for liver cancer stem cells. EBioMedicine, 2019, 39, 9-10.	6.1	4
265	Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. International Journal of Radiation Biology, 2019, 95, 436-442.	1.8	77
266	Immunological and Genetic Biomarkers of Sarcomas. , 2019, , 591-608.		0
267	THZ1 suppresses human non-small-cell lung cancer cells in vitro through interference with cancer metabolism. Acta Pharmacologica Sinica, 2019, 40, 814-822.	6.1	31
268	Targeting intermediary metabolism enhances the efficacy of BH3 mimetic therapy in hematologic malignancies. Haematologica, 2019, 104, 1016-1025.	3.5	14
269	Glutamate dehydrogenase (GLUD1) expression in breast cancer. Breast Cancer Research and Treatment, 2019, 174, 79-91.	2.5	32
270	Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. Trends in Endocrinology and Metabolism, 2019, 30, 25-38.	7.1	93
271	Functional Proteomics of Breast Cancer Metabolism Identifies GLUL as Responder during Hypoxic Adaptation. Journal of Proteome Research, 2019, 18, 1352-1362.	3.7	9
272	Kidney-Type Glutaminase Inhibitor Hexylselen Selectively Kills Cancer Cells via a Three-Pronged Mechanism. ACS Pharmacology and Translational Science, 2019, 2, 18-30.	4.9	19
273	Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica, 2019, 104, 806-818.	3.5	44
274	Strategies for targeting energy metabolism in Kirsten rat sarcoma viral oncogene homolog â€mutant colorectal cancer. Journal of Cellular Biochemistry, 2019, 120, 1106-1121.	2.6	0

#	Article	IF	CITATIONS
275	Targeting metabolic vulnerabilities of cancer: Small molecule inhibitors in clinic. Cancer Reports, 2019, 2, e1131.	1.4	8
276	Novel 1,3,4-Selenadiazole-Containing Kidney-Type Glutaminase Inhibitors Showed Improved Cellular Uptake and Antitumor Activity. Journal of Medicinal Chemistry, 2019, 62, 589-603.	6.4	64
277	iTRAQâ€Based Quantitative Proteomics Approach Identifies Novel Diagnostic Biomarkers That Were Essential for Glutamine Metabolism and Redox Homeostasis for Gastric Cancer. Proteomics - Clinical Applications, 2019, 13, 1800038.	1.6	22
278	Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metabolism, 2019, 29, 124-140.e10.	16.2	232
279	Glutamate Dehydrogenase–Deficient Mice Display Schizophrenia-Like Behavioral Abnormalities and CA1-Specific Hippocampal Dysfunction. Schizophrenia Bulletin, 2019, 45, 127-137.	4.3	26
280	Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Seminars in Cell and Developmental Biology, 2020, 98, 34-43.	5.0	84
281	Cancer Metabolism. , 2020, , 127-138.e4.		3
282	GLS2 is protumorigenic in breast cancers. Oncogene, 2020, 39, 690-702.	5.9	35
283	Smallâ€Molecule Inhibition of Glucose Transporters GLUTâ€l–4. ChemBioChem, 2020, 21, 45-52.	2.6	59
284	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508.	2.9	101
284 285	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>S,</i> 4 <i>R</i>)-4-Fluoroglutamine in Patients with Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366.	2.9 5.0	101 23
284 285 286	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>S,</i> 4 <i>R</i>)-4-Fluoroglutamine in Patients with Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?. Antioxidants and Redox Signaling, 2020, 33, 1209-1229.	2.9 5.0 5.4	101 23 32
284 285 286 287	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>S,</i> 4 <i>R</i>)-4-Fluoroglutamine in Patients with Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?. Antioxidants and Redox Signaling, 2020, 33, 1209-1229. Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308.	2.9 5.0 5.4 5.4	101 23 32 32
284 285 286 287 288	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>S,</i> Vih Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?. Antioxidants and Redox Signaling, 2020, 33, 1209-1229. Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308. Metabolic fingerprinting reveals extensive consequences of GLS hyperactivity. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129484.	2.9 5.0 5.4 5.4 2.4	101 23 32 32 3
284 285 286 287 288 289	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>S,</i> 4 <i>R</i>)-4-Fluoroglutamine in Patients with Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?. Antioxidants and Redox Signaling, 2020, 33, 1209-1229. Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308. Metabolic fingerprinting reveals extensive consequences of GLS hyperactivity. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129484. TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers, 2020, 12, 68.	 2.9 5.0 5.4 5.4 2.4 3.7 	101 23 32 32 3 3
284 285 286 287 288 289 289	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>S,</i> 4 <i>R</i>)-4-Fluoroglutamine in Patients with Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?. Antioxidants and Redox Signaling, 2020, 33, 1209-1229. Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308. Metabolic fingerprinting reveals extensive consequences of GLS hyperactivity. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129484. TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers, 2020, 12, 68. The Warburg Effect 97 Years after Its Discovery. Cancers, 2020, 12, 2819.	 2.9 5.0 5.4 5.4 2.4 3.7 3.7 	101 23 32 32 3 3 57 153
284 285 286 287 288 289 289 290	The role of glutaminase in cancer. Histopathology, 2020, 76, 498-508. Pharmacokinetic Assessment of ¹⁸ F-(2 <i>>,</i> < <i>>,</i> With Cancer. Journal of Nuclear Medicine, 2020, 61, 357-366. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?. Antioxidants and Redox Signaling, 2020, 33, 1209-1229. Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308. Metabolic fingerprinting reveals extensive consequences of CLS hyperactivity. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129484. TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers, 2020, 12, 68. The Warburg Effect 97 Years after Its Discovery. Cancers, 2020, 12, 2819. Disruption of redox homeostasis for combinatorial drug efficacy in K-Ras tumors as revealed by metabolic connectivity profiling. Cancer & Metabolism, 2020, 8, 22.	 2.9 5.0 5.4 5.4 2.4 3.7 3.7 5.0 	 101 23 32 32 32 57 153 10

#	Article	IF	CITATIONS
293	Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells, 2020, 9, 2308.	4.1	211
294	The emerging role of targeting cancer metabolism for cancer therapy. Tumor Biology, 2020, 42, 101042832096528.	1.8	48
295	Targeting Metabolic Pathways in Kidney Cancer. Cancer Journal (Sudbury, Mass), 2020, 26, 407-418.	2.0	6
296	Glutamine Metabolism Controls Stem Cell Fate Reversibility and Long-Term Maintenance in the Hair Follicle. Cell Metabolism, 2020, 32, 629-642.e8.	16.2	60
297	Metabolomic profiling of mouse mammary tumor-derived cell lines reveals targeted therapy options for cancer subtypes. Cellular Oncology (Dordrecht), 2020, 43, 1117-1127.	4.4	3
298	Combined blockade of EGFR and glutamine metabolism in preclinical models of colorectal cancer. Translational Oncology, 2020, 13, 100828.	3.7	25
299	STAT1 upregulates glutaminase and modulates amino acids and glutathione metabolism. Biochemical and Biophysical Research Communications, 2020, 523, 672-677.	2.1	3
300	Regulation of cancer cell metabolism: oncogenic MYC in the driver's seat. Signal Transduction and Targeted Therapy, 2020, 5, 124.	17.1	169
301	Simultaneous Induction of Glycolysis and Oxidative Phosphorylation during Activation of Hepatic Stellate Cells Reveals Novel Mitochondrial Targets to Treat Liver Fibrosis. Cells, 2020, 9, 2456.	4.1	25
302	<p>Immunotherapeutic Targets and Therapy for Renal Cell Carcinoma</p> . ImmunoTargets and Therapy, 2020, Volume 9, 273-288.	5.8	9
303	Treatment Strategies and Metabolic Pathway Regulation in Urothelial Cell Carcinoma: A Comprehensive Review. International Journal of Molecular Sciences, 2020, 21, 8993.	4.1	9
304	A second Warburgâ€like effect in cancer metabolism: The metabolic shift of glutamineâ€derived nitrogen. BioEssays, 2020, 42, e2000169.	2.5	25
305	Targeting Glutamine Metabolism and PD-L1: A Novel Anti-tumor Pas de Deux. Molecular Cell, 2020, 80, 555-557.	9.7	4
306	Circular RNA circGSK3B Promotes Cell Proliferation, Migration, and Invasion by Sponging miR-1265 and Regulating CAB39 Expression in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 598256.	2.8	12
307	Allosteric kidney-type glutaminase (GLS) inhibitors with a mercaptoethyl linker. Bioorganic and Medicinal Chemistry, 2020, 28, 115698.	3.0	6
308	Synthesis of α-Ketoglutaramic acid. Analytical Biochemistry, 2020, 607, 113862.	2.4	7
309	Glutaminase Inhibition on NSCLC Depends on Extracellular Alanine Exploitation. Cells, 2020, 9, 1766.	4.1	19
310	SIRT7â€mediated modulation of glutaminase 1 regulates TGFâ€Î²â€induced pulmonary fibrosis. FASEB Journal, 2020, 34, 8920-8940.	0.5	25

#	Article	IF	CITATIONS
311	Upregulation of GLS1 Isoforms KGA and GAC Facilitates Mitochondrial Metabolism and Cell Proliferation in Epstein–Barr Virus Infected Cells. Viruses, 2020, 12, 811.	3.3	13
312	Clutamine uptake and utilization of human mesenchymal glioblastoma in orthotopic mouse model. Cancer & Metabolism, 2020, 8, 9.	5.0	22
313	Targeting Tumor Metabolism to Overcome Radioresistance. Cancer Drug Discovery and Development, 2020, , 219-263.	0.4	2
314	Glutaminase Inhibitors Induce Thiol-Mediated Oxidative Stress and Radiosensitization in Treatment-Resistant Cervical Cancers. Molecular Cancer Therapeutics, 2020, 19, 2465-2475.	4.1	25
315	Androgen Receptor Signaling and Metabolic and Cellular Plasticity During Progression to Castration Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 580617.	2.8	44
316	Brain Tumor Stem Cell Dependence on Glutaminase Reveals a Metabolic Vulnerability through the Amino Acid Deprivation Response Pathway. Cancer Research, 2020, 80, 5478-5490.	0.9	14
317	Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Frontiers in Oncology, 2020, 10, 589508.	2.8	86
318	Role of Protein Kinase CK2 in Aberrant Lipid Metabolism in Cancer. Pharmaceuticals, 2020, 13, 292.	3.8	13
319	Discovery of IPN60090, a Clinical Stage Selective Glutaminase-1 (GLS-1) Inhibitor with Excellent Pharmacokinetic and Physicochemical Properties. Journal of Medicinal Chemistry, 2020, 63, 12957-12977.	6.4	48
320	Metabolic plasticity of IDH1-mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer & Metabolism, 2020, 8, 23.	5.0	14
321	Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules, 2020, 25, 4831.	3.8	69
322	Metabolic reprograming of tumor-associated macrophages. Annals of Translational Medicine, 2020, 8, 1030-1030.	1.7	55
323	Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers, 2020, 12, 2624.	3.7	23
324	The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1731-1775.	1.9	6
325	Targeting Lipid Metabolism in Liver Cancer. Biochemistry, 2020, 59, 3951-3964.	2.5	57
326	Glutamine reliance in cell metabolism. Experimental and Molecular Medicine, 2020, 52, 1496-1516.	7.7	391
327	Thiadiazole derivatives as anticancer agents. Pharmacological Reports, 2020, 72, 1079-1100.	3.3	49
328	5-Fluorouracil Enhances the Antitumor Activity of the Glutaminase Inhibitor CB-839 against <i>PIK3CA</i> -Mutant Colorectal Cancers. Cancer Research, 2020, 80, 4815-4827.	0.9	49

#	Article	IF	CITATIONS
331	Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 6014.	4.1	43
332	Kinetic Modeling of 18F-(2S,4R)4-Fluoroglutamine in Mouse Models of Breast Cancer to Estimate Glutamine Pool Size as an Indicator of Tumor Glutamine Metabolism. Journal of Nuclear Medicine, 2020, 62, jnumed.120.250977.	5.0	15
333	Metabolic Targeting of Cancer Stem Cells. Frontiers in Oncology, 2020, 10, 537930.	2.8	23
334	NDRG2 ablation reprograms metastatic cancer cells towards glutamine dependence <i>via</i> the induction of ASCT2. International Journal of Biological Sciences, 2020, 16, 3100-3115.	6.4	13
335	Cell Growth Measurement. , 0, , .		2
336	Deactivation of Glutaminolysis Sensitizes PIK3CA-Mutated Colorectal Cancer Cells to Aspirin-Induced Growth Inhibition. Cancers, 2020, 12, 1097.	3.7	9
337	The Synthesis of Glutamine-Functionalized Block Polymer and Its Application in Triple-Negative Breast Cancer Treatment. Journal of Nanomaterials, 2020, 2020, 1-13.	2.7	2
338	Metabolic reprogramming in triple-negative breast cancer. Cancer Biology and Medicine, 2020, 17, 44-59.	3.0	78
339	Interplay between MycN and c-Myc regulates radioresistance and cancer stem cell phenotype in neuroblastoma upon glutamine deprivation. Theranostics, 2020, 10, 6411-6429.	10.0	29
340	Mitochondria Targeting as an Effective Strategy for Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 3363.	4.1	131
341	Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. International Journal of Molecular Sciences, 2020, 21, 3412.	4.1	50
342	Pyruvate anaplerosis is a mechanism of resistance to pharmacological glutaminase inhibition in triple-receptor negative breast cancer. BMC Cancer, 2020, 20, 470.	2.6	21
343	BPTES inhibits anthrax lethal toxin-induced inflammatory response. International Immunopharmacology, 2020, 85, 106664.	3.8	4
344	Targeting the polyamine pathway—"a means―to overcome chemoresistance in triple-negative breast cancer. Journal of Biological Chemistry, 2020, 295, 6278-6279.	3.4	4
345	Metabolic and OXPHOS Activities Quantified by Temporal ex vivo Analysis Display Patient-Specific Metabolic Vulnerabilities in Human Breast Cancers. Frontiers in Oncology, 2020, 10, 1053.	2.8	4
346	A facile and sensitive method of quantifying glutaminase binding to its inhibitor CB-839 in tissues. Journal of Genetics and Genomics, 2020, 47, 389-395.	3.9	4
347	Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy. Frontiers in Oncology, 2020, 10, 792.	2.8	24
348	A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nature	12.8	141

#	Article	IF	CITATIONS
349	Glutaminase-1 (GLS1) inhibition limits metastatic progression in osteosarcoma. Cancer & Metabolism, 2020, 8, 4.	5.0	69
350	Exercise-Mediated Lowering of Glutamine Availability Suppresses Tumor Growth and Attenuates Muscle Wasting. IScience, 2020, 23, 100978.	4.1	10
351	Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. Journal of Biological Chemistry, 2020, 295, 6263-6277.	3.4	38
352	Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing. Computational and Structural Biotechnology Journal, 2020, 18, 676-685.	4.1	26
353	Metabolic Plasticity in Chemotherapy Resistance. Frontiers in Oncology, 2020, 10, 281.	2.8	106
354	Metabolic Signatures of Tumor Responses to Doxorubicin Elucidated by Metabolic Profiling in Ovo. Metabolites, 2020, 10, 268.	2.9	19
355	Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers, 2020, 12, 1731.	3.7	37
356	Synergisms of genome and metabolism stabilizing antitumor therapy (GMSAT) in human breast and colon cancer cell lines: a novel approach to screen for synergism. BMC Cancer, 2020, 20, 617.	2.6	4
357	Metabolism of immune cells in cancer. Nature Reviews Cancer, 2020, 20, 516-531.	28.4	407
358	Solute carrier proteins and c-Myc: a strong connection in cancer progression. Drug Discovery Today, 2020, 25, 891-900.	6.4	28
359	Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metabolism, 2020, 31, 605-622.e10.	16.2	68
360	Tumour metabolism and its unique properties in prostate adenocarcinoma. Nature Reviews Urology, 2020, 17, 214-231.	3.8	88
361	Emerging Roles for Branched-Chain Amino Acid Metabolism in Cancer. Cancer Cell, 2020, 37, 147-156.	16.8	233
362	Microbial enzymes for deprivation of amino acid metabolism in malignant cells: biological strategy for cancer treatment. Applied Microbiology and Biotechnology, 2020, 104, 2857-2869.	3.6	51
364	Targeting glutamine metabolism slows soft tissue sarcoma growth. Nature Communications, 2020, 11, 498.	12.8	63
365	Co-delivery of 2-Deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer. Acta Biomaterialia, 2020, 105, 239-252.	8.3	29
366	Amino acids in cancer. Experimental and Molecular Medicine, 2020, 52, 15-30.	7.7	424
367	The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. Journal of Biological Chemistry, 2020, 295, 1328-1337.	3.4	5

#	Article	IF	CITATIONS
368	l-asparaginase and 6-diazo-5-oxo-l-norleucine synergistically inhibit the growth of glioblastoma cells. Journal of Neuro-Oncology, 2020, 146, 469-475.	2.9	10
369	Identification of Metabolic Alterations in Breast Cancer Using Mass Spectrometry-Based Metabolomic Analysis. Metabolites, 2020, 10, 170.	2.9	16
370	The EZMTT cell proliferation assay provides precise measurement for drug combinations and better correlation between in vitro and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127134.	2.2	2
371	Radiosynthesis, in vitro and preliminary in vivo evaluation of the novel glutamine derived PET tracers [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. Nuclear Medicine and Biology, 2020, 86-87, 20-29.	0.6	5
372	The Use of Molecular Subtypes for Precision Therapy of Recurrent and Metastatic Gastrointestinal Stromal Tumor. OncoTargets and Therapy, 2020, Volume 13, 2433-2447.	2.0	10
373	Metabolic Reprogramming in Triple-Negative Breast Cancer. Frontiers in Oncology, 2020, 10, 428.	2.8	137
374	Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer. International Journal of Molecular Sciences, 2020, 21, 2872.	4.1	21
375	A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discovery, 2020, 6, 20.	4.7	58
376	Hypoxia Suppresses Cysteine Deprivation-induced Cell Death Via ATF4 Regulation in MDA-MB-231 Breast Cancer Cells. Anticancer Research, 2020, 40, 1387-1394.	1.1	1
377	Amino Acid Oncometabolism and Immunomodulation of the Tumor Microenvironment in Lung Cancer. Frontiers in Oncology, 2020, 10, 276.	2.8	23
378	Molecular modeling and LC–MS-based metabolomics of a glutamine-valproic acid (Gln-VPA) derivative on HeLa cells. Molecular Diversity, 2021, 25, 1077-1089.	3.9	0
379	Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxidants and Redox Signaling, 2021, 34, 979-1003.	5.4	13
380	Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Translational Oncology, 2021, 14, 100920.	3.7	21
381	Discovery and optimization of withangulatin A derivatives as novel glutaminase 1 inhibitors for the treatment of triple-negative breast cancer. European Journal of Medicinal Chemistry, 2021, 210, 112980.	5.5	13
382	Metabolic interventions: A new insight into the cancer immunotherapy. Archives of Biochemistry and Biophysics, 2021, 697, 108659.	3.0	8
383	Increased expression of glutamine transporter SNAT2/SLC38A2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer. British Journal of Cancer, 2021, 124, 494-505.	6.4	62
384	NRF2 in human neoplasm: Cancer biology and potential therapeutic target. , 2021, 217, 107664.		29
385	Critical role of glutamine metabolism in cardiomyocytes under oxidative stress. Biochemical and Biophysical Research Communications, 2021, 534, 687-693.	2.1	30

#	Article	IF	CITATIONS
386	Cancer cell metabolism: Rewiring the mitochondrial hub. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166016.	3.8	33
387	Glutaminase in microglia: A novel regulator of neuroinflammation. Brain, Behavior, and Immunity, 2021, 92, 139-156.	4.1	30
388	Glutamine-Directed Migration of Cancer-Activated Fibroblasts Facilitates Epithelial Tumor Invasion. Cancer Research, 2021, 81, 438-451.	0.9	35
389	The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Seminars in Cancer Biology, 2021, 72, 76-89.	9.6	87
390	Altered glutamine metabolism in platinum resistant ovarian cancer. Oncotarget, 0, 7, 41637-41649.	1.8	65
391	Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. Oncolmmunology, 2021, 10, 1898753.	4.6	28
392	Tumor starvation by deprivation of glutamine and aspartate. , 2021, , 191-218.		0
393	Diseases & Disorders Therapies Targeting Glutamine Addiction in Cancer. , 2021, , 452-461.		3
394	Targeting the Proline–Glutamine–Asparagine–Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals, 2021, 14, 72.	3.8	28
395	Glutamine Metabolism in Cancer. Advances in Experimental Medicine and Biology, 2021, 1311, 17-38.	1.6	43
396	The Intricate Metabolism of Pancreatic Cancers. Advances in Experimental Medicine and Biology, 2021, 1311, 77-88.	1.6	5
397	Analysis of Melanoma Cell Glutamine Metabolism by Stable Isotope Tracing and Gas Chromatography-Mass Spectrometry. Methods in Molecular Biology, 2021, 2265, 91-110.	0.9	4
398	Abrogating <scp>GPT2</scp> in tripleâ€negative breast cancer inhibits tumor growth and promotes autophagy. International Journal of Cancer, 2021, 148, 1993-2009.	5.1	14
399	Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance. International Journal of Molecular Sciences, 2021, 22, 1258.	4.1	18
400	Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition. Theranostics, 2021, 11, 8464-8479.	10.0	35
401	Glutamine metabolism in prostate cancer. , 2021, , 241-270.		0
402	Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nature Cancer, 2021, 2, 189-200.	13.2	36
403	Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 51±-dihydrotestosterone regulation. Cellular Oncology (Dordrecht), 2021, 44, 385-403.	4.4	10

# 404	ARTICLE Amino Acid Degrading Enzymes and Autophagy in Cancer Therapy. Frontiers in Pharmacology, 2020, 11, 582587.	IF 3.5	CITATIONS 22
405	Metabolic Intersection of Cancer and Cardiovascular Diseases: Opportunities for Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1311, 249-263.	1.6	4
406	Targeting ageâ€specific changes in CD4 ⁺ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell, 2021, 20, e13299.	6.7	16
407	A glutamine â€~tug-of-war': targets to manipulate glutamine metabolism for cancer immunotherapy. Immunotherapy Advances, 2021, 1, Itab010.	3.0	20
408	Metabolic reprogramming in macrophage responses. Biomarker Research, 2021, 9, 1.	6.8	227
409	Targeting Cancer Metabolism and Current Anti-Cancer Drugs. Advances in Experimental Medicine and Biology, 2021, 1286, 15-48.	1.6	12
410	Therapeutic Targeting of Glutamine Metabolism in Colorectal Cancer. , 2021, , 333-356.		0
411	Metabolic control of cancer progression as novel targets for therapy. Advances in Cancer Research, 2021, 152, 103-177.	5.0	5
412	Glutamate is an essential mediator in glutamineâ€amplified insulin secretion. Journal of Diabetes Investigation, 2021, 12, 920-930.	2.4	20
413	1-C Metabolism—Serine, Glycine, Folates—In Acute Myeloid Leukemia. Pharmaceuticals, 2021, 14, 190.	3.8	6
414	Augmented Therapeutic Potential of Glutaminase Inhibitor CB839 in Glioblastoma Stem Cells Using Gold Nanoparticle Delivery. Pharmaceutics, 2021, 13, 295.	4.5	7
415	Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites, 2021, 11, 112.	2.9	21
416	Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers, 2021, 13, 762.	3.7	22
417	Glutamine Synthetase as a Therapeutic Target for Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 1701.	4.1	28
418	Systematic Identification of MACC1-Driven Metabolic Networks in Colorectal Cancer. Cancers, 2021, 13, 978.	3.7	4
419	The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers, 2021, 13, 720.	3.7	13
421	Nrf2 Activation Sensitizes K-Ras Mutant Pancreatic Cancer Cells to Glutaminase Inhibition. International Journal of Molecular Sciences, 2021, 22, 1870.	4.1	19
422	DDIT3 Directs a Dual Mechanism to Balance Glycolysis and Oxidative Phosphorylation during Glutamine Deprivation. Advanced Science, 2021, 8, e2003732.	11.2	15

#	Article	IF	CITATIONS
423	Novel Glutamine Antagonist JHU395 Suppresses MYC-Driven Medulloblastoma Growth and Induces Apoptosis. Journal of Neuropathology and Experimental Neurology, 2021, 80, 336-344.	1.7	16
424	Architectural control of metabolic plasticity in epithelial cancer cells. Communications Biology, 2021, 4, 371.	4.4	12
425	CD44 modulates metabolic pathways and altered ROS-mediated Akt signal promoting cholangiocarcinoma progression. PLoS ONE, 2021, 16, e0245871.	2.5	9
426	A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
427	Inhibition of eEF2K synergizes with glutaminase inhibitors or 4EBP1 depletion to suppress growth of triple-negative breast cancer cells. Scientific Reports, 2021, 11, 9181.	3.3	6
428	Glutaminolysis dynamics during astrocytoma progression correlates with tumor aggressiveness. Cancer & Metabolism, 2021, 9, 18.	5.0	14
429	Enantiomers of 2-methylglutamate and 2-methylglutamine selectively impact mouse brain metabolism and behavior. Scientific Reports, 2021, 11, 8138.	3.3	3
430	Structure-Enabled Discovery of Novel Macrocyclic Inhibitors Targeting Glutaminase 1 Allosteric Binding Site. Journal of Medicinal Chemistry, 2021, 64, 4588-4611.	6.4	22
431	Clutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Letters, 2021, 502, 180-188.	7.2	35
432	Glutaminolysis: A Driver of Vascular and Cardiac Remodeling in Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 667446.	2.4	9
433	Inhibition of guanosine monophosphate synthetase (<scp>GMPS</scp>) blocks glutamine metabolism and prostate cancer growth. Journal of Pathology, 2021, 254, 135-146.	4.5	19
434	Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Frontiers in Oncology, 2021, 11, 653621.	2.8	7
435	Targeting GLS1 to cancer therapy through glutamine metabolism. Clinical and Translational Oncology, 2021, 23, 2253-2268.	2.4	28
436	Metabolomics in cancer research and emerging applications in clinical oncology. Ca-A Cancer Journal for Clinicians, 2021, 71, 333-358.	329.8	267
437	Metabolic regulation in the immune response to cancer. Cancer Communications, 2021, 41, 661-694.	9.2	23
438	Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biology, 2021, 42, 101870.	9.0	40
439	Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. International Journal of Molecular Sciences, 2021, 22, 6262.	4.1	53
440	Expression of activated VEGFR2 by R1051Q mutation alters the energy metabolism of Sk-Mel-31 melanoma cells by increasing glutamine dependence. Cancer Letters, 2021, 507, 80-88.	7.2	8

#	Article	IF	CITATIONS
441	Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers, 2021, 13, 3230.	3.7	17
442	Impaired anaplerosis is a major contributor to glycolysis inhibitor toxicity in glioma. Cancer & Metabolism, 2021, 9, 27.	5.0	11
443	Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: A report from the Children's Oncology Group New Agents for Osteosarcoma Task Force. Pediatric Blood and Cancer, 2021, 68, e29188.	1.5	7
444	Local production of lactate, ribose phosphate, and amino acids by human triple-negative breast cancer. Med, 2021, 2, 736-754.e6.	4.4	28
445	CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metabolism, 2021, 33, 1248-1263.e9.	16.2	77
447	Inhibition of the ÊŸ-glutamine transporter ASCT2 sensitizes plasma cell myeloma cells to proteasome inhibitors. Cancer Letters, 2021, 507, 13-25.	7.2	20
448	Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Current Opinion in Chemical Biology, 2021, 62, 64-81.	6.1	39
449	A Phase I Dose-Escalation and Expansion Study of Telaglenastat in Patients with Advanced or Metastatic Solid Tumors. Clinical Cancer Research, 2021, 27, 4994-5003.	7.0	24
450	Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers, 2021, 13, 3311.	3.7	28
451	Cisplatin Resistance and Redox-Metabolic Vulnerability: A Second Alteration. International Journal of Molecular Sciences, 2021, 22, 7379.	4.1	14
452	Proline dehydrogenase in cancer: apoptosis, autophagy, nutrient dependency and cancer therapy. Amino Acids, 2021, 53, 1891-1902.	2.7	12
453	Amino acid metabolism as a therapeutic target in cancer: a review. Amino Acids, 2021, 53, 1169-1179.	2.7	32
454	Proteomics-based target identification of natural products affecting cancer metabolism. Journal of Antibiotics, 2021, 74, 639-650.	2.0	10
455	Coordination of the Uptake and Metabolism of Amino Acids in Mycobacterium tuberculosis-Infected Macrophages. Frontiers in Immunology, 2021, 12, 711462.	4.8	5
456	Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Frontiers in Oncology, 2021, 11, 694526.	2.8	5
457	The Biological and Clinical Significance of Glutaminase in Luminal Breast Cancer. Cancers, 2021, 13, 3963.	3.7	8
459	Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Reports, 2021, 36, 109617.	6.4	18
460	Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188534.	7.4	36

#	Article	IF	CITATIONS
461	Enhancing the Efficacy of Glutamine Metabolism Inhibitors in Cancer Therapy. Trends in Cancer, 2021, 7, 790-804.	7.4	85
462	Metabolic reprogramming in renal cancer: Events of a metabolic disease. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188559.	7.4	57
463	Metabolic checkpoints and novel approaches for immunotherapy against cancer. International Journal of Cancer, 2022, 150, 195-207.	5.1	7
464	Compound 968 reverses adriamycin resistance in breast cancer MCF-7ADR cells via inhibiting P-glycoprotein function independently of glutaminase. Cell Death Discovery, 2021, 7, 204.	4.7	4
465	More Than Meets the Eye Regarding Cancer Metabolism. International Journal of Molecular Sciences, 2021, 22, 9507.	4.1	11
466	Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells. Cancer Cell International, 2021, 21, 479.	4.1	27
468	Metabolic reprogramming and metabolic sensors in KSHV-induced cancers and KSHV infection. Cell and Bioscience, 2021, 11, 176.	4.8	6
469	Glutamine anaplerosis is required for amino acid biosynthesis in human meningiomas. Neuro-Oncology, 2022, 24, 556-568.	1.2	10
470	Simple Esterification of [1- ¹³ C]-Alpha-Ketoglutarate Enhances Membrane Permeability and Allows for Noninvasive Tracing of Glutamate and Glutamine Production. ACS Chemical Biology, 2021, 16, 2144-2150.	3.4	6
471	Quantitative modelling of amino acid transport and homeostasis in mammalian cells. Nature Communications, 2021, 12, 5282.	12.8	42
472	Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2022, 12, 558-580.	12.0	181
473	Inhibition of Metabolism as a Therapeutic Option for Tamoxifen-Resistant Breast Cancer Cells. Cells, 2021, 10, 2398.	4.1	8
474	Pharmacologic approaches to amino acid depletion for cancer therapy. Molecular Carcinogenesis, 2022, 61, 127-152.	2.7	7
475	Clinical, molecular, metabolic, and immune features associated with oxidative phosphorylation in melanoma brain metastases. Neuro-Oncology Advances, 2021, 3, vdaa177.	0.7	12
476	Cell-Specific Expression of Enzymes for Serine Biosynthesis and Glutaminolysis in Farm Animals. Advances in Experimental Medicine and Biology, 2021, 1285, 17-28.	1.6	12
477	Mitochondria and Tumor Metabolic Flexibility: Mechanisms and Therapeutic Perspectives. , 2022, , 493-510.		1
478	Glutamine Inhibition Reduces latrogenic Laryngotracheal Stenosis. Laryngoscope, 2021, 131, E2125-E2130.	2.0	4
479	Expression of Glutamine Metabolism-Related and Amino Acid Transporter Proteins in Adrenal Cortical Neoplasms and Pheochromocytomas. Disease Markers, 2021, 2021, 1-9.	1.3	6

#	Article	IF	CITATIONS
480	The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer. Mutation Research - Reviews in Mutation Research, 2021, 787, 108366.	5.5	28
481	MYC Regulation of Metabolism and Cancer. , 2015, , 101-122.		1
482	Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 829-838.	1.9	10
483	Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation. Scientific Reports, 2020, 10, 2259.	3.3	26
487	The Glutaminase Inhibitor CB-839 (Telaglenastat) Enhances the Antimelanoma Activity of T-Cell–Mediated Immunotherapies. Molecular Cancer Therapeutics, 2021, 20, 500-511.	4.1	58
488	Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. Journal of Clinical Investigation, 2020, 130, 3865-3884.	8.2	230
489	Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. Journal of Clinical Investigation, 2015, 125, 2293-2306.	8.2	319
490	Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3313-3335.	8.2	303
491	Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. Journal of Clinical Investigation, 2017, 127, 1631-1645.	8.2	72
492	Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes. PLoS Biology, 2017, 15, e2002810.	5.6	40
493	Mesenchymal Phenotype Predisposes Lung Cancer Cells to Impaired Proliferation and Redox Stress in Response to Glutaminase Inhibition. PLoS ONE, 2014, 9, e115144.	2.5	38
494	Metabolic Alterations in Cancer and Their Potential as Therapeutic Targets. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 825-832.	3.8	28
495	Right on TARGET: glutamine metabolism in cancer. Oncoscience, 2015, 2, 681-683.	2.2	13
496	Divergent in vitro/in vivo responses to drug treatments of highly aggressive NIH-Ras cancer cells: a PET imaging and metabolomics-mass-spectrometry study. Oncotarget, 2016, 7, 52017-52031.	1.8	11
497	Glutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells. Oncotarget, 2016, 7, 54691-54701.	1.8	22
498	Expression of glutamine metabolism-related proteins in thyroid cancer. Oncotarget, 2016, 7, 53628-53641.	1.8	26
499	Structural basis for exploring the allosteric inhibition of human kidney type glutaminase. Oncotarget, 2016, 7, 57943-57954.	1.8	39
500	Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget, 2017, 8, 18832-18847.	1.8	25

#	Article	IF	CITATIONS
501	Synthetic lethality of glutaminolysis inhibition, autophagy inactivation and asparagine depletion in colon cancer. Oncotarget, 2017, 8, 42664-42672.	1.8	37
502	Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget, 2017, 8, 44171-44185.	1.8	41
503	Targeted inhibition of glutaminase as a potential new approach for the treatment of <i>NF1</i> associated soft tissue malignancies. Oncotarget, 2017, 8, 94054-94068.	1.8	26
504	A natural inhibitor of kidney-type glutaminase: a withanolide from <i>Physalis pubescens</i> with potent anti-tumor activity. Oncotarget, 2017, 8, 113516-113530.	1.8	15
505	A usable model of "decathlon winner―cancer cells in triple-negative breast cancer: survival of resistant cancer cells in quiescence. Oncotarget, 2018, 9, 11071-11082.	1.8	10
506	Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget, 2015, 6, 7619-7631.	1.8	89
507	Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget, 2015, 6, 31997-32012.	1.8	73
508	Q-ing tumor glutaminase therapy. Oncotarget, 2015, 6, 38440-38441.	1.8	3
509	Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget, 2016, 7, 1765-1776.	1.8	53
510	Glutaminase inhibition in renal cell carcinoma therapy. Cancer Drug Resistance (Alhambra, Calif), 2019, 2, 356-364.	2.1	11
511	Mitochondrial determinants of chemoresistance. Cancer Drug Resistance (Alhambra, Calif), 2019, 2, 634-646.	2.1	11
512	Metabolic Reprogramming of Cancer by Chemicals that Target Glutaminase Isoenzymes. Current Medicinal Chemistry, 2020, 27, 5317-5339.	2.4	26
513	Tumour-Derived Glutamate: Linking Aberrant Cancer Cell Metabolism to Peripheral Sensory Pain Pathways. Current Neuropharmacology, 2017, 15, 620-636.	2.9	13
514	Glutamine affects T24 bladder cancer cell proliferation by activating STAT3 through ROS and glutaminolysis. International Journal of Molecular Medicine, 2019, 44, 2189-2200.	4.0	21
515	Convergence of Cancer Metabolism and Immunity: an Overview. Biomolecules and Therapeutics, 2018, 26, 4-9.	2.4	24
516	Imaging Cancer Metabolism. Biomolecules and Therapeutics, 2018, 26, 81-92.	2.4	31
517	Targeting metabolism in breast cancer: How far we can go?. World Journal of Clinical Oncology, 2016, 7, 122.	2.3	48
518	Dendrimer-conjugated glutaminase inhibitor selectively targets microglial glutaminase in a mouse model of Rett syndrome. Theranostics, 2020, 10, 5736-5748.	10.0	17

#		IE	CITATIONS
#	A powerful drug combination strategy targeting glutamine addiction for the treatment of human	IF	CHATIONS
519	liver cancer. ELife, 2020, 9, .	6.0	98
520	Identification and characterization of a novel glutaminase inhibitor. FEBS Open Bio, 2022, 12, 163-174.	2.3	10
521	Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities. Frontiers in Oncology, 2021, 11, 676562.	2.8	10
522	Targeting glutamine metabolism inPIK3CAmutant colorectal cancers. Molecular and Cellular Oncology, 0, , 00-00.	0.7	0
523	How to Identify Suitable Molecular Imaging Biomarkers. , 2017, , 163-176.		0
524	Cancer Metabolism. , 2018, , 129-154.		0
526	Metabolic Plasticity of IDH1- <i>Mutant</i> Glioma Cell Lines Is Responsible for Low Sensitivity to Glutaminase Inhibition. SSRN Electronic Journal, 0, , .	0.4	1
527	Role of Mitochondria in Pancreatic Metabolism, Diabetes, and Cancer. , 2019, , 71-94.		0
530	Glutamate in cancers: from metabolism to signaling. Journal of Biomedical Research, 2020, 34, 260.	1.6	43
532	The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Reports, 2020, 21, e48260.	4.5	6
534	Recent Advances in Drug Development Targeting Cancer Metabolism. , 2020, , 103-126.		0
535	Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods in Molecular Biology, 2020, 2184, 233-263.	0.9	1
536	The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. Journal of Biological Chemistry, 2020, 295, 1328-1337.	3.4	6
539	Metabolic Pathways of Eukaryotes and Connection to Cell Mechanics. Biological and Medical Physics Series, 2020, , 825-891.	0.4	1
540	Clutamine metabolism in the proliferation of GS-expression pituitary tumor cells. Endocrine Connections, 2020, 9, 223-233.	1.9	5
541	The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS ONE, 2021, 16, e0259241.	2.5	22
542	Clutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer. American Journal of Translational Research (discontinued), 2016, 8, 4265-4277.	0.0	30
543	Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy. Cancers, 2021, 13, 5912.	3.7	13

#	Article	IF	CITATIONS
544	DLST-dependence dictates metabolic heterogeneity in TCA-cycle usage among triple-negative breast cancer. Communications Biology, 2021, 4, 1289.	4.4	30
546	Identification of a Six-Gene Prognostic Signature Characterized by Tumor Microenvironment Immune Profiles in Clear Cell Renal Cell Carcinoma. Frontiers in Genetics, 2021, 12, 722421.	2.3	4
547	Metabolic stress induces GD2+ cancer stem cell-like phenotype in triple-negative breast cancer. British Journal of Cancer, 2022, 126, 615-627.	6.4	10
548	High-Throughput Screening Reveals New Glutaminase Inhibitor Molecules. ACS Pharmacology and Translational Science, 2021, 4, 1849-1866.	4.9	3
549	Targeting cancer metabolism in the era of precision oncology. Nature Reviews Drug Discovery, 2022, 21, 141-162.	46.4	385
550	A Non-Canonical Convergence of Carbohydrate and Glutamine Metabolism is Required After Metabolic Rewiring in a Solid Environment. SSRN Electronic Journal, 0, , .	0.4	0
551	PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. Biology, 2022, 11, 114.	2.8	14
552	Heterogeneity of glutamine metabolism in acquired-EGFR-TKI-resistant lung cancer. Life Sciences, 2022, 291, 120274.	4.3	4
553	Advancing Cancer Treatment by Targeting Glutamine Metabolism—A Roadmap. Cancers, 2022, 14, 553.	3.7	40
554	Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Advances in Cancer Research, 2022, 153, 267-304.	5.0	2
555	Radiotracer stereochemistry affects substrate affinity and kinetics for improved imaging of system x _C ⁻ in tumors. Theranostics, 2022, 12, 1921-1936.	10.0	9
557	Self-Assembled Micellar Glutaminase Allosteric Inhibitor for Effective Therapeutic Intervention. International Journal of Nanomedicine, 2022, Volume 17, 213-225.	6.7	2
558	Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treatment and Research Communications, 2022, 30, 100512.	1.7	15
559	Clinical development of metabolic inhibitors for oncology. Journal of Clinical Investigation, 2022, 132, .	8.2	59
560	Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	35
561	High-resolution structures of mitochondrial glutaminase C tetramers indicate conformational changes upon phosphate binding. Journal of Biological Chemistry, 2022, 298, 101564.	3.4	9
562	New insights into the molecular mechanisms of glutaminase C inhibitors in cancer cells using serial room temperature crystallography. Journal of Biological Chemistry, 2022, 298, 101535.	3.4	21
563	Bioenergetic Metabolism In Osteoblast Differentiation. Current Osteoporosis Reports, 2022, 20, 53-64.	3.6	21

#	Article	IF	CITATIONS
564	Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells, 2022, 11, 554.	4.1	1
565	Metabolic Biomarkers in B-Cell Lymphomas for Early Diagnosis and Prediction, as Well as Their Influence on Prognosis and Treatment. Diagnostics, 2022, 12, 394.	2.6	4
566	Connections between metabolism and epigenetic modifications in cancer. Medical Review, 2021, 1, 199-221.	1.2	7
567	Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochemical Pharmacology, 2022, 198, 114943.	4.4	15
568	Ribosomal Protein S6: A Potential Therapeutic Target against Cancer?. International Journal of Molecular Sciences, 2022, 23, 48.	4.1	40
569	Defining the landscape of metabolic dysregulations in cancer metastasis. Clinical and Experimental Metastasis, 2022, 39, 345-362.	3.3	8
570	Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers, 2022, 14, 902.	3.7	39
571	Overcoming Radiation Resistance in Gliomas by Targeting Metabolism and DNA Repair Pathways. International Journal of Molecular Sciences, 2022, 23, 2246.	4.1	8
572	The critical function of metabolic reprogramming in cancer metastasis. Aging and Cancer, 2022, 3, 20-43.	1.6	4
573	Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	4.0	5
574	Combining PEGylated mito-atovaquone with MCT and Krebs cycle redox inhibitors as a potential strategy to abrogate tumor cell proliferation. Scientific Reports, 2022, 12, 5143.	3.3	8
575	Hypoxia Induces Saturated Fatty Acids Accumulation and Reduces Unsaturated Fatty Acids Independently of Reverse Tricarboxylic Acid Cycle in L6 Myotubes. Frontiers in Endocrinology, 2022, 13, 663625.	3.5	3
576	Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Frontiers in Oncology, 2022, 12, 786931.	2.8	1
578	Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Molecular Cell, 2022, 82, 1821-1835.e6.	9.7	22
579	Clutamate blunts cellâ€killing effects of neutrophils in tumor microenvironment. Cancer Science, 2022, 113, 1955-1967.	3.9	6
580	Discovery of novel glutaminase 1 allosteric inhibitor with 4-piperidinamine linker and aromatic heterocycles. European Journal of Medicinal Chemistry, 2022, 236, 114337.	5.5	4
581	Synergistic effect of antimetabolic and chemotherapy drugs in triple-negative breast cancer. Biomedicine and Pharmacotherapy, 2022, 149, 112844.	5.6	5
582	Inhibition of glutaminase 1-mediated glutaminolysis improves pathological cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H749-H761.	3.2	4

#	ARTICLE	IF	Citations
583	Blockade of glutamine-dependent cell survival augments antitumor efficacy of CPI-613 in head and neck cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 393.	8.6	17
584	Breast Cancer Cell Subtypes Display Different Metabolic Phenotypes That Correlate with Their Clinical Classification. Biology, 2021, 10, 1267.	2.8	5
585	The Expression of Glutaminases and their Association with Clinicopathological Parameters in the Head and Neck Cancers. Current Cancer Drug Targets, 2022, 22, 169-179.	1.6	3
586	Mitochondrial glutamine metabolism regulates sensitivity of cancer cells after chemotherapy via amphiregulin. Cell Death Discovery, 2021, 7, 395.	4.7	7
587	Broad Anti-Cancer Activity Produced by Targeted Nutrients Deprivation (TND) of Multiple Non-Essential Amino Acids. Nutrition and Cancer, 2022, 74, 2607-2621.	2.0	4
588	Metabolic response to radiation therapy in cancer. Molecular Carcinogenesis, 2022, 61, 200-224.	2.7	3
589	Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules, 2022, 12, 580.	4.0	35
590	Preclinical studies for improving radiosensitivity of non-small cell lung cancer cell lines by combining glutaminase inhibition and senolysis. Translational Oncology, 2022, 21, 101431.	3.7	2
602	Zeolitic imidazolate framework-based nanoparticles for the cascade enhancement of cancer chemodynamic therapy by targeting glutamine metabolism. Nanoscale, 2022, 14, 8727-8743.	5.6	9
603	Regulation of Cardiac Fibroblast GLS1 Expression by Scleraxis. Cells, 2022, 11, 1471.	4.1	6
604	Glutaminase inhibition impairs CD8 TÂcell activation in STK11-/Lkb1-deficient lung cancer. Cell Metabolism, 2022, 34, 874-887.e6.	16.2	55
605	Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics, 2022, 14, 997.	4.5	19
606	Targeting allosteric regulation of cancer metabolism. Nature Chemical Biology, 2022, 18, 441-450.	8.0	14
607	CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. International Journal of Molecular Sciences, 2022, 23, 5479.	4.1	21
608	Targeting Energy Metabolism in Cancer Treatment. International Journal of Molecular Sciences, 2022, 23, 5572.	4.1	6
609	Ginsenoside CK induces apoptosis in triple-negative breast cancer cells by targeting glutamine metabolism. Biochemical Pharmacology, 2022, 202, 115101.	4.4	17
610	Discovery of novel Glutaminase allosteric inhibitors through drug repurposing and comparative MMGB/PBSA and molecular dynamics simulation. Computers in Biology and Medicine, 2022, 146, 105669.	7.0	3
611	α-Ketoglutarate-Mediated DNA Demethylation Sustains T-Acute Lymphoblastic Leukemia upon TCA Cycle Targeting. Cancers, 2022, 14, 2983.	3.7	9

ARTICLE IF CITATIONS # ¹⁸F-Fluciclovine PET Imaging of Glutaminase Inhibition in Breast Cancer Models. Journal 612 5.0 4 of Nuclear Medicine, 2023, 64, 131-136. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium 4.1 tuberculosis Infection. MBio, 2022, 13, . Loss of Vascular Endothelial Glutaminase Inhibits Tumor Growth and Metastasis, and Increases 614 1.7 3 Sensitivity to Chemotherapy. Cancer Research Communications, 2022, 2, 694-705. Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene, 2022, 41, 5.9 4066-4078. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biology 616 3.0 7 International, 2022, 46, 1539-1556. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death and Differentiation, 2022, 29, 1304-1317. 11.2 The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Critical 618 4.4 8 Reviews in Oncology/Hematology, 2022, 176, 103757. The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. 9 5.6 Biomedicine and Pharmacotherapy, 2022, 153, 113390. GLS2 Is a Tumor Suppressor and a Regulator of Ferroptosis in Hepatocellular Carcinoma. Cancer 620 0.9 42 Research, 2022, 82, 3209-3222. The effect of rehabilitation exercise on the expression of glutaminase and cardiopulmonary 1.6 remodeling in pulmonary hypertension. Medicine in Novel Technology and Devices, 2022, 15, 100157. Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. International 622 7.5 11 Journal of Biological Macromolecules, 2022, 216, 768-778. GOT2 Silencing Promotes Reprogramming of Glutamine Metabolism and Sensitizes Hepatocellular Carcinoma to Glutaminase Inhibitors. Cancer Research, 2022, 82, 3223-3235. Mechanism and application of nonessential amino acid deprivation associated with tumor therapy. 624 2 2022, 1, . Reprogramming of glutamine metabolism and its impact on immune response in the tumor 6.5 microenvironment. Cell Communication and Signaling, 2022, 20, . Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFRâ€Driven Lung Cancer. Advanced 626 11.2 15 Science, 2022, 9, . Metabolic reprogramming: A novel metabolic model for pulmonary hypertension. Frontiers in 2.4 Cardiovascular Medicine, 0, 9, . A practical guide for the analysis, standardization and interpretation of oxygen consumption 628 11.9 28 measurements. Nature Metabolism, 2022, 4, 978-994. Relationship between metabolic reprogramming and drug resistance in breast cancer. Frontiers in 629 2.8 Oncology, 0, 12, .

#	Article	IF	CITATIONS
630	Metabolic targeting of malignant tumors: a need for systemic approach. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2115-2138.	2.5	2
631	The mitochondrial enzyme <scp>FAHD1</scp> regulates complex <scp>II</scp> activity in breast cancer cells and is indispensable for basal <scp>BT</scp> â€20 cells <i>in vitro</i> . FEBS Letters, 2022, 596, 2781-2794.	2.8	2
632	Design, synthesis, and pharmacological evaluation of 2-(1-(1,3,4-thiadiazol-2-yl)piperidin-4-yl)ethan-1-ol analogs as novel glutaminase 1 inhibitors. European Journal of Medicinal Chemistry, 2022, 243, 114686.	5.5	4
633	The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA and Cell Biology, 0, , .	1.9	0
634	13C metabolic flux analysis clarifies distinct metabolic phenotypes of cancer cell spheroid mimicking tumor hypoxia. Metabolic Engineering, 2022, 73, 192-200.	7.0	1
635	Structure-based virtual screening discovers novel kidney-type glutaminase inhibitors. Biomedicine and Pharmacotherapy, 2022, 154, 113585.	5.6	1
636	Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-11² pathways in MRL/lpr mice. International Immunopharmacology, 2022, 112, 109133.	3.8	13
637	Energy metabolism pathways in breast cancer progression: The reprogramming, crosstalk, and potential therapeutic targets. Translational Oncology, 2022, 26, 101534.	3.7	5
638	Metabolic dysregulation in cancer progression. , 2022, , 1-39.		0
639	Designing metabolic target-specific inhibitors for cancer therapy. , 2022, , 239-280.		0
640	Targeting endothelial cell metabolism in cancerous microenvironment: a new approach for anti-angiogenic therapy. Drug Metabolism Reviews, 2022, 54, 386-400.	3.6	5
641	Mitochondrial pyruvate supports lymphoma proliferation by fueling a glutamate pyruvate transaminase 2–dependent glutaminolysis pathway. Science Advances, 2022, 8, .	10.3	11
642	Mitochondrial Matrix Protease ClpP Agonists Inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis. Cancer Research Communications, 2022, 2, 1144-1161.	1.7	9
643	Metabolic Adaptation as Potential Target in Papillary Renal Cell Carcinomas Based on Their In Situ Metabolic Characteristics. International Journal of Molecular Sciences, 2022, 23, 10587.	4.1	4
644	Identification and characterization of a novel SNAT2 (SLC38A2) inhibitor reveals synergy with glucose transport inhibition in cancer cells. Frontiers in Pharmacology, 0, 13, .	3.5	8
645	Harnessing the cyclization strategy for new drug discovery. Acta Pharmaceutica Sinica B, 2022, 12, 4309-4326.	12.0	13
646	Amino acid metabolism in primary bone sarcomas. Frontiers in Oncology, 0, 12, .	2.8	2
647	Vitamin D receptor (<i>VDR</i>) mRNA overexpression is associated with poor prognosis in breast carcinoma. Annals of Surgical Treatment and Research, 2022, 103, 183.	1.0	3

#	Article	IF	CITATIONS
648	Epigenetic Small-Molecule Modulators Targeting Metabolic Pathways in Cancer. Sub-Cellular Biochemistry, 2022, , 523-555.	2.4	0
649	Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer. Sub-Cellular Biochemistry, 2022, , 201-237.	2.4	1
650	Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules, 2022, 12, 1590.	4.0	6
651	Reprogramming T-Cell Metabolism for Better Anti-Tumor Immunity. Cells, 2022, 11, 3103.	4.1	6
652	Genomeâ€Wide CRISPR/Cas9 Library Screening Revealed Dietary Restriction of Glutamine in Combination with Inhibition of Pyruvate Metabolism as Effective Liver Cancer Treatment. Advanced Science, 2022, 9,	11.2	7
653	Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Diseases, 2023, 29, 3101-3120.	3.0	5
654	Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Communications, 2023, 43, 42-74.	9.2	9
655	A metabolic intervention strategy to break evolutionary adaptability of tumor for reinforced immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 775-786.	12.0	3
657	Progress in research on the role of amino acid metabolic reprogramming in tumour therapy: A review. Biomedicine and Pharmacotherapy, 2022, 156, 113923.	5.6	7
658	CD8+ T cell metabolic changes in breast cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166565.	3.8	0
659	Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. Journal of Translational Internal Medicine, 2022, .	2.5	2
660	CRISPR Cas9-mediated ablation of pyruvate carboxylase gene in colon cancer cell line HT-29 inhibits growth and migration, induces apoptosis and increases sensitivity to 5-fluorouracil and glutaminase inhibitor. Frontiers in Oncology, 0, 12, .	2.8	0
661	α-ketoglutarate suppresses immediate early gene expression in cancer cells. Biochemical and Biophysical Research Communications, 2022, 637, 144-152.	2.1	2
662	Design, synthesis, and biological evaluation of novel glutaminase 1 allosteric inhibitors with an alkane chain tail group. European Journal of Medicinal Chemistry, 2023, 246, 115014.	5.5	1
663	Nutrient Transporters: New Molecular Targets for Triple Negative Breast Cancer in Type 2 Diabetics. , 2022, , .		0
664	Synthesis of Novel Kidney-Type Glutaminase Allosteric Inhibitors Targeting the Critical Lys-320 Residue. ACS Medicinal Chemistry Letters, 0, , .	2.8	2
665	Overview of Cancer Metabolism and Signaling Transduction. International Journal of Molecular Sciences, 2023, 24, 12.	4.1	9
666	Effects of metabolic cancer therapy on tumor microenvironment. Frontiers in Oncology, 0, 12, .	2.8	5

#	Article	IF	CITATIONS
667	Mesothelioma cancer cells are glutamine addicted and glutamine restriction reduces YAP1 signaling to attenuate tumor formation. Molecular Carcinogenesis, 2023, 62, 438-449.	2.7	3
668	Combined thioredoxin reductase and glutaminase inhibition exerts synergistic anti-tumor activity in MYC-high high-grade serous ovarian carcinoma. Molecular Therapy, 2023, 31, 729-743.	8.2	8
669	Therapeutic Targeting of Glutaminolysis as a Novel Strategy to Combat Cancer Stem Cells. International Journal of Molecular Sciences, 2022, 23, 15296.	4.1	4
670	In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. Science Advances, 2022, 8, .	10.3	20
671	The role of glutamine metabolism in castration-resistant prostate cancer. Asian Journal of Andrology, 2023, 25, 192.	1.6	4
672	FASN multi-omic characterization reveals metabolic heterogeneity in pancreatic and prostate adenocarcinoma. Journal of Translational Medicine, 2023, 21, .	4.4	3
673	Novel insight into metabolic reprogrammming in cancer radioresistance: A promising therapeutic target in radiotherapy. International Journal of Biological Sciences, 2023, 19, 811-828.	6.4	4
674	Development and validation of a cuproptosis-associated prognostic model for diffuse large B-cell lymphoma. Frontiers in Oncology, 0, 12, .	2.8	3
675	Tumor hypoxia: From basic knowledge to therapeutic implications. Seminars in Cancer Biology, 2023, 88, 172-186.	9.6	21
676	Metabolic reprogramming of glutamine involved in tumorigenesis, multidrug resistance and tumor immunity. European Journal of Pharmacology, 2023, 940, 175323.	3.5	3
678	MYC oncogenes as potential anticancer targets. , 2023, , 191-219.		2
680	Design, synthesis, structure–activity relationship studies, and evaluation of novel GLS1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2023, 87, 129266.	2.2	1
681	Exploiting metabolic vulnerabilities after anti-VEGF antibody therapy in ovarian cancer. IScience, 2023, 26, 106020.	4.1	1
682	An updated patent review of glutaminase inhibitors (2019–2022). Expert Opinion on Therapeutic Patents, 2023, 33, 17-28.	5.0	8
683	Discovery of aminothiazole derivatives as a chemical scaffold for glutaminase inhibition. Results in Chemistry, 2023, 5, 100842.	2.0	0
686	Characterization of cell line with dedifferentiated GISTâ€like features established from cecal GIST of familial GIST model mice. Pathology International, 0, , .	1.3	0
687	Clutamine metabolism in breast cancer and possible therapeutic targets. Biochemical Pharmacology, 2023, 210, 115464.	4.4	11
688	Artificial Diets with Selective Restriction of Amino Acids and Very Low Levels of Lipids Induce Anticancer Activity in Mice with Metastatic Triple-Negative Breast Cancer. Cancers, 2023, 15, 1540.	3.7	3

ARTICLE IF CITATIONS # Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. 689 2.8 9 Frontiers in Oncology, 0, 13, . Role and therapeutic targeting of glutamine metabolism in non \hat{e} 'small cell lung cancer (Review). 1.8 Oncology Letters, 2023, 25, . 691 Amino acid metabolic reprogramming in tumor metastatic colonization. Frontiers in Oncology, 0, 13, . 2.8 4 Comprehensive analysis of the biological function and immune infiltration of SLC38A2 in gastric 2.0 cancer. BMC Gastroenterology, 2023, 23, . Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials. Tomography, 2023, 9, 657-680. 693 1.8 3 A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism. Pharmacological Research, 2023, 190, 106740. 694 7.1 Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting 695 3 Microglia., 2023,. Nutrient Metabolisms in Cancer and Related Signaling Pathways., 0, 36, 1318-1327. Targeting glutaminase 1 (GLS1) by small molecules for anticancer therapeutics. European Journal of 697 5.5 3 Medicinal Chemistry, 2023, 252, 115306. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers, 2023, 15, 1936. Alone and together: current approaches to targeting glutaminase enzymes as part of anti-cancer 699 2.1 5 therapies. Future Drug Discovery, 2022, 4, . The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Molecular Diagnosis and 700 3.8 Therapy, O, , . New Platform for Label-Free, Proximal Cellular Pharmacodynamic Assays: Identification of 702 Glutaminase Inhibitors Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass 3.4 3 Spectrometry. ACS Chemical Biology, 2023, 18, 942-948. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Signal Transduction and Targeted Therapy, 2023, 8, . 17.1 PHGDH preserves one-carbon cycle to confer metabolic plasticity in chemoresistant gastric cancer during nutrient stress. Proceedings of the National Academy of Sciences of the United States of 704 7.1 8 America, 2023, 120, . Preclinical investigations of the efficacy of the glutaminase inhibitor CB-839 alone and in combinations in chronic lymphocytic léukemia. Frontiers in Oncology, 0, 13, . Crosstalk between arginine, glutamine, and the branched chain amino acid metabolism in the tumor 706 2.8 2 microenvironment. Frontiers in Oncology, 0, 13, . Diselenide Covalent Allosteric Inhibitors of Glutaminase with Strong <i>In Vivo</i> 2.8 Activity. ACS Medicinal Chemistry Letters, 0, , .

#	Article	IF	CITATIONS
708	Identification of Some Glutamic Acid Derivatives with Biological Potential by Computational Methods. Molecules, 2023, 28, 4123.	3.8	0
709	Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharmaceutica Sinica B, 2023, 13, 3238-3251.	12.0	2
710	Therapeutic strategies targeting metabolic characteristics of cancer cells. Critical Reviews in Oncology/Hematology, 2023, 187, 104037.	4.4	1
711	Exploration of Imaging Biomarkers for Metabolically-Targeted Osteosarcoma Therapy in a Murine Xenograft Model. Cancer Biotherapy and Radiopharmaceuticals, 2023, 38, 475-485.	1.0	1
712	Cellular redox homeostasis maintained by malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
713	Targeting Glutamine Metabolism as an Attractive Therapeutic Strategy for Acute Myeloid Leukemia. Current Treatment Options in Oncology, 2023, 24, 1021-1035.	3.0	2
714	Targeting Fatty Acid Reprogramming Suppresses CARM1-expressing Ovarian Cancer. Cancer Research Communications, 2023, 3, 1067-1077.	1.7	2
716	Critical role of antioxidant programs in enzalutamide-resistant prostate cancer. Oncogene, 2023, 42, 2347-2359.	5.9	1
717	Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients, 2023, 15, 2879.	4.1	2
718	Targeting Metabolic Vulnerabilities in Epstein–Barr Virus-Driven Proliferative Diseases. Cancers, 2023, 15, 3412.	3.7	0
719	Intrinsic and extrinsic factors determining natural killer cell fate: Phenotype and function. Biomedicine and Pharmacotherapy, 2023, 165, 115136.	5.6	2
720	Phytochemicals Modify the Action of Cancer Cells Mitochondrial Drug-Resistance Mechanism. , 2023, 2, 79-105.		0
722	Role of mitochondrial alterations in human cancer progression and cancer immunity. Journal of Biomedical Science, 2023, 30, .	7.0	6
723	Design and structural optimization of thiadiazole derivatives with potent GLS1 inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2023, 93, 129438.	2.2	0
724	Glutamine metabolic reprogramming in hepatocellular carcinoma. Frontiers in Molecular Biosciences, 0, 10, .	3.5	4
725	YAP governs cellular adaptation to perturbation of glutamine metabolism by regulating ATF4-mediated stress response. Oncogene, 2023, 42, 2828-2840.	5.9	2
726	Enhancing the affinity of novel GLS1 allosteric inhibitors by targeting key residue Lys320. Future Medicinal Chemistry, 0, , .	2.3	0
727	Aspirin and the metabolic hallmark of cancer: novel therapeutic opportunities for colorectal cancer. Exploration of Targeted Anti-tumor Therapy, 0, , 600-615.	0.8	1

ARTICLE IF CITATIONS # Participation of protein metabolism in cancer progression and its potential targeting for the 728 2.7 2 management of cancer. Amino Acids, 2023, 55, 1223-1246. Metabolic Alterations in Canine Mammary Tumors. Animals, 2023, 13, 2757. 2.3 730 Advances of SIRT4 in cancer metabolism and therapy., 2023, 1, . 0 Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World Journal of Gastroenterology, 0, 29, 4499-4527. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. International Journal 732 4.1 1 of Molecular Sciences, 2023, 24, 13928. Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism. Antioxidants, 2023, 12, 1818. 5.1 Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chemical Biology, 2023, 30, 734 5.2 2 1015-1032. Targeting the Subpocket Enables the Discovery of Thiadiazole–Pyridazine Derivatives as Glutaminase C 2.8 Inhibitors. ACS Medicinal Chemistry Letters, 2023, 14, 1455-1466. 736 Glutaminase (GLS1) gene expression in primary breast cancer. Breast Cancer, 2023, 30, 1079-1084. 2.9 0 Advances in Research on the Relationship between Glutamine Metabolism and Breast Cancer., 2023, 3, 1-3. Metabolic Analysis of DFO-Resistant Huh7 Cells and Identification of Targets for Combination Therapy. 740 0 2.9 Metabolites, 2023, 13, 1073. Structural basis for activation and filamentation of glutaminase. Cell Research, 0, , . 12.0 KEAP1/NRF2 Mutations in Stem Cells Define an Aggressive Subset of Head and Neck Cancer Patients Who 742 3.7 0 Have a Poor Prognosis, Lung Metastasis, and Therapeutic Failure. Cancers, 2023, 15, 5006. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. Journal of 743 8.6 Experimental and Clinical Cancer Research, 2023, 42, . Characterization of a fluorescence imaging probe that exploits metabolic dependency of ovarian clear 744 3.3 0 cell carcinoma. Scientific Reports, 2023, 13, . Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: a 745 prospective study. BMC Cancer, 2023, 23, . Development, Optimization, and Evaluation of Nano-platforms for Delivery of siRNA and BPTES in 746 2.4 0 c-Myc Induced Breast Cancer. Journal of Pharmaceutical Innovation, 2023, 18, 2210-2234. 747 The immunometabolic ecosystem in cancer. Nature Immunology, 2023, 24, 2008-2020. 14.5

#	Article	IF	CITATIONS
748	Inhibition of glutaminase-1 in DLBCL potentiates venetoclax-induced antitumor activity by promoting oxidative stress. Blood Advances, 0, , .	5.2	0
749	Hypoxia-activated glutamine antagonist prodrug combined with combretastatin A4 nanoparticles for tumor-selective metabolic blockade. Journal of Controlled Release, 2024, 365, 480-490.	9.9	2
751	Glutaminase inhibition as potential cancer therapeutics: current status and future applications. Journal of Enzyme Inhibition and Medicinal Chemistry, 2024, 39, .	5.2	1
753	Glutamine addiction in tumor cell: oncogene regulation and clinical treatment. Cell Communication and Signaling, 2024, 22, .	6.5	1
755	Design strategies and recent development of bioactive modulators for glutamine transporters. Drug Discovery Today, 2024, 29, 103880.	6.4	0
756	Discovery of Novel Aminobutanoic Acid-Based ASCT2 Inhibitors for the Treatment of Non-Small-Cell Lung Cancer. Journal of Medicinal Chemistry, 2024, 67, 988-1007.	6.4	0
758	Influence of glutamine metabolism on diabetes Development:A scientometric review. Heliyon, 2024, 10, e25258.	3.2	0
759	Glutamine transporter SLC38A3 promotes breast cancer metastasis via Gsk3β/β-catenin/EMT pathway. Cancer Letters, 2024, 586, 216653.	7.2	0
761	Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. European Journal of Medicinal Chemistry, 2024, 268, 116234.	5.5	0
762	Clutaminase potentiates the glycolysis in esophageal squamous cell carcinoma by interacting with PDK1. Molecular Carcinogenesis, 2024, 63, 897-911.	2.7	0
763	Fumarate induces LncRNA-MIR4435-2HG to regulate glutamine metabolism remodeling and promote the development of FH-deficient renal cell carcinoma. Cell Death and Disease, 2024, 15, .	6.3	0
764	Thermally annealed large-scale gold nanostructure platform for long-term and label-free electrochemical monitoring of cellular metabolism. Chemical Engineering Journal, 2024, 485, 149864.	12.7	0
767	A redox-responsive prodrug for tumor-targeted glutamine restriction. Journal of Controlled Release, 2024, 368, 251-264.	9.9	0
768	Filament formation drives catalysis by glutaminase enzymes important in cancer progression. Nature Communications, 2024, 15, .	12.8	0
769	Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Frontiers in Pharmacology, 0, 15, .	3.5	0
770	A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. Journal of Experimental and Clinical Cancer Research, 2024, 43, .	8.6	0
771	Elucidation and Regulation of Tyrosine Kinase Inhibitor Resistance in Renal Cell Carcinoma Cells from the Perspective of Glutamine Metabolism. Metabolites, 2024, 14, 170.	2.9	0
772	Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0

#	Article	IF	CITATIONS
773	Prognostic Signature in Osteosarcoma Based on Amino Acid Metabolism-Associated Genes. Cancer Biotherapy and Radiopharmaceuticals, 0, , .	1.0	0
774	Inhibition of glutamine metabolism increases sensitivity to plasma-activated medium-induced cytotoxicity. Free Radical Research, 2024, 58, 170-179.	3.3	0