Satellite observed widespread decline in Mongolian gra

Global Change Biology 20, 418-428 DOI: 10.1111/gcb.12365

Citation Report

#	Article	IF	CITATIONS
1	Are shrubs really a sign of declining ecosystem function? Disentangling the myths and truths of woody encroachment in Australia. Australian Journal of Botany, 2014, 62, 594.	0.6	81
2	Environmental change and long-term body mass declines in an alpine mammal. Frontiers in Zoology, 2014, 11, .	2.0	35
3	Remote sensing reveals long-term effects of caribou on tundra vegetation. Polar Biology, 2014, 37, 715-725.	1.2	19
4	Land cover and precipitation controls over longâ€term trends in carbon gains in the grassland biome of South America. Ecosphere, 2015, 6, 1-21.	2.2	19
5	A toxic endophyte-infected grass helps reverse degradation and loss of biodiversity of over-grazed grasslands in northwest China. Scientific Reports, 2015, 5, 18527.	3.3	21
6	Dzuds, droughts, and livestock mortality in Mongolia. Environmental Research Letters, 2015, 10, 074012.	5.2	103
7	The cashmere connection, biodiversity, and climate: response to von Wehrden et al. 2014. Conservation Biology, 2015, 29, 290-292.	4.7	2
8	Mongolian rangelands at a tipping point? Biomass and cover are stable but composition shifts and richness declines after 20Âyears of grazing and increasing temperatures. Journal of Arid Environments, 2015, 115, 100-112.	2.4	69
9	Land surface memory effects on dust emission in a Mongolian temperate grassland. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 414-427.	3.0	28
10	Spatial and temporal variability in vegetation cover of Mongolia and its implications. Journal of Arid Land, 2015, 7, 450-461.	2.3	29
11	Simulating effects of grazing on soil organic carbon stocks in Mongolian grasslands. Agriculture, Ecosystems and Environment, 2015, 212, 278-284.	5.3	11
12	The Utility of Landsat Data for Global Long Term Terrestrial Monitoring. Remote Sensing and Digital Image Processing, 2015, , 289-305.	0.7	3
13	Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 2015, 21, 3414-3435.	9.5	165
14	Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology, 2015, 30, 1579-1598.	4.2	165
15	The PESERA-DESMICE Modeling Framework for Spatial Assessment of the Physical Impact and Economic Viability of Land Degradation Mitigation Technologies. Frontiers in Environmental Science, 2016, 4, .	3.3	4
16	Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sensing, 2016, 8, 384.	4.0	24
17	Synergistic effects of climate change and grazing on net primary production of Mongolian grasslands. Ecosphere, 2016, 7, e01274.	2.2	57
18	Common and conflicting objectives and practices of herders and conservation managers: the need for a conservation herder. Ecosystem Health and Sustainability, 2016, 2, .	3.1	30

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Influence of the Tian Shan on Arid Extratropical Asia. Journal of Climate, 2016, 29, 574	1-5762.	3.2	50
20	Climatic change controls productivity variation in global grasslands. Scientific Reports 26958.	, 2016, 6,	3.3	44
21	Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Scie 2016, 6, 22132.	ntific Reports,	3.3	71
22	Modification of Susceptible and Toxic Herbs on Grassland Disease. Scientific Reports, 2	2016, 6, 30635.	3.3	4
23	Land changes and their drivers in the cloud forest and coastal zone of Dhofar, Oman, b and 2013. Regional Environmental Change, 2016, 16, 2141-2153.	between 1988	2.9	13
24	The Palaearctic steppe biome: a new synthesis. Biodiversity and Conservation, 2016, 2	5, 2197-2231.	2.6	167
25	Spatio-temporal patterns of herbage availability and livestock movements: A cross-bor the Chinese-Mongolian Altay. Pastoralism, 2016, 6, .	der analysis in	1.0	21
26	Attribution of the vegetation trends in a typical desertified watershed of northeast Chipast three decades. Ecohydrology, 2016, 9, 1566-1579.	ina over the	2.4	4
27	Differentiating anthropogenic modification and precipitation-driven change on vegeta productivity on the Mongolian Plateau. Landscape Ecology, 2016, 31, 547-566.	tion	4.2	107
28	Effects of grazing and precipitation variability on vegetation dynamics in a Mongolian Journal of Plant Ecology, 2016, 9, 508-519.	dry steppe.	2.3	40
29	Effects of grazing on ecosystem structure and function of alpine grasslands in Qingha Plateau: a synthesis. Ecosphere, 2017, 8, e01656.	i–Tibetan	2.2	163
30	Exploring linked ecological and cultural tipping points in Mongolia. Anthropocene, 201	.7, 17, 46-69.	3.3	83
31	Greenhouse gas emission of pastoralism is lower than combined extensive/intensive liv husbandry: A case study on the Qinghai-Tibet Plateau of China. Journal of Cleaner Proc 147, 514-522.	/estock luction, 2017,	9.3	32
32	The diversity and co-occurrence patterns of diazotrophs in the steppes of Inner Mongo 2017, 157, 130-138.	olia. Catena,	5.0	27
33	The Application of a Geographically Weighted Principal Component Analysis for Explor Twenty-three Years of Goat Population Change across Mongolia. Annals of the America of Geographers, 2017, 107, 1060-1074.	ing an Association	2.2	15
34	Methane emission from global livestock sector during 1890–2014: Magnitude, trenspatiotemporal patterns. Global Change Biology, 2017, 23, 4147-4161.	ds and	9.5	100
35	More surprises in the global greenhouse: Human health impacts from recent toxic mar formations, due to centennial alterations of world-wide coastal food webs. Marine Poll Bulletin, 2017, 116, 9-40.	ine aerosol ution	5.0	19
36	Urbanization and environmental policy effects on the future availability of grazing reso Mongolian Plateau: Modeling socio-environmental system dynamics. Environmental So Policy, 2017, 68, 35-46.	burces on the cience and	4.9	45

#	Article	IF	CITATIONS
37	Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecological Engineering, 2017, 108, 307-317.	3.6	102
38	Occurrence of water ponding on soil surfaces depending on infiltration rates on Mongolian rangeland. Hydrological Processes, 2017, 31, 3996-4005.	2.6	5
39	Grassland productivity and carbon sequestration in Mongolian grasslands: The underlying mechanisms and nomadic implications. Environmental Research, 2017, 159, 124-134.	7.5	35
40	Estimation and Prediction of Grassland Cover in Western Mongolia Using MODIS-Derived Vegetation Indices. Rangeland Ecology and Management, 2017, 70, 723-729.	2.3	9
41	Sequential stable isotope analysis reveals differences in dietary history of three sympatric equid species in the Mongolian Gobi. Journal of Applied Ecology, 2017, 54, 1110-1119.	4.0	22
42	Response of moths (Lepidoptera: Heterocera) to livestock grazing in Mongolian rangelands. Ecological Indicators, 2017, 72, 667-674.	6.3	22
43	Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels. Remote Sensing, 2017, 9, 688.	4.0	20
44	How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau. International Journal of Environmental Research and Public Health, 2017, 14, 1117.	2.6	13
45	Applying a dryland degradation framework for rangelands: the case of Mongolia. Ecological Applications, 2018, 28, 622-642.	3.8	40
46	Responses of growingâ€season soil respiration to water and nitrogen addition as affected by grazing intensity. Functional Ecology, 2018, 32, 1890-1901.	3.6	31
47	Diet of sympatric wild and domestic ungulates in southern Mongolia by DNA barcoding analysis. Journal of Mammalogy, 2018, 99, 450-458.	1.3	13
48	Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecology and Evolution, 2018, 8, 5949-5963.	1.9	62
49	Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to stateâ€andâ€transition models. Ecosphere, 2018, 9, e02145.	2.2	20
50	Rangeland management and climate hazards in drylands: dust storms, desertification and the overgrazing debate. Natural Hazards, 2018, 92, 57-70.	3.4	58
51	Optimization of the time series NDVI-rainfall relationship using linear mixed-effects modeling for the anti-desertification area in the Beijing and Tianjin sandstorm source region. Theoretical and Applied Climatology, 2018, 132, 1291-1301.	2.8	3
52	Water use in agro-pastoral livelihood systems within the Bulgan River watershed of the Altay Mountains, Western Mongolia. Agriculture, Ecosystems and Environment, 2018, 251, 180-193.	5.3	11
53	Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Science of the Total Environment, 2018, 616-617, 730-743.	8.0	73
54	Contributions of multiple climate hazards and overgrazing to the 2009/2010 winter disaster in Mongolia. Natural Hazards, 2018, 92, 109-126.	3.4	35

#	Article	IF	CITATIONS
55	Trends of Ecological Footprints and Policy Direction for Sustainable Development in Mongolia: A Case Study. Sustainability, 2018, 10, 4026.	3.2	6
56	The Addition of Temperature Significantly Improves the Detection of Land Degradation in Cold Drylands Using the TSS-RESTREND Methodology. , 2018, , .		1
57	Relative Importance of Climatic and Anthropogenic Drivers on the Dynamics of Aboveground Biomass across Agro-Ecological Zones on the Mongolian Plateau. Sustainability, 2018, 10, 3435.	3.2	3
58	Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sensing of Environment, 2018, 213, 34-48.	11.0	101
59	Response of ecosystem functions to climate change and implications for sustainable development on the Inner Mongolian Plateau. Rangeland Journal, 2018, 40, 191.	0.9	7
60	Regional-scale patterns of δ13C and δ15N associated with multiple ecosystem functions along an aridity gradient in grassland ecosystems. Plant and Soil, 2018, 432, 107-118.	3.7	15
61	Livestock depredation by large carnivores in the South Gobi, Mongolia. Wildlife Research, 2018, 45, 237.	1.4	28
62	Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Environmental Research Letters, 2018, 13, 074020.	5.2	40
63	Influence of climatic factors on variation in the Normalised Difference Vegetation Index in Mongolian Plateau grasslands. Rangeland Journal, 2018, 40, 91.	0.9	7
64	Moderate grazing promotes the root biomass in <i>Kobresia</i> meadow on the northern Qinghaiâ€"Tibet Plateau. Ecology and Evolution, 2019, 9, 9395-9406.	1.9	31
66	Grazing intensity impacts on soil carbon stocks of Western Himalayan Alpine paddocks. Carbon Management, 2019, 10, 533-540.	2.4	9
67	Socio-ecological Interactions in a Changing Climate: A Review of the Mongolian Pastoral System. Sustainability, 2019, 11, 5883.	3.2	22
68	Rangeland vegetation dynamics in the Altai mountain region of Mongolia, Russia, Kazakhstan and China: effects of climate, topography, and socio-political context for livestock herding practices. Environmental Research Letters, 2019, 14, 104017.	5.2	6
69	Integrating Traditional Ecological Knowledge and Remote Sensing for Monitoring Rangeland Dynamics in the Altai Mountain Region. Environmental Management, 2019, 64, 40-51.	2.7	21
70	Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau. Functional Ecology, 2019, 33, 1561-1571.	3.6	49
71	The Addition of Temperature to the TSS-RESTREND Methodology Significantly Improves the Detection of Dryland Degradation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2342-2348.	4.9	9
72	Contrasting Changes in Vegetation Growth due to Different Climate Forcings over the Last Three Decades in the Selenga-Baikal Basin. Remote Sensing, 2019, 11, 426.	4.0	10
73	Sustaining Interdisciplinary Collaboration Across Continents and Cultures: Lessons from the Mongolian Rangelands and Resilience Project. , 2019, , 185-225.		6

#	Article	IF	CITATIONS
74	Community phylogenetic structure of grasslands and its relationship with environmental factors on the Mongolian Plateau. Journal of Arid Land, 2019, 11, 595-607.	2.3	13
75	Different effects of alpine woody plant expansion on domestic and wild ungulates. Global Change Biology, 2019, 25, 1808-1819.	9.5	28
76	Vegetation Mapping by Using GPM/DPR over the Mongolian Land. Remote Sensing, 2019, 11, 2386.	4.0	2
77	Income diversification strategies among pastoralists in Central Asia: Findings from Kyrgyzstan. Pastoralism, 2019, 9, .	1.0	11
78	Pastoral Population Growth and Land Use Policy Has Significantly Impacted Livestock Structure in Inner Mongolia—A Case Study in the Xilinhot Region. Sustainability, 2019, 11, 7208.	3.2	11
79	A coupled forage-grazer model predicts viability of livestock production and wildlife habitat at the regional scale. Scientific Reports, 2019, 9, 19957.	3.3	6
80	Role of Surface Melt and Icing Events in Livestock Mortality across Mongolia's Semi-Arid Landscape. Remote Sensing, 2019, 11, 2392.	4.0	6
81	Methodology II: Remote sensing of change in grasslands. , 2019, , 40-64.		2
82	Land cover patterns in Mongolia and their spatiotemporal changes from 1990 to 2010. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	14
83	Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Science of the Total Environment, 2019, 660, 236-244.	8.0	236
84	Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semiâ€arid grassland. Functional Ecology, 2019, 33, 175-187.	3.6	115
85	NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 2019, 650, 2051-2062.	8.0	281
86	Long-term soil moisture content estimation using satellite and climate data in agricultural area of Mongolia. Geocarto International, 2019, 34, 722-734.	3.5	6
87	Variations and climate constraints of terrestrial net primary productivity over Mongolia. Quaternary International, 2020, 537, 112-125.	1.5	26
88	Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30†years in Inner Mongolia, China. Catena, 2020, 185, 104298.	5.0	22
89	Grasslands and Shrublands of Mongolia. , 2020, , 759-772.		9
90	Assessing the degree of land degradation and rehabilitation in the Northeast Asia dryland region using net primary productivity and water use efficiency. Land Degradation and Development, 2020, 31, 816-827.	3.9	20
91	Conservation opportunities on uncontested lands. Nature Sustainability, 2020, 3, 9-15.	23.7	21

#	Article	IF	CITATIONS
92	Near-surface soil stabilization by enzyme-induced carbonate precipitation for fugitive dust suppression. Acta Geotechnica, 2020, 15, 1967-1980.	5.7	31
93	Food habits of horses, cattle, and sheep-goats and food supply in the forest–steppe zone of Mongolia: A case study in Mogod sum (county) in Bulgan aimag (province). Journal of Arid Environments, 2020, 174, 104039.	2.4	7
94	Spatiotemporal Analysis of Vegetation Changes Along the Belt and Road Initiative Region From 1982 to 2015. IEEE Access, 2020, 8, 122579-122588.	4.2	21
95	Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt. Remote Sensing, 2020, 12, 2452.	4.0	5
96	Impact of logging operations on forest ecosystem in the Khantai mountain region and forest cover mapping. Forest Science and Technology, 2020, 16, 123-133.	0.8	1
97	Responses of palatable plants to climate and grazing in semi-arid grasslands of Mongolia. Global Ecology and Conservation, 2020, 24, e01231.	2.1	13
98	Impact of degradation and restoration on soil fungi and extracellular enzyme activity in alpine rangelands on the Tibetan Plateau. Archives of Agronomy and Soil Science, 2021, 67, 1917-1929.	2.6	1
99	Traditional livelihoods under a changing climate: herder perceptions of climate change and its consequences in South Gobi, Mongolia. Climatic Change, 2020, 162, 1065-1079.	3.6	15
100	Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia. Remote Sensing, 2020, 12, 2881.	4.0	4
101	Bacterial Communities in Stream Biofilms in a Degrading Grassland Watershed on the Qinghai–Tibet Plateau. Frontiers in Microbiology, 2020, 11, 1021.	3.5	13
102	Can reindeer husbandry management slow down the shrubification of the Arctic?. Journal of Environmental Management, 2020, 267, 110636.	7.8	23
103	Ecosystem Engineering Among Ancient Pastoralists in Northern Central Asia. Frontiers in Earth Science, 2020, 8, .	1.8	16
104	Ranking policies to achieve sustainable stocking rates in Inner Mongolia. Journal of Environmental Economics and Policy, 2020, 9, 421-429.	2.5	2
105	Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 2020, 722, 137910.	8.0	88
106	Theoretical Approaches and Practical Assessment of Socio-Economic Effects of Desertification in Mongolia. International Journal of Environmental Research and Public Health, 2020, 17, 4068.	2.6	7
107	Lack of conspicuous sexâ€biased dispersal patterns at different spatial scales in an Asian endemic goose species breeding in unpredictable steppe wetlands. Ecology and Evolution, 2020, 10, 7006-7020.	1.9	2
108	C:N:P stoichiometry and nutrient limitation of stream biofilms impacted by grassland degradation on the Qinghai-Tibet Plateau. Biogeochemistry, 2020, 150, 31-44.	3.5	8
109	Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecological Indicators, 2020, 113, 106206.	6.3	40

#	Article	IF	CITATIONS
110	Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sensing, 2020, 12, 603.	4.0	110
111	A toxic grass Achnatherum inebrians serves as a diversity refuge for the soil fungal community in rangelands of northern China. Plant and Soil, 2020, 448, 425-438.	3.7	7
112	Annual Landsat time series reveal post-Soviet changes in grazing pressure. Remote Sensing of Environment, 2020, 239, 111667.	11.0	45
113	Does defoliation frequency and severity influence plant productivity? The role of grazing management and soil nutrients. African Journal of Range and Forage Science, 2021, 38, 141-156.	1.4	8
114	Postâ€Soviet shifts in grazing and fire regimes changed the functional plant community composition on the Eurasian steppe. Global Change Biology, 2021, 27, 388-401.	9.5	27
115	Effect of environmental factors on the germination and emergence of drunken horse grass (<i>Achnatherum inebrians</i>). Weed Science, 2021, 69, 62-68.	1.5	6
116	Grassland greening on the Mongolian Plateau despite higher grazing intensity. Land Degradation and Development, 2021, 32, 792-802.	3.9	44
117	Land Degradation: Causes, Impacts, and Interlinks with the Sustainable Development Goals. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-13.	0.1	2
118	Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. GIScience and Remote Sensing, 2021, 58, 235-260.	5.9	34
119	The Production of Pastoral Space: Modeling Spatial Occupation of Grazing Land for Environmental Impact Assessment Using Structural Equation Modeling. Land, 2021, 10, 211.	2.9	1
120	Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland. Scientific Reports, 2021, 11, 3635.	3.3	11
121	Vegetation Dynamic Assessment by NDVI and Field Observations for Sustainability of China's Wulagai River Basin. International Journal of Environmental Research and Public Health, 2021, 18, 2528.	2.6	8
122	Analyzing NPP Response of Different Rangeland Types to Climatic Parameters over Mongolia. Agronomy, 2021, 11, 647.	3.0	8
123	Autumn Phenology and Its Covariation with Climate, Spring Phenology and Annual Peak Growth on the Mongolian Plateau. Agricultural and Forest Meteorology, 2021, 298-299, 108312.	4.8	15
124	Three-decadal destabilization of vegetation activity on the Mongolian Plateau. Environmental Research Letters, 2021, 16, 034049.	5.2	9
125	Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. Remote Sensing, 2021, 13, 1279.	4.0	34
126	Restoration of Degraded Alpine Meadows Improves Pollination Network Robustness and Function in the Tibetan Plateau. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	7
127	Modeling Integrated Impacts of Climate Change and Grazing on Mongolia's Rangelands. Land, 2021, 10, 397.	2.9	5

#	Article	IF	CITATIONS
129	The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecological Indicators, 2021, 124, 107443.	6.3	26
130	The link between climate change and biodiversity of lacustrine inhabitants and terrestrial plant communities of the Uvs Nuur Basin (Mongolia) during the last three millennia. Holocene, 0, , 095968362110190.	1.7	10
131	Biomass and soil carbon stocks in relation to the structure and composition of Chir Pine dominated forests in the lesser Himalayan foothills of Kashmir. Carbon Management, 2021, 12, 429-437.	2.4	5
132	Reconciling livestock production and wild herbivore conservation: challenges and opportunities. Trends in Ecology and Evolution, 2021, 36, 750-761.	8.7	23
133	In Mongolia and beyond, conservation scientists have failed society. Biodiversity and Conservation, 2021, 30, 3741.	2.6	0
134	Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2, 720-735.	29.7	377
135	Biophysical variability and politico-economic singularity: Responses of livestock numbers in South Mongolian nomadic pastoralism. Ecological Economics, 2021, 187, 107073.	5.7	0
136	Applicability of different vegetation indices for pasture biomass estimation in the north-central region of Mongolia. Geocarto International, 2022, 37, 7415-7430.	3.5	8
137	Longâ€ŧerm changes in food habits of deer and habitat vegetation: 25â€year monitoring on a small island. Ecological Research, 0, , .	1.5	0
138	Effects of animal grazing on vegetation biomass and soil moisture on a typical steppe in Inner Mongolia, China. Ecohydrology, 2022, 15, e2350.	2.4	16
140	Impact of soil degradation on plant communities in an overgrazed Tibetan alpine meadow. Journal of Arid Environments, 2021, 193, 104586.	2.4	13
141	Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025). Remote Sensing, 2021, 13, 347.	4.0	11
142	Soil bacterial communities vary with grassland degradation in the Qinghai Lake watershed. Plant and Soil, 2021, 460, 541-557.	3.7	16
143	Threats and challenges related to grazing paddocks: Recovery of extremely overgrazed grassland after grazing exclusion. Arid Land Research and Management, 2021, 35, 346-357.	1.6	3
144	State and Transition Models: Theory, Applications, and Challenges. Springer Series on Environmental Management, 2017, , 303-345.	0.3	52
145	Greenhouse gas balance in global pasturelands and rangelands. Environmental Research Letters, 2020, 15, 104006.	5.2	14
146	Spatio-temporal analysis of grassland carrying capacity in Mongolian Plateau based on supply-consumption relationship. Journal of Natural Resources, 2019, 34, 1093.	0.6	7
147	Pastoral property rights in Central Asia. Etudes Rurales, 2017, , 220-253.	0.2	2

#	Article	IF	CITATIONS
148	A cost-effective method to monitor vegetation changes in steppes ecosystems: A case study on remote sensing of fire and infrastructure effects in eastern Mongolia. Ecological Indicators, 2021, 132, 108331.	6.3	8
149	Rangeland degradation in Mongolia: A systematic review of the evidence. Journal of Arid Environments, 2022, 196, 104654.	2.4	16
150	Water and Soil. , 2020, , 65-96.		0
151	The Worldâ \in ™s Mountains in the Anthropocene. Sustainable Development Goals Series, 2022, , 1-144.	0.4	3
152	Sustainable livestock production and biodiversity. , 2022, , 91-108.		1
153	Adaptive decision-making on stocking rates improves the resilience of a livestock system exposed to climate shocks. Ecological Modelling, 2022, 464, 109799.	2.5	4
154	Substitution versus wealth: Dual effects of non-pastoral income on livestock herd size. World Development, 2022, 151, 105749.	4.9	4
155	A Natural Disaster Framed Common Pool Resource Game Yields No Framing Effects Among Mongolian Pastoralists. Human Ecology, 0, , 1.	1.4	1
156	Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecological Indicators, 2022, 135, 108560.	6.3	13
157	Long Term Observation of Fractional Vegetation Cover in Qingyang of Gansu Province and Its Response to Climate Change. Atmosphere, 2022, 13, 288.	2.3	2
158	Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China. Environmental Science and Pollution Research, 2022, 29, 44693-44708.	5.3	19
159	Diversity of Chironomidae (Diptera) along a salinity gradient in lakes of the endorheic Great Lakes region of western Mongolia. Hydrobiologia, 0, , 1.	2.0	1
160	Vegetation dynamics in response to climate change and human activities in the Hulun Lake basin from 1981 to 2019. Ecological Indicators, 2022, 136, 108700.	6.3	20
161	Temporal and Spatial Changes in Evapotranspiration and Its Potential Driving Factors in Mongolia over the Past 20 Years. Remote Sensing, 2022, 14, 1856.	4.0	7
162	Potential Habitats and Their Conservation Status for Swan Geese (Anser cygnoides) along the East Asian Flyway. Remote Sensing, 2022, 14, 1899.	4.0	4
163	Separating the Impact of Climate Changes and Human Activities on Vegetation Growth Based on the NDVI in China. Advances in Meteorology, 2022, 2022, 1-11.	1.6	1
164	Transhumant Sheep Grazing Enhances Ecosystem Multifunctionality in Productive Mountain Grasslands: A Case Study in the Cantabrian Mountains. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	10
166	Effects of freeâ€ranging livestock on occurrence and interspecific interactions of a mammalian community. Ecological Applications, 2022, 32, e2644.	3.8	11

ATION P

#	Article	IF	CITATIONS
167	Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales. Journal of Ecology, 2022, 110, 1460-1484.	4.0	32
168	Moving Toward the Greener Side: Environmental Aspects Guiding Pastoral Mobility and Impacting Vegetation in the Dzungarian Gobi, Mongolia. Rangeland Ecology and Management, 2022, 83, 149-160.	2.3	3
169	Characteristics and trends of grassland degradation research. Journal of Soils and Sediments, 2022, 22, 1901-1912.	3.0	16
170	Missing the grassland for the cows: Scaling grassâ€finished beef production entails tradeoffs—Comment on "Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation― Agricultural and Environmental Letters, 2022, 7, .	1.2	2
171	Effects of Rust on Plant Growth and Stoichiometry of Leymuschinensis under Different Grazing Intensities in Hulunber Grassland. Agriculture (Switzerland), 2022, 12, 961.	3.1	1
172	Informal Institutions and Herders' Grazing Intensity Reduction Behavior: Evidence from Pastoral Areas in China. Land, 2022, 11, 1398.	2.9	1
173	Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia. Natural Hazards and Earth System Sciences, 2022, 22, 2751-2770.	3.6	2
174	Exploring complementarity among interdependent pastoral institutions in Mongolia. Sustainability Science, 2023, 18, 115-131.	4.9	3
175	Trend in Satellite-Observed Vegetation Cover and Its Drivers in the Gannan Plateau, Upper Reaches of the Yellow River, from 2000 to 2020. Remote Sensing, 2022, 14, 3849.	4.0	7
176	The validity of ecological hypotheses concerning aboveground organisms for soil microbial biomass and diversity across soil depths on the Mongolian Plateau. Applied Soil Ecology, 2023, 181, 104679.	4.3	1
177	Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region. Remote Sensing, 2022, 14, 4402.	4.0	1
178	Detection of Anthropogenic and Environmental Degradation in Mongolia Using Multi-Sources Remotely Sensed Time Series Data and Machine Learning Techniques. Earth and Environmental Sciences Library, 2022, , 17-47.	0.4	0
179	Biogeochemical consequences of grassland degradation on linked soil, stream, and lake ecosystems in watersheds: A review and case study. Watershed Ecology and the Environment, 2022, , .	1.8	0
180	Native annual forbs decline in California coastal prairies over 15 years despite grazing. PLoS ONE, 2022, 17, e0278608.	2.5	0
181	A large forage gap in forage availability in traditional pastoral regions in China. Fundamental Research, 2023, 3, 188-200.	3.3	8
182	Assessment of the grassland carrying capacity for winter-spring period in Mongolia. Ecological Indicators, 2023, 146, 109868.	6.3	5
183	Vegetation restoration measures: Increasing plant height suppresses population densities of plateau pikas. Land Degradation and Development, 2023, 34, 2201-2213.	3.9	6
184	Grazing alters vegetation phenology by regulating regional environmental factors on the Tibetan Plateau. Agriculture, Ecosystems and Environment, 2023, 351, 108479.	5.3	2

#	Article	IF	CITATIONS
185	Contrasting responses of peak vegetation growth to asymmetric warming: Evidences from FLUXNET and satellite observations. Global Change Biology, 2023, 29, 2363-2379.	9.5	4
186	Sustainable application of GF-6 WFV satellite data in desert steppe: A village-scale grazing study in China. Frontiers in Environmental Science, 0, 11, .	3.3	0
187	Spatial variability of herbage yield, grazing capacity and plant diversity in a tropical savannah rangeland ecosystem. African Journal of Range and Forage Science, 2023, 40, 71-84.	1.4	1
188	Estimation and mapping of pasture biomass in Mongolia using machine learning methods. Geocarto International, 2023, 38, .	3.5	1
189	Spatial–Temporal and Driving Factors of Land Use/Cover Change in Mongolia from 1990 to 2021. Remote Sensing, 2023, 15, 1813.	4.0	7
190	Mapping Forage Biomass and Quality of the Inner Mongolia Grasslands by Combining Field Measurements and Sentinel-2 Observations. Remote Sensing, 2023, 15, 1973.	4.0	2
191	The cross-boundary of land degradation in Mongolia and China and achieving its neutrality - challenges and opportunities. Ecological Indicators, 2023, 151, 110311.	6.3	6
192	Consumption in Non-Pastoral Regions Drove Three-Quarters of Forage–Livestock Conflicts in China. Environmental Science & Technology, 2023, 57, 7721-7732.	10.0	1
193	Spatiotemporal variation and coupling of grazing intensity and ecosystem based on four quadrant model on the Inner Mongolia. Ecological Indicators, 2023, 152, 110379.	6.3	7
194	Effects of Vegetation Belt Movement on Wildfire in the Mongolian Plateau over the Past 40 Years. Remote Sensing, 2023, 15, 2341.	4.0	1
195	Salinification of Coastal Wetlands and Freshwater Management to Support Resilience. Ecosystem Health and Sustainability, 2023, 9, .	0.0	2
196	Biome regulates the effects of longâ \in term grazing on soil microbial diversity. , 0, , .		0
199	Revisiting vegetation activity of Mongolian Plateau using multiple remote sensing datasets. Agricultural and Forest Meteorology, 2023, 341, 109649.	4.8	1
200	Grassland degradation induces high dietary niche overlap between two common livestock: cattle and sheep. , 2023, 2, 373-381.		1
201	For a Better Quality of Beef: The Challenge from Growing Livestock on Limited Grasslands with a Production–Consumption Balance Perspective. Foods, 2023, 12, 3231.	4.3	0
202	An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 2023, 14, .	12.8	7
203	Quantitative assessment of fire occurrence Dead Fuel Index threshold and spatio-temporal variation in different grassland types of China-Mongolia border area. Journal of Chinese Geography, 2023, 33, 1631-1659.	3.9	0
204	Global sustainable land use and management: Illustrating the linkage between carbon sink and ecological engineering. Land Degradation and Development, 2024, 35, 3-8.	3.9	0

	CIAIO		
#	Article	IF	Citations
205	Implementing a resilienceâ€based management system in Mongolia's rangelands. Ecosphere, 2023, 14, .	2.2	0
206	Contributions of climate change and human activities to grassland degradation and improvement from 2001 to 2020 in Zhaosu County, China. Journal of Environmental Management, 2023, 348, 119465.	7.8	0
207	Plant biodiversity responds more strongly to climate warming and anthropogenic activities than microbial biodiversity in the <scp>Qinghai–Tibetan</scp> alpine grasslands. Journal of Ecology, 0, , .	4.0	1
209	Temporal and vertical dynamics of carbon accumulation potential under grazing-excluded grasslands in China: The role of soil bulk density. Journal of Environmental Management, 2024, 351, 119696.	7.8	0
210	A 20-Year Analysis of the Dynamics and Driving Factors of Grassland Desertification in Xilingol, China. Remote Sensing, 2023, 15, 5716.	4.0	0
211	A long way to go: impacts of urbanization on migrants' livelihoods and rural ecology in less industrialized regions. Journal of Mountain Science, 2023, 20, 3450-3463.	2.0	0
212	Land cover changes in grassland landscapes: combining enhanced Landsat data composition, LandTrendr, and machine learning classification in google earth engine with MLP-ANN scenario forecasting. GIScience and Remote Sensing, 2024, 61, .	5.9	2
213	Microbial Community Response to Alpine Meadow Degradation and Its Impact on Soil Nutrient Cycling. Agronomy, 2024, 14, 195.	3.0	0
214	Spatiotemporal patterns and driving factors of gross primary productivity over the Mongolian Plateau steppe in the past 20Âyears. Science of the Total Environment, 2024, 920, 170886.	8.0	0
215	Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nature Geoscience, 2024, 17, 181-188.	12.9	0
216	The steppes demonstrate higher productivity but lower diversity in Inner Mongolia than Mongolia: driven by climate or land use?. Biodiversity and Conservation, 2024, 33, 1827-1843.	2.6	0
217	Quantifying desertification in the Qinghai Lake Basin. Frontiers in Environmental Science, 0, 12, .	3.3	0
218	Ruminating on soil carbon: Applying current understanding to inform grazing management. Global Change Biology, 2024, 30, .	9.5	0