Conductive two-dimensional titanium carbide â€[~]clayâ

Nature 516, 78-81 DOI: 10.1038/nature13970

Citation Report

#	Article	IF	CITATIONS
19	Introduction to carbon-based nanostructures. , 0, , 1-10.		0
20	Electronic properties of carbon-based nanostructures. , 0, , 11-90.		0
21	Not just graphene: The wonderful world of carbon and related nanomaterials. MRS Bulletin, 2015, 40, 1110-1121.	1.7	78
22	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	1.7	71
23	Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:m mathvariant="normal">C<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> MXene.	n>£1/mm	l:m π a⊳
24	Physical Review B, 2015, 91, . OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Physical Review B, 2015, 92, .	1.1	342
25	Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides. Physical Review B, 2015, 92, .	1.1	65
26	Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Scientific Reports, 2015, 5, 16329.	1.6	107
27	Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. Journal of Applied Physics, 2015, 118, .	1.1	217
28	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
29	Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ Xâ€Ray Absorption Spectroscopy. Advanced Energy Materials, 2015, 5, 1500589.	10.2	521
30	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie, 2015, 127, 8218-8222.	1.6	16
31	Innovation and discovery of grapheneâ€like materials via densityâ€functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 360-379.	6.2	205
32	A Quasiâ€Solidâ€State Sodiumâ€Ion Capacitor with High Energy Density. Advanced Materials, 2015, 27, 6962-6968.	11.1	177
33	A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^'3} . Advanced Materials, 2015, 27, 8082-8087.	11.1	211
34	Extraordinary Supercapacitor Performance of a Multicomponent and Mixedâ€Valence Oxyhydroxide. Angewandte Chemie - International Edition, 2015, 54, 8100-8104.	7.2	50
35	Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cmâ^'3. Materials, 2015, 8, 6208-6227.	1.3	15
36	Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors. Journal of Physical Chemistry Letters, 2015, 6, 2305-2309.	2.1	358

ITATION REDO

#	Article	IF	CITATIONS
37	Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14096-14100.	5.2	152
38	Direct Measurement of Surface Termination Groups and Their Connectivity in the 2D MXene V ₂ CT _{<i>x</i>} Using NMR Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 13713-13720.	1.5	169
39	Controllable synthesis of Ni3â^'xCoxS4nanotube arrays with different aspect ratios grown on carbon cloth for high-capacity supercapacitors. RSC Advances, 2015, 5, 48631-48637.	1.7	29
40	Covalency-Dependent Vibrational Dynamics in Two-Dimensional Titanium Carbides. Journal of Physical Chemistry A, 2015, 119, 12977-12984.	1.1	34
41	Effect of surface functionalization on the electronic transport properties of Ti ₃ C ₂ MXene. Europhysics Letters, 2015, 111, 67002.	0.7	106
42	Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy and Environmental Science, 2015, 8, 1390-1403.	15.6	364
43	Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors. ACS Nano, 2015, 9, 2018-2027.	7.3	277
44	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti ₂ SC. Angewandte Chemie - International Edition, 2015, 54, 4810-4814.	7.2	100
45	Synergistic enhancement of electrochemical performance of electrospun TiC/C hybrid nanofibers for supercapacitor application. Electrochimica Acta, 2015, 176, 402-409.	2.6	30
46	Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano, 2015, 9, 9507-9516.	7.3	1,395
47	Self-assembled Ti ₃ C ₂ T _x MXene film with high gravimetric capacitance. Chemical Communications, 2015, 51, 13531-13533.	2.2	148
48	Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal–Insulator Transition in Graphene-like Two-Dimensional Cr ₂ C Crystals. ACS Applied Materials & Interfaces, 2015, 7, 17510-17515.	4.0	314
49	Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochimica Acta, 2015, 176, 1-9.	2.6	110
50	Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices. ACS Central Science, 2015, 1, 206-216.	5.3	60
51	Two-dimensional titanium carbide electrode with large mass loading for supercapacitor. Journal of Power Sources, 2015, 294, 354-359.	4.0	199
52	Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano, 2015, 9, 7563-7571.	7.3	229
53	Synthesis of two-dimensional molybdenum carbide, Mo 2 C, from the gallium based atomic laminate Mo 2 Ga 2 C. Scripta Materialia, 2015, 108, 147-150.	2.6	329
54	Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Letters, 2015, 15, 4955-4960.	4.5	415

#	Article	IF	CITATIONS
55	Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2, 032002.	2.0	79
56	Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles. Renewable and Sustainable Energy Reviews, 2015, 50, 1445-1461.	8.2	17
57	Recent advances in MXene: Preparation, properties, and applications. Frontiers of Physics, 2015, 10, 276-286.	2.4	734
58	In suit growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors. Electrochimica Acta, 2015, 176, 44-50.	2.6	103
59	An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe ₃ O ₄ /rGO anode. Journal of Materials Chemistry A, 2015, 3, 16013-16019.	5.2	123
60	Amineâ€Assisted Delamination of Nb ₂ C MXene for Liâ€Ion Energy Storage Devices. Advanced Materials, 2015, 27, 3501-3506.	11.1	749
61	Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes― Dalton Transactions, 2015, 44, 9353-9358.	1.6	662
63	Flexible two-dimensional Ti _{n+1} C _n (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics, 2015, 17, 15348-15354.	1.3	247
64	High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochimica Acta, 2015, 163, 246-251.	2.6	204
65	Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotechnology, 2015, 10, 313-318.	15.6	2,278
66	Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale, 2015, 7, 9399-9404.	2.8	171
67	Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors. Nano Energy, 2015, 15, 235-243.	8.2	112
68	Highly ordered mesoporous NiCo ₂ O ₄ with superior pseudocapacitance performance for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11503-11510.	5.2	36
69	Vibrational properties of Ti ₃ C ₂ and Ti ₃ C ₂ T ₂ (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Physical Chemistry Chemical Physics, 2015, 17, 9997-10003.	1.3	455
70	High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon, 2015, 92, 106-118.	5.4	159
71	Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 2015, 6, 6544.	5.8	873
72	Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon, 2015, 92, 271-296.	5.4	88
73	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & amp; Interfaces, 2015, 7, 22284-22291.	4.0	77

#	Article	IF	CITATIONS
74	Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nature Communications, 2015, 6, 8503.	5.8	529
75	Bulk Nanostructured Materials Based on Two-Dimensional Building Blocks: A Roadmap. ACS Nano, 2015, 9, 9432-9436.	7.3	44
76	Charge- and Size-Selective Ion Sieving Through Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes. Journal of Physical Chemistry Letters, 2015, 6, 4026-4031.	2.1	743
77	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 2015, 17, 27-35.	8.2	166
78	Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 2015, 160, 537-540.	1.3	208
79	Highâ€Power Supercapacitive Properties of Graphene Oxide Hybrid Films with Highly Conductive Molybdenum Disulfide Nanosheets. ChemElectroChem, 2015, 2, 1938-1946.	1.7	28
80	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	1.5	28
81	Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene. Applied Surface Science, 2015, 359, 153-157.	3.1	50
82	Electrodeposition of ultrathin nickel–cobalt double hydroxide nanosheets on nickel foam as high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 88780-88786.	1.7	36
83	Activated nanoporous carbon–gold nanoparticle composite electrode with enhanced volumetric capacitance. RSC Advances, 2015, 5, 86282-86290.	1.7	5
84	Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chemical Communications, 2015, 51, 15880-15893.	2.2	361
85	Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. Europhysics Letters, 2015, 111, 26007.	0.7	262
86	Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14, 1135-1141.	13.3	1,045
87	Graphene in Supercapacitor Applications. Current Opinion in Colloid and Interface Science, 2015, 20, 416-428.	3.4	154
88	Synthesis of Two-Dimensional Materials by Selective Extraction. Accounts of Chemical Research, 2015, 48, 128-135.	7.6	590
90	Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material. Materials, 2016, 9, 118.	1.3	9
91	Promising prospects for 2D d ² –d ⁴ M ₃ C ₂ transition metal carbides (MXenes) in N ₂ capture and conversion into ammonia. Energy and Environmental Science, 2016, 9, 2545-2549.	15.6	395
92	Synthesis of Twoâ€Dimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016, 28, 6104-6135.	11.1	548

#	Article	IF	CITATIONS
93	A Twoâ€Ðimensional Zirconium Carbide by Selective Etching of Al ₃ C ₃ from Nanolaminated Zr ₃ Al ₃ C ₅ . Angewandte Chemie - International Edition, 2016, 55, 5008-5013.	7.2	425
94	Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Advanced Functional Materials, 2016, 26, 3118-3127.	7.8	945
95	Fabrication of Ti ₃ C ₂ T <i>_x</i> MXene Transparent Thin Films with Tunable Optoelectronic Properties. Advanced Electronic Materials, 2016, 2, 1600050.	2.6	587
96	Twoâ€Step Oxidation of Mxene in the Synthesis of Layerâ€Stacked Anatase Titania with Enhanced Lithiumâ€Storage Performance. ChemElectroChem, 2016, 3, 871-876.	1.7	53
97	Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All‣olid‣tate Supercapacitors. Angewandte Chemie, 2016, 128, 5827-5832.	1.6	18
98	Highly Conductive Optical Quality Solutionâ€Processed Films of 2D Titanium Carbide. Advanced Functional Materials, 2016, 26, 4162-4168.	7.8	680
99	Pseudocapacitive Electrodes Produced by Oxidantâ€Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Advanced Materials, 2016, 28, 1517-1522.	11.1	850
100	Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology, 2016, 27, 335702.	1.3	226
101	Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible Allâ€Solidâ€State Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 5733-5738.	7.2	76
102	Porous Twoâ€Dimensional Transition Metal Carbide (MXene) Flakes for Highâ€Performance Liâ€lon Storage. ChemElectroChem, 2016, 3, 689-693.	1.7	452
103	A Twoâ€Dimensional Zirconium Carbide by Selective Etching of Al ₃ C ₃ from Nanolaminated Zr ₃ Al ₃ C ₅ . Angewandte Chemie, 2016, 128, 5092-5097.	1.6	65
104	Quantum spin Hall phase in Mo ₂ M ₂ C ₃ O ₂ (M = Ti, Zr,) Tj ETQ	91 <u>1</u> 0.78	4314 rgBT
105	The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific Reports, 2016, 6, 27971.	1.6	178
106	Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti ₂ C and Mo ₂ C MXenes. Journal of Physical Chemistry C, 2016, 120, 28432-28440.	1.5	104
107	Electronic properties of freestanding Ti3C2Tx MXene monolayers. Applied Physics Letters, 2016, 108, .	1.5	171
108	Rechargeable Mg–Li hybrid batteries: status and challenges. Journal of Materials Research, 2016, 31, 3125-3141.	1.2	92
109	Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Applied Physics Letters, 2016, 109, .	1.5	82
110	Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors. Carbon, 2016, 107, 100-108.	5.4	40

#	ARTICLE	IF	CITATIONS
111	Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. Journal of Alloys and Compounds, 2016, 685, 194-201.	2.8	128
112	Lithium-ion capacitors with 2D Nb2CTx (MXene) – carbon nanotube electrodes. Journal of Power Sources, 2016, 326, 686-694.	4.0	175
113	Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Applied Surface Science, 2016, 384, 287-293.	3.1	163
114	Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy and Environmental Science, 2016, 9, 3135-3142.	15.6	347
115	Synthesis of two-dimensional titanium nitride Ti ₄ N ₃ (MXene). Nanoscale, 2016, 8, 11385-11391.	2.8	878
116	Interlayer coupling in two-dimensional titanium carbide MXenes. Physical Chemistry Chemical Physics, 2016, 18, 20256-20260.	1.3	120
117	Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo ₂ C Crystals. ACS Nano, 2016, 10, 4504-4510.	7.3	69
118	Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors. Applied Surface Science, 2016, 379, 206-212.	3.1	48
119	Cu 2 O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries. Electrochimica Acta, 2016, 202, 24-31.	2.6	57
120	Genetic engineering of inorganic functional modular materials. Chemical Science, 2016, 7, 3472-3481.	3.7	10
121	Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. Journal of Power Sources, 2016, 326, 575-579.	4.0	250
122	Charging/Discharging Dynamics in Two-Dimensional Titanium Carbide (MXene) Slit Nanopore: Insights from molecular dynamic study. Electrochimica Acta, 2016, 196, 75-83.	2.6	59
123	Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Advances, 2016, 6, 35731-35739.	1.7	224
124	Ion-Exchange and Cation Solvation Reactions in Ti ₃ C ₂ MXene. Chemistry of Materials, 2016, 28, 3507-3514.	3.2	499
125	Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. Journal of Materials Chemistry A, 2016, 4, 8690-8699.	5.2	155
126	All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide. Chinese Chemical Letters, 2016, 27, 1586-1591.	4.8	62
127	Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer, 2016, 102, 119-126.	1.8	77
128	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372	10.2	368

ARTICLE IF CITATIONS # ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive 129 1.7 79 performance. RSC Advances, 2016, 6, 88934-88942. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. 1.1 142 Physical Review B, 2016, 94, . Atomic Defects in Monolayer Titanium Carbide (Ti₃C₂T<sub><i>x</i>/sub>) 131 7.3 785 MXene. ACS Nano, 2016, 10, 9193-9200. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353, 3,688 1137-114Ŏ. Self-Reduction Synthesis of New MXene/Ag Composites with Unexpected Electrocatalytic Activity. ACS 133 3.2 216 Sustainable Chemistry and Engineering, 2016, 4, 6763-6771. Titanum Carbide MXene Flakes as Novel 2D Metallic Solution-Processed Films. ECS Transactions, 2016, 0.3 75, 37-41. 135 Efficient storage mechanisms for building better supercapacitors. Nature Energy, 2016, 1, . 19.8 1,655 All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy 15.6 551 and Environmental Science, 2016, 9, 2847-2854. Ti₃C₂ MXenes with Modified Surface for High-Performance Electromagnetic 137 4.0 775 Absorption and Shielding in the X-Band. ACS Applied Materials & amp; Interfaces, 2016, 8, 21011-21019. Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by 10.2 Hybridizing Polypyrrole Chains with MXene. Advanced Energy Materials, 2016, 6, 1600969. An ultrathin 2D semi-ordered mesoporous silica film: co-operative assembly and application. RSC 139 1.7 11 Advances, 2016, 6, 75058-75062. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen 8.8 1,100 Evolution. ACS Energy Letters, 2016, 1, 589-594. Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High 141 4.0 266 Rates. ACS Applied Materials & amp; Interfaces, 2016, 8, 22280-22286. Three-dimensional porous MXene/layered double hydroxide composite for high performance 142 supercapacitors. Journal of Power Sources, 2016, 327, 221-228 Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electronic 143 1.0 270 Materials Letters, 2016, 12, 702-710. Effects of 2-D transition metal carbide Ti₂CT_xon properties of epoxy 144 composites. RSC Advances, 2016, 6, 87341-87352. Electrochemical and in-situ X-ray diffraction studies of Ti 3 C 2 T x MXene in ionic liquid electrolyte. 145 2.3134 Electrochemistry Communications, 2016, 72, 50-53. Solution-processed titanium carbide MXene films examined as highly transparent conductors. 146 2.8 Nanoscale, 2016, 8, 16371-16378.

#	Article	IF	CITATIONS
147	Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Applied Materials & Interfaces, 2016, 8, 34027-34033.	4.0	55
148	Interplay between nanolaminated structure and electron-phonon coupling in Ti-based MAX phases. Physical Review B, 2016, 94, .	1.1	1
149	Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Applied Materials & Interfaces, 2016, 8, 33608-33618.	4.0	138
150	Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes. Journal of the American Chemical Society, 2016, 138, 15853-15856.	6.6	444
151	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409
152	Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases. Journal of Physical Chemistry C, 2016, 120, 28131-28137.	1.5	41
153	A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals. Scientific Reports, 2016, 5, 18419.	1.6	12
154	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	5.6	1,001
155	First-principles study of size- and edge-dependent properties of MXene nanoribbons. Physical Review B, 2016, 93, .	1.1	72
156	Efficient Charge Storage in Dual-Redox Electrochemical Capacitors through Reversible Counterion-Induced Solid Complexation. Journal of the American Chemical Society, 2016, 138, 9373-9376.	6.6	83
157	Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery. Renewable and Sustainable Energy Reviews, 2016, 65, 685-697.	8.2	11
158	Ti ₃ C ₂ T _x (MXene)–polyacrylamide nanocomposite films. RSC Advances, 2016, 6, 72069-72073.	1.7	162
159	Enhanced Capacitive Performance Based on Diverse Layered Structure of Two-Dimensional Ti ₃ C ₂ MXene with Long Etching Time. Journal of the Electrochemical Society, 2016, 163, A1975-A1982.	1.3	80
160	2D Materials Beyond Graphene for Highâ€Performance Energy Storage Applications. Advanced Energy Materials, 2016, 6, 1600671.	10.2	436
161	Computational studies on the structural, electronic and optical properties of graphene-like MXenes $(M \le ub \ge C \le ub \ge Ub \ge$	5.2	205
	visible-light driven photocatalysts. Journal of Materials Chemistry A, 2016, 4, 12913-12920.		
162	visible-light driven photocatalysts. Journal of Materials Chemistry A, 2016, 4, 12913-12920. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 29427-29433.	4.0	234
162 163	 visible-light driven photocatalysts. Journal of Materials Chemistry A, 2016, 4, 12913-12920. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithiumâ€"Sulfur Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 29427-29433. Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, . 	4.0	234

#	Article	IF	CITATIONS
165	High surface area graphene foams by chemical vapor deposition. 2D Materials, 2016, 3, 045013.	2.0	53
166	Electrochemical in Situ Tracking of Volumetric Changes in Two-Dimensional Metal Carbides (MXenes) in Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 32089-32093.	4.0	87
167	High-Capacitance Mechanism for Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene by <i>in Situ</i> Electrochemical Raman Spectroscopy Investigation. ACS Nano, 2016, 10, 11344-11350.	7.3	455
168	Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie - International Edition, 2016, 55, 14569-14574.	7.2	480
169	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
170	Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology, 2016, 137, 87-93.	3.8	107
171	2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30, 603-613.	8.2	293
172	Design of Hierarchically Porous Carbons with Interlinked Hydrophilic and Hydrophobic Surface and Their Capacitive Behavior. Chemistry of Materials, 2016, 28, 8715-8725.	3.2	35
173	Site-projected electronic structure of two-dimensional Ti ₃ C ₂ MXene: the role of the surface functionalization groups. Physical Chemistry Chemical Physics, 2016, 18, 30946-30953.	1.3	121
174	Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie, 2016, 128, 14789-14794.	1.6	167
175	Vanadium pentoxide/carbide-derived carbon core–shell hybrid particles for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 18899-18909.	5.2	30
176	Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti ₃ C ₂ MXene Flakes. Advanced Electronic Materials, 2016, 2, 1600255.	2.6	1,160
177	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	11.1	390
178	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie, 2016, 128, 1150-1154.	1.6	96
179	Size Fractionation of Twoâ€Ðimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie, 2016, 128, 3868-3872.	1.6	47
180	Remarkable Improvements in Volumetric Energy and Power of 3D MnO ₂ Microsupercapacitors by Tuning Crystallographic Structures. Advanced Functional Materials, 2016, 26, 1830-1839.	7.8	112
181	Nanoscale Elastic Changes in 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Pseudocapacitive Electrodes. Advanced Energy Materials, 2016, 6, 1502290.	10.2	117
182	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 1138-1142.	7.2	597

#	Article	IF	CITATIONS
183	Twoâ€Dimensional Nbâ€Based M ₄ C ₃ Solid Solutions (MXenes). Journal of the American Ceramic Society, 2016, 99, 660-666.	1.9	234
184	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.	8.2	710
185	Preparation and methane adsorption of two-dimensional carbide Ti2C. Adsorption, 2016, 22, 915-922.	1.4	85
186	Unique Domain Structure of Two-Dimensional α-Mo ₂ C Superconducting Crystals. Nano Letters, 2016, 16, 4243-4250.	4.5	101
187	Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 15661-15667.	4.0	275
188	Flexible additive free H ₂ V ₃ O ₈ nanowire membrane as cathode for sodium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 12074-12079.	1.3	79
189	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Interfaces, 2016, 8, 16396-16403.	4.0	214
190	Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon, 2016, 107, 638-645.	5.4	93
191	Size Fractionation of Twoâ€Dimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie - International Edition, 2016, 55, 3804-3808.	7.2	288
192	A self-assembled intercalated metal–organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors. Journal of Materials Chemistry A, 2016, 4, 3398-3405.	5.2	34
193	Crystalline NiCo2S4 nanotube array coated with amorphous NiCo S for supercapacitor electrodes. Journal of Colloid and Interface Science, 2016, 467, 140-147.	5.0	85
194	Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors. Physical Chemistry Chemical Physics, 2016, 18, 4460-4467.	1.3	65
195	NMR reveals the surface functionalisation of Ti ₃ C ₂ MXene. Physical Chemistry Chemical Physics, 2016, 18, 5099-5102.	1.3	689
196	Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 2016, 4, 489-499.	5.2	170
197	Resolving the Structure of Ti ₃ C ₂ T _{<i>x</i>} MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function. Chemistry of Materials, 2016, 28, 349-359.	3.2	374
198	Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy and Environmental Science, 2016, 9, 729-762.	15.6	1,037
199	X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 2016, 362, 406-417.	3.1	1,369
200	Quartz Crystal Microbalance with Dissipation Monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochemistry Communications, 2016, 67, 16-21.	2.3	76

#	Article	IF	CITATIONS
201	Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 2016, 27, 172001.	1.3	48
202	A few-layered Ti ₃ C ₂ nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 5993-5998.	5.2	130
203	The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016, 8, 9128-9133.	2.8	225
204	Ultrahighâ€Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electronâ€Correlated Oxides. Advanced Science, 2016, 3, 1500319.	5.6	47
205	Engineering the Morphology of Carbon Materials: 2D Porous Carbon Nanosheets for Highâ€Performance Supercapacitors. ChemElectroChem, 2016, 3, 822-828.	1.7	85
206	Effect of Metal Ion Intercalation on the Structure of MXene and Water Dynamics on its Internal Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 8859-8863.	4.0	225
207	Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano, 2016, 10, 3334-3341.	7.3	448
208	Hybrids of Two-Dimensional Ti ₃ C ₂ and TiO ₂ Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Applied Materials & amp; Interfaces, 2016, 8, 6051-6060.	4.0	653
209	Antibacterial Activity of Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Nano, 2016, 10, 3674-3684.	7.3	904
210	Composites of TiO ₂ Nanoparticles Deposited on Ti ₃ C ₂ MXene Nanosheets with Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 2016, 163, A785-A791.	1.3	280
211	Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 2016, 8, 7085-7093.	2.8	325
212	Promising electron mobility and high thermal conductivity in Sc ₂ CT ₂ (T = F,) Tj ETQq1 1	0,784314 2.8	1 rgBT /Over 205
213	High-quality Porous Cobalt Monoxide Nanowires @ Ultrathin Manganese dioxide Sheets Core-Shell Nanowire Arrays on Ni Foam for High-Performance Supercapacitor. Electrochimica Acta, 2016, 194, 377-384.	2.6	53
214	A conductive polymer coated MoO ₃ anode enables an Al-ion capacitor with high performance. Journal of Materials Chemistry A, 2016, 4, 5115-5123.	5.2	120
215	Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors. ACS Nano, 2016, 10, 3977-3984.	7.3	99
216	Facile synthesis of layered MnWO4/reduced graphene oxide for supercapacitor application. Journal of Alloys and Compounds, 2016, 666, 15-22.	2.8	62
217	Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. Journal of Power Sources, 2016, 307, 190-198.	4.0	112
218	Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. Journal of Power Sources, 2016, 306, 510-515.	4.0	245

#	Article	IF	CITATIONS
219	Structural Transformation of MXene (V ₂ C, Cr ₂ C, and Ta ₂ C) with O Groups during Lithiation: A First-Principles Investigation. ACS Applied Materials & Interfaces, 2016, 8, 74-81.	4.0	159
220	Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability. ACS Applied Materials & Interfaces, 2016, 8, 1992-2000.	4.0	360
221	High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. Journal of Power Sources, 2016, 303, 347-353.	4.0	88
222	Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4296-4300.	4.0	188
223	Introduction and Literature Background. Springer Theses, 2017, , 1-37.	0.0	1
224	(111) TiO 2-x /Ti 3 C 2 : Synergy of active facets, interfacial charge transfer and Ti 3+ doping for enhance photocatalytic activity. Materials Research Bulletin, 2017, 89, 16-25.	2.7	190
225	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
226	Electronic structure and mechanical properties of layered compound YB2C2: A promising precursor for making two dimensional (2D) B2C2 nets. Journal of Materials Science and Technology, 2017, 33, 1044-1054.	5.6	25
227	Enhanced Liâ€ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination. Advanced Energy Materials, 2017, 7, 1601873.	10.2	212
228	Graphene-based Composites for Electrochemical Energy Storage. Springer Theses, 2017, , .	0.0	10
229	Ultrafast Molecular Stitching of Graphene Films at the Ethanol/Water Interface for High Volumetric Capacitance. Nano Letters, 2017, 17, 1365-1370.	4.5	42
230	Materials Design and System Construction for Conventional and New oncept Supercapacitors. Advanced Science, 2017, 4, 1600382.	5.6	365
231	Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano, 2017, 11, 2180-2186.	7.3	359
232	Alkylammonium Cation Intercalation into Ti ₃ C ₂ (MXene): Effects on Properties and Ion-Exchange Capacity Estimation. Chemistry of Materials, 2017, 29, 1099-1106.	3.2	188
233	Synthesis and tribological property of Ti3C2T X nanosheets. Journal of Materials Science, 2017, 52, 2200-2209.	1.7	101
234	Layered ternary M _{n+1} AX _n phases and their 2D derivative MXene: an overview from a thin-film perspective. Journal Physics D: Applied Physics, 2017, 50, 113001.	1.3	216
235	Iron Oxide Nanosheets and Pulse-Electrodeposited Ni–Co–S Nanoflake Arrays for High-Performance Charge Storage. ACS Applied Materials & Interfaces, 2017, 9, 6967-6978.	4.0	103
236	3D Porous Nanoarchitectures Derived from SnS/Sâ€Doped Graphene Hybrid Nanosheets for Flexible Allâ€Solidâ€State Supercapacitors. Small, 2017, 13, 1603494.	5.2	55

#	Article	IF	CITATIONS
237	2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2, .	23.3	5,261
238	New Carbon Monoliths for Supercapacitor Electrodes. Looking at the Double Layer. ChemElectroChem, 2017, 4, 1016-1025.	1.7	10
239	Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today, 2017, 7, 1-12.	2.3	20
240	A novel fluffy nanostructured 3D network of Ni(C7H4O5) for supercapacitors. Electrochimica Acta, 2017, 230, 141-150.	2.6	2
241	Batteryâ€ S upercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science, 2017, 4, 1600539.	5.6	1,223
242	Free-standing Ti ₃ C ₂ T _x electrode with ultrahigh volumetric capacitance. RSC Advances, 2017, 7, 11998-12005.	1.7	98
243	Atomic layer deposition of SnO 2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34, 249-256.	8.2	423
244	Titanium carbide sheet based high performance wire type solid state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5726-5736.	5.2	140
245	Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chemistry of Materials, 2017, 29, 1632-1640.	3.2	667
246	Superconductivity of monolayer Mo2C: The key role of functional groups. Journal of Chemical Physics, 2017, 146, 034705.	1.2	61
247	Two-Dimensional MXene with Controlled Interlayer Spacing for Electrochemical Energy Storage. ACS Nano, 2017, 11, 2393-2396.	7.3	178
248	Corrosion behavior of TiC–SiC composite ceramics in molten FLiNaK salt. Journal of the European Ceramic Society, 2017, 37, 2575-2582.	2.8	19
249	Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy, 2017, 34, 515-523.	8.2	56
250	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336.	11.1	1,021
251	Single-crystalline ultrathin 2D TiO2 nanosheets: A bridge towards superior photovoltaic devices. Materials Today Energy, 2017, 3, 32-39.	2.5	67
252	Controlling the conductivity of Ti ₃ C ₂ MXenes by inductively coupled oxygen and hydrogen plasma treatment and humidity. RSC Advances, 2017, 7, 13097-13103.	1.7	79
253	Binder-free Ti 3 C 2 T x MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chemical Engineering Journal, 2017, 317, 1026-1036.	6.6	202
254	Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance. Chemistry of Materials, 2017, 29, 2731-2738.	3.2	170

#	Article	IF	CITATIONS
255	Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration. ACS Nano, 2017, 11, 2171-2179.	7.3	121
256	Rendering Ti ₃ C ₂ T <i>_x</i> (MXene) monolayers visible. Materials Research Letters, 2017, 5, 322-328.	4.1	41
257	Large-Area Highly Conductive Transparent Two-Dimensional Ti ₂ CT _{<i>x</i>} Film. Journal of Physical Chemistry Letters, 2017, 8, 859-865.	2.1	118
258	Synergetic effects of K ⁺ and Mg ²⁺ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti ₃ C ₂ MXene. Faraday Discussions, 2017, 199, 393-403.	1.6	55
259	Preparation of High-Purity V ₂ C MXene and Electrochemical Properties as Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A709-A713.	1.3	282
260	General synthesis of zeolitic imidazolate framework-derived planar-N-doped porous carbon nanosheets for efficient oxygen reduction. Energy Storage Materials, 2017, 7, 181-188.	9.5	31
261	Photoluminescent Ti ₃ C ₂ MXene Quantum Dots for Multicolor Cellular Imaging. Advanced Materials, 2017, 29, 1604847.	11.1	692
262	Structures and Mechanical and Electronic Properties of the Ti2CO2 MXene Incorporated with Neighboring Elements (Sc, V, B and N). Journal of Electronic Materials, 2017, 46, 2460-2466.	1.0	68
263	Controllable magnitude and anisotropy of the electrical conductivity of Hf ₃ C ₂ O ₂ MXene. Journal of Physics Condensed Matter, 2017, 29, 165701.	0.7	35
264	Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Advanced Energy Materials, 2017, 7, 1602725.	10.2	514
265	Predicting stable phase monolayer Mo ₂ C (MXene), a superconductor with chemically-tunable critical temperature. Journal of Materials Chemistry C, 2017, 5, 3438-3444.	2.7	88
266	Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9443-9464.	5.2	278
267	Fabrication and thermal stability of NH 4 HF 2 -etched Ti 3 C 2 MXene. Ceramics International, 2017, 43, 6322-6328.	2.3	208
268	High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 2017, 7, 11000-11011.	1.7	166
270	Electronic properties and applications of MXenes: a theoretical review. Journal of Materials Chemistry C, 2017, 5, 2488-2503.	2.7	759
271	Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. Journal of Materials Chemistry A, 2017, 5, 5260-5265.	5.2	142
272	Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Advances, 2017, 7, 20494-20501.	1.7	242
273	Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 10098-10105.	1.1	15

	CITATION REPORT		
Article		IF	CITATIONS
Continuous fabrication of the graphene-confined polypyrrole film for cycling stable su Journal of Materials Chemistry A, 2017, 5, 8255-8260.	percapacitors.	5.2	26
Selective Calixareneâ€Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres Chemistry - A European Journal, 2017, 23, 8128-8133.	, and Scrolls.	1.7	30
Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybric Lithium Storage and Hydrogen Evolution Capability. Advanced Materials, 2017, 29, 16	ds with Efficient 507017.	11.1	583

276	Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Advanced Materials, 2017, 29, 1607017.	11.1	583
277	Post-infiltration of a multilayered carbon nanofilm with MnO 2 at low loadings for improved capacitive properties. Journal of Power Sources, 2017, 354, 108-115.	4.0	3
278	Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM. Small, 2017, 13, 1700051.	5.2	41
279	In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes. ACS Energy Letters, 2017, 2, 1407-1415.	8.8	56
280	Facile preparation of in situ coated Ti ₃ C ₂ T _x /Ni _{0.5} Zn _{0.5} Fe ₂ O _{4< and their electromagnetic performance. RSC Advances, 2017, 7, 24698-24708.}	:/s ub >com	np æsib es
281	Preparation of Ti 3 C 2 and Ti 2 C MXenes by fluoride salts etching and methane adsorptive properties. Applied Surface Science, 2017, 416, 781-789.	3.1	407
282	Two-dimensional MXenes for energy storage and conversion applications. Materials Today Energy, 2017, 5, 22-36.	2.5	128
283	Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chemistry of Materials, 2017, 29, 4848-4856.	3.2	1,120
284	Strain engineering of electronic structures and photocatalytic responses of MXenes functionalized by oxygen. Physical Chemistry Chemical Physics, 2017, 19, 14738-14744.	1.3	60
285	Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017, 16, 814-818.	13.3	142
286	A hierarchical NiO/NiMn-layered double hydroxide nanosheet array on Ni foam for high performance supercapacitors. Dalton Transactions, 2017, 46, 7388-7391.	1.6	88
287	Ti ₃ C ₂ MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. ACS Nano, 2017, 11, 4792-4800.	7.3	544
288	Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles. Nano Energy, 2017, 36, 349-355.	8.2	45
289	Phase transition and in situ construction of lateral heterostructure of 2D superconducting α/β Mo ₂ C with sharp interface by electron beam irradiation. Nanoscale, 2017, 9, 7501-7507.	2.8	28
290	Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb ₂ O ₅ . Journal of the American Chemical Society, 2017, 139, 7071-7081.	6.6	171
291	Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 2017, 8, 14949.	5.8	525

#

#	Article	IF	CITATIONS
292	Template-free 3D titanium carbide (Ti ₃ C ₂ T _x) MXene particles crumpled by capillary forces. Chemical Communications, 2017, 53, 400-403.	2.2	271
293	Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle. Renewable and Sustainable Energy Reviews, 2017, 69, 652-663.	8.2	47
294	Contribution of Cations and Anions of Aqueous Electrolytes to the Charge Stored at the Electric Electrolyte/Electrode Interface of Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 12053-12062.	1.5	35
295	3D ordered porous Mo _x C (x = 1 or 2) for advanced hydrogen evolution and Li storage. Nanoscale, 2017, 9, 7260-7267.	2.8	58
296	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	5.2	245
297	Achieving high-rate capacitance of multi-layer titanium carbide (MXene) by liquid-phase exfoliation through Li-intercalation. Electrochemistry Communications, 2017, 81, 48-51.	2.3	33
298	Ti ₂ CO ₂ MXene: a highly active and selective photocatalyst for CO ₂ reduction. Journal of Materials Chemistry A, 2017, 5, 12899-12903.	5.2	221
299	Hydrogenated Core–Shell MAX@K ₂ Ti ₈ O ₁₇ Pseudocapacitance with Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Energy Materials, 2017, 7, 1700700.	10.2	54
300	Prediction of T―and Hâ€Phase Twoâ€Dimensional Transitionâ€Metal Carbides/Nitrides and Their Semiconducting–Metallic Phase Transition. ChemPhysChem, 2017, 18, 1897-1902.	1.0	30
301	RuO ₂ -coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17293-17301.	5.2	132
302	A quasi-solid-state Li-ion capacitor with high energy density based on Li ₃ VO ₄ /carbon nanofibers and electrochemically-exfoliated graphene sheets. Journal of Materials Chemistry A, 2017, 5, 14922-14929.	5.2	86
303	Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides. Advanced Materials, 2017, 29, 1700364.	11.1	61
304	Nitrogen-doped Ti 3 C 2 T x MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38, 368-376.	8.2	528
305	One-step hydrothermal synthesis of a TiO2-Ti3C2Tx nanocomposite with small sized TiO2 nanoparticles. Ceramics International, 2017, 43, 11065-11070.	2.3	85
306	A simple electrochemical route to metallic phase trilayer MoS ₂ : evaluation as electrocatalysts and supercapacitors. Journal of Materials Chemistry A, 2017, 5, 11316-11330.	5.2	119
307	Preparation and characterization of polymerâ€īi ₃ C ₂ T _{<i>x</i>} (MXene) composite nanofibers produced via electrospinning. Journal of Applied Polymer Science, 2017, 134, 45295.	1.3	114
308	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4, 1700107.	5.6	361
309	Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today, 2017, 8 104-115	2.3	139

#	Article	IF	CITATIONS
310	Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. Journal of Power Sources, 2017, 359, 332-339.	4.0	152
311	Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nature Communications, 2017, 8, 15717.	5.8	263
312	High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors. ACS Applied Materials & amp; Interfaces, 2017, 9, 21763-21772.	4.0	109
313	Threeâ€Dimensional Binderâ€Free Nanoarchitectures for Advanced Pseudocapacitors. Advanced Materials, 2017, 29, .	11.1	97
314	Conversion of MAX phase single crystals in highly porous carbides by high temperature chlorination. Ceramics International, 2017, 43, 8246-8254.	2.3	7
315	Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries. Electrochimica Acta, 2017, 235, 690-699.	2.6	186
316	High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors. ACS Nano, 2017, 11, 4009-4016.	7.3	96
317	Ferroelectricity, Antiferroelectricity, and Ultrathin 2D Electron/Hole Gas in Multifunctional Monolayer MXene. Nano Letters, 2017, 17, 3290-3296.	4.5	184
318	Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano, 2017, 11, 3841-3850.	7.3	370
319	Highly enhanced thermoelectric performance of WS ₂ nanosheets upon embedding PEDOT:PSS. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 997-1004.	2.4	34
320	A hierarchical α-MoC _{1â^'x} hybrid nanostructure for lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 8125-8132.	5.2	34
321	Titanium carbide (Ti3C2Tx) MXene: A novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon, 2017, 118, 50-57.	5.4	155
322	Structural formation and charge storage mechanisms for intercalated two-dimensional carbides MXenes. Physical Chemistry Chemical Physics, 2017, 19, 9509-9518.	1.3	19
323	Transparent, conductive solution processed spincast 2D Ti ₂ CT <i>_x</i> (MXene) films. Materials Research Letters, 2017, 5, 391-398.	4.1	127
324	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
325	Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. Journal of Colloid and Interface Science, 2017, 499, 17-32.	5.0	78
326	Rediscovering the Crystal Chemistry of Borides. Advanced Materials, 2017, 29, 1604506.	11.1	260
327	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Letters, 2017, 17, 384-391.	4.5	953

#	Article	IF	CITATIONS
328	Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes. Journal of Physical Chemistry Letters, 2017, 8, 422-428.	2.1	165
329	Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochimica Acta, 2017, 225, 416-424.	2.6	120
330	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	5.8	1,496
331	Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. Journal of Materials Chemistry A, 2017, 5, 2897-2903.	5.2	101
332	Interlinked Porous Carbon Nanoflakes Derived from Hydrolyzate Residue during Cellulosic Bioethanol Production for Ultrahigh-Rate Supercapacitors in Nonaqueous Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 1297-1305.	3.2	45
333	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	7.3	700
334	Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. Journal of Materials Chemistry A, 2017, 5, 3039-3068.	5.2	625
335	First-principles calculations on the structural, elastic and electronic properties of a class of ternary carbides: A survey investigation. Materials and Design, 2017, 116, 331-339.	3.3	15
336	Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Efficient Copper Removal from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 11481-11488.	3.2	319
337	Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance. Electrochimica Acta, 2017, 254, 308-319.	2.6	69
338	Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC Advances, 2017, 7, 45968-45977.	1.7	76
339	Nanofabrication strategies for advanced electrode materials. Nanofabrication, 2017, 3, 1-15.	1.1	4
340	Performance evaluation of asymmetric supercapacitor based on Ti3C2Tx-paper. Journal of Alloys and Compounds, 2017, 729, 1165-1171.	2.8	26
341	Recent advances in ternary two-dimensional materials: synthesis, properties and applications. Journal of Materials Chemistry A, 2017, 5, 22855-22876.	5.2	137
342	MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22113-22119.	5.2	347
343	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352, 306-327.	9.5	484
344	Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2017, 27, 1702807.	7.8	620
345	The facile synthesis of layered Ti ₂ C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 2017, 46, 14880-14887.	1.6	68

#	Article	IF	CITATIONS
346	Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Applied Materials & Interfaces, 2017, 9, 37184-37190.	4.0	561
347	A new etching environment (FeF ₃ /HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs.Âwater. Journal of Materials Chemistry A, 2017, 5, 22012-22023.	5.2	227
348	Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors. ACS Nano, 2017, 11, 10077-10087.	7.3	85
349	A binder-free NiCo ₂ O ₄ nanosheet/3D elastic N-doped hollow carbon nanotube sponge electrode with high volumetric and gravimetric capacitances for asymmetric supercapacitors. Nanoscale, 2017, 9, 16826-16835.	2.8	73
350	Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water. ACS Nano, 2017, 11, 11118-11126.	7.3	183
351	Theoretical prediction of MXene-like structured Ti ₃ C ₄ as a high capacity electrode material for Na ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 29106-29113.	1.3	51
352	Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 2017, 53, 12084-12087.	2.2	198
353	Ni foam supported quasi-core-shell structure of ultrathin Ti 3 C 2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. Journal of Power Sources, 2017, 369, 78-86.	4.0	65
354	Two-Dimensional Titanium Nitride (Ti ₂ N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate. ACS Nano, 2017, 11, 8892-8900.	7.3	500
355	Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9, 17859-17864.	2.8	299
356	A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Journal of the American Chemical Society, 2017, 139, 16235-16247.	6.6	1,026
357	Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>} MXene). Chemistry of Materials, 2017, 29, 7633-7644.	3.2	3,129
358	Allâ€Solidâ€State Flexible Fiberâ€Based MXene Supercapacitors. Advanced Materials Technologies, 2017, 2, 1700143.	3.0	156
359	2D metal carbides (MXenes) in fibers. Materials Today, 2017, 20, 481-482.	8.3	24
360	Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Science Advances, 2017, 3, e1700642.	4.7	156
361	Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ionics, 2017, 310, 100-111.	1.3	36
362	Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. Chemistry of Materials, 2017, 29, 8637-8652.	3.2	285
363	Recent developed different structural nanomaterials and their performance for supercapacitor application. Applied Materials Today, 2017, 9, 300-313.	2.3	62

		CITATION REPORT	
#	Article	IF	CITATIONS
364	MXene-reinforced alumina ceramic composites. Ceramics International, 2017, 43, 17206-17210.	2.3	49
365	2D‣ayered Carbon/TiO ₂ Hybrids Derived from Ti ₃ C ₂ <i>MXenes</i> for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Advanced Materials Interfaces, 2017, 4, 1700577.	1.9	120
366	Understanding of Electrochemical Mechanisms for CO ₂ Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). ACS Nano, 2017, 11, 10825-10833.	7.3	359
367	Mn ₃ O ₄ nanoparticles on layer-structured Ti ₃ C ₂ MXene towards the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 20818-20823.	5.2	226
368	Direct Synthesis of Largeâ€Area 2D Mo ₂ C on In Situ Grown Graphene. Advanced Materials, 2017, 29, 1700072.	11.1	305
369	Electrophoretic Deposition of Two-Dimensional Titanium Carbide (MXene) Thick Films. Journal of the Electrochemical Society, 2017, 164, D573-D580.	1.3	63
370	Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Naâ€ l on Storage. Advanced Materials, 2017, 29, 1702410.	11.1	757
371	MXene–Silicon Van Der Waals Heterostructures for Highâ€Speed Selfâ€Driven Photodetectors. Advanced Electronic Materials, 2017, 3, 1700165.	2.6	162
372	Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. Journal of Materials Chemistry A, 2017, 5, 17442-17451.	5.2	211
373	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 2017, 29, 1702678.	11.1	756
374	Synthesis of NaV6O15 nanorods via thermal oxidation of sodium-intercalated 2D V2CTx and their electrochemical properties as anode for lithium-ion batteries. Electrochimica Acta, 2017, 248, 178-187.	2.6	36
375	Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive performance. Materials Letters, 2017, 209, 122-125.	1.3	38
376	Flexible Harsh environment micro supercapacitors using direct-write 2D transition metal carbides. , 2017, , .		1
377	A MXene based all-solid-state microsupercapacitor with 3D interdigital electrode. , 2017, , .		8
378	N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance. Journal of Power Sources, 2017, 363, 356-364.	4.0	45
379	Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40, 1-8.	8.2	549
380	A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Scientific Reports, 2017, 7, 7362.	1.6	84
381	A Novel Phaseâ€Transformation Activation Process toward Ni–Mn–O Nanoprism Arrays for 2.4 V Ultrahighâ€Voltage Aqueous Supercapacitors. Advanced Materials, 2017, 29, 1703463.	11.1	238

#	Article	IF	CITATIONS
382	2D Nanosheet Paint from Solvent-Exfoliated Bi ₂ Te ₃ Ink. Chemistry of Materials, 2017, 29, 7390-7400.	3.2	16
383	Stable and metallic two-dimensional TaC ₂ as an anode material for lithium-ion battery. Journal of Materials Chemistry A, 2017, 5, 18698-18706.	5.2	75
384	Highly Efficiently Delaminated Single-Layered MXene Nanosheets with Large Lateral Size. Langmuir, 2017, 33, 9000-9006.	1.6	181
385	Chemical Origin of Termination-Functionalized MXenes: Ti ₃ C ₂ <i>T</i> ₂ as a Case Study. Journal of Physical Chemistry C, 2017, 121, 19254-19261.	1.5	194
386	Cytocompatibility of Ti ₃ AlC ₂ , Ti ₃ SiC ₂ , and Ti ₂ AlN: <i>In Vitro</i> Tests and First-Principles Calculations. ACS Biomaterials Science and Engineering, 2017, 3, 2293-2301.	2.6	75
387	The {110} reflection in Xâ€ray diffraction of <scp>MX</scp> ene films: Misinterpretation and measurement via nonâ€standard orientation. Journal of the American Ceramic Society, 2017, 100, 5395-5399.	1.9	49
388	Molecularly Stacking Manganese Dioxide/Titanium Carbide Sheets to Produce Highly Flexible and Conductive Film Electrodes with Improved Pseudocapacitive Performances. Advanced Energy Materials, 2017, 7, 1602834.	10.2	144
389	Designing flexible 2D transition metal carbides with strain-controllable lithium storage. Proceedings of the United States of America, 2017, 114, E11082-E11091.	3.3	51
390	Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochimica Acta, 2017, 258, 979-987.	2.6	85
391	Emergence of ferrimagnetic half-metallicity in two-dimensional MXene Mo3N2F2. Applied Physics Letters, 2017, 111, .	1.5	30
392	Carbon vacancies in Ti ₂ CT ₂ MXenes: defects or a new opportunity?. Physical Chemistry Chemical Physics, 2017, 19, 31773-31780.	1.3	81
393	Hierarchical porous carbon with network morphology derived from natural leaf for superior aqueous symmetrical supercapacitors. Electrochimica Acta, 2017, 258, 504-511.	2.6	60
394	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
395	MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9, 18604-18608.	2.8	119
396	In–situ growth of carbon nanotubes on two–dimensional titanium carbide for enhanced electrochemical performance. Electrochimica Acta, 2017, 258, 291-301.	2.6	43
397	Tension-Tailored Electronic and Magnetic Switching of 2D Ti ₂ NO ₂ . Journal of Physical Chemistry C, 2017, 121, 25729-25735.	1.5	33
398	Versatile Cutting Method for Producing Fluorescent Ultrasmall MXene Sheets. ACS Nano, 2017, 11, 11559-11565.	7.3	136
399	Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. Journal of Materials Chemistry A, 2017, 5, 24076-24082.	5.2	191

#	Article	IF	CITATIONS
400	2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 2017, 9, 17722-17730.	2.8	327
401	MXene: an emerging two-dimensional material for future energy conversion and storage applications. Journal of Materials Chemistry A, 2017, 5, 24564-24579.	5.2	450
402	Carrier transport in layered nanolaminated carbides. Journal of Applied Physics, 2017, 122, 155101.	1.1	1
403	<i>In situ</i> formation of a carbon fiber@Ni ₃ S ₂ non-woven electrode with ultrahigh areal and volumetric capacitance. Journal of Materials Chemistry A, 2017, 5, 23476-23480.	5.2	19
404	Vanishing Schottky Barriers in Blue Phosphorene/MXene Heterojunctions. Journal of Physical Chemistry C, 2017, 121, 25164-25171.	1.5	60
405	Surface Modified Ti ₃ C ₂ MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 40077-40086.	4.0	491
406	Electromagnetic interference shielding effectiveness of titanium carbide sheets. Materials Letters, 2017, 205, 261-263.	1.3	63
407	Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. Small, 2017, 13, 1701026.	5.2	113
408	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2, .	19.8	1,626
409	Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16689-16701.	5.2	84
410	An easily manipulated protocol for patterning ofÂMXenes on paper for planar micro-supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19639-19648.	5.2	118
411	Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes. Chemistry of Materials, 2017, 29, 6472-6479.	3.2	270
412	Nitrogen and Sulfur Co-Doped 2D Titanium Carbides for Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 2017, 164, A1939-A1945.	1.3	61
413	Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceramics International, 2017, 43, 13119-13126.	2.3	72
414	Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries. Science China Materials, 2017, 60, 304-314.	3.5	17
415	Calorimetric Study of Alkali Metal Ion (K ⁺ , Na ⁺ , Li ⁺) Exchange in a Clay-Like MXene. Journal of Physical Chemistry C, 2017, 121, 15145-15153.	1.5	31
416	Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Advanced Functional Materials, 2017, 27, 1701264.	7.8	1,354
417	Flexible Allâ€Solidâ€State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene. Advanced Energy Materials, 2017, 7, 1601847.	10.2	379

#	Article	IF	CITATIONS
418	Stackedâ€Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance. Advanced Materials, 2017, 29, 1602960.	11.1	173
419	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98
420	Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: Enhanced exfoliation and delamination. Journal of Alloys and Compounds, 2017, 695, 818-826.	2.8	300
421	Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Materials and Design, 2017, 114, 161-166.	3.3	351
422	Singleâ€Crystalline, Metallic TiC Nanowires for Highly Robust and Wideâ€Temperature Electrochemical Energy Storage. Small, 2017, 13, 1602742.	5.2	89
423	Room Temperature Oxidation of Ti ₃ C ₂ MXene for Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A3933-A3942.	1.3	155
424	Investigation of Enhanced Leaching of Lithium from α-Spodumene Using Hydrofluoric and Sulfuric Acid. Minerals (Basel, Switzerland), 2017, 7, 205.	0.8	46
425	First-Principles Study of Vacancies in Ti3SiC2 and Ti3AlC2. Materials, 2017, 10, 103.	1.3	29
426	Characteristics of Ti3C2X–Chitosan Films with Enhanced Mechanical Properties. Frontiers in Energy Research, 2017, 4, .	1.2	40
427	2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE, 2017, 12, e0183705.	1.1	92
428	A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Research, 2018, 11, 4149-4168.	5.8	112
429	Understanding the MXene Pseudocapacitance. Journal of Physical Chemistry Letters, 2018, 9, 1223-1228.	2.1	231
430	Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes. ACS Nano, 2018, 12, 2685-2694.	7.3	288
431	Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochimica Acta, 2018, 268, 503-511.	2.6	73
432	First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. Journal of Materials Science and Technology, 2018, 34, 2022-2026.	5.6	127
433	MXene as a Charge Storage Host. Accounts of Chemical Research, 2018, 51, 591-599.	7.6	309
434	Mechanistic Quantification of Thermodynamic Stability and Mechanical Strength for Two-Dimensional Transition-Metal Carbides. Journal of Physical Chemistry C, 2018, 122, 4710-4722.	1.5	28
435	Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. Journal of Materials Chemistry A, 2018, 6, 4617-4622.	5.2	103

#	Article	IF	CITATIONS
436	Enhanced Dielectric Constant, Ultralow Dielectric Loss, and High-Strength Imide-Functionalized Graphene Oxide/Hyperbranched Polyimide Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 6555-6565.	1.5	19
437	Ecotoxicological assessment of Ti ₃ C ₂ T _x (MXene) using a zebrafish embryo model. Environmental Science: Nano, 2018, 5, 1002-1011.	2.2	107
438	Oxide Thinâ€Film Electronics using Allâ€MXene Electrical Contacts. Advanced Materials, 2018, 30, e1706656.	11.1	165
439	Ultrathin electrochemically driven conducting polymer actuators: fabrication and electrochemomechanical characterization. Electrochimica Acta, 2018, 265, 670-680.	2.6	23
440	Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Materials Research Letters, 2018, 6, 230-235.	4.1	115
441	Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 2018, 4, eaaq0118.	4.7	229
442	High-Voltage Symmetric Supercapacitor Based on 2D Titanium Carbide (MXene,) Tj ETQq0 0 0 rgBT /Overlock 10 Journal of the Electrochemical Society, 2018, 165, A501-A511.	Tf 50 507 1.3	' Td (Ti _{ 100}
443	2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 3541-3548.	2.9	99
444	MXene–2D layered electrode materials for energy storage. Progress in Natural Science: Materials International, 2018, 28, 133-147.	1.8	197
445	NiMoO ₄ nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1594-1601.	3.0	31
446	Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 753, 176-185.	2.8	40
447	Bipolar magnetic semiconductors among intermediate states during the conversion from Sc ₂ C(OH) ₂ to Sc ₂ CO ₂ MXene. Nanoscale, 2018, 10, 8763-8771.	2.8	27
448	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie, 2018, 130, 6223-6227.	1.6	459
449	An Inkjet Printed Ti ₃ C ₂ -GO Electrode for the Electrochemical Sensing of Hydrogen Peroxide. Journal of the Electrochemical Society, 2018, 165, B227-B231.	1.3	90
450	Functional inks and printing of two-dimensional materials. Chemical Society Reviews, 2018, 47, 3265-3300.	18.7	401
451	Laminated Hybrid Junction of Sulfurâ€Doped TiO ₂ and a Carbon Substrate Derived from Ti ₃ C ₂ MXenes: Toward Highly Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Science, 2018, 5, 1700870.	5.6	163
452	Scalable Waterâ€Based Production of Highly Conductive 2D Nanosheets with Ultrahigh Volumetric Capacitance and Rate Capability. Advanced Energy Materials, 2018, 8, 1800227.	10.2	26
453	Tailoring Structure, Composition, and Energy Storage Properties of MXenes from Selective Etching of Inâ€Plane, Chemically Ordered MAX Phases, Small, 2018, 14, e1703676	5.2	174

#	Article	IF	CITATIONS
454	A Highly Solventâ€6table Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small, 2018, 14, e1703873.	5.2	88
455	The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale, 2018, 10, 8859-8868.	2.8	118
456	Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Applied Catalysis B: Environmental, 2018, 233, 213-225.	10.8	297
457	Wâ€Based Atomic Laminates and Their 2D Derivative W _{1.33} C MXene with Vacancy Ordering. Advanced Materials, 2018, 30, e1706409.	11.1	240
458	Fluorineâ€Free Synthesis of Highâ€Purity Ti ₃ C ₂ T _{<i>x</i>} (T=OH, O) via Alkali Treatment. Angewandte Chemie - International Edition, 2018, 57, 6115-6119.	7.2	809
459	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018, 5, 1808-1816.	3.2	148
460	Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nature Communications, 2018, 9, 1375.	5.8	98
461	Highly Self-Healable 3D Microsupercapacitor with MXene–Graphene Composite Aerogel. ACS Nano, 2018, 12, 4224-4232.	7.3	564
462	Alkali-induced crumpling of Ti ₃ C ₂ T _x (MXene) to form 3D porous networks for sodium ion storage. Chemical Communications, 2018, 54, 4533-4536.	2.2	135
463	Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. Journal of Alloys and Compounds, 2018, 752, 32-39.	2.8	66
464	Native and graphene-coated flat and stepped surfaces of TiC. Carbon, 2018, 132, 656-666.	5.4	17
465	Role of the H-containing groups on the structural dynamics of Ti 3 C 2 T x MXene. Physica B: Condensed Matter, 2018, 537, 155-161.	1.3	17
466	Novel inorganic tin phosphate gel: multifunctional material. Chemical Communications, 2018, 54, 2682-2685.	2.2	12
467	Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale, 2018, 10, 5906-5913.	2.8	212
468	Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018, 21, 419-436.	8.3	335
469	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	10.2	226
470	Ultrasonic assisted etching and delaminating of Ti3C2 Mxene. Ceramics International, 2018, 44, 7084-7087.	2.3	41
471	Recent Advances in Layered Ti ₃ C ₂ T <i>_x</i> MXene for Electrochemical Energy Storage. Small, 2018, 14, e1703419.	5.2	729

#	Article	IF	CITATIONS
472	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338
473	2D Ultrathin MXeneâ€Based Drugâ€Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Advanced Healthcare Materials, 2018, 7, e1701394.	3.9	316
474	Synthesis of MoAlB Particulates and Their Porous Derivatives by Selective Deintercalation of Al from MoAlB. Minerals, Metals and Materials Series, 2018, , 535-541.	0.3	1
475	Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sensors and Actuators B: Chemical, 2018, 263, 400-407.	4.0	101
476	High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 2018, 6, 4271-4278.	5.2	198
477	A Strategy for Synthesis of Carbon Nitride Induced Chemically Doped 2D MXene for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1703173.	10.2	191
478	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
479	Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation. ACS Sustainable Chemistry and Engineering, 2018, 6, 3739-3747.	3.2	183
480	Enhanced Terahertz Shielding of MXenes with Nanoâ€Metamaterials. Advanced Optical Materials, 2018, 6, 1701076.	3.6	157
481	Achieving of Flexible, Freeâ€Standing, Ultracompact Delaminated Titanium Carbide Films for High Volumetric Performance and Heatâ€Resistant Symmetric Supercapacitors. Advanced Functional Materials, 2018, 28, 1705487.	7.8	105
482	Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Science China Materials, 2018, 61, 728-736.	3.5	203
483	High Volumetric Capacitance, Ultralong Life Supercapacitors Enabled by Waxberryâ€Đerived Hierarchical Porous Carbon Materials. Advanced Energy Materials, 2018, 8, 1702695.	10.2	204
484	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226
485	Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T O, F, OH) MXene film electrodes. Electrochimica Acta, 2018, 266, 86-93.	2.6	35
486	Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Materials Letters, 2018, 219, 45-50.	1.3	92
487	Clayâ€Inspired MXeneâ€Based Electrochemical Devices and Photoâ€Electrocatalyst: Stateâ€ofâ€theâ€Art Progresses and Challenges. Advanced Materials, 2018, 30, e1704561.	11.1	431
488	Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications. ACS Energy Letters, 2018, 3, 482-495.	8.8	618
489	All Pseudocapacitive MXeneâ€RuO ₂ Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1703043.	10.2	757

#	Article	IF	CITATIONS
490	Metallic Ti ₃ C ₂ T _{<i>x</i>} MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano, 2018, 12, 986-993.	7.3	1,153
491	Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochimica Acta, 2018, 261, 178-187.	2.6	136
492	Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. Journal of Physics and Chemistry of Solids, 2018, 115, 172-179.	1.9	72
493	Oneâ€Step Synthesis of Nb ₂ O ₅ /C/Nb ₂ C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. ChemSusChem, 2018, 11, 688-699.	3.6	315
494	Engineering graphene for high-performance supercapacitors: Enabling role of colloidal chemistry. Journal of Energy Chemistry, 2018, 27, 1-5.	7.1	21
495	Two-dimensional MXenes for energy storage. Chemical Engineering Journal, 2018, 338, 27-45.	6.6	252
496	Robust and conductive two-dimensional metalâ^'organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 2018, 3, 30-36.	19.8	786
497	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€ion Batteries. Angewandte Chemie, 2018, 130, 1864-1868.	1.6	67
498	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 1846-1850.	7.2	520
499	Two-Dimensional Ti3C2TX/CMK-5 nanocomposite as high performance anodes for lithium batteries. Journal of Alloys and Compounds, 2018, 738, 130-137.	2.8	22
500	Amorphous Ni-C nanoparticles with high electric conductivity and high specific capacitance for rechargeable charge storage. Materials Chemistry and Physics, 2018, 205, 494-501.	2.0	7
501	Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Applied Energy Materials, 2018, 1, 173-180.	2.5	304
502	Pressure-induced shear and interlayer expansion in Ti ₃ C ₂ MXene in the presence of water. Science Advances, 2018, 4, eaao6850.	4.7	75
503	Ti ₃ C ₂ MXene: a promising microwave absorbing material. RSC Advances, 2018, 8, 2398-2403.	1.7	189
504	Saturable Absorption in 2D Ti ₃ C ₂ MXene Thin Films for Passive Photonic Diodes. Advanced Materials, 2018, 30, 1705714.	11.1	332
505	Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane. RSC Advances, 2018, 8, 843-847.	1.7	22
506	Stamping of Flexible, Coplanar Microâ€6upercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506.	7.8	427
507	Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702485.	10.2	488

#	Article	IF	CITATIONS
508	3D assembly of Ti ₃ C ₂ -MXene directed by water/oil interfaces. Nanoscale, 2018, 10, 3621-3625.	2.8	98
509	3D Porous MXene (Ti ₃ C ₂)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 3634-3643.	4.0	288
510	Pseudocapacitive material with 928â€⁻mAhâ€⁻cmâ~'3 particle-level volumetric specific capacity enabled by continuous phase-transition. Chemical Engineering Journal, 2018, 338, 211-217.	6.6	22
511	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	8.2	54
512	Fabrication of Cu ₂ Oâ€based Materials for Lithiumâ€Ion Batteries. ChemSusChem, 2018, 11, 1581-1599.	3.6	62
513	Potentialâ€Dependent, Switchable Ion Selectivity in Aqueous Media Using Titanium Disulfide. ChemSusChem, 2018, 11, 2091-2100.	3.6	33
514	A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale, 2018, 10, 9642-9652.	2.8	177
515	Sprinkling MnFe ₂ O ₄ quantum dots on nitrogen-doped graphene sheets: the formation mechanism and application for high-performance supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 9997-10007.	5.2	59
516	MoS 2 Nanosheet/rGO Hybrid: An Electrode Material for High Performance Thin Film Supercapacitor. Materials Today: Proceedings, 2018, 5, 9771-9775.	0.9	32
517	Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 2018, 390, 208-214.	4.0	56
518	Selfâ€Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Advanced Materials, 2018, 30, e1707334.	11.1	467
519	Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chinese Chemical Letters, 2018, 29, 1313-1316.	4.8	45
520	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	8.2	74
521	2D Titanium Carbide/Reduced Graphene Oxide Heterostructures for Supercapacitor Applications. Batteries and Supercaps, 2018, 1, 33-38.	2.4	72
522	Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 7794-7806.	5.2	186
523	Moderate Bacterial Etching Allows Scalable and Clean Delamination of g-C ₃ N ₄ with Enriched Unpaired Electrons for Highly Improved Photocatalytic Water Disinfection. ACS Applied Materials & Interfaces, 2018, 10, 13796-13804.	4.0	75
524	3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano, 2018, 12, 3209-3216.	7.3	654
525	Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti ₃ C ₂ <i>T</i> _{<i>x</i>}	7.3	353

#	Article	IF	CITATIONS
526	Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes. Advanced Materials, 2018, 30, e1705713.	11.1	195
527	Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. ACS Nano, 2018, 12, 3733-3740.	7.3	208
528	Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale, 2018, 10, 6005-6013.	2.8	184
529	Electronic and vibrational properties or <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">V<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">C-based MXenes: From experiments to first-principles</mml:mi </mmi:math 	1.1	162
530	modeling. Physical Review 8, 2010, 97, . Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 2018, 271, 351-360.	2.6	144
531	TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 2018, 361, 255-266.	3.1	647
532	A single-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors. Journal of Power Sources, 2018, 386, 96-105.	4.0	34
533	MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. ACS Nano, 2018, 12, 3928-3937.	7.3	163
534	Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2018, 265, 652-659.	4.0	153
535	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132
536	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
537	Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703438.	10.2	97
538	Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Composites Science and Technology, 2018, 160, 50-59.	3.8	62
539	Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Storage Materials, 2018, 14, 90-99.	9.5	20
540	Dynamic charge acceptance and hydrogen evolution of a new MXene additive in advanced lead-acid batteries <i>via</i> a rapid screening three-electrode method. Chemical Communications, 2018, 54, 3456-3459.	2.2	14
541	Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 2018, 259, 752-761.	2.6	103
542	Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon, 2018, 127, 77-84.	5.4	70
543	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	9.5	82

#	Article	IF	CITATIONS
544	Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. Journal of Colloid and Interface Science, 2018, 511, 128-134.	5.0	107
545	On the organization and thermal behavior of functional groups on Ti ₃ C ₂ MXene surfaces in vacuum. 2D Materials, 2018, 5, 015002.	2.0	219
546	Asymmetric Flexible MXeneâ€Reduced Graphene Oxide Microâ€Supercapacitor. Advanced Electronic Materials, 2018, 4, 1700339.	2.6	324
547	First-principle study of the Nb+1C T2 systems as electrode materials for supercapacitors. Computational Materials Science, 2018, 143, 225-231.	1.4	26
548	Two-dimensional nanosheets as building blocks to construct three-dimensional structures for lithium storage. Journal of Energy Chemistry, 2018, 27, 128-145.	7.1	23
549	Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 2018, 30, 1703284.	11.1	422
550	Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors. Advanced Materials, 2018, 30, 1704754.	11.1	92
551	Molecular-Level Heterostructures Assembled from Titanium Carbide MXene and Ni–Co–Al Layered Double-Hydroxide Nanosheets for All-Solid-State Flexible Asymmetric High-Energy Supercapacitors. ACS Energy Letters, 2018, 3, 132-140.	8.8	253
552	Graphene-coupled Ti ₃ C ₂ MXenes-derived TiO ₂ mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. Journal of Materials Chemistry A, 2018, 6, 1017-1027.	5.2	133
553	Improved sodium-ion storage performance of Ti ₃ C ₂ T _x MXenes by sulfur doping. Journal of Materials Chemistry A, 2018, 6, 1234-1243.	5.2	158
554	Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548, 548-558.	4.1	295
555	Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Twoâ€Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 2018, 11, 1892-1899.	3.6	50
556	Ratiometric photoluminescence sensing based on Ti ₃ C ₂ MXene quantum dots as an intracellular pH sensor. Nanoscale, 2018, 10, 1111-1118.	2.8	241
557	Highly Dispersed Bimetallic Nanoparticles Supported on Titanium Carbides for Remarkable Hydrogen Release from Hydrous Hydrazine. ChemCatChem, 2018, 10, 2200-2204.	1.8	22
558	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	7.1	179
559	MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. Journal of Energy Chemistry, 2018, 27, 161-166.	7.1	122
560	Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. Journal of Hazardous Materials, 2018, 344, 811-818.	6.5	159
561	Highâ€Performance Ultrathin Flexible Solid‣tate Supercapacitors Based on Solution Processable Mo _{1.33} C MXene and PEDOT:PSS. Advanced Functional Materials, 2018, 28, 1703808.	7.8	196

#	Article	IF	CITATIONS
562	Hydrothermal synthesis of stable metallic 1T phase WS ₂ nanosheets for thermoelectric application. Nanotechnology, 2018, 29, 025705.	1.3	50
563	Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced Science, 2018, 5, 1700322.	5.6	1,043
564	Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells. Nanotechnology, 2018, 29, 035403.	1.3	46
565	A Redâ€Phosphorousâ€Assisted Ballâ€Milling Synthesis of Few‣ayered Ti ₃ C ₂ T _{<i>x</i>} (MXene) Nanodot Composite. ChemNanoMat, 2018, 4, 56-60.	1.5	64
566	MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018, 27, 73-85.	7.1	548
567	In Situ High-Pressure X-ray Diffraction and Raman Spectroscopy Study of Ti3C2Tx MXene. Nanoscale Research Letters, 2018, 13, 343.	3.1	67
568	Topochemical synthesis of 2D materials. Chemical Society Reviews, 2018, 47, 8744-8765.	18.7	232
569	Ni-modified Ti ₃ C ₂ MXene with enhanced microwave absorbing ability. Materials Chemistry Frontiers, 2018, 2, 2320-2326.	3.2	87
570	Antibacterial properties of electrospun Ti ₃ C ₂ T _z (MXene)/chitosan nanofibers. RSC Advances, 2018, 8, 35386-35394.	1.7	149
571	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	5.2	250
572	A synergetic stabilization and strengthening strategy for two-dimensional ordered hybrid transition metal carbides. Physical Chemistry Chemical Physics, 2018, 20, 29684-29692.	1.3	9
573	Anchoring ultrafine RhNi nanoparticles on titanium carbides/manganese oxide as an efficient catalyst for hydrogen generation from hydrous hydrazine. New Journal of Chemistry, 2018, 42, 20001-20006.	1.4	13
574	Polyoxometalate-coupled MXene nanohybrid <i>via</i> poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale, 2018, 10, 20043-20052.	2.8	73
575	3D Ti ₃ C ₂ T _x aerogels with enhanced surface area for high performance supercapacitors. Nanoscale, 2018, 10, 20828-20835.	2.8	105
576	Self-supporting Ti ₃ C ₂ T _x foam/S cathodes with high sulfur loading for high-energy-density lithium–sulfur batteries. Nanoscale, 2018, 10, 22954-22962.	2.8	41
577	Ti ₃ C ₂ MXene as an excellent anode material for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2018, 6, 20887-20895.	5.2	58
578	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	5.2	37
579	Carbon-intercalated Ti ₃ C ₂ T _x MXene for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 23513-23520.	5.2	119

#	Article	IF	CITATIONS
580	Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti ₃ C ₂ (MXene) epitaxial thin film. RSC Advances, 2018, 8, 36785-36790.	1.7	49
581	Polypyrrole–MXene coated textile-based flexible energy storage device. RSC Advances, 2018, 8, 39742-39748.	1.7	90
582	Ti ₃ C ₂ T _x (TÂ= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N ₂ to NH ₃ . Journal of Materials Chemistry A, 2018, 6, 24031-24035.	5.2	231
583	Methane adsorption and methanol desorption of copper modified boron silicate. RSC Advances, 2018, 8, 36369-36374.	1.7	3
584	A Vacuum-Free Method for Producing Cubic Titanium Carbide in the Plasma of Low-Voltage Direct-Current Arc Discharge. Technical Physics Letters, 2018, 44, 1192-1194.	0.2	2
585	Synthesis of Two-Dimensional (2-D) Polymer in the Realm of Liquid–Liquid Interfaces. , 2018, , 453-471.		3
586	Terahertz Spectroscopy of 2D Materials. , 2018, , .		1
587	Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries. ACS Applied Nano Materials, 2018, 1, 6854-6863.	2.4	71
588	Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 28113-28122.	1.5	104
589	First-Principles Studies of Adsorptive Remediation of Water and Air Pollutants Using Two-Dimensional MXene Materials. Materials, 2018, 11, 2281.	1.3	20
590	Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Advanced Materials, 2018, 30, e1804779.	11.1	850
591	A Flexible Supercapacitor with High True Performance. IScience, 2018, 9, 138-148.	1.9	17
592	Effect of Edge Charges on Stability and Aggregation of Ti ₃ C ₂ T <i>_z</i> MXene Colloidal Suspensions. Journal of Physical Chemistry C, 2018, 122, 27745-27753.	1.5	150
593	Humidity Exposure Enhances Microscopic Mobility in a Room-Temperature Ionic Liquid in MXene. Journal of Physical Chemistry C, 2018, 122, 27561-27566.	1.5	20
594	A Conductive and Highly Deformable Allâ€Pseudocapacitive Composite Paper as Supercapacitor Electrode with Improved Areal and Volumetric Capacitance. Small, 2018, 14, e1803786.	5.2	158
595	Recent Progress of <scp>MX</scp> eneâ€Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy and Environmental Materials, 2018, 1, 183-195.	7.3	135
596	A Facile Method to Construct MXene/CuO Nanocomposite with Enhanced Catalytic Activity of CuO on Thermal Decomposition of Ammonium Perchlorate. Materials, 2018, 11, 2457.	1.3	24
597	Aqueous Stable Ti ₃ C ₂ MXene Membrane with Fast and Photoswitchable Nanofluidic Transport. ACS Nano, 2018, 12, 12464-12471.	7.3	165

#	Article	IF	CITATIONS
598	Fluorideâ€Free Synthesis of Twoâ€Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angewandte Chemie, 2018, 130, 15717-15721.	1.6	241
599	Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. Small, 2018, 14, e1802479.	5.2	418
600	MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS Nano, 2018, 12, 10518-10528.	7.3	174
601	Tip-welded ferric-cobalt sulfide hollow nanoneedles on highly conductive carbon fibers for advanced asymmetric supercapacitors. Electrochimica Acta, 2018, 292, 157-167.	2.6	10
602	Architecturally Robust Graphene-Encapsulated MXene Ti ₂ CT _{<i>x</i>} @Polyaniline Composite for High-Performance Pouch-Type Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 34212-34221.	4.0	168
603	2D titanium carbide (MXene) for wireless communication. Science Advances, 2018, 4, eaau0920.	4.7	381
604	Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy, 2018, 53, 841-848.	8.2	36
605	2D Metal Carbides and Nitrides (MXenes) as Highâ€Performance Electrode Materials for Lithiumâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1801897.	10.2	341
606	Assembly Multifunctional Three-Dimensional Carbon Networks by Controlling Intermolecular Forces. ACS Applied Materials & Interfaces, 2018, 10, 36284-36289.	4.0	7
607	A Semimetal-Like Molybdenum Carbide Quantum Dots Photoacoustic Imaging and Photothermal Agent with High Photothermal Conversion Efficiency. Materials, 2018, 11, 1776.	1.3	32
608	Fluorideâ€Free Synthesis of Twoâ€Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angewandte Chemie - International Edition, 2018, 57, 15491-15495.	7.2	393
609	Flexible Nitrogenâ€Doped 2D Titanium Carbides (MXene) Films Constructed by an Ex Situ Solvothermal Method with Extraordinary Volumetric Capacitance. Advanced Energy Materials, 2018, 8, 1802087.	10.2	205
610	Fluorescent Ti ₃ C ₂ MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale, 2018, 10, 19579-19585.	2.8	104
611	Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20869-20877.	5.2	133
612	One-pot synthesis of 2D Ti3C2/Ni2CO3(OH)2 composite as electrode material with superior capacity and high stability for hybrid supercapacitor. Electrochimica Acta, 2018, 292, 168-179.	2.6	35
613	Transition metal modification and carbon vacancy promoted Cr ₂ CO ₂ (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 20956-20965.	5.2	74
614	Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Advanced Functional Materials, 2018, 28, 1804560.	7.8	433
615	Selfâ€Assembly of Largeâ€Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis. Advanced Materials, 2018, 30, e1805188.	11.1	84

#		IF	CITATIONS
" 616	A fast approach to the synthesis of MO/CNT/Fe hybrid nanostructures built on MXene for enhanced Li-ion uptake. Ceramics International, 2018, 44, 22456-22461.	2.3	6
617	Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Composites Part A: Applied Science and Manufacturing, 2018, 115, 371-382.	3.8	271
618	MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2018, 830-831, 1-6.	1.9	43
619	Chemical Stability of Ti3C2 MXene with Al in the Temperature Range 500–700 °C. Materials, 2018, 11, 1979.	1.3	32
620	Thermally Reduced Graphene/MXene Film for Enhanced Liâ€ion Storage. Chemistry - A European Journal, 2018, 24, 18556-18563.	1.7	65
621	Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Composites Science and Technology, 2018, 168, 404-411.	3.8	97
622	Interconnecting the Promising MXenes via Ag Nanowire in Epoxy Nanocomposites for High-Performance Thermal Management Applications. , 2018, , .		3
623	Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications, 2018, 96, 103-107.	2.3	191
624	Heterostructured dâ€Ti ₃ C ₂ /TiO _{2/} gâ€C ₃ N ₄ Nanocomposites with Enhanced Visibleâ€Light Photocatalytic Hydrogen Production Activity. ChemSusChem, 2018, 11, 4226-4236	3.6	120
625	Intertwined Titanium Carbide MXene within a 3 D Tangled Polypyrrole Nanowires Matrix for Enhanced Supercapacitor Performances. Chemistry - A European Journal, 2019, 25, 1037-1043.	1.7	74
626	MXeneâ€Based Nonlinear Optical Information Converter for Allâ€Optical Modulator and Switcher. Laser and Photonics Reviews, 2018, 12, 1800215.	4.4	117
627	The Synthesis Process and Thermal Stability of V2C MXene. Materials, 2018, 11, 2112.	1.3	152
628	Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nature Communications, 2018, 9, 4573.	5.8	181
629	Using the Surface Features of Plant Matter to Create All-Polymer Pseudocapacitors with High Areal Capacitance. ACS Applied Materials & Interfaces, 2018, 10, 38574-38580.	4.0	11
630	Highly Electrically Conductive Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano. 2018. 12. 11193-11202.	7.3	671
631	Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Science Advances, 2018, 4, eaau6261.	4.7	164
632	Hybrid Architectures based on 2D MXenes and Lowâ€Dimensional Inorganic Nanostructures: Methods, Synergies, and Energyâ€Related Applications. Small, 2018, 14, e1803632.	5.2	54
633	Hierarchical Cobalt Borate/MXenes Hybrid with Extraordinary Electrocatalytic Performance in Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 3758-3765.	3.6	66

#	Article	IF	CITATIONS
634	Acid-Assisted Strategy Combined with KOH Activation to Efficiently Optimize Carbon Architectures from Green Copolymer Adhesive for Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 14838-14846.	3.2	16
635	Measurement and Analysis of Thermal Conductivity of Ti3C2Tx MXene Films. Materials, 2018, 11, 1701.	1.3	82
636	Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochimica Acta, 2018, 290, 364-368.	2.6	33
637	Enhanced Thermal Boundary Conductance in Fewâ€Layer Ti ₃ C ₂ MXene with Encapsulation. Advanced Materials, 2018, 30, e1801629.	11.1	51
638	Surface Functional Groups and Electrochemical Behavior in Dimethyl Sulfoxideâ€Delaminated Ti ₃ C ₂ T _{<i>x</i>} MXene. ChemSusChem, 2018, 11, 3719-3723.	3.6	83
639	Therapeutic mesopore construction on 2D Nb ₂ C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018, 8, 4491-4508.	4.6	158
640	Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors. Carbon, 2018, 140, 664-672.	5.4	101
641	Further surface modification by carbon coating for in-situ growth of Fe3O4 nanoparticles on MXene Ti3C2 multilayers for advanced Li-ion storage. Electrochimica Acta, 2018, 289, 228-237.	2.6	51
642	New Chemistry for New Material: Highly Dense Mesoporous Carbon Electrode for Supercapacitors with High Areal Capacitance. ACS Applied Materials & amp; Interfaces, 2018, 10, 33162-33169.	4.0	32
643	Boosting the Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy. Small, 2018, 14, e1802516.	5.2	58
644	Anion Adsorption, Ti ₃ C ₂ T <i>_z</i> MXene Multilayers, and Their Effect on Claylike Swelling. Journal of Physical Chemistry C, 2018, 122, 23172-23179.	1.5	42
645	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
646	Variable range hopping and thermally activated transport in molybdenum-based MXenes. Physical Review B, 2018, 98, .	1.1	66
647	Two-Dimensional Ti ₃ C ₂ MXene for High-Resolution Neural Interfaces. ACS Nano, 2018, 12, 10419-10429.	7.3	173
648	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
649	A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochimica Acta, 2018, 290, 695-703.	2.6	146
650	Liquid catalysts: an innovative solution to 2D materials in CVD processes. Materials Horizons, 2018, 5, 1021-1034.	6.4	19
651	Oxidized Ti ₃ C ₂ MXene nanosheets for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 16446-16450.	1.4	60
#	Article	IF	CITATIONS
---	--	---	--
652	MXene Aerogel Scaffolds for Highâ€Rate Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 15248-15253.	1.6	49
653	MXene Aerogel Scaffolds for Highâ€Rate Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 15028-15033.	7.2	279
654	Two-dimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations. Physical Chemistry Chemical Physics, 2018, 20, 25437-25445.	1.3	20
655	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125
656	Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications, 2018, 9, 3484.	5.8	165
657	Large Intercalation Pseudocapacitance in 2D VO ₂ (B): Breaking through the Kinetic Barrier. Advanced Materials, 2018, 30, e1803594.	11.1	50
658	Effect of Synthesis on Performance of MXene/Iron Oxide Anode Material for Lithium-Ion Batteries. Langmuir, 2018, 34, 11325-11334.	1.6	58
659	A novel potential modulated amino acid sensing chip modified by MXene for total internal reflection imaging ellipsometry biosensor. , 2018, , .		4
660	Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Applied Catalysis B: Environmental, 2018, 237, 43-49.	10.8	174
661	Freestanding CoSeO ₃ ·H ₂ O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010.	2.8	56
661 662	 Freestanding CoSeO₃·H₂O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400. 	2.8 11.1	56 34
661 662 663	Freestanding CoSeO ₃ ·H ₂ O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50, 79-87.	2.8 11.1 8.2	56 34 423
661 662 663 664	Freestanding CoSeO ₃ ·H ₂ O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50, 79-87. Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS ₂ for electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 16551-16557.	2.8 11.1 8.2 1.3	56 34 423 44
 661 662 663 664 665 	Freestanding CoSeO _{3SSub>2} O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010.A 2D Conductive Organica€"Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400.303D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50, 79-87.Nanoscale, 2018, 50, 79-87.Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS ₂ for electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 16551-16557.Precisely Geometry Controlled Microsupercapacitors for Ultrahigh Areal Capacitance, Volumetric Capacitance, and Energy Density. Chemistry of Materials, 2018, 30, 3979-3990.	2.8 11.1 8.2 1.3 3.2	 56 34 423 44 52
 661 662 663 664 665 666 	Freestanding CoSeO ₃ ·H ₂ O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50, 79-87. Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS ₂ for electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 16551-16557. Precisely Geometry Controlled Microsupercapacitors for Ultrahigh Areal Capacitance, Volumetric Capacitance, and Energy Density. Chemistry of Materials, 2018, 30, 3979-3990. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563, 625-632.	2.8 11.1 8.2 1.3 3.2 4.1	 56 34 423 44 52 135
 661 662 663 664 665 666 667 	Freestanding CoSeO ₃ ÂH ₂ O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50, 79-87. Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS ₂ for electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 16551-16557. Precisely Geometry Controlled Microsupercapacitors for Ultrahigh Areal Capacitance, Volumetric Capacitance, and Energy Density. Chemistry of Materials, 2018, 30, 3979-3990. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563, 625-632. Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti ₂ X Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti ₂ X	2.8 11.1 8.2 1.3 3.2 4.1 2.8	 56 34 423 44 52 135 46
 661 662 663 664 665 666 668 	Freestanding CoSeO (sub>3 (sub>Â+H (sub>2 (sub>O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale, 2018, 10, 12003-12010. A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling, Advanced Materials, 2018, 30, e1800400. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018, 50, 79-87. Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS (sub>2 (sub>for electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 16551-16557. Precisely Geometry Controlled Microsupercapacitors for Ultrahigh Areal Capacitance, Volumetric Capacitance, and Energy Density. Chemistry of Materials, 2018, 30, 3979-3990. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563, 625-632. Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ticsub>2 (sub>Csub>2 (sub>Csub>2 (sub>Tcsub>X Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A, 2018, 6, 11734-11742.	2.8 11.1 8.2 1.3 3.2 4.1 2.8 5.2	 56 34 423 44 52 135 46 96

#	Article	IF	CITATIONS
670	Synthesis of Two-Dimensional Nb _{1.33} C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb _{2/3} Sc _{1/3}) ₂ AlC MAX Phase. ACS Applied Nano Materials, 2018, 1, 2455-2460.	2.4	154
671	Adsorptive environmental applications of MXene nanomaterials: a review. RSC Advances, 2018, 8, 19895-19905.	1.7	313
672	Recent Progress in Biomassâ€Derived Electrode Materials for High Volumetric Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801007.	10.2	213
673	Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50, 479-488.	8.2	176
674	Ti3C2Tx-foam as free-standing electrode for supercapacitor with improved electrochemical performance. Ceramics International, 2018, 44, 13901-13907.	2.3	31
675	Ag-Nanoparticle-Decorated 2D Titanium Carbide (MXene) with Superior Electrochemical Performance for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7442-7450.	3.2	120
676	Reductive Sequestration of Toxic Bromate from Drinking Water using Lamellar Two-Dimensional Ti ₃ C ₂ T _X (MXene). ACS Sustainable Chemistry and Engineering, 2018, 6, 7910-7917.	3.2	57
677	Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557, 409-412.	13.7	965
678	In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving Highâ€Capacity, Long Lifetime Liâ€6 Batteries. Advanced Science, 2018, 5, 1800502.	5.6	210
679	Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6764-6794.	18.7	178
680	Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceramics International, 2018, 44, 17660-17666.	2.3	20
681	Polyester@MXene nanofibers-based yarn electrodes. Journal of Power Sources, 2018, 396, 683-690.	4.0	147
682	Partially Etched Ti ₃ AlC ₂ as a Promising Highâ€Capacity Lithiumâ€lon Battery Anode. ChemSusChem, 2018, 11, 2677-2680.	3.6	22
683	A Solidâ€State Fibriform Supercapacitor Boosted by Host–Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets. Small, 2018, 14, e1801203.	5.2	158
684	Lattice-matched heterojunctions between blue phosphorene and MXene Y2CX2 (X = F, O, and Y = Zr, H Computational Materials Science, 2018, 152, 256-261.	f) _{1.4}	6
685	High-capacitance Ti ₃ C ₂ <i>T</i> _x MXene obtained by etching submicron Ti ₃ AlC ₂ grains grown in molten salt. Chemical Communications, 2018, 54, 8132-8135.	2.2	34
686	Extraordinary Areal and Volumetric Performance of Flexible Solidâ€State Microâ€Supercapacitors Based on Highly Conductive Freestanding Ti ₃ C ₂ T <i>_x</i> Films. Advanced Electronic Materials, 2018, 4, 1800179.	2.6	93
687	Voltage-Gated Ions Sieving through 2D MXene Ti ₃ C ₂ T _{<i>x</i>} Membranes. ACS Applied Nano Materials, 2018, 1, 3644-3652.	2.4	102

#	Article	IF	CITATIONS
688	Atomic Cobalt Covalently Engineered Interlayers for Superior Lithiumâ€lon Storage. Advanced Materials, 2018, 30, e1802525.	11.1	187
689	Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Applied Materials & Interfaces, 2018, 10, 24491-24498.	4.0	275
690	Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Materials Letters, 2018, 229, 114-117.	1.3	100
691	3D d-Ti3C2 xerogel framework decorated with core-shell SnO2@C for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 285, 94-102.	2.6	44
692	Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1800865.	11.1	203
693	Controlled Crumpling of Two-Dimensional Titanium Carbide (MXene) for Highly Stretchable, Bendable, Efficient Supercapacitors. ACS Nano, 2018, 12, 8048-8059.	7.3	136
694	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	5.6	397
695	Selfâ€Assemble and In Situ Formation of Ni _{1â°'} <i>_x</i> Fe <i>_x</i> PS ₃ Nanomosaicâ€Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1801127.	10.2	204
696	Hybridization of Binary Nonâ€Preciousâ€Metal Nanoparticles with dâ€Ti ₃ C ₂ MXene for Catalyzing the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 3307-3314.	1.7	32
697	Complexity of Intercalation in MXenes: Destabilization of Urea by Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 2018, 140, 10305-10314.	6.6	93
698	A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe ₂ O ₃ nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Materials Chemistry Frontiers, 2018, 2, 1811-1821.	3.2	65
699	Flexible Ti ₃ C ₂ T <i>_x</i> @Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing. Advanced Functional Materials, 2018, 28, 1803196.	7.8	66
700	Screening Surface Structure of MXenes by High-Throughput Computation and Vibrational Spectroscopic Confirmation. Journal of Physical Chemistry C, 2018, 122, 18501-18509.	1.5	130
701	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics, 2018, 8, 1648-1664.	4.6	185
702	Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 25949-25954.	4.0	118
703	A hydrophobic surface enabled salt-blocking 2D Ti ₃ C ₂ MXene membrane for efficient and stable solar desalination. Journal of Materials Chemistry A, 2018, 6, 16196-16204.	5.2	351
704	Functional MXene Materials: Progress of Their Applications. Chemistry - an Asian Journal, 2018, 13, 2742-2757.	1.7	162
705	Flexible thermoelectric materials and devices. Applied Materials Today, 2018, 12, 366-388.	2.3	415

ARTICLE IF CITATIONS Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for 706 7.3 425 Overall Water Splitting. ACS Nano, 2018, 12, 8017-8028. Black Phosphorus Quantum Dot/Ti₃C₂ MXene Nanosheet Composites for 10.2 251 Efficient Electrochemical Lithium/Sodiumâ€ion Storage. Advanced Energy Materials, 2018, 8, 1801514. 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for 708 2.3 115 degradation of Rhodamine B. Ceramics International, 2018, 44, 19958-19962. Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors – A brief review. Journal of Industrial and Engineering Chemistry, 2018, 67, 12-27. Two-Dimensional Double Hydroxide Nanoarchitecture with High Areal and Volumetric Capacitance. 710 1.6 33 ACS Omega, 2018, 3, 7204-7213. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. Journal of Materials Chemistry A, 5.2 2018, 6, 14876-14884. A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method. 712 1.3 315 Materials, 2018, 11, 822. Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. Nanomaterials, 1.9 46 2018, 8, 528. Highly efficient photoelectrocatalytic reduction of CO₂on the 714 Ti₃C₂/g-C₃N₄heterojunction with rich 5.2 85 Ti³⁺and pyri-N species. Journal of Materials Chemistry A, 2018, 6, 15213-15220. Synergistic Supercritical Water †Wet' Activated Biomass Carbon as High Performances Electrode 1.3 Materials for Supercapacitor. Journal of the Electrochemical Society, 2018, 165, A2075-A2083. High-Voltage Flexible Microsupercapacitors Based on Laser-Induced Graphene. ACS Applied Materials 716 70 4.0& Interfaces, 2018, 10, 26357-26364. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and 2.3 276 improved adsorption performance. Ceramics International, 2018, 44, 18886-18893. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. 718 5.2 267 Journal of Materials Chemistry A, 2018, 6, 22123-22133. Hierarchically structured cellulose aerogels with interconnected MXene networks and their 719 2.7 enhanced microwave absorption properties. Journal of Materials Chemistry C, 2018, 6, 8679-8687. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide 720 8.2 458 with MXene. Nano Energy, 2018, 44, 181-190. Phospholipid-Tailored Titanium Carbide Nanosheets as a Novel Fluorescent Nanoprobe for Activity 3.2 Assay and Imaging of Phospholipase D. Analytical Chemistry, 2018, 90, 6742-6748. Nanotubular Ni-supported graphene @ hierarchical NiCo-LDH with ultrahigh volumetric capacitance for supercapacitors. Applied Surface Science, 2018, 453, 230-237. 722 3.122 "Alternated cooling and heating" strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation. Carbon, 5.4 2018, 137, 19-30.

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
724	Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. Journal of Materials Chemistry A, 2018, 6, 10595-10626.	5.2	162
725	Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology, 2018, 29, 445401.	1.3	44
726	Modified MXene/Holey Graphene Films for Advanced Supercapacitor Electrodes with Superior Energy Storage. Advanced Science, 2018, 5, 1800750.	5.6	353
727	Transition Metal Carbide Complex Architectures for Energyâ€Related Applications. Chemistry - A European Journal, 2018, 24, 16716-16736.	1.7	27
728	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Technology, 2018, 52, 10748-10756.	4.6	253
729	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	5.2	158
730	Bistacked Titanium Carbide (MXene) Anodes for Hybrid Sodium-Ion Capacitors. ACS Energy Letters, 2018, 3, 2094-2100.	8.8	145
731	Nitrogen Codoped Unique Carbon with 0.4 nm Ultraâ€Micropores for Ultrahigh Areal Capacitance Supercapacitors. Small, 2018, 14, e1801897.	5.2	40
732	Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Applied Catalysis B: Environmental, 2018, 239, 545-554.	10.8	481
733	High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy, 2018, 53, 97-107.	8.2	300
734	2D MXene Nanofilms with Tunable Gas Transport Channels. Advanced Functional Materials, 2018, 28, 1801511.	7.8	332
735	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	18.7	459
736	MXenes stretch hydrogel sensor performance to new limits. Science Advances, 2018, 4, eaat0098.	4.7	556
737	Elastic properties of 2D Ti ₃ C ₂ T _{<i>x</i>} MXene monolayers and bilayers. Science Advances, 2018, 4, eaat0491.	4.7	637
738	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	10.2	317
739	Environment-Sensitive Photoresponse of Spontaneously Partially Oxidized Ti ₃ C ₂ MXene Thin Films. ACS Nano, 2018, 12, 6109-6116.	7.3	214
740	Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. Journal of Power Sources, 2018, 396, 182-206.	4.0	111
741	Metal–Organic Framework-Derived Nickel–Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 22311-22319. 	4.0	306

#	Article	IF	CITATIONS
742	In Situ Growth of Cobalt Nanoparticles Encapsulated Nitrogenâ€Đoped Carbon Nanotubes among Ti ₃ C ₂ T <i>_x</i> (MXene) Matrix for Oxygen Reduction and Evolution. Advanced Materials Interfaces, 2018, 5, 1800392.	1.9	106
743	Direct Assessment of Nanoconfined Water in 2D Ti ₃ C ₂ Electrode Interspaces by a Surface Acoustic Technique. Journal of the American Chemical Society, 2018, 140, 8910-8917.	6.6	102
744	Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors. Nano Energy, 2018, 51, 128-136.	8.2	87
745	Inkjet Printing of Selfâ€Assembled 2D Titanium Carbide and Protein Electrodes for Stimuliâ€Responsive Electromagnetic Shielding. Advanced Functional Materials, 2018, 28, 1801972.	7.8	157
746	A comparative study on the oxidation of two-dimensional Ti ₃ C ₂ MXene structures in different environments. Journal of Materials Chemistry A, 2018, 6, 12733-12743.	5.2	193
747	Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Materials, 2019, 16, 212-219.	9.5	99
748	Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Materials, 2019, 17, 349-357.	9.5	58
749	Engineering 2D Architectures toward Highâ€Performance Microâ€Supercapacitors. Advanced Materials, 2019, 31, e1802793.	11.1	202
750	Recent Progress in Twoâ€Dimensional Antimicrobial Nanomaterials. Chemistry - A European Journal, 2019, 25, 929-944.	1.7	59
751	Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.	5.2	89
752	Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceramics International, 2019, 45, 23600-23610.	2.3	37
753	pH-Dependent Distribution of Functional Groups on Titanium-Based MXenes. ACS Nano, 2019, 13, 9171-9181.	7.3	93
754	Recent advances in anode materials for sodium - and potassium-ion hybrid capacitors. Current Opinion in Electrochemistry, 2019, 18, 1-8.	2.5	35
755	Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal of Applied Physics, 2019, 126, .	1.1	55
756	Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2019, 259, 118077.	10.8	94
757	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	11.1	253
758	Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. Journal of Materials Chemistry C, 2019, 7, 10371-10378.	2.7	124
759	Effect of MXene on Oxygen Ion Conductivity of Sm0.2Ce0.8O1.9 as Electrolyte for Low Temperature SOFC. International Journal of Electrochemical Science, 2019, 14, 7729-7736.	0.5	1

#	Article	IF	CITATIONS
760	Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy, 2019, 65, 104022.	8.2	52
761	A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 2019, 9, 1901081.	10.2	315
762	Highly Enhanced Pseudocapacitive Performance of Vanadiumâ€Doped MXenes in Neutral Electrolytes. Small, 2019, 15, e1902649.	5.2	46
763	Highâ€performance flexible sensing devices based on polyaniline/MXene nanocomposites. InformaÄnÃ- Materiġly, 2019, 1, 407-416.	8.5	310
764	Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Applied Surface Science, 2019, 495, 143554.	3.1	140
765	Ti ₃ C ₂ MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale, 2019, 11, 15659-15667.	2.8	209
766	<i>N-</i> Butyllithium-Treated Ti ₃ C ₂ T _{<i>x</i>} MXene with Excellent Pseudocapacitor Performance. ACS Nano, 2019, 13, 9449-9456.	7.3	132
767	Functionalization with MXene (Ti ₃ C ₂) Enhances the Wettability and Shear Strength of Carbon Fiber-Epoxy Composites. ACS Applied Nano Materials, 2019, 2, 5553-5562.	2.4	60
768	Recent progress on synthesis, structure and electrocatalytic applications of MXenes. FlatChem, 2019, 17, 100129.	2.8	33
769	Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy, 2019, 65, 103991.	8.2	70
770	2D Stacks of MXene Ti ₃ C ₂ and 1Tâ€Phase WS ₂ with Enhanced Capacitive Behavior. ChemElectroChem, 2019, 6, 3982-3986.	1.7	39
771	Ti ₃ C ₂ MXene Paper for the Effective Adsorption and Controllable Release of Aroma Molecules. Small, 2019, 15, e1903281.	5.2	32
772	Enhanced visible light photocatalytic activity of CdS with alkalized Ti3C2 nano-sheets as co-catalyst for degradation of rhodamine B. Journal of Materials Science: Materials in Electronics, 2019, 30, 14954-14966.	1.1	28
773	XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). Applied Surface Science, 2019, 494, 1138-1147.	3.1	58
774	Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceramics International, 2019, 45, 19467-19472.	2.3	37
775	Excellent catalytic activity of a two-dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Applied Surface Science, 2019, 493, 431-440.	3.1	73
776	Highly Efficient Catalytic Performances of Nitro Compounds and Morin via Self-Assembled MXene-Pd Nanocomposites Synthesized through Self-Reduction Strategy. Nanomaterials, 2019, 9, 1009.	1.9	30
777	Template-free synthesized 3D macroporous MXene with superior performance for supercapacitors. Applied Materials Today, 2019, 16, 315-321.	2.3	65

#	Article	IF	CITATIONS
778	Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. Journal of Industrial and Engineering Chemistry, 2019, 79, 338-344.	2.9	117
779	Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry C, 2019, 7, 9820-9829.	2.7	186
780	Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene. Chemical Engineering Journal, 2019, 378, 122246.	6.6	53
781	Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nature Communications, 2019, 10, 3112.	5.8	91
782	Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes as Nanofluidic Osmotic Power Generators. ACS Nano, 2019, 13, 8917-8925.	7.3	235
783	Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chemical Engineering Journal, 2019, 378, 122267.	6.6	191
784	Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nature Communications, 2019, 10, 3014.	5.8	81
785	A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer Ti ₃ C ₂ T _x nanosheets with enhanced lithium storage for Li-ion batteries. Nanoscale, 2019, 11, 16755-16766.	2.8	35
786	First-principles investigation of the vacancy-related properties of Ta ₂ AlC. Modern Physics Letters B, 2019, 33, 1950209.	1.0	1
787	Lowâ€Temperature Reduction Strategy Synthesized Si/Ti ₃ C ₂ MXene Composite Anodes for Highâ€Performance Liâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901065.	10.2	255
788	Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Global Challenges, 2019, 3, 1900037.	1.8	59
789	Effect of Cationic Exchange on the Hydration and Swelling Behavior of Ti ₃ C ₂ T <i>_z</i> MXenes. Journal of Physical Chemistry C, 2019, 123, 20044-20050.	1.5	45
790	Unveiling highly ambient-stable multilayered 1T-MoS ₂ towards all-solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19152-19160.	5.2	71
791	3D Printing of Freestanding MXene Architectures for Currentâ€Collectorâ€Free Supercapacitors. Advanced Materials, 2019, 31, e1902725.	11.1	311
792	Few‣ayer Mxene Ti ₃ C ₂ T _{<i>x</i>} (T=F, O, Or OH) for Robust Pulse Generation in a Compact Erâ€Doped Fiber Laser. ChemNanoMat, 2019, 5, 1233-1238.	1.5	55
793	Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosensors and Bioelectronics, 2019, 142, 111535.	5.3	90
794	Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Composites Science and Technology, 2019, 182, 107754.	3.8	197
795	Intriguing electronic and optical properties of M2CX2 (M = Mo, W; X = O, F) MXenes and their van der Waals heterostructures. Chemical Physics Letters, 2019, 731, 136614.	1.2	13

#	Article	IF	CITATIONS
796	Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. Journal of Materials Science and Technology, 2019, 35, 2859-2867.	5.6	60
797	Ti _{n+1} C _n MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Advances, 2019, 1, 3680-3685.	2.2	81
798	Synthesis of (V _{2/3} Sc _{1/3}) ₂ AlC i-MAX phase and V _{2â^'x} C MXene scrolls. Nanoscale, 2019, 11, 14720-14726.	2.8	52
799	Synergistic Electrocatalytic Nitrogen Reduction Enabled by Confinement of Nanosized Au Particles onto a Two-Dimensional Ti ₃ C ₂ Substrate. ACS Applied Materials & Interfaces, 2019, 11, 25758-25765.	4.0	92
800	Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: A theoretical prediction. Solid State Communications, 2019, 299, 113657.	0.9	30
801	Application of Ti ₃ C ₂ MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Advanced Healthcare Materials, 2019, 8, e1900569.	3.9	125
802	Progress Report on Atomic Layer Deposition Toward Hybrid Nanocomposite Electrodes for Next Generation Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900678.	1.9	19
803	A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate. Nanomaterials, 2019, 9, 978.	1.9	10
804	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	7.8	125
805	Fast Gelation of Ti ₃ C ₂ T <i>_x</i> MXene Initiated by Metal Ions. Advanced Materials, 2019, 31, e1902432.	11.1	389
806	Heteroatomâ€Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1903841.	11.1	363
807	MXene Supported Cobalt Layered Double Hydroxide Nanocrystals: Facile Synthesis Route for a Synergistic Oxygen Evolution Reaction Electrocatalyst. Advanced Materials Interfaces, 2019, 6, 1901328.	1.9	66
808	Roomâ€Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binderâ€Free Anode for Nextâ€Generation Lithiumâ€Ion Batteries. Small, 2019, 15, e1903214.	5.2	79
809	High-performance layered NiCo2S4@rGO/rGO film electrode for flexible electrochemical energy storage. Electrochimica Acta, 2019, 328, 135088.	2.6	33
810	Metallic porous nitride single crystals at two-centimeter scale delivering enhanced pseudocapacitance. Nature Communications, 2019, 10, 4727.	5.8	36
811	Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. Journal of Solid State Chemistry, 2019, 280, 120989.	1.4	38
812	Carbon-encapsulated niobium carbonitride with high volumetric capacitance and wide potential windows in aqueous pseudocapacitors. Electrochimica Acta, 2019, 325, 134935.	2.6	5
813	Oxygen-terminated BiXenes and derived single atom catalysts for the hydrogen evolution reaction. Journal of Catalysis, 2019, 378, 97-103.	3.1	37

		IF	CITATIONS
Ŧ	ARTICLE	IF	CITATIONS
814	Earth and Environmental Science, 2019, 304, 042068.	0.2	1
815	Kupferkatalysierte Triborierung: Einfache, atomökonomische Synthese von 1,1,1â€Triborylalkanen aus terminalen Alkinen und HBpin. Angewandte Chemie, 2019, 131, 19099-19103.	1.6	6
816	Assessment of wastewater on-line monitoring system in an important industrial park in Tianjin, China. IOP Conference Series: Earth and Environmental Science, 2019, 349, 012031.	0.2	0
817	2D Metal Carbides and Nitrides (MXenes). , 2019, , .		240
818	Electronic and Mechanical Properties of MXenes Derived from Single-Flake Measurements. , 2019, , 301-325.		9
819	In- and Out-of-Plane Ordered MAX Phases and Their MXene Derivatives. , 2019, , 37-52.		9
820	Non-MAX Phase Precursors for MXenes. , 2019, , 53-68.		12
821	Top-Down MXene Synthesis (Selective Etching). , 2019, , 69-87.		16
822	Inhibition of AlF ₃ ·3H ₂ O Impurity Formation in Ti ₃ C ₂ T _{<i>x</i>} MXene Synthesis under a Unique CoF _{<i>x</i>} /HCl Etching Environment. ACS Applied Energy Materials, 2019, 2, 8145-8152.	2.5	39
823	Two-dimensional MXene nanosheets (types Ti3C2Tx and Ti2CTx) as new ion-to-electron transducers in solid-contact calcium ion-selective electrodes. Mikrochimica Acta, 2019, 186, 750.	2.5	42
824	Selective Lithiation–Expansion–Microexplosion Synthesis of Two-Dimensional Fluoride-Free Mxene. , 2019, 1, 628-632.		64
825	Self-Assembly-Magnetized MXene Avoid Dual-Agglomeration with Enhanced Interfaces for Strong Microwave Absorption through a Tunable Electromagnetic Property. ACS Applied Materials & Interfaces, 2019, 11, 44536-44544.	4.0	179
826	Selfâ€6tanding Hybrid Film of SnO ₂ Nanotubes and MXene as A Highâ€Performance Anode Material for Thin Film Lithiumâ€lon Batteries. ChemistrySelect, 2019, 4, 12099-12103.	0.7	14
827	A Novel Strategy for Lithium-Ion Battery Anode with Enhanced Cycling Performance: Silicon Particles Enclosed in Shell-Like Mxenes/CNTs Nanostructure. , 2019, , .		1
828	<i>Ab initio</i> study of the effective Coulomb interactions and Stoner ferromagnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:n mathvariant="normal">C</mml:n </mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:n Physical Poving B_2019_100</mml:n </mml:msub></mml:mrow></mml:math </mml:math 	nn>21.1 nn>2 <td>nl:mn> 22 nl:mn> </td>	nl:mn> 22 nl:mn>
829	Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. Chemical Reviews, 2019, 119, 11980-12031.	23.0	242
830	Heating of Ti3C2Tx MXene/polymer composites in response to Radio Frequency fields. Scientific Reports, 2019, 9, 16489.	1.6	32
831	MIL-100(Fe)/Ti ₃ C ₂ MXene as a Schottky Catalyst with Enhanced Photocatalytic Oxidation for Nitrogen Fixation Activities. ACS Applied Materials & amp; Interfaces, 2019, 11, 44249-44262.	4.0	116

#	Article	IF	CITATIONS
832	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	4.8	90
833	Synthesis and Electronic Structure of a 3D Crystalline Stack of MXene-Like Sheets. Chemistry of Materials, 2019, 31, 9788-9796.	3.2	34
834	Preparation of a Highly Sensitive and Stretchable Strain Sensor of MXene/Silver Nanocomposite-Based Yarn and Wearable Applications. ACS Applied Materials & Interfaces, 2019, 11, 45930-45938.	4.0	128
835	Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 295.	2.0	100
836	Ultrafine Pt Nanoparticle-Decorated 3D Hybrid Architectures Built from Reduced Graphene Oxide and MXene Nanosheets for Methanol Oxidation. Chemistry of Materials, 2019, 31, 9277-9287.	3.2	141
837	First-Principles Calculations of TiB MBene Monolayers for Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 7220-7229.	2.4	45
838	Effects of biaxial strain and functional groups on SiC/ti ₃ C ₂ heterostructure: a first principle calculation. Materials Research Express, 2019, 6, 125070.	0.8	1
839	Ti ₃ C ₂ MXene-Based Sensors with High Selectivity for NH ₃ Detection at Room Temperature. ACS Sensors, 2019, 4, 2763-2770.	4.0	355
840	Knittable and Washable Multifunctional MXene oated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	7.8	239
841	MXeneâ€Bonded Flexible Hard Carbon Film as Anode for Stable Na/Kâ€ l on Storage. Advanced Functional Materials, 2019, 29, 1906282.	7.8	214
842	Nanostructure of Cr ₂ CO ₂ MXene Supported Single Metal Atom as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 6851-6859.	2.5	81
843	Preparation conditions and electrical properties of Ti3C2Tx nanosheets. Materials Science in Semiconductor Processing, 2019, 104, 104683.	1.9	3
844	WO3 Nanorods/MXene composite as high performance electrode for supercapacitors. Journal of Alloys and Compounds, 2019, 810, 151928.	2.8	38
845	Ti3C2Tx MXene characterization produced from SHS-ground Ti3AlC2. Materials and Design, 2019, 183, 108143.	3.3	78
846	Friction-Induced Enhancements for Photocatalytic Degradation of MoS ₂ @Ti ₃ C ₂ Nanohybrid. Industrial & Engineering Chemistry Research, 2019, 58, 18141-18148.	1.8	34
847	One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Transactions, 2019, 48, 14433-14439.	1.6	45
848	Effect of vacancies on the structural and electronic properties of Ti ₂ CO ₂ . RSC Advances, 2019, 9, 27646-27651.	1.7	17
849	A Novel Anode in High-Performance Lithium-Ion Battery Based on Advanced Nanomaterials and Nanofabrication Technology. , 2019, , .		1

#	Article	IF	CITATIONS
850	Recent advances in MXene–based electrochemical sensors and biosensors. TrAC - Trends in Analytical Chemistry, 2019, 120, 115643.	5.8	220
851	Self-Crosslinked MXene (Ti ₃ C ₂ T _{<i>x</i>}) Membranes with Good Antiswelling Property for Monovalent Metal Ion Exclusion. ACS Nano, 2019, 13, 10535-10544.	7.3	284
852	Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nature Materials, 2019, 18, 1228-1234.	13.3	418
853	Microstructure and surface control of MXene films for water purification. Nature Sustainability, 2019, 2, 856-862.	11.5	273
854	A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. Sustainable Energy and Fuels, 2019, 3, 2577-2582.	2.5	20
855	Nitrogen and phosphorus co-doped silkworm-cocoon-based self-activated porous carbon for high performance supercapacitors. Journal of Power Sources, 2019, 438, 227045.	4.0	57
856	Single molybdenum atom anchored on 2D Ti ₂ NO ₂ MXene as a promising electrocatalyst for N ₂ fixation. Nanoscale, 2019, 11, 18132-18141.	2.8	55
857	Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification. ACS Applied Materials & Interfaces, 2019, 11, 36589-36597.	4.0	216
858	Facile Synthesis of Ti ₃ C ₂ T _{<i>x</i>} –Poly(vinylpyrrolidone) Nanocomposites for Nonvolatile Memory Devices with Low Switching Voltage. ACS Applied Materials & Interfaces, 2019, 11, 38061-38067.	4.0	28
859	Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coordination Chemistry Reviews, 2019, 400, 213041.	9.5	103
860	Intercalation pseudocapacitance in chemically stable Au-α-Fe2O3-Mn3O4 composite nanorod: Towards highly efficient solid-state symmetric supercapacitor device. Electrochimica Acta, 2019, 324, 134865.	2.6	28
861	Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano, 2019, 13, 11500-11509.	7.3	220
862	Commercial-Level Energy Storage via Free-Standing Stacking Electrodes. Matter, 2019, 1, 1694-1709.	5.0	19
863	Two-dimensional nanomaterials as emerging pseudocapacitive materials. Korean Journal of Chemical Engineering, 2019, 36, 1557-1564.	1.2	13
864	Theoretical Analysis, Synthesis, and Characterization of 2D W _{1.33} C (MXene) with Ordered Vacancies. ACS Applied Nano Materials, 2019, 2, 6209-6219.	2.4	37
865	MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors. Applied Materials Today, 2019, 17, 227-235.	2.3	17
866	Introduction to MXenes: synthesis and characteristics. Materials Today Chemistry, 2019, 14, 100191.	1.7	89
867	Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 40512-40523.	4.0	230

#	Article	IF	CITATIONS
868	Large-scale production of simultaneously exfoliated and Functionalized Mxenes as promising flame retardant for polyurethane. Composites Part B: Engineering, 2019, 179, 107486.	5.9	103
869	In-situ synthesis of MXene/ZnCo2O4 nanocomposite with enhanced catalytic activity on thermal decomposition of ammonium perchlorate. Journal of Solid State Chemistry, 2019, 279, 120947.	1.4	24
870	Three-Dimensional Porous Ti ₃ C ₂ T _{<i>x</i>} MXene–Graphene Hybrid Films for Glucose Biosensing. ACS Applied Nano Materials, 2019, 2, 6537-6545.	2.4	112
871	Carbon-Coated SnO ₂ /Ti ₃ C ₂ Composites with Enhanced Lithium Storage Performance. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	1
872	Manganese nitride stabilized on reduced graphene oxide substrate for high performance sodium ion batteries, super-capacitors and EMI shielding. Journal of Alloys and Compounds, 2019, 808, 151748.	2.8	31
873	Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochimica Acta, 2019, 300, 349-356.	2.6	57
874	Three-dimensional Ni/MnO2 nanocylinder array with high capacitance for supercapacitors. Results in Physics, 2019, 12, 1411-1416.	2.0	10
875	Contacting MoS ₂ to MXene: Vanishing p-Type Schottky Barrier and Enhanced Hydrogen Evolution Catalysis. Journal of Physical Chemistry C, 2019, 123, 3719-3726.	1.5	47
876	Heterostructures of Ni–Co–Al layered double hydroxide assembled on V ₄ C ₃ MXene for high-energy hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 2291-2300.	5.2	154
877	A novel MnO ₂ /MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorganic Chemistry Frontiers, 2019, 6, 199-208.	3.0	68
878	Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors. Science China Materials, 2019, 62, 936-946.	3.5	19
879	Creating oxygen-vacancies in MoO3- nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy, 2019, 58, 455-465.	8.2	266
880	Configurable multi-state non-volatile memory behaviors in Ti ₃ C ₂ nanosheets. Nanoscale, 2019, 11, 7102-7110.	2.8	69
881	Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Materials, 2019, 18, 133-138.	9.5	43
882	Photo-responsive Azobenzene-MXene hybrid and its optical modulated electrochemical effects. Journal of Power Sources, 2019, 414, 192-200.	4.0	11
883	Boosting the Yield of MXene 2D Sheets via a Facile Hydrothermal-Assisted Intercalation. ACS Applied Materials & Interfaces, 2019, 11, 8443-8452.	4.0	178
884	Two-Dimensional Hydroxyl-Functionalized and Carbon-Deficient Scandium Carbide, ScC _{<i>x</i>} OH, a Direct Band Gap Semiconductor. ACS Nano, 2019, 13, 1195-1203.	7.3	30
885	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	6.6	479

#	Article	IF	CITATIONS
886	Control of MXenes' electronic properties through termination and intercalation. Nature Communications, 2019, 10, 522.	5.8	721
887	Combined Theoretical and Experimental Studies of Sodium Battery Materials. Chemical Record, 2019, 19, 792-798.	2.9	13
888	Atomic Sulfur Covalently Engineered Interlayers of Ti ₃ C ₂ MXene for Ultraâ€Fast Sodiumâ€Ion Storage by Enhanced Pseudocapacitance. Advanced Functional Materials, 2019, 29, 1808107.	7.8	213
889	Recent progress in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4353-4382.	5.2	91
890	Electronic and optical characterization of 2D Ti ₂ C and Nb ₂ C (MXene) thin films. Journal of Physics Condensed Matter, 2019, 31, 165301.	0.7	74
891	Understanding the Different Diffusion Mechanisms of Hydrated Protons and Potassium Ions in Titanium Carbide MXene. ACS Applied Materials & Interfaces, 2019, 11, 7087-7095.	4.0	36
892	A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose, 2019, 26, 2833-2847.	2.4	61
893	2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. Journal of Power Sources, 2019, 414, 540-546.	4.0	83
894	Recent advances in MXenes: From fundamentals to applications. Current Opinion in Solid State and Materials Science, 2019, 23, 164-178.	5.6	247
895	Microwave-assisted synthesis of three-dimensional MXene derived metal oxide/carbon nanotube/iron hybrids for enhanced lithium-ions storage. Journal of Electroanalytical Chemistry, 2019, 835, 205-211.	1.9	22
896	MXene-supported Co ₃ O ₄ quantum dots for superior lithium storage and oxygen evolution activities. Chemical Communications, 2019, 55, 1237-1240.	2.2	94
897	A generalized strategy for the synthesis of two-dimensional metal oxide nanosheets based on a thermoregulated phase transition. Nanoscale, 2019, 11, 3200-3207.	2.8	24
898	3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Composites Part A: Applied Science and Manufacturing, 2019, 123, 293-300.	3.8	172
899	A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS ₂ , MXenes, and 2D MOFs. Journal of Materials Chemistry A, 2019, 7, 16598-16621.	5.2	95
900	Demonstration of electrocatalytic oxygen evolution activity of V4AlC3 (Mn+1AXnPhase) bulk powders. Catalysis Communications, 2019, 127, 25-28.	1.6	5
901	2D-enabled membranes: materials and beyond. BMC Chemical Engineering, 2019, 1, .	3.4	27
902	Highly Stretchable and Selfâ€Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Advanced Electronic Materials, 2019, 5, 1900285.	2.6	288
903	A Robust, Freestanding MXene‣ulfur Conductive Paper for Longâ€Lifetime Li–S Batteries. Advanced Functional Materials, 2019, 29, 1901907.	7.8	195

#	Article	IF	CITATIONS
904	Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochimica Acta, 2019, 318, 820-827.	2.6	84
905	Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2019, 847, 113203.	1.9	43
906	Novel Two-Dimensional Magnetic Titanium Carbide for Methylene Blue Removal over a Wide pH Range: Insight into Removal Performance and Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 24027-24036.	4.0	98
907	MXenes for Plasmonic Photodetection. Advanced Materials, 2019, 31, e1807658.	11.1	175
908	Porous Nb ₄ N ₅ /rGO Nanocomposite for Ultrahigh-Energy-Density Lithium-Ion Hybrid Capacitor. ACS Applied Materials & Interfaces, 2019, 11, 24114-24121.	4.0	31
909	Plasmonic Ti ₃ C ₂ T _{<i>x</i>} MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano, 2019, 13, 8124-8134.	7.3	247
910	Topochemical synthesis of phase-pure Mo ₂ AlB ₂ through staging mechanism. Chemical Communications, 2019, 55, 9295-9298.	2.2	34
911	The Road Towards Planar Microbatteries and Micro upercapacitors: From 2D to 3D Device Geometries. Advanced Materials, 2019, 31, e1900583.	11.1	160
912	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	4.2	256
913	<p>Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene</p> . International Journal of Nanomedicine, 2019, Volume 14, 4529-4539.	3.3	61
914	Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019, 45, 18167-18188.	2.3	371
915	Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendriteâ€Free Metallic Lithium Anodes. Advanced Materials, 2019, 31, e1901820.	11.1	174
916	Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading. Scientific Reports, 2019, 9, 9135.	1.6	104
917	Vanadium oxide anchored MWCNTs nanostructure for superior symmetric electrochemical supercapacitors. Materials and Design, 2019, 182, 107972.	3.3	50
918	Ti ₃ C ₂ Sheets with an Adjustable Surface and Feature Sizes to Regulate the Chemical Stability. Inorganic Chemistry, 2019, 58, 9397-9403.	1.9	30
919	Compressible Highly Stable 3D Porous MXene/GO Foam with a Tunable High-Performance Stealth Property in the Terahertz Band. ACS Applied Materials & Interfaces, 2019, 11, 25369-25377.	4.0	78
920	Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions. Matter, 2019, 1, 513-526.	5.0	436
921	Origin of theoretical pseudocapacitance of two-dimensional supercapacitor electrodes Ti ₃ C ₂ T ₂ (T = bare, O, S). Journal of Materials Chemistry A, 2019, 7, 16231-16238	5.2	26

#	Article	IF	CITATIONS
922	Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceramics International, 2019, 45, 17653-17661.	2.3	109
923	Two-Dimensional Transition Metal MXene-Based Photocatalysts for Solar Fuel Generation. Journal of Physical Chemistry Letters, 2019, 10, 3488-3494.	2.1	193
924	Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties. Polymers, 2019, 11, 976.	2.0	93
925	Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nature Communications, 2019, 10, 2558.	5.8	166
926	In Situ XANES/XRD Study of the Structural Stability of Two-Dimensional Molybdenum Carbide Mo ₂ CT <i>_x</i> : Implications for the Catalytic Activity in the Water–Gas Shift Reaction. Chemistry of Materials, 2019, 31, 4505-4513.	3.2	100
927	2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors. Electroanalysis, 2019, 31, 1833-1844.	1.5	36
928	Atomic Repartition in MXenes by Electron Probes. Chemistry of Materials, 2019, 31, 4385-4391.	3.2	17
929	Functional Titanium Carbide MXenes-Loaded Entropy-Driven RNA Explorer for Long Noncoding RNA PCA3 Imaging in Live Cells. Analytical Chemistry, 2019, 91, 8622-8629.	3.2	37
930	MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends in Chemistry, 2019, 1, 656-669.	4.4	302
931	Highly Uniform MnCo ₂ O ₄ Hollow Spheresâ€Based Allâ€Solidâ€State Asymmetric Microâ€Supercapacitor via a Simple Metalâ€Glycerate Precursor Approach. Energy Technology, 2019, 7, 1900314.	1.8	24
932	0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. Journal of Catalysis, 2019, 375, 8-20.	3.1	150
933	State-of-the-art materials for high power and high energy supercapacitors: Performance metrics and obstacles for the transition from lab to industrial scale – A critical approach. Chemical Engineering Journal, 2019, 374, 1153-1179.	6.6	76
934	Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. Journal of Materials Chemistry A, 2019, 7, 15913-15923.	5.2	184
935	Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today, 2019, 30, 80-102.	8.3	390
936	Dense Charge Accumulation in MXene with a Hydrate-Melt Electrolyte. Chemistry of Materials, 2019, 31, 5190-5196.	3.2	39
937	Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics, 2019, 25, 5373-5382.	1.2	29
938	MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. Journal of Alloys and Compounds, 2019, 802, 259-268.	2.8	104
939	Fluorine-free Ti ₃ C ₂ T _x (T = O, OH) nanosheets (â^¼50–100 nm) for nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 14462-14465.	5.2	76

ARTICLE IF CITATIONS O-Vacancy-line defective Ti₂CO₂ nanoribbons: novel magnetism, tunable 940 2.7 63 carrier mobility, and magnetic device behaviors. Journal of Materials Chemistry C, 2019, 7, 7745-7759. Advanced Nonâ€metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. 941 1.7 Chemistry - A European Journal, 2019, 25, 12464-12485. Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly 942 8.2 235 reversible lithium storage. Nano Energy, 2019, 62, 401-409. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nature 943 5.8 159 Communications, 2019, 10, 2284. Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and 944 7.8 145 Highâ€Power Zinc Ion Battery. Advanced Functional Materials, 2019, 29, 1901336. Surface Modified MXeneâ€Based Nanocomposites for Electrochemical Energy Conversion and Storage. 5.2 159 Small, 2019, 15, e1901503. Concentric Advancing Front Corrugations and Multiple Ordered Growth of 2D Mo₂C 946 1.4 6 Crystals. Crystal Growth and Design, 2019, 19, 3097-3102. Heterostructure engineering of Co-doped MoS₂ coupled with Mo₂CT_x MXene for enhanced hydrogen evolution in alkaline media. 947 2.8 197 Nanoscale, 2019, 11, 10992-11000. 948 Intercalation of Layered Materials from Bulk to 2D. Advanced Materials, 2019, 31, e1808213. 120 11.1 Nylon-6/Ti₃C₂T_{<i>z</i>/i>} MXene Nanocomposites Synthesized by in Situ Ring Opening Polymerization of ε-Caprolactam and Their Water Transport Properties. ACS Applied 949 Materials & amp; Interfaces, 2019, 11, 20425-20436. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11, 950 2.8 150 9949-9957. Pseudocapacitive Storage in Nanolayered Ti₂NT_{<i>x</i>}MXene Using Mg-Ion 2.4 Electrolyte. ACS Applied Nano Materials, 2019, 2, 2785-2795. Vacuum Filtrationâ€andâ€Transfer Technique Helps Electrochemical Quartz Crystal Microbalance to 952 4.6 21 Reveal Accurate Charge Storage in Supercapacitors. Small Methods, 2019, 3, 1900246. One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots. Inorganic Chemistry Communication, 2019, 105, 151-157. 1.8 38 A simple method for the synthesis of nanosized Ti₃AlC₂powder in NaClâ€"KCl 954 4.1 27 molten salt. Materials Research Letters, 2019, 7, 361-367. Ultrafast Li⁺ Diffusion Kinetics of 2D Oxidized Phosphorus for Quasi-Solid-State Bendable Batteries with Exceptional Energy Densities. Chemistry of Materials, 2019, 31, 4113-4123. Monolayer Ti₃C₂<i>T</i>_{<i>x</i>} as an Effective Co-catalyst for 956 Enhanced Photocatalytic Hydrogen Production over TiO₂. ACS Applied Energy Materials, 2.5177 2019, 2, 4640-4651. Computational Discovery and Design of MXenes for Energy Applications: Status, Successes, and Opportunities. ACS Applied Materials & amp; Interfaces, 2019, 11, 24885-24905.

ARTICLE IF CITATIONS MXene Ti₃C₂T_x for phase change composite with superior 958 5.2 235 photothermal storage capability. Journal of Materials Chemistry A, 2019, 7, 14319-14327. MXeneâ€Contacted Silicon Solar Cells with 11.5% Efficiency. Advanced Energy Materials, 2019, 9, 1900180. 10.2 Self-assembled three-dimensional Ti3C2Tx nanosheets network on carbon cloth as flexible electrode 960 3.1 27 for supercapacitors. Applied Surface Science, 2019, 485, 1-7. Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 128-136. Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 962 10.2 88 2019, 9, 1900079. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochimica Acta, 2019, 309, 362-370. 2.6 56 Direct assembly of micron-size porous graphene spheres with a high density as supercapacitor 964 5.4 20 materials. Carbon, 2019, 149, 492-498. A novel high permittivity percolative composite with modified MXene. Polymer, 2019, 174, 86-95. 1.8 965 44 Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference 966 5.9 326 shielding application. Composites Part B: Engineering, 2019, 171, 111-118. Status review on the MEMS-based flexible supercapacitors. Journal of Micromechanics and 1.5 Microengineering, 2019, 29, 093001. Demonstration of a White Laser with V₂C MXeneâ€Based Quantum Dots. Advanced 968 11.1 118 Materials, 2019, 31, e1901117. Alkali-induced 3D crinkled porous Ti₃C₂ MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. 15.6 299 Energy and Environmental Science, 2019, 12, 2422-2432. Concisely modularized assembling of graphene-based thin films with promising electrode 970 3.2 8 performance. Materials Chemistry Frontiers, 2019, 3, 1462-1470. Tunable Magnetic Response in 2D Materials via Reversible Intercalation of Paramagnetic Ions. Advanced Electronic Materials, 2019, 5, 1900040. 971 2.6 Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal 972 5.2312 of Materials Chemistry A, 2019, 7, 13810-13832. High Dielectric Constant and Low Dielectric Loss via Poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 147 Td (alcohol)/Ti<sul 4.0 Materials & amp; Interfaces, 2019, 11, 18599-18608. Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped 974 reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale, 2019, 11, 2.8 95 9896-9905. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection 245 to Absorption. Advanced Optical Materials, 2019, 7, 1900267.

#	Article	IF	CITATIONS
976	Optimizing Dispersion, Exfoliation, Synthesis, and Device Fabrication of Inorganic Nanomaterials Using Hansen Solubility Parameters. ChemPhysChem, 2019, 20, 1069-1097.	1.0	29
977	Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sensors and Actuators B: Chemical, 2019, 289, 131-137.	4.0	101
978	Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors. Journal of Alloys and Compounds, 2019, 790, 517-523.	2.8	49
979	Hierarchical Ni ₂ P/Cr ₂ CT _x (MXene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 9324-9334.	5.2	54
980	Sustainable and scalable in-situ synthesis of hydrochar-wrapped Ti3AlC2-derived nanofibers as adsorbents to remove heavy metals. Bioresource Technology, 2019, 282, 222-227.	4.8	35
981	Electrocatalytic and Optoelectronic Characteristics of the Two-Dimensional Titanium Nitride Ti ₄ N ₃ T _x MXene. ACS Applied Materials & Interfaces, 2019, 11, 11812-11823.	4.0	87
982	Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure. Materials Research Express, 2019, 6, 065504.	0.8	13
983	Modulating the Schottky barriers in MoS2/MXenes heterostructures via surface functionalization and electric field. Applied Surface Science, 2019, 480, 199-204.	3.1	58
984	Tuning the Electrical Conductivity of Ti ₂ CO ₂ MXene by Varying the Layer Thickness and Applying Strains. Journal of Physical Chemistry C, 2019, 123, 6802-6811.	1.5	49
985	Influences from solvents on charge storage in titanium carbide MXenes. Nature Energy, 2019, 4, 241-248.	19.8	363
986	Definitions of Pseudocapacitive Materials: A Brief Review. Energy and Environmental Materials, 2019, 2, 30-37.	7.3	1,026
987	Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO ₂ â€MXene Heterostructures for Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900219.	10.2	481
988	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Double‣ayer Capacitors. Energy Technology, 2019, 7, 1900209.	1.8	9
989	An investigation into the factors governing the oxidation of two-dimensional Ti ₃ C ₂ MXene. Nanoscale, 2019, 11, 8387-8393.	2.8	276
990	White Photoluminescent Ti ₃ C ₂ MXene Quantum Dots with Twoâ€Photon Fluorescence. Advanced Science, 2019, 6, 1801470.	5.6	143
991	Tuning the photoluminescence of large Ti3C2Tx MXene flakes. Ceramics International, 2019, 45, 11468-11474.	2.3	22
992	Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors. Sensors, 2019, 19, 1099.	2.1	28
993	Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Advanced Functional Materials, 2019, 29, 1901126.	7.8	71

#	Article	IF	CITATIONS
994	Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel. Applied Surface Science, 2019, 481, 892-899.	3.1	52
995	Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019, 23, 149-163.	5.6	353
996	Mxenes Derived Laminated and Magnetic Composites with Excellent Microwave Absorbing Performance. Scientific Reports, 2019, 9, 3957.	1.6	51
997	Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochimica Acta, 2019, 305, 164-174.	2.6	123
998	Recent advances in micro-supercapacitors. Nanoscale, 2019, 11, 5807-5821.	2.8	87
999	MXetronics: Electronic and photonic applications of MXenes. Nano Energy, 2019, 60, 179-197.	8.2	231
1000	Tuning Thermal Transport Through Atomically Thin Ti ₃ C ₂ T _z MXene by Current Annealing in Vacuum. Advanced Functional Materials, 2019, 29, 1805693.	7.8	25
1001	Fabrication of hierarchical g-C3N4/MXene-AgNPs nanocomposites with enhanced photocatalytic performances. Materials Letters, 2019, 247, 174-177.	1.3	52
1002	Atomic Layer Tailoring Titanium Carbide MXene To Tune Transport and Polarization for Utilization of Electromagnetic Energy beyond Solar and Chemical Energy. ACS Applied Materials & Interfaces, 2019, 11, 12535-12543.	4.0	187
1003	MXeneâ€Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1802004.	1.9	214
1004	Intercalation and delamination behavior of Ti ₃ C ₂ T _x and MnO ₂ /Ti ₃ C ₂ T _x /RGO flexible fibers with high volumetric capacitance. Journal of Materials Chemistry A, 2019, 7, 12582-12592.	5.2	48
1005	Novel multilayer-like structure of Ti3C2Tx/CNZF composites for low-frequency electromagnetic absorption. Materials Letters, 2019, 248, 214-217.	1.3	46
1006	Impact of surface oxidation on the structural, electronic transport, and optical properties of two-dimensional titanium nitride (Ti3N2) MXene. Computational Condensed Matter, 2019, 20, e00382.	0.9	19
1007	0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy, 2019, 61, 27-35.	8.2	173
1008	Two-dimensional Ti ₂ CT _x MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry A, 2019, 7, 12095-12104.	5.2	96
1009	Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. Journal of Materials Chemistry A, 2019, 7, 10446-10455.	5.2	208
1010	Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582, 414-422.	4.1	146
1011	Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. Journal of Materials Chemistry A, 2019, 7, 16712-16719.	5.2	81

#	Article	IF	CITATIONS
1012	Two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochimica Acta, 2019, 307, 414-421.	2.6	119
1013	MXenes and ultrasonication. Journal of Materials Chemistry A, 2019, 7, 10843-10857.	5.2	230
1014	Preparation and characterization of Ti3C2Tx with SERS properties. Science China Technological Sciences, 2019, 62, 1202-1209.	2.0	21
1015	Ultrathin Ti3C2Tx (MXene) Nanosheet-Wrapped NiSe2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting. Nano-Micro Letters, 2019, 11, 31.	14.4	133
1016	Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochimica Acta, 2019, 308, 1-8.	2.6	72
1017	Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 2019, 60, 734-742.	8.2	124
1018	A safe and fast-charging lithium-ion battery anode using MXene supported Li ₃ VO ₄ . Journal of Materials Chemistry A, 2019, 7, 11250-11256.	5.2	106
1019	Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. Journal of Hazardous Materials, 2019, 374, 110-119.	6.5	301
1020	Negative dielectric constant of water confined in nanosheets. Nature Communications, 2019, 10, 850.	5.8	116
1021	Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Advanced Healthcare Materials, 2019, 8, e1801137.	3.9	248
1022	Electronic Structure and Electromagnetic Properties for 2D Electromagnetic Functional Materials in Gigahertz Frequency. Annalen Der Physik, 2019, 531, 1800390.	0.9	173
1023	A Series of MAX Phases with MAâ€Triangularâ€Prism Bilayers and Elastic Properties. Angewandte Chemie - International Edition, 2019, 58, 4576-4580.	7.2	20
1024	Disorder in Mn+1AXn phases at the atomic scale. Nature Communications, 2019, 10, 622.	5.8	41
1025	Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. Journal of Materials Chemistry A, 2019, 7, 5416-5425.	5.2	130
1026	Facile synthesis of foamed-nickel supporting MnO2 as binder-less electrodes for high electrochemical performance supercapacitors. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	3
1027	Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations. Nano Energy, 2019, 58, 803-810.	8.2	68
1028	Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Materials and Applications, 2019, 3, .	3.9	312
1029	Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6596-6615.	5.2	173

#	Article	IF	CITATIONS
1030	A Series of MAX Phases with MAâ€Triangularâ€Prism Bilayers and Elastic Properties. Angewandte Chemie, 2019, 131, 4624-4628.	1.6	2
1031	Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance. Advanced Functional Materials, 2019, 29, 1900326.	7.8	214
1032	Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chemical Engineering Journal, 2019, 366, 192-199.	6.6	163
1033	Self-reductive synthesis of MXene/Na _{0.55} Mn _{1.4} Ti _{0.6} O ₄ hybrids for high-performance symmetric lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 7516-7525.	5.2	18
1034	Mapping Hot Spots at Heterogeneities of Few-Layer Ti ₃ C ₂ MXene Sheets. ACS Nano, 2019, 13, 3301-3309.	7.3	29
1035	Tailoring Ti ₃ C ₂ T _x nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale, 2019, 11, 6080-6088.	2.8	168
1036	Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries. Electrochimica Acta, 2019, 305, 11-23.	2.6	15
1037	Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. Journal of Alloys and Compounds, 2019, 788, 1246-1255.	2.8	111
1038	Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 201-208.	2.0	70
1039	Carbon-Coated MoSe ₂ /MXene Hybrid Nanosheets for Superior Potassium Storage. ACS Nano, 2019, 13, 3448-3456.	7.3	372
1040	Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society, 2019, 141, 4730-4737.	6.6	811
1041	Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 10004-10011.	4.0	241
1042	Fluorination of MXene by Elemental F ₂ as Electrode Material for Lithiumâ€lon Batteries. ChemSusChem, 2019, 12, 1316-1324.	3.6	28
1043	Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries. Ceramics International, 2019, 45, 8395-8405.	2.3	88
1044	Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti ₃ C ₂ T <i>_x</i> (MXene) Nanoparticle–Nanosheet Hybrid Network. Advanced Functional Materials, 2019, 29, 1807882.	7.8	187
1045	Macroporous 3D MXene architecture for solar-driven interfacial water evaporation. Journal of Advanced Dielectrics, 2019, 09, 1950047.	1.5	9
1046	Theoretical and Experimental Insights into the Mechanism for Gas Separation through Nanochannels in 2D Laminar MXene Membranes. Processes, 2019, 7, 751.	1.3	23
1047	Interfacial Dissociation of Contact-Ion-Pair on MXene Electrodes in Concentrated Aqueous Electrolytes. Journal of the Electrochemical Society, 2019, 166, A3739-A3744.	1.3	20

#	Article	IF	CITATIONS
1048	Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale, 2019, 11, 23382-23391.	2.8	203
1049	Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. Journal of Materials Chemistry B, 2019, 7, 7729-7735.	2.9	54
1050	Monolayer MBenes: prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale, 2019, 11, 20307-20314.	2.8	93
1051	Ambient oxidation of Ti ₃ C ₂ MXene initialized by atomic defects. Nanoscale, 2019, 11, 23330-23337.	2.8	147
1052	Few-layered Ti ₃ C ₂ T _x MXenes coupled with Fe ₂ O ₃ nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 22631-22641.	5.2	93
1053	Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets. International Journal of Environmental Research and Public Health, 2019, 16, 4659.	1.2	66
1054	Efficient Control of THz Transmission of PEDOT:PSS with Resonant Nano-Metamaterials. Scientific Reports, 2019, 9, 17681.	1.6	2
1055	Mass Loadingâ€Independent Energy Storage with Reduced Graphene Oxide and Carbon Fiber. ChemElectroChem, 2019, 6, 6009-6015.	1.7	7
1056	High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart Compression Sensor. ACS Applied Materials & Interfaces, 2019, 11, 47350-47357.	4.0	168
1057	Constructing Conductive Bridge Arrays between Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for High-Performance Lithium-Ion Batteries and Highly Efficient Hydrogen Evolution. Inorganic Chemistry, 2019, 58, 16524-16536.	1.9	39
1058	Synergistic Effects of Two-Dimensional MXene and Ammonium Polyphosphate on Enhancing the Fire Safety of Polyvinyl Alcohol Composite Aerogels. Polymers, 2019, 11, 1964.	2.0	46
1059	A New Class of Scandium Carbide Nanosheet. Scientific Reports, 2019, 9, 16624.	1.6	1
1060	Environmental Stability of MXenes as Energy Storage Materials. Frontiers in Materials, 2019, 6, .	1.2	65
1061	<p>Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 10091-10103.	3.3	83
1062	Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides. Nanoscale Advances, 2019, 1, 4783-4789.	2.2	11
1063	Nitrogen-doped highly dense but porous carbon microspheres with ultrahigh volumetric capacitance and rate capability for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 476-485.	5.2	33
1064	2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Advances, 2019, 1, 395-402.	2.2	117
1065	Direct Writing of Additiveâ€Free MXeneâ€inâ€Water Ink for Electronics and Energy Storage. Advanced Materials Technologies, 2019, 4, 1800256.	3.0	112

#	Article	IF	CITATIONS
1066	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	10.8	214
1067	Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials, 2019, 16, 545-573.	9.5	489
1068	Understanding the Lithium Storage Mechanism of Ti ₃ C ₂ T _{<i>x</i>} MXene. Journal of Physical Chemistry C, 2019, 123, 1099-1109.	1.5	115
1069	A solid-state passively Q-switched Tm,Gd:CaF ₂ laser with a Ti ₃ C ₂ T _{<i>x</i>} MXene absorber near 2 <i>µ</i> m. Laser Physics Letters, 2019, 16, 015803.	0.6	69
1070	Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 662-670.	3.5	74
1071	Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Applied Catalysis B: Environmental, 2019, 245, 290-301.	10.8	229
1072	Assembling 2D MXenes into Highly Stable Pseudocapacitive Electrodes with High Power and Energy Densities. Advanced Materials, 2019, 31, e1806931.	11.1	238
1073	Tuning capacitance of graphene films via a robust routine of adjusting their hierarchical structures. Electrochimica Acta, 2019, 298, 254-264.	2.6	14
1074	Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 2019, 4, 45-60.	23.3	554
1075	Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Materials, 2019, 21, 22-40.	9.5	160
1076	MXene—Conducting Polymer Asymmetric Pseudocapacitors. Advanced Energy Materials, 2019, 9, 1802917.	10.2	262
1077	Hydration of Ti ₃ C ₂ T <i>_x</i> MXene: An Interstratification Process with Major Implications on Physical Properties. Chemistry of Materials, 2019, 31, 454-461.	3.2	70
1078	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
1079	Regulating Fast Anionic Redox for Highâ€Voltage Aqueous Hydrogenâ€Ionâ€based Energy Storage. Angewandte Chemie, 2019, 131, 211-216.	1.6	30
1080	Regulating Fast Anionic Redox for Highâ€Voltage Aqueous Hydrogenâ€Ionâ€based Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 205-210.	7.2	61
1081	Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes. Advanced Functional Materials, 2019, 29, 1805946.	7.8	242
1082	Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution. Electrochimica Acta, 2019, 296, 762-770.	2.6	71
1083	Boosting the Photocatalytic Ability of Cu ₂ 0 Nanowires for CO ₂ Conversion by MXene Quantum Dots. Advanced Functional Materials, 2019, 29, 1806500.	7.8	354

#	Article	IF	CITATIONS
1084	2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal, 2019, 359, 1265-1302.	6.6	715
1085	Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage. Energy Storage Materials, 2019, 20, 36-45.	9.5	51
1086	Study on the effect of liquid nitrogen cold-quenching on electrochemical characteristic of TiO2 complex flakes with edged-curled derived from MAX as anode for lithium ion batteries. Journal of Alloys and Compounds, 2019, 780, 482-490.	2.8	6
1087	MXene/reduced graphene oxide hydrogel film extraction combined with gas chromatography–tandem mass spectrometry for the determination of 16 polycyclic aromatic hydrocarbons in river and tap water. Journal of Chromatography A, 2019, 1584, 24-32.	1.8	24
1088	In situ polymerized Ti3C2Tx/PDA electrode with superior areal capacitance for supercapacitors. Journal of Alloys and Compounds, 2019, 778, 858-865.	2.8	63
1089	Highly Conductive Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Fibers for Flexible and Elastic Fiberâ€6haped Supercapacitors. Small, 2019, 15, e1804732.	5.2	171
1090	First-principles investigation of native point defects in two-dimensional Ti3C2. Computational and Theoretical Chemistry, 2019, 1150, 26-39.	1.1	9
1091	Hydrolysis of 2D Transition-Metal Carbides (MXenes) in Colloidal Solutions. Inorganic Chemistry, 2019, 58, 1958-1966.	1.9	280
1092	Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360.	11.7	171
1093	Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Applied Nano Materials, 2019, 2, 948-955.	2.4	173
1094	Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceramics International, 2019, 45, 7328-7337.	2.3	91
1095	Monodisperse Carbon Sphere-Constructed Pomegranate-Like Structures for High-Volumetric-Capacitance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 4011-4016.	4.0	79
1096	Hypoxia-Irrelevant Photonic Thermodynamic Cancer Nanomedicine. ACS Nano, 2019, 13, 2223-2235.	7.3	115
1097	Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 70-77.	2.3	75
1098	2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Materials Science and Engineering C, 2019, 98, 874-886.	3.8	159
1099	Process Safety Analysis for Ti ₃ C ₂ T _{<i>x</i>} MXene Synthesis and Processing. Industrial & Engineering Chemistry Research, 2019, 58, 1570-1579.	1.8	89
1100	Capacitance improvements of V4C3T by NH3 annealing. Journal of Alloys and Compounds, 2019, 784, 923-930.	2.8	36
1101	Predicting the Electrochemical Synthesis of 2D Materials from First Principles. Journal of Physical Chemistry C, 2019, 123, 3180-3187.	1.5	34

#	Article	IF	CITATIONS
1102	Grain Boundaries and Tilt-Angle-Dependent Transport Properties of a 2D Mo ₂ C Superconductor. Nano Letters, 2019, 19, 857-865.	4.5	18
1103	Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti ₃ C ₂ T _{<i>x</i>} (MXene). ACS Sustainable Chemistry and Engineering, 2019, 7, 4266-4273.	3.2	79
1104	Three-Dimensional Porous Ti3C2Tx-NiO Composite Electrodes with Enhanced Electrochemical Performance for Supercapacitors. Materials, 2019, 12, 188.	1.3	44
1105	Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule, 2019, 3, 459-470.	11.7	352
1106	2D Transition Metal Carbides (MXenes) for Carbon Capture. Advanced Materials, 2019, 31, e1805472.	11.1	184
1107	Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 2019, 12, 471-487.	5.8	358
1108	A novel electrode for supercapacitors: Spicules-like Ni3S2 shell grown on molybdenum nanoparticles doped nickel foam. Applied Surface Science, 2019, 467-468, 1113-1121.	3.1	19
1109	Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. Journal of Materials Science, 2019, 54, 2458-2471.	1.7	108
1110	Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosensors and Bioelectronics, 2019, 124-125, 184-190.	5.3	241
1111	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133
1112	Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochimica Acta, 2019, 294, 233-239.	2.6	49
1113	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11, 16-33.	2.8	184
1114	Computational Screening of MXene Electrodes for Pseudocapacitive Energy Storage. Journal of Physical Chemistry C, 2019, 123, 315-321.	1.5	69
1115	Ti ₃ C ₂ T _{<i>x</i>/i>} -Based Three-Dimensional Hydrogel by a Graphene Oxide-Assisted Self-Convergence Process for Enhanced Photoredox Catalysis. ACS Nano, 2019, 13, 295-304.	7.3	247
1116	Atomic Sn ⁴⁺ Decorated into Vanadium Carbide MXene Interlayers for Superior Lithium Storage. Advanced Energy Materials, 2019, 9, 1802977.	10.2	103
1117	Probing the electrochemistry of MXene (Ti2CTx)/electrolytic manganese dioxide (EMD) composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2019, 297, 961-973.	2.6	34
1118	MXene: A New Trend in 2D Materials Science. , 2019, , 319-330.		20
1119	Structure and Chemistry of 2D Materials. , 2019, , 55-90.		17

#	Article	IF	CITATIONS
1120	Ultrahigh volumetric capacitance and cycle stability via structure design and synergistic action between CoMoO4 nanosheets and 3D porous Ni-Co film. Applied Surface Science, 2019, 465, 389-396.	3.1	10
1121	Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. CheM, 2019, 5, 18-50.	5.8	579
1122	Effective orientation control of photogenerated carrier separation via rational design of a Ti3C2(TiO2)@CdS/MoS2 photocatalytic system. Applied Catalysis B: Environmental, 2019, 242, 202-208.	10.8	99
1123	Synthesis of Ti2CT MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. Journal of Energy Chemistry, 2019, 31, 11-18.	7.1	94
1124	Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials, 2019, 16, 102-125.	9.5	313
1125	Ultra-lightweight Ti3C2T MXene modified separator for Li–S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation. Journal of Energy Chemistry, 2020, 42, 116-125.	7.1	147
1126	The role of functional materials to produce high areal capacity lithium sulfur battery. Journal of Energy Chemistry, 2020, 42, 195-209.	7.1	67
1127	Recent Development of Printed Microâ€Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Advanced Materials, 2020, 32, e1805864.	11.1	142
1128	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	10.2	123
1129	Structural defects in MAX phases and their derivative MXenes: A look forward. Journal of Materials Science and Technology, 2020, 38, 205-220.	5.6	55
1130	3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Materials, 2020, 24, 670-675.	9.5	82
1131	Synthesis of nitrogen-doped flower-like carbon microspheres from urea-formaldehyde resins for high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 812, 152109.	2.8	19
1132	Fast facial smile detection using convolutional neural network in an intelligent working environment. Infrared Physics and Technology, 2020, 104, 103061.	1.3	9
1133	Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. Journal of Hazardous Materials, 2020, 384, 121358.	6.5	160
1134	Cation-intercalated engineering and X-ray absorption spectroscopic characterizations of two dimensional MXenes. Chinese Chemical Letters, 2020, 31, 969-979.	4.8	12
1135	Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials, 2020, 25, 563-571.	9.5	235
1136	Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.	2.8	108
1137	Two-dimensional chromium boride MBenes with high HER catalytic activity. Applied Surface Science, 2020, 500, 144248.	3.1	50

#	Article	IF	CITATIONS
1138	Mixed analogous heterostructure based on MXene and prussian blue analog derivative for high-performance flexible energy storage. Chemical Engineering Journal, 2020, 387, 123170.	6.6	42
1139	Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Applied Surface Science, 2020, 499, 143998.	3.1	8
1140	Diffusion-controlled intercalation approach to synthesize the Ti2AlC MAX phase coatings at low temperature of 550â€ [–] °C. Applied Surface Science, 2020, 502, 144130.	3.1	17
1141	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Progress in Solid State Chemistry, 2020, 58, 100254.	3.9	87
1142	Miniaturized Energy Storage Devices Based on Twoâ€Dimensional Materials. ChemSusChem, 2020, 13, 1420-1446.	3.6	30
1143	2 D MXeneâ€based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 2020, 13, 1409-1419.	3.6	63
1144	Strongly Coupled MoS ₂ Nanocrystal/Ti ₃ C ₂ Nanosheet Hybrids Enable Highâ€Capacity Lithiumâ€lon Storage. ChemSusChem, 2020, 13, 1485-1490.	3.6	39
1145	NiMoO4 nanorods@hydrous NiMoO4 nanosheets core-shell structured arrays for pseudocapacitor application. Journal of Alloys and Compounds, 2020, 814, 152253.	2.8	23
1146	Novel room-temperature ferromagnetism in Gd-doped 2-dimensional Ti3C2Tx MXene semiconductor for spintronics. Journal of Magnetism and Magnetic Materials, 2020, 497, 165954.	1.0	45
1147	Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M =†Ti, Mo). Applied Surface Science, 2020, 500, 143987.	3.1	93
1148	Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Materials, 2020, 25, 382-403.	9.5	14
1149	Two-dimensional vanadium carbide (V2CT) MXene as supercapacitor electrode in seawater electrolyte. Chinese Chemical Letters, 2020, 31, 984-987.	4.8	74
1150	Emerging 2D Layered Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902253.	10.2	79
1151	High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: Understanding the role of interlayer ions and hydration. Chemical Engineering Journal, 2020, 380, 122456.	6.6	126
1152	Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24, 297-303.	9.5	29
1153	MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. Journal of Hazardous Materials, 2020, 381, 120952.	6.5	174
1154	MoS2-decorated 2D Ti3C2 (MXene): a high-performance anode material for lithium-ion batteries. lonics, 2020, 26, 51-59.	1.2	29
1155	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 1447-1479.	3.6	49

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
1156	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	11.1	117
1157	Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials, 2020, 30, 1902564.	7.8	252
1158	A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chemical Engineering Journal, 2020, 381, 122696.	6.6	301
1159	Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chemical Engineering Journal, 2020, 381, 122622.	6.6	289
1160	Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science, 2020, 593, 117431.	4.1	218
1161	Pebaxâ€Based Membrane Filled with Twoâ€Dimensional Mxene Nanosheets for Efficient CO ₂ Capture. Chemistry - an Asian Journal, 2020, 15, 2364-2370.	1.7	72
1162	One-step synthesis for cations intercalation of two-dimensional carbide crystal Ti3C2 MXene. Applied Surface Science, 2020, 505, 144538.	3.1	26
1163	Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. Journal of Energy Chemistry, 2020, 46, 256-263.	7.1	44
1164	Sonochemical self-growth of functionalized titanium carbide nanorods on Ti3C2 nanosheets for high capacity anode for lithium-ion batteries. Composites Part B: Engineering, 2020, 181, 107583.	5.9	41
1165	Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst. Applied Catalysis B: Environmental, 2020, 267, 118379.	10.8	135
1166	Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. Journal of Power Sources, 2020, 448, 227398.	4.0	58
1167	Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature. Ceramics International, 2020, 46, 6934-6939.	2.3	41
1168	Metal–organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices. Journal of Power Sources, 2020, 448, 227403.	4.0	60
1169	MXene Quantum Dot/Polymer Hybrid Structures with Tunable Electrical Conductance and Resistive Switching for Nonvolatile Memory Devices. Advanced Electronic Materials, 2020, 6, 1900493.	2.6	63
1170	Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances. Journal of Energy Chemistry, 2020, 46, 105-113.	7.1	97
1171	Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chemical Engineering Journal, 2020, 384, 123329.	6.6	160
1172	Water permeability in MXene membranes: Process matters. Chinese Chemical Letters, 2020, 31, 1665-1669.	4.8	39
1173	MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5, 235-258.	4.1	588

#	ARTICLE	IF	CITATIONS
1174	2D 113C21x MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceramics International, 2020, 46, 6199-6204.	2.3	53
1175	Rechargeable Mg metal batteries enabled by a protection layer formed in vivo. Energy Storage Materials, 2020, 26, 408-413.	9.5	91
1176	Ultrathin carbon layer-encapsulated TiN nanotubes array with enhanced capacitance and electrochemical stability for supercapacitors. Applied Surface Science, 2020, 503, 144293.	3.1	19
1177	Recent Advances in Fiberâ€Shaped Supercapacitors and Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1902779.	11.1	142
1178	Enhanced electrochemical performance of Ti3C2T MXene film based supercapacitors in H2SO4/KI redox additive electrolyte. Applied Surface Science, 2020, 504, 144250.	3.1	39
1179	Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration. Separation and Purification Technology, 2020, 235, 116206.	3.9	38
1180	Enhanced mechanical properties of poly(lactic acid) composites with ultrathin nanosheets of MXene modified by stearic acid. Journal of Applied Polymer Science, 2020, 137, 48621.	1.3	19
1181	Design of a graphene-based core–shell structure for the improvement of photothermic performance. Journal Physics D: Applied Physics, 2020, 53, 025303.	1.3	3
1183	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	1.3	41
1184	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		0
1185	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70-91.		0
1186	Quantum Transport: General Concepts. , 2020, , 92-119.		0
1187	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0
1188	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		0
1189	Two-Dimensional MXenes Mo ₂ Ti ₂ C ₃ T _{<i>z</i>/sub> and Mo₂TiC₂T_{<i>z</i>/sub>: Microscopic Conductivity and Dynamics of Photoexcited Carriers. ACS Applied Energy Materials, 2020, 3, 1530-1539.}}	2.5	37
1190	Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Composites Science and Technology, 2020, 188, 107995.	3.8	129
1191	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials, 2020, 26, 223-233.	9.5	100
1192	Two-dimensional semiconducting Lu ₂ CT ₂ (T = F, OH) MXene with low work function and high carrier mobility. Nanoscale, 2020, 12, 3795-3802.	2.8	30

ARTICLE IF CITATIONS A high-performance trace level acetone sensor using an indispensable 1193 54 1.7 V₄C₃T_x MXene. RSC Advances, 2020, 10, 1261-1270. Mo₂B, an MBene member with high electrical and thermal conductivities, and satisfactory 2.2 38 performances in lithium ion batteries. Nanoscale Advances, 2020, 2, 347-355. Interlayer engineering of Ti₃C₂T_x MXenes towards high 1195 2.8 73 capacitance supercapacitors. Nanoscale, 2020, 12, 763-771. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) 4.0 nanohybrid and MXene electrodes. Journal of Power Sources, 2020, 450, 227694. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for 1197 6.6 77 supercapacitors. Chemical Engineering Journal, 2020, 395, 124057. Phase Transition Induced Unusual Electrochemical Performance of V₂CT_XMXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551. 7.3 179 2D black TiO2-x nanoplate-decorated Ti3C2 MXene hybrids for ultrafast and elevated stable lithium 1199 2.8 29 storage. FlatChem, 2020, 20, 100152. Electronic Properties of Carbon-Based Nanostructures., 2020, , 11-69. 1202 Quantum Hall Effects in Graphene., 2020, , 210-236. 0 1203 1204 Spin-Related Phenomena., 2020, , 237-277. Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials., 2020, 293-353. 1205 0 Two-dimensional composite of D-Ti₃C₂T_x@S@TiO₂ 1209 2.8 (MXene) as the cathode material for aluminum-ion batteries. Nanoscale, 2020, 12, 3387-3399. 3D Printing of Additive-Free 2D Ti₃C₂T_{<i>x</i>} (MXene) Ink for 1210 7.3 285 Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. ACS Nano, 2020, 14, 640-650. Photoredox-catalyzed biomass intermediate conversion integrated with H₂ production 149 4.6 over Ti₃C₂T_x/CdS composites. Green Chemistry, 2020, 22, 163-169. pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors. 1212 1.7 24 Molecular Systems Design and Engineering, 2020, 5, 366-375. Phototherapy with layered materials derived quantum dots. Nanoscale, 2020, 12, 43-57. 54 2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application. ChemSusChem, 1214 3.6 77 2020, 13, 1155-1171. A MXeneâ€Coated Activated Carbon Cloth for Flexible Solidâ€State Supercapacitor. Energy Technology, 1.8 2020, 8, 1901003.

#	Article	IF	CITATIONS
1216	Microsphereâ€Like SiO ₂ /MXene Hybrid Material Enabling High Performance Anode for Lithium Ion Batteries. Small, 2020, 16, e1905430.	5.2	90
1217	Mechanical Exfoliation of Select MAX Phases and Mo ₄ Ce ₄ Al ₇ C ₃ Single Crystals to Produce MAXenes. Small, 2020, 16, e1905784.	5.2	30
1218	An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small, 2020, 16, e1906851.	5.2	186
1219	Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Research, 2020, 13, 196-202.	5.8	52
1220	Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Research, 2020, 13, 255-264.	5.8	174
1221	A ''naked-eye'' colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXer quantum dots. Analytica Chimica Acta, 2020, 1103, 134-142.	1e 2.6	86
1222	Tuning Lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction. Applied Catalysis B: Environmental, 2020, 264, 118534.	10.8	102
1223	Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105754.	3.8	132
1224	Remarkable hydrogen absorption/desorption behaviors and mechanism of sodium alanates in-situ doped with Ti-based 2D MXene. Materials Chemistry and Physics, 2020, 242, 122529.	2.0	35
1225	Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Science Bulletin, 2020, 65, 460-466.	4.3	152
1226	Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti ₃ C ₂ (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 586-596.	2.5	40
1227	Selective Preparation of 1T- and 2H-Phase MoS ₂ Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. ACS Applied Energy Materials, 2020, 3, 998-1009.	2.5	50
1228	High areal capacitance of vanadium oxides intercalated Ti ₃ C ₂ MXene for flexible supercapacitors with high mass loading. Nanotechnology, 2020, 31, 165403.	1.3	13
1229	Solarâ€Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. Solar Rrl, 2020, 4, 1900400.	3.1	133
1230	Porosity―and Graphitization ontrolled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1908721.	7.8	159
1231	Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2020, 265, 118539.	10.8	204
1232	Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes. Talanta, 2020, 209, 120531.	2.9	13
1233	Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 2020, 31, 937-946.	4.8	52

#	Article	IF	CITATIONS
1234	Porous MXenes: Synthesis, structures, and applications. Nano Today, 2020, 30, 100803.	6.2	218
1235	Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength. Advanced Functional Materials, 2020, 30, 1906996.	7.8	138
1236	3D Printing of Porous Nitrogen-Doped Ti ₃ C ₂ MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors. ACS Nano, 2020, 14, 867-876.	7.3	201
1237	Ti ₃ C ₂ T _x MXene-derived TiO ₂ /C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. Journal of Materials Chemistry B, 2020, 8, 3513-3518.	2.9	54
1238	Recent progress of MXenes as the support of catalysts for the CO oxidation and oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 931-936.	4.8	32
1239	Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. Journal of Energy Storage, 2020, 27, 101115.	3.9	113
1240	Progress of Twoâ€Ðimensional Ti ₃ C ₂ T _{<i>x</i>} in Supercapacitors. ChemSusChem, 2020, 13, 1296-1329.	3.6	45
1241	Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy and Environmental Materials, 2020, 3, 29-55.	7.3	319
1242	Nickel cobalt sulfide nanoparticles grown on titanium carbide MXenes for high-performance supercapacitor. Electrochimica Acta, 2020, 332, 135514.	2.6	41
1243	Dynamical Control over Terahertz Electromagnetic Interference Shielding with 2D Ti ₃ C ₂ T _{<i>y</i>} MXene by Ultrafast Optical Pulses. Nano Letters, 2020, 20, 636-643.	4.5	75
1244	Remarkable differences in the voltammetric response towards hydrogen peroxide, oxygen and Ru(NH3)63+ of electrode interfaces modified with HF or LiF-HCl etched Ti3C2Tx MXene. Mikrochimica Acta, 2020, 187, 52.	2.5	20
1245	Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chemical Engineering Journal, 2020, 385, 123839.	6.6	141
1246	Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2T -MXene membrane capacitive deionization system. Desalination, 2020, 477, 114267.	4.0	71
1247	Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. Journal of Energy Chemistry, 2020, 47, 203-209.	7.1	91
1248	Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Advanced Powder Technology, 2020, 31, 808-815.	2.0	62
1249	Structural, mechanical and electronic properties of two-dimensional chlorine-terminated transition metal carbides and nitrides. Journal of Physics Condensed Matter, 2020, 32, 135302.	0.7	18
1250	Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. Environmental Research, 2020, 182, 108990.	3.7	65
1251	Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chemical Engineering Journal, 2020, 391, 123519.	6.6	142

		CITATION REPORT		
# 1252	ARTICLE Ultrastrong and Highly Conductive MXeneâ€Based Films for Highâ€Performance Electromagne Interference Shielding, Advanced Electronic Materials, 2020, 6, 1901094.	tic	IF 2.6	Citations
1253	Ti3C2T /PEDOT:PSS hybrid materials for room-temperature methanol sensor. Chinese Chemical 2020, 31, 1018-1021.	Letters,	4.8	57
1254	Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Materials, 2020, 26, 472-482.		9.5	117
1255	Highâ€Efficiency Thermoelectric Power Generation Enabled by Homogeneous Incorporation of (Bi,Sb) ₂ Te ₃ Matrix. Advanced Energy Materials, 2020, 10, 1902986.	MXene in	10.2	109
1256	MXetronics: MXene-Enabled Electronic and Photonic Devices. , 2020, 2, 55-70.			156
1257	Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect. Journal of Hazardous Materials, 2020, 388, 121761.		6.5	61
1258	Fast Treatment of MXene Films with Isocyanate to Give Enhanced Stability. ChemNanoMat, 20. 64-67.	20, 6,	1.5	21
1259	MXene Tunable Lamellae Architectures for Supercapacitor Electrodes. ACS Applied Energy Mat 2020, 3, 411-422.	erials,	2.5	46
1260	First-principles study of high performance lithium/sodium storage of Ti ₃ C ₂ T ₂ nanosheets as electrode materials*. Chinese Pl 2020, 29, 016802.	ıysics B,	0.7	8
1261	Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applicat review. Chemical Engineering Journal, 2020, 392, 123678.	ions: A	6.6	127
1262	Composites formed from tungsten trioxide and graphene oxide for the next generation of electrochromic interfaces. Composites Communications, 2020, 17, 115-122.		3.3	6
1263	3D Ti3C2Tx aerogel-modified separators for high-performance Li–S batteries. Journal of Alloy: Compounds, 2020, 816, 153155.	and	2.8	15
1264	MXenes—A new class of 2D layered materials: Synthesis, properties, applications as supercap electrode and beyond. Applied Materials Today, 2020, 18, 100509.	acitor	2.3	82
1265	Review—Two-Dimensional Titanium Carbide MXenes and Their Emerging Applications as Electrochemical Sensors. Journal of the Electrochemical Society, 2020, 167, 037514.		1.3	49
1266	3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide fo superior energy storage in ionic liquid. Electrochimica Acta, 2020, 334, 135546.	ır	2.6	76
1267	A hydrofluoric acid-free synthesis of 2D vanadium carbide (V ₂ C) MXene for supercapacitor electrodes. 2D Materials, 2020, 7, 025010.		2.0	127
1268	Review— Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a Theoretica Experimental View. Journal of the Electrochemical Society, 2020, 167, 037515.	to an	1.3	78
1269	Assembly of MXene/PP Separator and Its Enhancement for Ni-Rich LiNi0.8Co0.1Mn0.1O2 Elect Performance. Polymers, 2020, 12, 2192.	rochemical	2.0	21

#	Article	IF	CITATIONS
1270	The tunable electric and magnetic properties of 2D MXenes and their potential applications. Materials Advances, 2020, 1, 3104-3121.	2.6	57
1271	The Recent Advances in the Mechanical Properties of Self-Standing Two-Dimensional MXene-Based Nanostructures: Deep Insights into the Supercapacitor. Nanomaterials, 2020, 10, 1916.	1.9	69
1272	Electrochemical capacitance of intermetallic vanadium carbide. Intermetallics, 2020, 127, 106976.	1.8	12
1273	Oxygen vacancies-enriched sub-7 nm cross-linked Bi2.88Fe5O12- nanoparticles anchored MXene for electrochemical energy storage with high volumetric performances. Nano Energy, 2020, 78, 105360.	8.2	27
1274	Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48718-48728.	4.0	45
1275	Exploring the Influence of Critical Parameters for the Effective Synthesis of High-Quality 2D MXene. ACS Omega, 2020, 5, 26845-26854.	1.6	56
1276	Recent Advances in Transition Metal Carbide Electrocatalysts for Oxygen Evolution Reaction. Catalysts, 2020, 10, 1164.	1.6	43
1277	Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range. Sensors and Actuators A: Physical, 2020, 315, 112304.	2.0	27
1278	MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications. Sensors, 2020, 20, 5434.	2.1	66
1279	Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta Biomaterialia, 2020, 115, 104-115.	4.1	47
1280	In-situ SEM compression of accordion-like multilayer MXenes. Extreme Mechanics Letters, 2020, 41, 101054.	2.0	5
1281	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45
1282	On the Capacities of Freestanding Vanadium Pentoxide–Carbon Nanotube–Nanocellulose Paper Electrodes for Charge Storage Applications. Energy Technology, 2020, 8, 2000731.	1.8	4
1283	Theoretical study on the electrical and mechanical properties of MXene multilayer structures through strain regulation. Chemical Physics Letters, 2020, 760, 137997.	1.2	13
1284	Ti ₃ C ₂ MXene as an "energy band bridge―to regulate the heterointerface mass transfer and electron reversible exchange process for Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 25255-25267.	5.2	70
1285	Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy. Journal of Materials Chemistry A, 2020, 8, 23488-23497.	5.2	71
1286	General Synthesis of Nanoporous 2D Metal Compounds with 3D Bicontinous Structure. Advanced Materials, 2020, 32, e2004055.	11.1	20
1287	Nanocomposite pervaporation membrane for desalination. Chemical Engineering Research and Design, 2020, 164, 147-161.	2.7	38

#	Article	IF	CITATIONS
1288	A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Analytica Chimica Acta, 2020, 1139, 100-110.	2.6	73
1289	Enhancing the conductivity, stability and flexibility of Ti3C2Tx MXenes by regulating etching conditions. Applied Surface Science, 2020, 533, 147475.	3.1	16
1290	Enhanced electrochemical performance by GeOx-Coated MXene nanosheet anode in lithium-ion batteries. Electrochimica Acta, 2020, 358, 136923.	2.6	9
1291	Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Materials, 2020, 33, 147-157.	9.5	64
1292	Low-Temperature pseudocapacitive energy storage in Ti3C2T MXene. Energy Storage Materials, 2020, 33, 382-389.	9.5	61
1293	A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2020, 877, 114538.	1.9	57
1294	Alternately stacked thin film electrodes for high-performance compact energy storage. Nano Energy, 2020, 78, 105323.	8.2	17
1295	Photocatalytic Applications of Two-Dimensional Ti ₃ C ₂ MXenes: A Review. ACS Applied Nano Materials, 2020, 3, 9581-9603.	2.4	142
1296	Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation. Journal of Materials Chemistry A, 2020, 8, 22666-22673.	5.2	39
1297	Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a flex sensor. Journal of Materials Chemistry A, 2020, 8, 16649-16660.	5.2	50
1298	All-Ti3C2TxMXene Based Flexible On-chip Microsupercapacitor Array. Chemical Research in Chinese Universities, 2020, 36, 694-698.	1.3	16
1299	One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Applied Surface Science, 2020, 530, 147209.	3.1	172
1300	Computational Prediction of Boron-Based MAX Phases and MXene Derivatives. Chemistry of Materials, 2020, 32, 6947-6957.	3.2	89
1301	New Method for the Synthesis of 2D Vanadium Nitride (MXene) and Its Application as a Supercapacitor Electrode. ACS Omega, 2020, 5, 17983-17992.	1.6	84
1302	Electro-Synthesis of Ultrafine V ₂ AlC MAX-Phase and Its Conversion Process towards Two-Dimensional V ₂ CT _X . Journal of the Electrochemical Society, 2020, 167, 122501.	1.3	11
1303	Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid in a Hybrid PV/T Solar System. Nanomaterials, 2020, 10, 1372.	1.9	74
1304	lon sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nature Communications, 2020, 11, 3540.	5.8	147
1305	Surface Charge Engineering for Covalently Assembling Three-Dimensional MXene Network for All-Climate Sodium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 39181-39194.	4.0	61
#	Article	IF	CITATIONS
------	---	-----	-----------
1306	Novel MXene-based hierarchically porous composite as superior electrodes for Li-ion storage. Applied Surface Science, 2020, 530, 147214.	3.1	17
1307	Carbon Dot-Regulated 2D MXene Films with High Volumetric Capacitance. Industrial & Engineering Chemistry Research, 2020, 59, 13969-13978.	1.8	29
1308	A Comprehensive Review on the Synthesis and Energy Applications of Nano-structured Metal Nitrides. Frontiers in Materials, 2020, 7, .	1.2	43
1309	Ti3C2Tx MXene-derived amorphous TiO2-C nanosheet cocatalysts coupled CdS nanostructures for enhanced photocatalytic hydrogen evolution. Applied Surface Science, 2020, 530, 147247.	3.1	32
1310	Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Science Bulletin, 2020, 65, 2107-2119.	4.3	37
1311	A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta, 2020, 220, 121403.	2.9	74
1312	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	7.3	87
1313	Printing and coating MXenes for electrochemical energy storage devices. JPhys Energy, 2020, 2, 031004.	2.3	42
1314	Simultaneously Improved Thermal and Dielectric Performance of Epoxy Composites Containing Ti3C2Tx Platelet Fillers. Polymers, 2020, 12, 1608.	2.0	11
1315	Effect of Ti ₃ C ₂ T _x MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors. RSC Advances, 2020, 10, 41837-41845.	1.7	26
1316	0D/2D MXene Quantum Dot/Ni-MOF Ultrathin Nanosheets for Enhanced N ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 17791-17799.	3.2	74
1317	Research progress of MXenes-based wearable pressure sensors. APL Materials, 2020, 8, .	2.2	31
1318	Pseudocapacitive Charge Storage in MXene–V ₂ O ₅ for Asymmetric Flexible Energy Storage Devices. ACS Applied Materials & Interfaces, 2020, 12, 54791-54797.	4.0	28
1319	2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management. , 0, , .		3
1320	Ti ₃ C ₂ T <i>_x</i> MXene Quantum Dots with Enhanced Stability for Ultrafast Photonics. ACS Applied Nano Materials, 2020, 3, 11850-11860.	2.4	38
1321	CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy and Environment, 2022, 7, 394-410.	4.7	54
1322	Fabrication of two-dimensional Ti3C2Tx MXenes by ball milling pretreatment and mild etchant and their microstructure. Ceramics International, 2020, 46, 28949-28954.	2.3	16
1323	A dual-potential electrochemiluminescence sensor for ratiometric detection of carcinoembryonic antigen based on single luminophor. Sensors and Actuators B: Chemical, 2020, 325, 128776.	4.0	41

#	Article	IF	CITATIONS
1324	Generation of Monodisperse Submicron Water-in-Diesel Emulsions via a Hydrophobic MXene-Modified Ceramic Membrane. Industrial & Engineering Chemistry Research, 2020, 59, 20349-20358.	1.8	11
1325	Precisely Tunable Ion Sieving with an Al ₁₃ –Ti ₃ C ₂ T _{<i>x</i>} Lamellar Membrane by Controlling Interlayer Spacing. ACS Nano, 2020, 14, 15306-15316.	7.3	60
1326	Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti ₃ C ₂ T <i>_x</i> MXene and Battery-Type Reduced Graphene Oxide/Nickel–Cobalt Bimetal Oxide Electrode Materials. ACS Applied Materials & amp; Interfaces, 2020, 12, 52749-52762.	4.0	66
1327	Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation. Green Energy and Environment, 2022, 7, 246-256.	4.7	35
1328	Evaluating the Cytotoxicity of Ti ₃ C ₂ MXene to Neural Stem Cells. Chemical Research in Toxicology, 2020, 33, 2953-2962.	1.7	38
1329	Electronic Structure Sensitivity to Surface Disorder and Nanometer-Scale Impurity of 2D Titanium Carbide MXene Sheets as Revealed by Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 27071-27081.	1.5	9
1330	The intrinsic hydrogen evolution performance of 2D molybdenum carbide. Journal of Materials Chemistry A, 2020, 8, 24204-24211.	5.2	29
1331	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	5.2	405
1332	High catalytic performance of 2D Ti3C2Tx MXene in $\hat{I}\pm$ -pinene isomerization to camphene. Applied Catalysis A: General, 2020, 604, 117765.	2.2	13
1333	Optoelectronic properties of Ti3C2Tx MXene transparent conductive electrodes: Microwave synthesis of parent MAX phase. Ceramics International, 2020, 46, 28114-28119.	2.3	13
1334	A Review of the Effects of Electrode Fabrication and Assembly Processes on the Structure and Electrochemical Performance of 2D MXenes. Advanced Functional Materials, 2020, 30, 2005305.	7.8	58
1335	Adjusting Channel Size within PVA-Based Hydrogels via Ice Templating for Enhanced Solar Steam Generation. ACS Applied Energy Materials, 2020, 3, 9216-9225.	2.5	36
1336	Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chemical Society Reviews, 2020, 49, 6666-6693.	18.7	466
1337	Mechanotribological Aspects of MXeneâ€Reinforced Nanocomposites. Advanced Materials, 2020, 32, e2003154.	11.1	160
1338	Unraveling the Charge Storage Mechanism of Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene Electrode in Acidic Electrolyte. ACS Energy Letters, 2020, 5, 2873-2880.	8.8	129
1339	Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Science of the Total Environment, 2020, 746, 141009.	3.9	34
1340	A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere, 2020, 261, 127781.	4.2	111
1341	Ti3SiC2/Carbon Nanofibers Fabricated by Electrospinning as Electrode Material for High-Performance Supercapacitors. Journal of Nanoscience and Nanotechnology, 2020, 20, 6441-6449.	0.9	3

	CITATION	Report	
#	Article	IF	CITATIONS
1342	Molecular Ligandâ€Mediated Assembly of Multicomponent Nanosheet Superlattices for Compact Capacitive Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 20628-20635.	7.2	59
1343	Molecular Ligandâ€Mediated Assembly of Multicomponent Nanosheet Superlattices for Compact Capacitive Energy Storage. Angewandte Chemie, 2020, 132, 20809-20816.	1.6	13
1344	Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. CheM, 2020, 6, 2382-2394.	5.8	163
1345	Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst. Renewable Energy, 2020, 160, 1168-1173.	4.3	11
1346	CO ₂ -Oxidized Ti ₃ C ₂ T _{<i>x</i>} –MXenes Components for Lithium–Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption. ACS Nano, 2020, 14, 9744-9754.	7.3	88
1347	MXene derivatives for energy storage applications. Sustainable Energy and Fuels, 2020, 4, 4988-5004.	2.5	45
1348	Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Composites Part B: Engineering, 2020, 199, 108238.	5.9	277
1349	Laser writing of the restacked titanium carbide MXene for high performance supercapacitors. Energy Storage Materials, 2020, 32, 418-424.	9.5	31
1350	Stable Electrochemical Li Plating/Stripping Behavior by Anchoring MXene Layers on Three-Dimensional Conductive Skeletons. ACS Applied Materials & Interfaces, 2020, 12, 37967-37976.	4.0	33
1351	Intercalation of Metal Ions into Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Highâ€Arealâ€Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials, 2020, 30, 2003721.	7.8	61
1352	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	10.2	127
1353	Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance. Carbon, 2020, 169, 225-234.	5.4	73
1354	Ionic liquid-based synthesis of MXene. Chemical Communications, 2020, 56, 11082-11085.	2.2	87
1355	Catalytic Activity of Tiâ€based MXenes for the Hydrogenation of Furfural. ChemCatChem, 2020, 12, 5733-5742.	1.8	20
1356	A Highâ€Performing Asymmetric Supercapacitor of Molybdenum Nitride and Vanadium Nitride Thin Films as Binderâ€Free Electrode Grown through Reactive Sputtering. Energy Technology, 2020, 8, 2000466.	1.8	33
1357	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
1358	Effective usage of 2D MXene nanosheets as solid lubricant – Influence of contact pressure and relative humidity. Applied Surface Science, 2020, 531, 147311.	3.1	77
1359	Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78, 105187.	8.2	140

#	Article	IF	CITATIONS
1360	Amorphous Metal Oxide Nanosheets Featuring Reversible Structure Transformations as Sodium-Ion Battery Anodes. Cell Reports Physical Science, 2020, 1, 100118.	2.8	29
1361	Highly Efficient Photothermal Conversion of Ti ₃ C ₂ T <i>_x</i> /lonic Liquid Gel Pen Ink for Smoothly Writing Ultrasensitive, Wide-Range Detecting, and Flexible Thermal Sensors. ACS Applied Materials & Interfaces. 2020. 12. 37637-37646.	4.0	38
1362	Enhancing N ₂ Fixation Activity by Converting Ti ₃ C ₂ MXenes Nanosheets to Nanoribbons. ChemSusChem, 2020, 13, 5614-5619.	3.6	26
1363	Review on reliability of supercapacitors in energy storage applications. Applied Energy, 2020, 278, 115436.	5.1	156
1364	Synthesis and recent applications of MXenes with Mo, V or Nb transition metals: a review. Tungsten, 2020, 2, 176-193.	2.0	20
1365	Two-dimensional organic–inorganic superlattice-like heterostructures for energy storage applications. Energy and Environmental Science, 2020, 13, 4834-4853.	15.6	64
1366	Synthesis of Ni-MOF/Ti3C2Tx hybrid nanosheets via ultrasonific method for supercapacitor electrodes. Materials Letters, 2020, 280, 128526.	1.3	42
1367	2D Carbide MXene under postetch low-temperature annealing for high–performance supercapacitor electrode. Electrochimica Acta, 2020, 359, 136960.	2.6	30
1368	Synthesis and Properties of MXenes. Engineering Materials, 2020, , 5-93.	0.3	1
1369	One-Step Synthesis of Modified Ti ₃ C ₂ MXene-Supported Amorphous Molybdenum Sulfide Electrocatalysts by a Facile Gamma Radiation Strategy for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 10882-10891.	2.5	29
1370	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	3.6	65
1371	Mussel Inspired Highly Aligned Ti ₃ C ₂ T _{<i>x</i>} MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano, 2020, 14, 11722-11732.	7.3	212
1372	Binderâ€Free Highâ€Performance MXene Supercapacitors Fabricated by a Simple Electrospray Deposition Technique. Advanced Materials Interfaces, 2020, 7, 2000750.	1.9	13
1373	Fe ₂ O ₃ Nanoparticles Anchored on the Ti ₃ C ₂ T _{<i>x</i>} MXene Paper for Flexible Supercapacitors with Ultrahigh Volumetric Capacitance. ACS Applied Materials & Interfaces, 2020, 12, 41410-41418.	4.0	88
1374	Covalent Organic Frameworks as Negative Electrodes for Highâ€Performance Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001673.	10.2	107
1375	Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Advanced Healthcare Materials, 2020, 9, e2001007.	3.9	71
1376	Computational Study of a Novel 2D Ferromagnetic Metal: the Ce 2 C Monolayer. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000324.	1.2	2
1377	Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 2020, 8, 18605-18623.	5.2	230

#	Article	IF	Citations
1378	Theoretical Study of Transitionâ€Metalâ€Modified Mo ₂ CO ₂ MXene as a Catalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2020, 13, 6005-6015.	3.6	41
1379	Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films assembled into high performance, flexible all-solid-state supercapacitors. Nanoscale, 2020, 12, 20797-20810.	2.8	29
1380	Self-assembled three-dimensional macroscopic graphene/MXene-based hydrogel as electrode for supercapacitor. APL Materials, 2020, 8, .	2.2	34
1381	State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coordination Chemistry Reviews, 2020, 424, 213514.	9.5	169
1382	Aqueous Supercapacitor with Ultrahigh Voltage Window Beyond 2.0 Volt. Small Structures, 2020, 1, 2000020.	6.9	83
1383	Distinct superconducting properties and hydrostatic pressure effects in 2D $\hat{1}\pm$ - and $\hat{1}^2$ -Mo2C crystal sheets. NPG Asia Materials, 2020, 12, .	3.8	10
1384	Tuning the morphology of manganese oxide nanostructures for obtaining both high gravimetric and volumetric capacitance. Materials Advances, 2020, 1, 2433-2442.	2.6	27
1385	pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of Ti ₃ C ₂ T <i>_x</i> and Ti ₂ CT <i>_x</i> MXene Dispersions. Advanced Materials Interfaces, 2020, 7, 2000845.	1.9	99
1386	MXene-Carbon Nanotube Hybrid Membrane for Robust Recovery of Au from Trace-Level Solution. ACS Applied Materials & Interfaces, 2020, 12, 43032-43041.	4.0	53
1387	Free-standing 3D alkalized Ti ₃ C ₂ T _x /Ti ₃ C ₂ T _x membrane electrode for highly efficient and stable desalination in hybrid capacitive deionization. Iournal of Materials Chemistry A, 2020, 8, 19309-19318.	5.2	56
1388	Pressure-Induced Modulation of Electronic and Optical Properties of Surface O-Functionalized Ti ₂ C MXene. ACS Omega, 2020, 5, 22248-22254.	1.6	10
1389	A bio-inspired transpiration ion pump based on MXene. Materials Chemistry Frontiers, 2020, 4, 3361-3367.	3.2	14
1390	Recent Advances in Functional 2D MXeneâ€Based Nanostructures for Nextâ€Generation Devices. Advanced Functional Materials, 2020, 30, 2005223.	7.8	216
1391	Vertically Aligned and Ordered Arrays of 2D MCo ₂ S ₄ @Metal with Ultrafast Ion/Electron Transport for Thickness-Independent Pseudocapacitive Energy Storage. ACS Nano, 2020, 14, 12719-12731.	7.3	52
1392	Anisotropic and high thermal conductivity of epoxy composites containing multilayer Ti3C2Tx MXene nanoflakes. Journal of Materials Science, 2020, 55, 16533-16543.	1.7	16
1393	Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale, 2020, 12, 19007-19042.	2.8	78
1394	Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations. Chemistry of Materials, 2020, 32, 8257-8265.	3.2	50
1395	Three-Dimensional Architectures in Electrochemical Capacitor Applications – Insights, Opinions, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	10

		CITATION RE	PORT	
#	Article		IF	Citations
1396	Topochemical synthesis of low-dimensional nanomaterials. Nanoscale, 2020, 12, 2197	1-21987.	2.8	7
1397	Bioencapsulated MXene Flakes for Enhanced Stability and Composite Precursors. Adva Materials, 2020, 30, 2004554.	nced Functional	7.8	63
1398	Interface Chemistry on MXeneâ€Based Materials for Enhanced Energy Storage and Co Performance. Advanced Functional Materials, 2020, 30, 2005190.	nversion	7.8	136
1399	0D/2D Heterojunctions of Ti ₃ C ₂ MXene QDs/SiC as an Effici Photocatalyst for Boosting the Visible Photocatalytic NO Pollutant Removal Ability. AC Materials & Interfaces, 2020, 12, 40176-40185.	ent and Robust S Applied	4.0	132
1400	Tunable Supercapacitor Materials Derived from Hydrochar/Gold Nanograpes. ACS Appl Materials, 2020, 3, 9348-9359.	ied Energy	2.5	11
1401	2D Materials for Supercapacitor and Supercapattery Applications. ACS Symposium Ser	ies, 2020, , 33-47.	0.5	6
1402	State-of-the-Art Applications of 2D Nanomaterials in Energy Storage. ACS Symposium 253-293.	Series, 2020, ,	0.5	5
1403	Large-Area 2D-MXene Nanosheet Assemblies Using Langmuir–Schaefer Technique: V ACS Applied Materials & Interfaces, 2020, 12, 42294-42301.	Vrinkle formation.	4.0	23
1404	Structure and Dynamics of Aqueous Electrolytes Confined in 2D-TiO2/Ti3C2T2 MXene Heterostructures. ACS Applied Materials & amp; Interfaces, 2020, 12, 58378-58389.		4.0	25
1405	Radiation effects in Mn+1AXn phases. Applied Physics Reviews, 2020, 7, .		5.5	21
1406	Broadband Visible Nonlinear Absorption and Ultrafast Dynamics of the Ti3C2 Nanoshe Nanomaterials, 2020, 10, 2544.	et.	1.9	13
1407	The compositional dependence of structural stability and resulting properties for Mn+. Technology, 2020, 9, 14979-14989.	.CnT2 (M = Sc,) Tj ETQq1 1	1 0.78431 2.6	4 rgBT /Ove 11
1408	Promoting the Electrocatalytic Activity of Ti ₃ C ₂ T _{xModulating CO₂ Adsorption through Oxygen Vacancies for Highâ€Perfor Lithiumâ€Carbon Dioxide Batteries. ChemElectroChem, 2020, 7, 4922-4930.}	b> MXene by mance	1.7	10
1409	Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional A Chemistry of Materials, 2020, 32, 10296-10320.	Applications.	3.2	101
1410	Ti ₃ C ₂ 2D MXene: Recent Progress and Perspectives in Photo Applied Materials & Interfaces, 2020, 12, 56663-56680.	ocatalysis. ACS	4.0	148
1411	Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable and Biofuel Cell Design. International Journal of Molecular Sciences, 2020, 21, 9224.	for Biosensors	1.8	82
1412	Novel 1D/2D KWO/Ti3C2Tx Nanocomposite-Based Acetone Sensor for Diabetes Prever Monitoring. Chemosensors, 2020, 8, 102.	ition and	1.8	14
1413	Ceria for supercapacitors: Dopant prediction, and validation in a device. Applied Materi 21, 100872.	als Today, 2020,	2.3	9

#	Article	IF	CITATIONS
1414	A perspective on MXenes: Their synthesis, properties, and recent applications. Journal of Applied Physics, 2020, 128, .	1.1	72
1415	MXenes and MXenes-based Composites. Engineering Materials, 2020, , .	0.3	8
1416	Thermal and corrosion behavior of Ti3C2/Copper composites. Composites Communications, 2020, 22, 100498.	3.3	16
1417	Ti3C2Tx MXene for wearable energy devices: Supercapacitors and triboelectric nanogenerators. APL Materials, 2020, 8, .	2.2	30
1418	2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Advanced Materials, 2020, 32, e2002159.	11.1	201
1419	2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental, 2020, 273, 119054.	10.8	111
1420	Femtosecond Laserâ€Etched MXene Microsupercapacitors with Doubleâ€Side Configuration via Arbitrary On―and Throughâ€Substrate Connections. Advanced Energy Materials, 2020, 10, 2000470.	10.2	40
1421	Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts, 2020, 10, 495.	1.6	89
1422	Highly electrically conductive two-dimensional Ti3C2 Mxenes-based 16S rDNA electrochemical sensor for detecting Mycobacterium tuberculosis. Analytica Chimica Acta, 2020, 1123, 9-17.	2.6	40
1423	Thermoplastic polyurethane – Ti3C2(Tx) MXene nanocomposite: The influence of functional groups upon the matrix–reinforcement interaction. Applied Surface Science, 2020, 528, 146526.	3.1	24
1424	Enhanced Antistatic and Self-Heatable Wearable Coating with Self-Tiered Structure Caused by Amphiphilic MXene in Waterborne Polymer. Langmuir, 2020, 36, 6580-6588.	1.6	22
1425	Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 2020, 7, 2560-2581.	3.0	65
1426	Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Research, 2020, 13, 1485-1508.	5.8	36
1427	Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets. Nano-Micro Letters, 2020, 12, 112.	14.4	59
1428	<i>i</i> â€MXenes for Energy Storage and Catalysis. Advanced Functional Materials, 2020, 30, 2000894.	7.8	126
1429	Ultrastable MXene@Pt/SWCNTs' Nanocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2020, 30, 2000693.	7.8	164
1430	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	7.8	168
1431	Capacitive versus Pseudocapacitive Storage in MXene. Advanced Functional Materials, 2020, 30, 2000820.	7.8	74

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1432	High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy, 20	020, 74, 104928.	8.2	96
1433	Insight into Adsorption Performance and Mechanism on Efficient Removal of Methylen Accordion-like V ₂ CT _{<i>x</i>} MXene. Journal of Physical Cher 2020, 11, 4253-4260.	e Blue by mistry Letters,	2.1	45
1434	An interlayer composed of a porous carbon sheet embedded with TiO ₂ na stable and high rate lithium–sulfur batteries. Nanoscale, 2020, 12, 12308-12316.	anoparticles for	2.8	27
1435	Co3O4@MnMoO4 Nanorod Clusters as an Electrode Material for Superior Supercapac International Journal of Electrochemical Science, 2020, 15, 2776-2791.	itors.	0.5	7
1436	Interfacial structure design of <scp>MXeneâ€based</scp> nanomaterials for electroch storage and conversion. InformaÄnÃ-Materiály, 2020, 2, 1057-1076.	emical energy	8.5	143
1437	Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluthermal stability. Ceramics International, 2020, 46, 19550-19556.	uorides and its	2.3	97
1438	Intercalation in Twoâ€Đimensional Transition Metal Carbides and Nitrides (MXenes) to Electrochemical Capacitor and Beyond. Energy and Environmental Materials, 2020, 3, 3	ward 306-322.	7.3	66
1439	Facile synthesis of transition metal complexes wrapped Ti3C2T by a PVP-assisted liquid strategy with enhanced electrochemical performance for supercapacitors. Ceramics Int 2020, 46, 15492-15501.	impregnation ternational,	2.3	14
1440	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Funct 2020, 30, 2000842.	ional Materials,	7.8	276
1441	Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper S Nanocrystals Enabled Highâ€Performance Perovskite Solar Cells. Advanced Functional 30, 2003295.	ulphide Materials, 2020,	7.8	100
1442	Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced hydrogen production activity. Science China Materials, 2020, 63, 2228-2238.	photocatalytic	3.5	128
1443	MXene: An emerging two-dimensional layered material for removal of radioactive pollu Chemical Engineering Journal, 2020, 397, 125428.	tants.	6.6	112
1444	Oxygen-deficient BiFeO3-NC nanoflake anodes for flexible battery-supercapacitor hybr high voltage and long-term stability. Chemical Engineering Journal, 2020, 397, 125524	id devices with	6.6	37
1445	Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-perfo lithium-ion storage. Journal of Colloid and Interface Science, 2020, 577, 329-336.	rmance	5.0	25
1446	A strain localization directed crack control strategy for designing MXene-based custon sensitivity and sensing range strain sensors for full-range human motion monitoring. N 2020, 74, 104814.	nizable ano Energy,	8.2	77
1447	Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: Ca electrode modified with gold nanoparticles functionalized sulfur doped MXene as sens and carboxylated graphitic carbon nitride as signal amplification. Sensors and Actuator 2020, 319, 128195.	arbon or platform 's B: Chemical,	4.0	82
1448	Facile synthesis of colloidal nitrogenâ€doped titanium carbide sheets with enhanced el performance. , 2020, 2, 624-634.	lectrochemical		13
1449	A Wearable and Highly Sensitive Textile-based Pressure Sensor with Ti3C2Tx Nanoshee Actuators A: Physical, 2020, 311, 112081.	ts. Sensors and	2.0	32

#	Article	IF	CITATIONS
1450	Self-Assembly of Topologically Networked Protein–Ti3C2Tx MXene Composites. ACS Nano, 2020, 14, 6956-6967.	7.3	19
1451	Dispersibility and Photochemical Stability of Delaminated MXene Flakes in Water. Small, 2020, 16, e2002433.	5.2	55
1452	All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy, 2020, 75, 104971.	8.2	119
1453	NiMn Layered Double Hydroxide Nanosheets In-situ Anchored on Ti ₃ C ₂ MXene via Chemical Bonds for Superior Supercapacitors. ACS Applied Energy Materials, 2020, 3, 5949-5964.	2.5	131
1454	Physical properties of 2D MXenes: from a theoretical perspective. JPhys Materials, 2021, 3, 032006.	1.8	67
1455	A high-performance supercapacitor electrode based on freestanding N-doped Ti3C2Tx film. Ceramics International, 2020, 46, 21482-21488.	2.3	25
1456	Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage. Electrochimica Acta, 2020, 353, 136607.	2.6	34
1457	Synergistic Effect of Surface-Terminated Oxygen Vacancy and Single-Atom Catalysts on Defective MXenes for Efficient Nitrogen Fixation. Journal of Physical Chemistry Letters, 2020, 11, 5051-5058.	2.1	88
1458	High-Mass-Loading Porous Ti ₃ C ₂ T _{<i>x</i>} Films for Ultrahigh-Rate Pseudocapacitors. ACS Energy Letters, 2020, 5, 2266-2274.	8.8	88
1459	Photothermoelectric Response of Ti ₃ C ₂ T _{<i>x</i>} MXene Confined Ion Channels. ACS Nano, 2020, 14, 9042-9049.	7.3	86
1460	Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure. Ceramics International, 2020, 46, 23592-23598.	2.3	73
1461	MXenes as High-Rate Electrodes for Energy Storage. Trends in Chemistry, 2020, 2, 654-664.	4.4	81
1462	Novel confinement of Mn3O4 nanoparticles on two-dimensional carbide enabling high-performance electrochemical synthesis of ammonia under ambient conditions. Chemical Engineering Journal, 2020, 396, 125163.	6.6	24
1463	Carbon Nanobowls Filled with MoS ₂ Nanosheets as Electrode Materials for Supercapacitors. ACS Applied Nano Materials, 2020, 3, 6448-6459.	2.4	38
1464	Obtaining Titanium Carbide in an Atmospheric Electric Discharge Plasma. Technical Physics, 2020, 65, 771-776.	0.2	2
1465	Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Storage Materials, 2020, 33, 62-70.	9.5	67
1466	Hydrophilicity-Dependent Distinct Frictional Behaviors of Different Modified MXene Nanosheets. Journal of Physical Chemistry C, 2020, 124, 13664-13671.	1,5	29
1467	Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. ACS Applied Bio Materials, 2020, 3, 4531-4542.	2.3	18

#	Article	IF	CITATIONS
1468	A comprehensive computational and experimental analysis of stable ferromagnetism in layered 2D Nb-doped Ti3C2 MXene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114253.	1.3	26
1469	First-principle calculations on the structure, electronic property and catalytic activity for hydrogen evolution reaction of 2D transition-metal borides. Materials Chemistry and Physics, 2020, 253, 123334.	2.0	21
1470	MXene-doped epoxy resin to suppress surface charge accumulation on insulators in a DC gas-insulated system. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 939-946.	1.8	31
1471	MXene for energy storage: present status and future perspectives. JPhys Energy, 2020, 2, 032004.	2.3	69
1472	Alternatingâ€Current MXene Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001224.	7.8	30
1473	Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination. Journal of Materials Research, 2020, 35, 1481-1491.	1.2	12
1475	Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. Journal of Power Sources, 2020, 470, 228356.	4.0	42
1476	Nature of Terminating Hydroxyl Groups and Intercalating Water in Ti ₃ C ₂ T _{<i>x</i>} MXenes: A Study by ¹ H Solid-State NMR and DFT Calculations. Journal of Physical Chemistry C, 2020, 124, 13649-13655.	1.5	35
1477	Raman spectra of MXenes Zr ₂ X(X=C and N). Nanotechnology, 2020, 31, 405708.	1.3	7
1479	Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices. Nano-Micro Letters, 2020, 12, 115.	14.4	72
1480	Synthesis of restacking-free wrinkled Ti3C2T monolayers by sulfonic acid group grafting and N-doped carbon decoration for enhanced supercapacitor performance. Journal of Alloys and Compounds, 2020, 842, 155985.	2.8	18
1481	Fast Charging Materials for High Power Applications. Advanced Energy Materials, 2020, 10, 2001128.	10.2	136
1482	All-solid-state flexible supercapacitor of Carbonized MXene/Cotton fabric for wearable energy storage. Applied Surface Science, 2020, 528, 146975.	3.1	29
1483	Benchmarked capacitive performance of a 330 μm-thick Na _x V ₂ O ₅ /CC monolithic electrode <i>via</i> synergism of a hierarchical pore structure and ultrahigh-mass-loading. Nanoscale, 2020, 12, 14290-14297.	2.8	3
1484	CsPbBr ₃ –Ti ₃ C ₂ T <i>_x</i> MXene QD/QD Heterojunction: Photoluminescence Quenching, Charge Transfer, and Cd Ion Sensing Application. ACS Applied Nano Materials, 2020, 3, 3305-3314.	2.4	41
1485	Enhanced Dielectric Properties of a Poly(dimethyl siloxane) Bimodal Network Percolative Composite with MXene. ACS Applied Materials & Interfaces, 2020, 12, 16805-16814.	4.0	38
1486	2D MXene–TiO ₂ Core–Shell Nanosheets as a Dataâ€Storage Medium in Memory Devices. Advanced Materials, 2020, 32, e1907633.	11.1	89
1487	Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screenâ€Printed Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2000716.	11.1	241

#	Article	IF	CITATIONS
1488	Aryl Diazonium-Assisted Amidoximation of MXene for Boosting Water Stability and Uranyl Sequestration via Electrochemical Sorption. ACS Applied Materials & Interfaces, 2020, 12, 15579-15587.	4.0	115
1489	Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances. ACS Applied Materials & Interfaces, 2020, 12, 14459-14467.	4.0	228
1490	Deformation and Failure of MXene Nanosheets. Materials, 2020, 13, 1253.	1.3	14
1491	Synthesizing MXene Nanosheets by Water-free Etching. CheM, 2020, 6, 544-546.	5.8	30
1492	Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Solar Rrl, 2020, 4, 2000050.	3.1	29
1493	Green synthesis of reduced Ti ₃ C ₂ T _x MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. Journal of Materials Chemistry C, 2020, 8, 4722-4731.	2.7	82
1494	Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Letters, 2020, 12, 72.	14.4	155
1495	Two-dimensional MXene-based heterostructures for photocatalysis. , 2020, , 247-267.		8
1496	Construction of BPQDs/Ti3C2@TiO2 Composites with Favorable Charge Transfer Channels for Enhanced Photocatalytic Activity under Visible Light Irradiation. Nanomaterials, 2020, 10, 452.	1.9	40
1497	A Hybrid Assembly of MXene with NH ₂ â^'Si Nanoparticles Boosting Lithium Storage Performance. Chemistry - an Asian Journal, 2020, 15, 1376-1383.	1.7	13
1498	Facile Synthesis of FePS3 Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage. Nano-Micro Letters, 2020, 12, 54.	14.4	62
1499	3D knitted energy storage textiles using MXene-coated yarns. Materials Today, 2020, 34, 17-29.	8.3	103
1500	All-MXene-Based Integrated Membrane Electrode Constructed using Ti ₃ C ₂ T _{<i>x</i>} as an Intercalating Agent for High-Performance Desalination. Environmental Science & Technology, 2020, 54, 4554-4563.	4.6	103
1501	Unraveling and Regulating Self-Discharge Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitors. ACS Nano, 2020, 14, 4916-4924.	7.3	203
1502	Ti3C2T //AC dual-ions hybrid aqueous supercapacitors with high volumetric energy density. Chemical Engineering Journal, 2020, 393, 124790.	6.6	25
1503	Partially Oxidized Ti ₃ C ₂ T _{<i>x</i>/sub> MXenes for Fast and Selective Detection of Organic Vapors at Part-per-Million Concentrations. ACS Applied Nano Materials, 2020, 3, 3195-3204.}	2.4	66
1504	Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8, 4990-5013.	2.9	76
1505	Effect of HCl+LiF Etching Process on Electrochemical Performance of Ti ₃ C ₂ . Nano, 2020, 15, 2050058.	0.5	3

0			D .		
(.IT	ΆΤΙ	ON	R	FPO	\mathbf{RT}
<u> </u>	/ \				

#	Article	IF	CITATIONS
1506	Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Letters, 2020, 12, 77.	14.4	136
1507	Poly(vinyl alcohol)-Modified Membranes by Ti ₃ C ₂ T _{<i>x</i>} for Ethanol Dehydration via Pervaporation. ACS Omega, 2020, 5, 6277-6287.	1.6	32
1508	Synthesis of a Smart Hybrid MXene with Switchable Conductivity for Temperature Sensing. ACS Applied Nano Materials, 2020, 3, 4069-4076.	2.4	26
1509	Rapid <i>in situ</i> growth of β-Ni(OH) ₂ nanosheet arrays on nickel foam as an integrated electrode for supercapacitors exhibiting high energy density. Dalton Transactions, 2020, 49, 4956-4966.	1.6	41
1510	Confined growth of pyridinic N–Mo ₂ C sites on MXenes for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7109-7116.	5.2	148
1511	Stimuliâ€Responsive MXeneâ€Based Actuators. Advanced Functional Materials, 2020, 30, 1909504.	7.8	126
1512	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106
1513	MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 2020, 32, e1908486.	11.1	239
1514	Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes. ACS Applied Materials & Interfaces, 2020, 12, 20129-20137.	4.0	93
1515	Insights into the Genesis of a Selective and Coke-Resistant MXene-Based Catalyst for the Dry Reforming of Methane. ACS Catalysis, 2020, 10, 5124-5134.	5.5	43
1516	MnO _{1.88} /R-MnO ₂ /Ti ₃ C ₂ (OH/F) _x composite electrodes for high-performance pseudo-supercapacitors prepared from reduced MXenes. New Journal of Chemistry, 2020, 44, 6583-6588.	1.4	6
1517	Nanoplating of a SnO ₂ thin-film on MXene-based sponge for stable and efficient solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 8065-8074.	5.2	19
1518	Efficient Energy Conversion and Storage Based on Robust Fluorideâ€Free Selfâ€Assembled 1D Niobium Carbide in 3D Nanowire Network. Advanced Science, 2020, 7, 1903680.	5.6	74
1519	A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124683.	2.3	45
1520	In-situ pillared MXene as a viable zinc-ion hybrid capacitor. Electrochimica Acta, 2020, 341, 136061.	2.6	76
1521	Broadband spatial self-phase modulation and ultrafast response of MXene Ti ₃ C ₂ T _x (T=O, OH or F). Nanophotonics, 2020, 9, 2415-2424.	2.9	28
1522	Transparent MXene-Polymer Supercapacitive Film Deposited Using RIR-MAPLE. Crystals, 2020, 10, 152.	1.0	13
1523	Janusâ€Structured Coâ€Ti ₃ C ₂ MXene Quantum Dots as a Schottky Catalyst for Highâ€Performance Photoelectrochemical Water Oxidation. Advanced Functional Materials, 2020, 30, 2000637.	7.8	105

#	Article	IF	CITATIONS
1524	Activated Carbon/MnO2 Composites as Electrode for High Performance Supercapacitors. Catalysts, 2020, 10, 256.	1.6	27
1525	Saltâ€Assisted Synthesis of 2D Materials. Advanced Functional Materials, 2020, 30, 1908486.	7.8	115
1526	Surface termination modification on high-conductivity MXene film for energy conversion. Journal of Alloys and Compounds, 2020, 829, 154634.	2.8	48
1527	Delamination strategy to achieve Ti3C2Tx/CNZF composites with tunable electromagnetic absorption. Materials Science in Semiconductor Processing, 2020, 112, 105008.	1.9	34
1528	An MXene-based membrane for molecular separation. Environmental Science: Nano, 2020, 7, 1289-1304.	2.2	78
1529	Alternateâ€stacked Li 4 Ti 5 O 12 nanosheets/dâ€ī i 3 C 2 flexible film as a current collectorâ€free, highâ€capacity and robust cathode for rechargeable Mg batteries. Nano Select, 2020, 1, 1-11.	1.9	8
1530	3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery. Applied Surface Science, 2020, 528, 146985.	3.1	20
1531	Improvement of desorption performance of Mg(BH4)2 by two-dimensional Ti3C2 MXene addition. International Journal of Hydrogen Energy, 2020, 45, 16654-16662.	3.8	25
1532	Optical properties of two-dimensional semi-conductive MXene Sc2CO produced by sputtering. Optik, 2020, 219, 165046.	1.4	13
1533	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	23.0	1,020
1533 1534	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488.	23.0 2.4	1,020 44
1533 1534 1535	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488. Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501.	23.0 2.4 3.1	1,020 44 26
1533 1534 1535 1536	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488. Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007.	23.0 2.4 3.1 2.8	1,020 44 26 102
1533 1534 1535 1536 1537	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488. Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007. Integrating Highly Efficient Recognition and Signal Transition of g-C ₃ N ₄ Embellished Ti ₃ C ₂ MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Analytical Chemistry, 2020, 92, 10668-10676.	23.0 2.4 3.1 2.8 3.2	1,020 44 26 102 80
1533 1534 1535 1536 1537 1538	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488. Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007. Integrating Highly Efficient Recognition and Signal Transition of g-C ₃ N ₄ Embellished Ti ₃ C ₂ MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Analytical Chemistry, 2020, 92, 10668-10676. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. Journal of Materials Chemistry A, 2020, 8, 14234-14242.	 23.0 2.4 3.1 2.8 3.2 5.2 	1,020 44 26 102 80 120
1533 1534 1535 1536 1537 1538	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488. Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007. Integrating Highly Efficient Recognition and Signal Transition of g-C (sub) 3 (/sub) N (sub) 4 (/sub) Embellished Ti (sub) 3 (/sub) C (sub) 2 (/sub) MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Analytical Chemistry, 2020, 92, 10668-10676. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. Journal of Materials Chemistry A, 2020, 8, 14234-14242. Fluorine-free treatment of Ti3AlC2 for supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 2020, 31, 10564-10573.	23.0 2.4 3.1 2.8 3.2 5.2 1.1	1,020 44 26 102 80 120
1533 1534 1535 1536 1537 1538 1539	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance. Cellulose, 2020, 27, 7475-7488. Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501. A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007. Integrating Highly Efficient Recognition and Signal Transition of g-C ₃ N ₄ Embellished Ti ₃ C ₂ MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Analytical Chemistry, 2020, 92, 10668-10676. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. Journal of Materials Chemistry A, 2020, 8, 14234-14242. Fluorine-free treatment of Ti3AlC2 for supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 2020, 31, 10564-10573. A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chemical Engineering Journal, 2020, 396, 125318.	 23.0 2.4 3.1 2.8 3.2 5.2 1.1 6.6 	1,020 44 26 102 80 120 3 3

#	Article	IF	CITATIONS
1542	Freezing Titanium Carbide Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces, 2020, 12, 34032-34040.	4.0	136
1543	Young's Modulus and Tensile Strength of Ti ₃ C ₂ MXene Nanosheets As Revealed by <i>In Situ</i> TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Letters, 2020, 20, 5900-5908.	4.5	88
1544	Tracking ion intercalation into layered Ti ₃ C ₂ MXene films across length scales. Energy and Environmental Science, 2020, 13, 2549-2558.	15.6	100
1545	An Ultrahigh Energy Density Flexible Asymmetric Microsupercapacitor Based on Ti ₃ C ₂ T <i>_x</i> and PPy/MnO ₂ with Wide Voltage Window. Advanced Materials Technologies, 2020, 5, 2000272.	3.0	36
1546	Titanium Monocarbide. , 2020, , 11-514.		0
1547	Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384.		6
1548	MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors. Journal of Materiomics, 2020, 6, 138-144.	2.8	27
1549	Taking MXenes from the lab to commercial products. Chemical Engineering Journal, 2020, 401, 125786.	6.6	139
1550	High capacitance of dipicolinic acid-intercalated MXene in neutral water-based electrolyte. Chemical Engineering Journal, 2020, 399, 125850.	6.6	22
1551	Scalable Ti ₃ C ₂ T _{<i>x</i>} MXene Interlayered Forward Osmosis Membranes for Enhanced Water Purification and Organic Solvent Recovery. ACS Nano, 2020, 14, 9125-9135.	7.3	151
1552	High specific capacitance of manganese-based colloidal system with rare earth modification. Nanotechnology, 2020, 31, 424004.	1.3	4
1553	Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Physical Chemistry Chemical Physics, 2020, 22, 16482-16526.	1.3	47
1554	Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials, 2020, 30, 2002528.	7.8	162
1555	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie, 2020, 132, 19738-19743.	1.6	18
1556	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie - International Edition, 2020, 59, 19570-19575.	7.2	52
1558	Synthesis of heterostructures based on two-dimensional materials. , 2020, , 265-287.		2
1559	MXene as a tolerable anode material accommodating large ions in dual-ion batteries. Ceramics International, 2020, 46, 24887-24892.	2.3	8
1560	The Ti3C2Tx MXene coated metal mesh electrodes for stretchable supercapacitors. Materials Letters, 2020, 278, 128235.	1.3	6

#	Article	IF	CITATIONS
1561	Temperature-difference-induced electricity during solar desalination with bilayer MXene-based monoliths. Nano Energy, 2020, 76, 105060.	8.2	37
1562	Elementary processes governing V ₂ AIC chemical etching in HF. RSC Advances, 2020, 10, 25266-25274.	1.7	19
1563	Recent Progress in MXeneâ€Based Materials: Potential Highâ€Performance Electrocatalysts. Advanced Functional Materials, 2020, 30, 2003437.	7.8	181
1564	Synergistic Features of Superoxide Molecule Anchoring and Charge Transfer on Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene for Efficient Peroxymonosulfate Activation. ACS Applied Materials & Interfaces, 2020, 12, 9209-9218.	4.0	36
1565	Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science, 2020, 6, 254-265.	5.3	182
1566	Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 4677-4699.	5.2	111
1567	Twoâ€Ðimensional Nanomaterials for Photothermal Therapy. Angewandte Chemie, 2020, 132, 5943-5953.	1.6	90
1568	Fabrication of MoO _{<i>x</i>} /Mo ₂ C-Layered Hybrid Structures by Direct Thermal Oxidation of Mo ₂ C. ACS Applied Materials & Interfaces, 2020, 12, 10755-10762.	4.0	27
1569	Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454, 227932.	4.0	89
1570	One-Step Incorporation of Nitrogen and Vanadium between Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene Interlayers Enhances Lithium Ion Storage Capability. Journal of Physical Chemistry C, 2020, 124, 6012-6021.	1.5	24
1571	Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. Journal of Materials Chemistry A, 2020, 8, 5853-5858.	5.2	113
1572	A review on MXene for energy storage application: effect of interlayer distance. Materials Research Express, 2020, 7, 022001.	0.8	119
1573	Fabrication of Ti ₃ C ₂ MXene Microelectrode Arrays for In Vivo Neural Recording. Journal of Visualized Experiments, 2020, , .	0.2	15
1574	A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale, 2020, 12, 6637-6643.	2.8	49
1575	Electrical and Elastic Properties of Individual Single‣ayer Nb ₄ C ₃ T <i>_x</i> MXene Flakes. Advanced Electronic Materials, 2020, 6, 1901382.	2.6	134
1576	A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes. Journal of Materials Chemistry A, 2020, 8, 5467-5475.	5.2	79
1577	MXene-based 3D porous macrostructures for electrochemical energy storage. JPhys Materials, 2020, 3, 022001.	1.8	42
1578	Device characteristics of Ti2CT2 MXene-based field-effect transistor. Superlattices and Microstructures, 2020, 140, 106433.	1.4	9

#	Article	IF	CITATIONS
1579	Two-Dimensional Ti ₃ C ₂ T <i>_x</i> MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. Environmental Science & Technology, 2020, 54, 2931-2940.	4.6	41
1580	Two-dimensional M2CO2/MoS2 (M = Ti, Zr and Hf) van der Waals heterostructures for overall water splitting: A density functional theory study. Ceramics International, 2020, 46, 13377-13384.	2.3	22
1581	Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Composites Part B: Engineering, 2020, 188, 107875.	5.9	111
1582	Ambient Growth of Hierarchical FeOOH/MXene as Enhanced Electrocatalyst for Oxygen Evolution Reaction. ChemistrySelect, 2020, 5, 1890-1895.	0.7	39
1583	Controllable growth of two-dimensional iron carbide in steels under accumulation deformation. Micron, 2020, 132, 102794.	1.1	1
1584	Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption. Nano-Micro Letters, 2020, 12, 55.	14.4	240
1585	Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis. Journal of the American Chemical Society, 2020, 142, 4862-4871.	6.6	304
1586	2D/2D 1Tâ€MoS ₂ /Ti ₃ C ₂ MXene Heterostructure with Excellent Supercapacitor Performance. Advanced Functional Materials, 2020, 30, 0190302.	7.8	241
1587	The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals. Advanced Energy Materials, 2020, 10, 1903780.	10.2	138
1588	Recent Advances of Twoâ€Dimensional (2 D) MXenes and Phosphorene for Highâ€Performance Rechargeable Batteries. ChemSusChem, 2020, 13, 1047-1070.	3.6	59
1589	Intercalated MXene-based layered composites: Preparation and application. Chinese Chemical Letters, 2020, 31, 961-968.	4.8	23
1590	Enhanced dielectric properties of homogeneous Ti3C2Tx MXene@SiO2/polyvinyl alcohol composite films. Ceramics International, 2020, 46, 13862-13868.	2.3	36
1591	Effects of Electrolyte Mediation and MXene Size in Fiber-Shaped Supercapacitors. ACS Applied Energy Materials, 2020, 3, 2949-2958.	2.5	55
1592	Ultrasound-Driven Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Hydrogel Generator. ACS Nano, 2020, 14, 3199-3207.	7.3	91
1593	Fe ₂ CS ₂ MXene: a promising electrode for Al-ion batteries. Nanoscale, 2020, 12, 5324-5331.	2.8	35
1594	Colloidal Behaviors of Two-Dimensional Titanium Carbide in Natural Surface Waters: The Role of Solution Chemistry. Environmental Science & Technology, 2020, 54, 3353-3362.	4.6	17
1595	Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance. Nanomaterials, 2020, 10, 345.	1.9	21
1596	Application of functionalised MXene-carbon nanoparticle-polymer composites in resistive hydrostatic pressure sensors. SN Applied Sciences, 2020, 2, 1.	1.5	10

#	Article	IF	CITATIONS
1597	2D Ti3C2Tz MXene Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents. CheM, 2020, 6, 616-630.	5.8	303
1598	MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Molecular Catalysis, 2020, 486, 110850.	1.0	97
1599	Titanium Carbide MXenes Mediated <i>In Situ</i> Reduction Allows Label-Free and Visualized Nanoplasmonic Sensing of Silver Ions. Analytical Chemistry, 2020, 92, 4623-4629.	3.2	57
1601	K + Intercalation of NH 4 HF 2 â€Exfoliated Ti 3 C 2 MXene as Binderâ€Free Electrodes with High Electrochemical Capacitance. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900806.	0.8	6
1602	Achieving high yield of Ti3C2T MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chinese Chemical Letters, 2020, 31, 1039-1043.	4.8	20
1603	MXene as a Cation-Selective Cathode Material for Asymmetric Capacitive Deionization. ACS Applied Materials & Interfaces, 2020, 12, 13750-13758.	4.0	89
1604	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
1605	Bioinspired Microspines for a High-Performance Spray Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Piezoresistive Sensor. ACS Nano, 2020, 14, 2145-2155.	7.3	330
1606	The Assembly of MXenes from 2D to 3D. Advanced Science, 2020, 7, 1903077.	5.6	231
1607	Preparation of Ti3C2Tx/NiZn Ferrite Hybrids with Improved Electromagnetic Properties. Materials, 2020, 13, 820.	1.3	6
1608	Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coordination Chemistry Reviews, 2020, 410, 213218.	9.5	74
1609	Refractive Index Sensors Based on Ti ₃ C ₂ T _x MXene Fibers. ACS Applied Nano Materials, 2020, 3, 303-311.	2.4	74
1610	Recent Advances of Twoâ€Dimensional Nanomaterials for Electrochemical Capacitors. ChemSusChem, 2020, 13, 1093-1113.	3.6	40
1611	Responses to comments on the paper "Two-dimensional Sc2C: A reversible and high capacity hydrogen storage material predicted by first-principles calculations― International Journal of Hydrogen Energy, 2020, 45, 7257-7262.	3.8	3
1612	Heterogeneous, 3D Architecturing of 2D Titanium Carbide (MXene) for Microdroplet Manipulation and Voice Recognition. ACS Applied Materials & Interfaces, 2020, 12, 8392-8402.	4.0	44
1613	Topochemical synthesis of two-dimensional molybdenum carbide (Mo2C) via Na2CO3-Assited carbothermal reduction of 2H–MoS2. Materials Chemistry and Physics, 2020, 244, 122713.	2.0	6
1614	A Compact MXene Film with Folded Structure for Advanced Supercapacitor Electrode Material. ACS Applied Energy Materials, 2020, 3, 1811-1820.	2.5	49
1615	Few-layer Ti3C2T MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.	7.1	27

#	Article	IF	CITATIONS
1616	Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy, 2020, 70, 104481.	8.2	48
1617	On tuning the cytotoxicity of Ti ₃ C ₂ (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7, 025018.	2.0	63
1618	3Dâ€Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials, 2020, 32, e1906652.	11.1	191
1619	Selfâ€Healing Microsupercapacitors with Sizeâ€Dependent 2D MXene. ChemElectroChem, 2020, 7, 821-829.	1.7	12
1620	3D network of V2O5 for flexible symmetric supercapacitor. Electrochimica Acta, 2020, 337, 135701.	2.6	59
1621	Investigation of electrical performance and synaptic long-term plasticity of memristive devices with new transition metal carbide. Semiconductor Science and Technology, 2020, 35, 035008.	1.0	1
1622	State of the Art in Alcohol Sensing with 2D Materials. Nano-Micro Letters, 2020, 12, 33.	14.4	41
1623	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
1624	Tunable Fabrication of Conductive Ti ₃ C ₂ T _{<i>x</i>} MXenes via Inflating a Polyurethane Balloon for Acute Force Sensing. Langmuir, 2020, 36, 1298-1304.	1.6	16
1625	A multifunctional MXene additive for enhancing the mechanical and electrochemical performances of the LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ cathode in lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4494-4504.	5.2	34
1626	Radiationâ€Induced Selfâ€Assembly of Ti ₃ C ₂ T <i>_x</i> with Improved Electrochemical Performance for Supercapacitor. Advanced Materials Interfaces, 2020, 7, 1901839.	1.9	16
1627	MXeneâ€Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors. Advanced Energy Materials, 2020, 10, 1903534.	10.2	97
1628	Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorganic Chemistry Frontiers, 2020, 7, 1205-1211.	3.0	30
1629	Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.	9.5	223
1630	Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 2020, 266, 118650.	10.8	150
1631	Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Physics Reports, 2020, 848, 1-58.	10.3	594
1632	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	13.7	145
1633	Enhancing energy storage capacity of B3+-intercalated Ti3C2Tx by combining its three-dimensional network structure with hollow carbon nanospheres. Journal of Materials Science, 2020, 55, 4769-4779.	1.7	5

#	Article	IF	CITATIONS
1634	Microstructure and mechanical properties of MoAlB particles reinforced Al matrix composites by interface modification with in situ formed Al12Mo. Journal of Alloys and Compounds, 2020, 823, 153813.	2.8	16
1635	Quantum Transport beyond DC. , 2020, , 278-292.		0
1637	Janus MXene nanosheets for macroscopic assemblies. Materials Chemistry Frontiers, 2020, 4, 910-917.	3.2	47
1638	Twoâ€Dimensional Nanomaterials for Photothermal Therapy. Angewandte Chemie - International Edition, 2020, 59, 5890-5900.	7.2	364
1639	Constructing expanded ion transport channels in flexible MXene film for pseudocapacitive energy storage. Applied Surface Science, 2020, 511, 145627.	3.1	51
1640	A safe etching route to synthesize highly crystalline Nb2CTx MXene for high performance asymmetric supercapacitor applications. Electrochimica Acta, 2020, 337, 135803.	2.6	99
1641	Advances in Two-Dimensional MXenes for Nitrogen Electrocatalytic Reduction to Ammonia. International Journal of Photoenergy, 2020, 2020, 1-11.	1.4	28
1642	Electrostatically Fabricated Three-Dimensional Magnetite and MXene Hierarchical Architecture for Advanced Lithium-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2020, 12, 9226-9235.	4.0	35
1643	Nanolayered Heterostructures of N-Doped TiO ₂ and N-Doped Carbon for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 1373-1381.	2.4	75
1644	Understanding MXene-Based "Symmetric―Supercapacitors and Redox Electrolyte Energy Storage. ACS Applied Energy Materials, 2020, 3, 5006-5014.	2.5	38
1645	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	2.4	22
1646	Electrochemical detection of amyloid-β protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Materials Today Communications, 2020, 23, 101097.	0.9	60
1647	Fluoride ion batteries: Designing flexible M2CH2 (M=Ti or V) MXenes as high-capacity cathode materials. Nano Energy, 2020, 74, 104911.	8.2	27
1648	Dual-functional Ti ₃ C ₂ T _x MXene for wastewater treatment and electrochemical energy storage. Sustainable Energy and Fuels, 2020, 4, 3566-3573.	2.5	16
1649	Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters, 2020, 12, 85.	14.4	164
1650	Improving the properties of 2D titanium carbide films by thermal treatment. Journal of Materials Chemistry C, 2020, 8, 6214-6220.	2.7	12
1651	Flexible Solidâ€State Asymmetric Supercapacitors with Enhanced Performance Enabled by Freeâ€Standing MXeneâ°Biopolymer Nanocomposites and Hierarchical Grapheneâ°RuO _{<i>x</i>} Paper Electrodes. Batteries and Supercaps, 2020, 3, 604-610.	2.4	19
1652	Surface reformation of 2D MXene by in situ LaF3-decorated and enhancement of energy storage in lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 6735-6743.	1.1	12

#	Article	IF	CITATIONS
1653	Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Science China Materials, 2020, 63, 794-805.	3.5	59
1654	Ti3C2Tx MXene and Vanadium nitride/Porous carbon as electrodes for asymmetric supercapacitors. Electrochimica Acta, 2020, 341, 136035.	2.6	76
1655	Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes. Electrochimica Acta, 2020, 348, 136211.	2.6	43
1656	Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor. International Journal of Hydrogen Energy, 2020, 45, 13080-13089.	3.8	113
1657	Comment on "MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation― International Journal of Hydrogen Energy, 2020, 45, 13559-13562.	3.8	3
1658	Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation. Journal of Colloid and Interface Science, 2020, 571, 297-306.	5.0	71
1659	Printed Built-In Power Sources. Matter, 2020, 2, 345-359.	5.0	16
1660	Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti ₃ C ₂ T <i>_x</i> MXene. Chemistry of Materials, 2020, 32, 3480-3488.	3.2	677
1661	Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries. Langmuir, 2020, 36, 4370-4382.	1.6	30
1662	Hierarchical Mesoporous MXene–NiCoP Electrocatalyst for Water-Splitting. ACS Applied Materials & Interfaces, 2020, 12, 18570-18577.	4.0	137
1663	Reversible Photodriven Droplet Motion on Ti ₃ C ₂ MXene Film for Diverse Liquids. ACS Applied Materials & Interfaces, 2020, 12, 19194-19200.	4.0	8
1664	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as a Robust and Conductive Tight on Si Anodes Significantly Enhance Electrochemical Lithium Storage Performance. ACS Nano, 2020, 14, 5111-5120.	7.3	157
1665	A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19, 894-899.	13.3	870
1666	Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. Journal of Materials Chemistry A, 2020, 8, 7508-7535.	5.2	201
1667	Ti ₃ C ₂ (MXene) based field electron emitters. Nanotechnology, 2020, 31, 285701.	1.3	14
1668	MXenes and Their Applications in Wearable Sensors. Frontiers in Chemistry, 2020, 8, 297.	1.8	147
1669	2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7, 021304.	5.5	126
1670	Dispersion and Stabilization of Alkylated 2D MXene in Nonpolar Solvents and Their Pseudocapacitive Behavior. Cell Reports Physical Science, 2020, 1, 100042.	2.8	43

#	Article	IF	CITATIONS
1671	Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti ₃ C ₂ T _x MXene. Chemical Communications, 2020, 56, 6090-6093.	2.2	76
1672	CuO Nanoparticles/Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrid Nanocomposites for Detection of Toluene Gas. ACS Applied Nano Materials, 2020, 3, 4755-4766.	2.4	162
1673	Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions. Journal of Materials Chemistry C, 2020, 8, 7350-7357.	2.7	34
1674	3D crumbled MXene for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 2305-2308.	4.8	23
1675	Uranium adsorption on two-dimensional irradiation resistant MXenes from first-principles calculations. Chemical Physics Letters, 2020, 750, 137444.	1.2	22
1676	Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. Journal of Materials Chemistry A, 2020, 8, 10534-10570.	5.2	151
1677	Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Research, 2020, 13, 1659-1667.	5.8	78
1678	Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Advanced Functional Materials, 2020, 30, 2000712.	7.8	336
1679	Thermal reduction of sulfur-containing MAX phase for MXene production. Chemical Engineering Journal, 2020, 395, 125111.	6.6	116
1680	Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology, 2020, 31, 315715.	1.3	31
1681	MXeneâ€Based Nanocomposites for Energy Conversion and Storage Applications. Chemistry - A European Journal, 2020, 26, 6342-6359.	1.7	66
1682	Flexible Nb ₄ C ₃ T <i>_x</i> Film with Large Interlayer Spacing for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000815.	7.8	92
1683	Tuning 2D MXenes by Surface Controlling and Interlayer Engineering: Methods, Properties, and Synchrotron Radiation Characterizations. Advanced Functional Materials, 2020, 30, 2000869.	7.8	98
1684	Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution. Renewable Energy, 2020, 155, 1293-1301.	4.3	41
1685	Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	11.1	613
1686	β-Hydroxybutyrate dehydrogenase decorated MXene nanosheets for the amperometric determination of β-hydroxybutyrate. Mikrochimica Acta, 2020, 187, 277.	2.5	33
1687	Form factor-free, printed power sources. Energy Storage Materials, 2020, 29, 92-112.	9.5	19
1688	3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Materials, 2020, 29, 163-171.	9.5	163

#	Article	IF	CITATIONS
1689	Highly active and durable Pt/MXene nanocatalysts for ORR in both alkaline and acidic conditions. Journal of Electroanalytical Chemistry, 2020, 865, 114142.	1.9	41
1690	A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. Journal of Membrane Science, 2020, 607, 118139.	4.1	101
1691	Cancer theranostic applications of MXene nanomaterials: Recent updates. Nano Structures Nano Objects, 2020, 22, 100457.	1.9	53
1692	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62
1693	Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New Journal of Chemistry, 2020, 44, 6524-6532.	1.4	64
1694	Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes. Journal of Materials Chemistry A, 2020, 8, 8957-8968.	5.2	90
1695	Ti ₃ C ₂ T _{<i>x</i>} -Based Electrodes with Enhanced Pseudocapacitance for High-Performance Lithium-ion Batteries. Nano, 2020, 15, 2050051.	0.5	6
1696	Large-scale two-dimensional titanium carbide MXene as SERS-active substrate for reliable and sensitive detection of organic pollutants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118336.	2.0	42
1697	Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V ₂ O _{<i>x</i>} @V ₂ CT _{<i>x</i>) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4677-4689.}	2.5	138
1698	Atomic defects, functional groups and properties in MXenes. Chinese Chemical Letters, 2021, 32, 339-344.	4.8	40
1699	Excellent tribological properties of epoxy—Ti3C2 with three-dimensional nanosheets composites. Friction, 2021, 9, 734-746.	3.4	36
1700	Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. Journal of Energy Chemistry, 2021, 52, 243-250.	7.1	93
1701	MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chinese Journal of Catalysis, 2021, 42, 3-14.	6.9	220
1702	Advances in in-situ characterizations of electrode materials for better supercapacitors. Journal of Energy Chemistry, 2021, 54, 242-253.	7.1	37
1703	MXenes for Nonâ€Lithiumâ€lon (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2000681.	10.2	183
1704	Two-dimensional (2D) electrode materials for supercapacitors. Materials Today: Proceedings, 2021, 41, 498-505.	0.9	55
1705	Thermal kinetics involved during the solid-state synthesis of Cr2AlC MAX phase. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3997-4008.	2.0	7
1706	MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, 80-115.	5.3	123

#	Article	IF	CITATIONS
1707	Layered materials for supercapacitors and batteries: Applications and challenges. Progress in Materials Science, 2021, 118, 100763.	16.0	48
1708	Wettability of MXene and its interfacial adhesion with epoxy resin. Materials Chemistry and Physics, 2021, 257, 123820.	2.0	27
1709	High-rate quasi-solid-state hybrid supercapacitor of hierarchical flowers of hydrated tungsten oxide nanosheets. Electrochimica Acta, 2021, 366, 137389.	2.6	28
1710	Highly Efficient Nb ₂ C MXene Cathode Catalyst with Uniform Oâ€Terminated Surface for Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, .	10.2	130
1711	A MXene-based EDA-Ti3C2Tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon, 2021, 173, 135-144.	5.4	46
1712	Facile fabrication of novel Ti3C2T -supported fallen leaf-like Bi2S3 nanopieces by a combined local-repulsion and macroscopic attraction strategy with enhanced symmetrical supercapacitor performance. Electrochimica Acta, 2021, 366, 137406.	2.6	34
1713	Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 850, 156608.	2.8	79
1714	Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing {0 0 1} facets. Chemical Engineering Journal, 2021, 404, 126526.	6.6	73
1715	Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications. Chemistry - A European Journal, 2021, 27, 1921-1940.	1.7	45
1716	Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal, 2021, 403, 126336.	6.6	40
1717	0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chemical Engineering Journal, 2021, 403, 126352.	6.6	755
1718	Recent advance in electromagnetic shielding of MXenes. Chinese Chemical Letters, 2021, 32, 620-634.	4.8	16
1719	Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage. Chemical Engineering Journal, 2021, 406, 126775.	6.6	59
1720	Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chemical Engineering Journal, 2021, 404, 126940.	6.6	64
1721	Subsize Ti3C2T derived from molten-salt synthesized Ti3AlC2 for enhanced capacitive deionization. Ceramics International, 2021, 47, 3665-3670.	2.3	25
1722	2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration. Materials Science and Engineering C, 2021, 118, 111367.	3.8	53
1723	Structural, electronic, optical, thermoelectric and photocatalytic properties of SiS/MXenes van der Waals heterostructures. Materials Today Communications, 2021, 26, 101702.	0.9	12
1724	Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance. Chemical Engineering Journal, 2021, 408, 127283.	6.6	96

#	Article	IF	CITATIONS
1725	MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydrate Polymers, 2021, 254, 117033.	5.1	59
1726	Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 1099-1106.	5.0	57
1727	2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors. Journal of Power Sources, 2021, 482, 228961.	4.0	86
1728	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	16.0	97
1729	Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light. Bioactive Materials, 2021, 6, 568-578.	8.6	30
1730	Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics. Chemical Engineering Journal, 2021, 408, 127363.	6.6	83
1731	Theoretical investigation of Ti2B monolayer as powerful anode material for Li/Na batteries with high storage capacity. Applied Surface Science, 2021, 538, 148048.	3.1	14
1732	Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Separation and Purification Technology, 2021, 254, 117615.	3.9	106
1733	2D Ti3C2 MXene embedded with Co(II)(OH)n nanoparticles as the cathode material for hybrid magnesium–lithium-ion batteries. Journal of Materials Science, 2021, 56, 2464-2473.	1.7	17
1734	Unusual synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene. Applied Surface Science, 2021, 538, 148023.	3.1	52
1735	Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon, 2021, 172, 506-515.	5.4	196
1736	Ultrathin holey reduced graphene oxide/Ni(picolinic acid)2 papers for flexible battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2021, 408, 127302.	6.6	17
1737	Electromagnetic interference shielding of Ti3C2T MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chemical Engineering Journal, 2021, 408, 127303.	6.6	81
1738	2D titanium carbide MXenes as emerging optical biosensing platforms. Biosensors and Bioelectronics, 2021, 171, 112730.	5.3	101
1739	Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. Journal of Colloid and Interface Science, 2021, 583, 510-521.	5.0	137
1740	Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chemical Engineering Journal, 2021, 405, 126664.	6.6	90
1741	Boosting ion/eâ^' transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors. Chemical Engineering Journal, 2021, 404, 127116.	6.6	32
1742	Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications. Materials Letters, 2021, 284, 129029.	1.3	36

#	Article	IF	CITATIONS
1743	Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials, 2021, 35, 630-660.	9.5	182
1744	A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor. Materials Today Energy, 2021, 19, 100598.	2.5	22
1745	Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants. Ceramics International, 2021, 47, 7321-7343.	2.3	88
1746	Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chemical Engineering Journal, 2021, 417, 127912.	6.6	40
1747	A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density. Chemical Engineering Journal, 2021, 405, 126694.	6.6	60
1748	Aqueous solution-processed MXene (Ti3C2Tx) for non-hydrophilic epoxy resin-based composites with enhanced mechanical and physical properties. Materials and Design, 2021, 197, 109276.	3.3	50
1749	Structural and chemical interplay between nano-active and encapsulation materials in a core–shell SnO ₂ @MXene lithium ion anode system. CrystEngComm, 2021, 23, 368-377.	1.3	15
1750	Noble-metal-free ultrathin MXene coupled with In2S3 nanoflakes for ultrafast photocatalytic reduction of hexavalent chromium. Applied Catalysis B: Environmental, 2021, 284, 119754.	10.8	76
1751	Electronic and magnetic properties of 3d transition metal atom adsorbed Zr2CO2 Mxene: First-principles study. Solid State Communications, 2021, 325, 114140.	0.9	9
1752	Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. Journal of Materials Science and Technology, 2021, 78, 30-37.	5.6	43
1753	Strategies for engineering the MXenes toward highly active catalysts. Materials Today Nano, 2021, 13, 100104.	2.3	10
1754	Ultrasmall SnO ₂ nanocrystals sandwiched into polypyrrole and Ti ₃ C ₂ T _x MXene for highly effective sodium storage. Materials Chemistry Frontiers, 2021, 5, 825-833.	3.2	25
1755	A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Metals, 2021, 40, 1459-1476.	3.6	121
1756	Boosting Transport Kinetics of Ions and Electrons Simultaneously by Ti3C2Tx (MXene) Addition for Enhanced Electrochromic Performance. Nano-Micro Letters, 2021, 13, 20.	14.4	37
1757	Leaf-like MXene nanosheets intercalated TiO2 nanorod array photoelectrode with enhanced photoelectrochemical performance. Journal of Power Sources, 2021, 484, 229236.	4.0	26
1758	Microsupercapacitor with a 500Ânm gap between MXene/CNT electrodes. Nano Energy, 2021, 81, 105616.	8.2	61
1759	MXenes for Rechargeable Batteries Beyond the Lithiumâ€lon. Advanced Materials, 2021, 33, e2004039.	11.1	224
1760	Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance. Journal of Alloys and Compounds, 2021, 859, 157797.	2.8	67

#	Article	IF	CITATIONS
1761	A general way to transform Ti3C2Tx MXene into solvent-free fluids for filler phase applications. Chemical Engineering Journal, 2021, 409, 128082.	6.6	33
1762	Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Composites Communications, 2021, 23, 100593.	3.3	47
1763	In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination, 2021, 500, 114897.	4.0	33
1764	High-performance Bi2O3-NC anodes through constructing carbon shells and oxygen vacancies for flexible battery-supercapacitor hybrid devices. Nanoscale Advances, 2021, 3, 593-603.	2.2	8
1765	An adept approach to convert titanium carbide to titanium nitride and it's composite with N-doped carbon nanotubes for efficient oxygen electroreduction kinetics. Catalysis Today, 2021, 370, 46-54.	2.2	8
1766	Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chemical Engineering Journal, 2021, 409, 128099.	6.6	230
1767	Electrochemical capacitors: Materials, technologies and performance. Energy Storage Materials, 2021, 36, 31-55.	9.5	87
1768	A coupled conductor of ionic liquid with Ti ₃ C ₂ MXene to improve electrochemical properties. Journal of Materials Chemistry A, 2021, 9, 442-452.	5.2	32
1769	Challenges and Opportunities in Utilizing MXenes of Carbides and Nitrides as Electrocatalysts. Advanced Energy Materials, 2021, 11, 2002967.	10.2	94
1770	Optimizing Ion Pathway in Titanium Carbide MXene for Practical Highâ€Rate Supercapacitor. Advanced Energy Materials, 2021, 11, 2003025.	10.2	152
1771	CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. Journal of Materials Chemistry A, 2021, 9, 358-370.	5.2	48
1772	Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chemical Engineering Journal, 2021, 408, 127806.	6.6	56
1773	Effects of ultralow concentration MXene (nano-Ti3C2Tx) on the electric and physical properties of ternary polyvinyl alcohol composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125929.	2.3	15
1774	Tailored synthesis approach of (Mo _{2/3} Y _{1/3}) ₂ AlC <i>i</i> MAX and its two-dimensional derivative Mo _{1.33} CT _z MXene: enhancing the yield, quality, and performance in supercapacitor applications. Nanoscale, 2021, 13, 311-319.	2.8	22
1775	Flexible Transparent Supercapacitors: Materials and Devices. Advanced Functional Materials, 2021, 31, 2009136.	7.8	141
1776	Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes. Nanoscale, 2021, 13, 922-929.	2.8	7
1777	Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe ₃ O ₄ nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. Journal of Materials Chemistry A, 2021, 9, 3500-3510.	5.2	176
1778	Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale, 2021, 13, 1832-1841.	2.8	101

#	Article	IF	CITATIONS
1779	Improved pseudocapacitances of supercapacitors based on electrodes of nitrogen-doped Ti3C2Tx nanosheets with in-situ growth of carbon nanotubes. Journal of Alloys and Compounds, 2021, 859, 158347.	2.8	10
1780	The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Materials and Design, 2021, 199, 109403.	3.3	42
1781	Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small, 2021, 17, e2004108.	5.2	62
1782	The recent progress of MXene-Based microwave absorption materials. Carbon, 2021, 174, 484-499.	5.4	138
1783	Hierarchical few-layer fluorine-free Ti ₃ C ₂ T _X (T = O,) Tj ETQq0 0 0 rgBT /Ov Chemistry A, 2021, 9, 922-927.	verlock 10 5.2	Tf 50 587 Tc 29
1784	Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Frontiers of Chemical Science and Engineering, 2021, 15, 709-716.	2.3	10
1785	In-situ formation of 2D-TiCx in Cu-Ti2AlC composites: an interface reaction study. Materials Letters, 2021, 284, 128935.	1.3	11
1786	Molecular Understanding of Charge Storage in MoS ₂ Supercapacitors with Ionic Liquids. Energy and Environmental Materials, 2021, 4, 631-637.	7.3	20
1787	MXenes: promising donor and acceptor materials for high-efficiency heterostructure solar cells. Sustainable Energy and Fuels, 2021, 5, 135-143.	2.5	32
1788	Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors. Applied Surface Science, 2021, 539, 148272.	3.1	37
1789	Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Applied Surface Science, 2021, 537, 148006.	3.1	67
1790	Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing. Journal of Colloid and Interface Science, 2021, 586, 20-29.	5.0	61
1792	New Insights on MXenes: Synthesis and Their Uses in Energy Storage and Environmental Applications. Materials Horizons, 2021, , 307-322.	0.3	1
1793	Nanoarchitectured Design of Verticalâ€Standing Arrays for Supercapacitors: Progress, Challenges, and Perspectives. Advanced Functional Materials, 2021, 31, 2006030.	7.8	150
1794	Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 511-556.	6.9	131
1795	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
1796	Supercapacitors based on MXenes (transition metal carbides and nitrides) and their hybrids. , 2021, , 217-233.		0
1797	Multitasking Tartaric Acid-Enabled Highly Conductive, Stable Titanium Carbide MXene/PEDOT:PSS Composite for Ultrafast Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1798	Collaborative compromise of two-dimensional materials in sodium ion capacitors: mechanisms and designing strategies. Journal of Materials Chemistry A, 2021, 9, 8129-8159.	5.2	13
1799	Fe ₃ O ₄ nanoplates anchored on Ti ₃ C ₂ T _{<i>x</i>} MXene with enhanced pseudocapacitive and electrocatalytic properties. Nanoscale, 2021, 13, 15343-15351.	2.8	20
1800	Fabrication of Mo _{1.33} CT _z (MXene)–cellulose freestanding electrodes for supercapacitor applications. Materials Advances, 2021, 2, 743-753.	2.6	15
1801	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
1802	Dimensional Gradient Structure of CoSe2@CNTs–MXene Anode Assisted by Ether for High-Capacity, Stable Sodium Storage. Nano-Micro Letters, 2021, 13, 40.	14.4	54
1803	Synergetic Effect of Ni ₂ P and MXene Enhances Catalytic Activity in the Hydrogen Evolution Reaction. Inorganic Chemistry, 2021, 60, 1604-1611.	1.9	52
1804	State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale, 2021, 13, 9463-9504.	2.8	87
1805	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	18.7	129
1806	Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 9979-9999.	5.2	50
1807	Preparation, microstructure and tensile properties of two dimensional MXene reinforced copper matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140699.	2.6	23
1808	Recent advances in MXene-based force sensors: a mini-review. RSC Advances, 2021, 11, 19169-19184.	1.7	12
1809	Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. Journal of Materials Chemistry A, 2021, 9, 3231-3269.	5.2	97
1810	Halogen Etch of Ti ₃ AlC ₂ MAX Phase for MXene Fabrication. ACS Nano, 2021, 15, 2771-2777.	7.3	154
1811	Applications of MXene (Ti ₃ C ₂ T _x) in photocatalysis: a review. Materials Advances, 2021, 2, 1570-1594.	2.6	101
1812	Flexible supercapacitors based on 2D materials. , 2021, , 253-310.		1
1813	Application of MXene-based materials in hybrid capacitors. Sustainable Energy and Fuels, 2021, 5, 3278-3291.	2.5	29
1814	Transition Metal Carbide (MXene)–Polymer Nanocomposites. Inorganic Materials Series, 2021, , 99-128.	0.5	0
1815	Electrochemically active site-rich nanocomposites of two-dimensional materials as anode catalysts for direct oxidation fuel cells: new age beyond graphene. Nanoscale Advances, 2021, 3, 3681-3707.	2.2	13

#	Article	IF	CITATIONS
1816	Synthesis and electrochemical study of phosphorus-doped porous carbon for supercapacitor applications. SN Applied Sciences, 2021, 3, 1.	1.5	7
1817	2D MXenes Based Supercapacitors. , 2022, , 590-598.		0
1818	First principles study of the stability of MXenes under an electron beam. Nanoscale Advances, 2021, 3, 1934-1941.	2.2	5
1819	Understanding and tackling lattice manganese exfoliation and deactivation of battery-type NiMn-LDH in fast electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 23286-23295.	5.2	13
1820	Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. Journal of Materials Chemistry A, 2021, 9, 24094-24147.	5.2	141
1821	A NiCoP nanocluster-anchored porous Ti ₃ C ₂ T _{<i>x</i>} monolayer as high performance hydrogen evolution reaction electrocatalysts. Nanoscale, 2021, 13, 12854-12864.	2.8	18
1822	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
1823	A novel multifunctional flame retardant MXene/nanosilica hybrid for poly(vinyl alcohol) with simultaneously improved mechanical properties. New Journal of Chemistry, 2021, 45, 4292-4302.	1.4	23
1824	Confining Aqueous Zn–Br Halide Redox Chemistry by Ti ₃ C ₂ T _X MXene. ACS Nano, 2021, 15, 1718-1726.	7.3	78
1825	Drastically increased electrical and thermal conductivities of Pt-infiltrated MXenes. Journal of Materials Chemistry A, 2021, 9, 10739-10746.	5.2	22
1826	Solving Gravimetric-Volumetric Capacitive Paradox of 2D Materials through Dual-Functional Chemical Bonding-Induced Self-Constructing Graphene-MXene Monoliths. ACS Applied Materials & Interfaces, 2021, 13, 6339-6348.	4.0	8
1827	Newly Emerging Metal–Organic Frameworks (MOF), MXenes, and Zeolite Nanosheets in Solutes Removal from Water. Springer Series on Polymer and Composite Materials, 2021, , 219-247.	0.5	0
1828	2D metal carbides and their hybrid nanostructure: fundamental, synthesis, and applications. , 2021, , 235-251.		0
1829	Role of Microstructure on the Potential of MAX and MAB Phases and Their Derivative-Based Composites: A Review. Minerals, Metals and Materials Series, 2021, , 17-41.	0.3	0
1830	On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Current Research in Green and Sustainable Chemistry, 2021, 4, 100104.	2.9	43
1831	Interlayer Structural Engineering of 2D MXene for Electrochemical Energy Storage. , 2021, , 451-478.		0
1832	Confined assembly of ultrathin dual-functionalized Z-MXene nanosheet intercalated GO nanofilms with controlled structure for size-selective permeation. Journal of Materials Chemistry A, 2021, 9, 12236-12243.	5.2	26
1833	Progress and Perspective: MXene and MXeneâ€Based Nanomaterials for Highâ€Performance Energy Storage Devices. Advanced Electronic Materials, 2021, 7, 2000967.	2.6	122

#	Article	IF	CITATIONS
1834	lon regulation of ionic liquid electrolytes for supercapacitors. Energy and Environmental Science, 2021, 14, 2859-2882.	15.6	71
1835	Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale, 2021, 13, 12818-12847.	2.8	37
1836	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	6.4	37
1837	A remarkably ultra-sensitive large area matrix of MXene based multifunctional physical sensors (pressure, strain, and temperature) for mimicking human skin. Journal of Materials Chemistry B, 2021, 9, 4523-4534.	2.9	48
1838	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	3.2	66
1839	Ultrasensitive fluorometric biosensor based on Ti ₃ C ₂ MXenes with Hg ²⁺ -triggered exonuclease III-assisted recycling amplification. Analyst, The, 2021, 146, 2664-2669.	1.7	55
1840	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	15.6	178
1841	Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and Technology, 2021, 11, 5028-5049.	2.1	11
1842	One-step hydrothermal synthesis of porous Ti ₃ C ₂ T _{<i>z</i>/sub> MXene/rGO gels for supercapacitor applications. Nanoscale, 2021, 13, 16543-16553.}	2.8	36
1843	Water-Dispersible Ti ₃ C ₂ T _z MXene Nanosheets by Acid-Free, Molten Salt Etching. SSRN Electronic Journal, 0, , .	0.4	1
1844	Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Scientific Reports, 2021, 11, 649.	1.6	54
1845	Non-enzymatic Glucose Sensor Based on Porous Foam Au/Mxene Nanocomposites. Chinese Journal of Chemical Physics, 0, , .	0.6	2
1846	Transition metal carbide—MXene. , 2021, , 671-709.		4
1847	Enhancing the supercapacitor performance of flexible <scp>MXene</scp> /carbon cloth electrodes by oxygen plasma and chemistry modification. International Journal of Energy Research, 2021, 45, 9229-9240.	2.2	14
1848	Emerging elemental two-dimensional materials for energy applications. Journal of Materials Chemistry A, 2021, 9, 18793-18817.	5.2	30
1849	Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications. Nanoscale Advances, 2021, 3, 517-527.	2.2	15
1850	Recent advances in 2D MXene-based heterostructured photocatalytic materials. , 2021, , 329-362.		4
1851	Hybridization with Ti ₃ C ₂ T <i>_x</i> MXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 1380-1387.	1.9	17

#	Article	IF	CITATIONS
1852	Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 6089-6108.	5.2	128
1853	Enhanced field emission performance of MXene–TiO ₂ composite films. Nanoscale, 2021, 13, 7622-7629.	2.8	21
1854	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
1855	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. Journal of Materials Chemistry A, 2021, 9, 7712-7725.	5.2	20
1856	Ti ₃ C ₂ T _x MXene for electrode materials of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11501-11529.	5.2	181
1857	Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy storage. Sustainable Energy and Fuels, 2021, 5, 5061-5113.	2.5	11
1858	A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction. RSC Advances, 2021, 11, 16768-16804.	1.7	60
1859	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	7.3	183
1860	Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices. Journal of Materials Chemistry A, 2021, 9, 14147-14171.	5.2	90
1861	Air-stable MXene/GaAs heterojunction solar cells with a high initial efficiency of 9.69%. Journal of Materials Chemistry A, 2021, 9, 16160-16168.	5.2	17
1862	MXene-based photocatalysts. , 2021, , 333-357.		0
1863	The oxidation and thermal stability of two-dimensional transition metal carbides and/or carbonitrides (MXenes) and the improvement based on their surface state. Inorganic Chemistry Frontiers, 2021, 8, 2164-2182.	3.0	56
1864	Efficient Two-Dimensional Perovskite Solar Cells Realized by Incorporation of Ti3C2Tx MXene as Nano-Dopants. Nano-Micro Letters, 2021, 13, 68.	14.4	44
1865	Role of MXene surface terminations in electrochemical energy storage: A review. Chinese Chemical Letters, 2021, 32, 2648-2658.	4.8	62
1866	Interfacial engineering insights of promising monolayer 2D Ti3C2 MXene anchored flake-like ZnO thin films for improved PEC water splitting. Journal of Electroanalytical Chemistry, 2021, 883, 115044.	1.9	32
1867	Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling. Advanced Materials Technologies, 2021, 6, 2000882.	3.0	9
1868	Boosting the Pseudocapacitive and High Mass‣oaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Advanced Functional Materials, 2021, 31, 2007636.	7.8	53
1869	Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Research, 2021, 14, 2837-2845.	5.8	55

#	Article	IF	CITATIONS
1870	2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management. Biosensors, 2021, 11, 40.	2.3	17
1871	Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. Journal of Physics Condensed Matter, 2021, 33, 155503.	0.7	20
1872	3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic/chemo combination therapy. Nanotechnology, 2021, 32, 195701.	1.3	14
1873	Progress and biomedical applications of MXenes. Nano Select, 2021, 2, 1480-1508.	1.9	100
1874	Novel <scp>Ti₃C₂T_x</scp> MXene/epoxy intumescent fireâ€retardant coatings for ancient wooden architectures. Journal of Applied Polymer Science, 2021, 138, 50649.	1.3	79
1875	Solvent Co-intercalation into Few-layered Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXenes in Lithium Ion Batteries Induced by Acidic or Basic Post-treatment. ACS Nano, 2021, 15, 3295-3308.	7.3	35
1876	Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals. Journal of Materials Science, 2021, 56, 8871-8886.	1.7	25
1877	MXenes: An Emerging Platform for Wearable Electronics and Looking Beyond. Matter, 2021, 4, 377-407.	5.0	125
1878	Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene. Electrochimica Acta, 2021, 370, 137665.	2.6	34
1879	High Concentration of Ti ₃ C ₂ T _{<i>x</i>} MXene in Organic Solvent. ACS Nano, 2021, 15, 5249-5262.	7.3	163
1880	3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti ₃ C ₂ MXene Ink. ACS Nano, 2021, 15, 3098-3107.	7.3	131
1881	lon Implantation as an Approach for Structural Modifications and Functionalization of Ti ₃ C ₂ T _{<i>x</i>} MXenes. ACS Nano, 2021, 15, 4245-4255.	7.3	37
1882	Magnetic Ti3C2Tx/Fe3O4/Aramid nanofibers composite paper with tunable electromagnetic interference shielding performance. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
1883	Interband, Surface Plasmon and Fano Resonances in Titanium Carbide (MXene) Nanoparticles in the Visible to Infrared Range. Photonics, 2021, 8, 36.	0.9	4
1884	Optical-Transparent Self-Assembled MXene Film with High-Efficiency Terahertz Reflection Modulation. ACS Applied Materials & Interfaces, 2021, 13, 10574-10582.	4.0	13
1885	Multitasking MXene Inks Enable Highâ€Performance Printable Microelectrochemical Energy Storage Devices for Allâ€Flexible Selfâ€Powered Integrated Systems. Advanced Materials, 2021, 33, e2005449.	11.1	182
1886	Ultrafast, One-Step, Salt-Solution-Based Acoustic Synthesis of Ti ₃ C ₂ MXene. ACS Nano, 2021, 15, 4287-4293.	7.3	103
1887	An efficient water-assisted liquid exfoliation of layered MXene (Ti3C2Tx) by rationally matching Hansen solubility parameter and surface tension. Journal of Molecular Liquids, 2021, 324, 115116.	2.3	9

#	Article	IF	CITATIONS
1888	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	7.3	164
1889	Low-Resistance Mechanism of Nanoflake Crystalline Aromatic Dicarboxylates with Selective Defects for Safe and Fast Charging Negative Electrodes. ACS Nano, 2021, 15, 2719-2729.	7.3	1
1890	Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements. Smart Materials and Structures, 2021, 30, 035024.	1.8	13
1891	Development of 2D MXene for Energy Storage. Journal of Physics: Conference Series, 2021, 1827, 012053.	0.3	2
1892	Harnessing the Unique Features of 2D Materials toward Dendriteâ€free Metal Anodes. Energy and Environmental Materials, 2022, 5, 45-67.	7.3	33
1893	Using X-Ray Scattering to Elucidate the Microstructural Instability of 3D Bicontinuous Nanoporous Metal Scaffolds for Use in an Aperiodic 3D Tricontinuous Conductor–Insulator–Conductor Nanocapacitor. ACS Applied Materials & Interfaces, 2021, 13, 11721-11731.	4.0	11
1894	Ti ₃ C ₂ T _X MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS Nano, 2021, 15, 3996-4017.	7.3	361
1895	2D MXenes: Tunable Mechanical and Tribological Properties. Advanced Materials, 2021, 33, e2007973.	11.1	278
1896	Magnetic Properties and Microstructures of Fe-Doped (Ti1-xFex)3AlC2 MAX Phase and Their MXene Derivatives. Journal of Superconductivity and Novel Magnetism, 2021, 34, 1477-1483.	0.8	3
1897	Scalable 3D Selfâ€Assembly of MXene Films for Flexible Sandwich and Microsized Supercapacitors. Advanced Functional Materials, 2021, 31, 2101302.	7.8	67
1898	MXenes and their composites for hybrid capacitors and supercapacitors: a critical review. Emergent Materials, 2021, 4, 655-672.	3.2	17
1899	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	5.2	47
1900	Ionâ€Selective MXeneâ€Based Membranes: Current Status and Prospects. Advanced Materials Technologies, 2021, 6, 2001189.	3.0	31
1901	Twoâ€dimensional materials and synthesis, energy storage, utilization, and conversion applications of twoâ€dimensional <scp>MXene</scp> materials. International Journal of Energy Research, 2021, 45, 9878-9894.	2.2	10
1902	Silver Integrated with Carbonaceous 2D Nanomaterials as an Electrocatalyst for Reductive Dechlorination of Chloroacetanilide Herbicide. Journal of the Electrochemical Society, 2021, 168, 037504.	1.3	2
1903	Advances in MXene Films: Synthesis, Assembly, and Applications. Transactions of Tianjin University, 2021, 27, 217-247.	3.3	66
1904	MXene based advanced materials for thermal energy storage: A recent review. Journal of Energy Storage, 2021, 35, 102322.	3.9	64
1905	Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Convergence, 2021, 8, 9.	6.3	194

#	Article	IF	CITATIONS
1906	Molten Salt Derived Nb ₂ CT _{<i>x</i>} MXene Anode for Liâ€ion Batteries. ChemElectroChem, 2021, 8, 957-962.	1.7	47
1907	Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors. ACS Nano, 2021, 15, 7765-7773.	7.3	259
1908	MXeneâ€Based Materials for Electrochemical Sodiumâ€Ion Storage. Advanced Science, 2021, 8, e2003185.	5.6	88
1909	Microstructure and tensile properties of Ni nano particles modified MXene reinforced copper matrix composites. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140932.	2.6	7
1910	Exploring MXenes and their MAX phase precursors by electron microscopy. Materials Today Advances, 2021, 9, 100123.	2.5	26
1911	MXene polymer nanocomposites: a review. Materials Today Advances, 2021, 9, 100120.	2.5	96
1912	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
1913	Liquidâ€Exfoliated 2D Materials for Optoelectronic Applications. Advanced Science, 2021, 8, e2003864.	5.6	77
1914	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochemical Energy Reviews, 2021, 4, 382-446.	13.1	181
1915	A review on the different types of electrode materials for aqueous supercapacitor applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 015011.	0.7	11
1916	Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. Research, 2021, 2021, 7065907.	2.8	47
1917	Highly porous niobium oxide/carbon matrix materials with distinct pseudocapacitive performances in aqueous electrolytes. Electrochimica Acta, 2021, 371, 137792.	2.6	15
1918	Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties. Journal of Physical Chemistry Letters, 2021, 12, 2377-2384.	2.1	90
1919	Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Materials Today Advances, 2021, 9, 100133.	2.5	44
1920	Ambientâ€Stable Twoâ€Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angewandte Chemie - International Edition, 2021, 60, 8689-8693.	7.2	212
1921	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5.5	25
1923	Fast self-assembled microfibrillated cellulose@MXene film with high-performance energy storage and superior mechanical strength. Chinese Chemical Letters, 2021, 32, 3575-3578.	4.8	19
1924	A Review on MXene: Synthesis, Properties and Applications on Alkali Metal Ion Batteries. IOP Conference Series: Earth and Environmental Science, 2021, 714, 042030.	0.2	20

#	Article	IF	CITATIONS
1925	Ambient‣table Twoâ€Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angewandte Chemie, 2021, 133, 8771-8775.	1.6	16
1926	MXeneâ€Based Humidityâ€Responsive Actuators: Preparation and Properties. ChemPlusChem, 2021, 86, 406-417.	1.3	25
1927	Polydopamine functionalized cellulose-MXene composite aerogel with superior adsorption of methylene blue. Cellulose, 2021, 28, 4281-4293.	2.4	66
1928	Atomic-Scale Superlubricity in Ti ₂ CO ₂ @MoS ₂ Layered Heterojunctions Interface: A First Principles Calculation Study. ACS Omega, 2021, 6, 9013-9019.	1.6	16
1929	MXenes for electromagnetic interferenceÂshielding: Experimental and theoretical perspectives. Materials Today Advances, 2021, 9, 100124.	2.5	63
1930	Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors. Materials Today Advances, 2021, 9, 100135.	2.5	19
1931	Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48, 214-240.	8.3	178
1932	Binder-free 3D flower-like alkali doped- SnS2 electrodes for high-performance supercapacitors. Electrochimica Acta, 2021, 376, 137987.	2.6	20
1933	Liquidâ€Crystal Mediated Assembly of Iodinated Graphene Oxide for Ultraâ€Dense Supercapacitors as Safe Power Source for Internet of Things Data Transmission. Batteries and Supercaps, 2021, 4, 1175-1185.	2.4	3
1934	Flexible Selfâ€Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene Thinâ€Films. Advanced Materials, 2021, 33, e2007890.	11.1	127
1935	Tunable capacitance in all-inkjet-printed nanosheet heterostructures. Energy Storage Materials, 2021, 36, 318-325.	9.5	22
1936	Surface Functionalization of Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets with Catechols: Implication for Colloidal Processing. Langmuir, 2021, 37, 5447-5456.	1.6	17
1937	Terminal Groups-Dependent Near-Field Enhancement Effect of Ti3C2Tx Nanosheets. Nanoscale Research Letters, 2021, 16, 60.	3.1	8
1938	MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chemical Engineering Journal, 2021, 410, 128348.	6.6	55
1939	Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application. Chemical Engineering Journal, 2021, 410, 128310.	6.6	111
1940	MXenes for polymer matrix electromagnetic interference shielding composites: A review. Composites Communications, 2021, 24, 100653.	3.3	291
1941	MXeneâ€GaN van der Waals Heterostructures for Highâ€Speed Selfâ€Driven Photodetectors and Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2000955.	2.6	35
1942	Interface Engineering Ti ₃ C ₂ MXene/Silicon Selfâ€Powered Photodetectors with High Responsivity and Detectivity for Weak Light Applications. Small, 2021, 17, e2100439.	5.2	61

#	Article	IF	CITATIONS
1943	MXene in the lens of biomedical engineering: synthesis, applications and future outlook. BioMedical Engineering OnLine, 2021, 20, 33.	1.3	108
1944	More from Less but Precise: Industry-relevant Pseudocapacitance by Atomically-precise Mass-loading MnO2 within Multifunctional MXene Aerogel. Journal of Power Sources, 2021, 492, 229639.	4.0	45
1945	MXene (Ti3C2T)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy. Sensors and Actuators B: Chemical, 2021, 333, 129581.	4.0	85
1946	Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy, 2021, 82, 105771.	8.2	74
1947	MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 2021, 15, 5775-5780.	7.3	250
1948	Synthesis of Ti3C2TX decorated with silver nanoparticles as a surface-enhanced Raman scattering (SERS)-active substrate. Materials Chemistry and Physics, 2021, 263, 124383.	2.0	6
1950	Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors. Chinese Chemical Letters, 2021, 32, 3733-3752.	4.8	14
1951	Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation. ACS Nano, 2021, 15, 7821-7832.	7.3	83
1952	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
1953	MXeneâ€Derived Ti <i>_n</i> O ₂ <i>_{nâ^'}</i> ₁ Quantum Dots Distributed on Porous Carbon Nanosheets for Stable and Longâ€Life Li–S Batteries: Enhanced Polysulfide Mediation via Defect Engineering. Advanced Materials, 2021, 33, e2008447.	11.1	115
1954	Construction of two-dimensional bimetal (Fe-Ti) oxide/carbon/MXene architecture from titanium carbide MXene for ultrahigh-rate lithium-ion storage. Journal of Colloid and Interface Science, 2021, 588, 147-156.	5.0	22
1955	Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106290.	3.8	55
1956	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	6.2	24
1957	3D Crinkled Alkâ€Ti ₃ C ₂ MXene Based Flexible Piezoresistive Sensors with Ultraâ€High Sensitivity and Ultraâ€Wide Pressure Range. Advanced Materials Technologies, 2021, 6, 2001157.	3.0	35
1958	Linear regulation of electrical characteristics of InSe/Antimonene heterojunction via external electric field and strain. Surfaces and Interfaces, 2021, 23, 101014.	1.5	6
1959	High-sensitivity tactile sensor based on Ti ₂ C-PDMS sponge for wireless human–computer interaction. Nanotechnology, 2021, 32, 295506.	1.3	22
1960	Oxidized titanium carbide MXene-enabled photoelectrochemical sensor for quantifying synergistic interaction of ascorbic acid based antioxidants system. Biosensors and Bioelectronics, 2021, 177, 112978.	5.3	46
1961	Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage. Nano-Micro Letters, 2021, 13, 113.	14.4	100
#	Article	IF	CITATIONS
------	--	-----	-----------
1962	In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chemical Engineering Journal, 2021, 410, 128349.	6.6	105
1963	Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. Journal of Hazardous Materials, 2021, 408, 124949.	6.5	95
1964	Polymer/MXene nanocomposite–a new age for advanced materials. Polymer-Plastics Technology and Materials, 0, , 1-16.	0.6	4
1965	MXene titanium carbide with high specific capacitance fabricated by microwave-assisted selective etching. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	9
1966	3D Hierarchical Nanoarchitecture AuNPs/MXene@PAMAM based Biosensor for cTnT Detection in Human Serum*. , 2021, , .		1
1967	Inkjet Printing Transparent and Conductive MXene (Ti ₃ C ₂ <i>T</i> _{<i>x</i>}) Films: A Strategy for Flexible Energy Storage Devices. ACS Applied Materials & Interfaces, 2021, 13, 17766-17780.	4.0	79
1968	Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications. Chemical Engineering Journal, 2021, 409, 127891.	6.6	62
1969	Novel cobalt (II) phthalocyanine with appliance of CNTs on GCE: Flexible superâ€capacitance by electrochemical methods. Electrochemical Science Advances, 2022, 2, e2100006.	1.2	7
1970	<i>In Situ</i> Tensile Testing of Nanometer-Thick Two-Dimensional Transition-Metal Carbide Films: Implications for MXenes Acting as Nanoscale Reinforcement Agents. ACS Applied Nano Materials, 2021, 4, 5058-5067.	2.4	15
1971	Cationic intermediates assisted self-assembly two-dimensional Ti3C2T /rGO hybrid nanoflakes for advanced lithium-ion capacitors. Science Bulletin, 2021, 66, 914-924.	4.3	161
1972	MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding. Chemical Engineering Journal, 2021, 412, 128681.	6.6	79
1973	Flexible Ti ₃ C ₂ T _{<i>x</i>} /Graphene Films with Largeâ€6ized Flakes for Supercapacitors. Small Structures, 2021, 2, 2100015.	6.9	38
1974	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 2021, 412, 128611.	6.6	221
1975	An approach for fabrication of micrometer linear ZnO/Ti3C2Tx UV photodetector with high responsivity and EQE. Journal of Applied Physics, 2021, 129, .	1.1	19
1976	Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceramics International, 2021, 47, 13628-13634.	2.3	31
1977	Emerging MXenes for Functional Memories. Small Science, 2021, 1, 2100006.	5.8	50
1978	Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Mikrochimica Acta, 2021, 188, 182.	2.5	85
1980	Single Semiâ€Metallic Selenium Atoms on Ti ₃ C ₂ MXene Nanosheets as Excellent Cathode for Lithium–Oxygen Batteries. Advanced Functional Materials, 2021, 31, 2010544.	7.8	63

#	Article	IF	CITATIONS
1981	Ferromagnetic half-metal with high Curie temperature: Janus Mn2PAs monolayer. Journal of Materials Science, 2021, 56, 13215-13226.	1.7	18
1982	Vacancies-Engineered M ₂ CO ₂ MXene as an Efficient Hydrogen Evolution Reaction Electrocatalyst. Journal of Physical Chemistry Letters, 2021, 12, 4805-4813.	2.1	31
1983	2D Ti3C2Tx flakes prepared by in-situ HF etchant for simultaneous screening of carbamate pesticides. Journal of Colloid and Interface Science, 2021, 590, 365-374.	5.0	38
1984	Development of Fluorineâ€Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes. Advanced Functional Materials, 2021, 31, 2100015.	7.8	58
1985	Strategies for Fabricating Highâ€Performance Electrochemical Energyâ€Storage Devices by MXenes. ChemElectroChem, 2021, 8, 1948-1987.	1.7	16
1986	Two-Dimensional Nanostructures for Electrochemical Biosensor. Sensors, 2021, 21, 3369.	2.1	20
1987	Flowerlike CuO/Au Nanoparticle Heterostructures for Nonenzymatic Glucose Detection. ACS Applied Nano Materials, 2021, 4, 5808-5815.	2.4	24
1988	Potential environmental applications of MXenes: A critical review. Chemosphere, 2021, 271, 129578.	4.2	71
1989	Alternate-Layered MXene Composite Film-Based Triboelectric Nanogenerator with Enhanced Electrical Performance. Nanoscale Research Letters, 2021, 16, 81.	3.1	13
1990	Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nature Communications, 2021, 12, 3171.	5.8	57
1991	2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage. Journal of Energy Storage, 2021, 37, 102478.	3.9	62
1993	Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance. Energies, 2021, 14, 3010.	1.6	4
1994	In situ and operando forceâ€based atomic force microscopy for probing local functionality in energy storage materials. Electrochemical Science Advances, 2022, 2, e2100038.	1.2	12
1995	High-temperature stability and phase transformations of titanium carbide (Ti ₃ C ₂ T _x) MXene. Journal of Physics Condensed Matter, 2021, 33, 224002.	0.7	26
1996	HClâ€Based Hydrothermal Etching Strategy toward Fluorideâ€Free MXenes. Advanced Materials, 2021, 33, e2101015.	11.1	79
1997	Chemically-confined mesoporous γ-Fe2O3 nanospheres with Ti3C2Tx MXene via alkali treatment for enhanced lithium storage. Journal of Power Sources, 2021, 495, 229758.	4.0	46
1998	Strain-tunable electronic and optical properties of Zr2CO2 MXene and MoSe2 van der Waals heterojunction: A first principles calculation. Applied Surface Science, 2021, 548, 149249.	3.1	33
1999	Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. Journal of Alloys and Compounds, 2021, 862, 158546.	2.8	38

#	Article	IF	CITATIONS
2000	Two-Dimensional MXene Based Materials for Micro-Supercapacitors. , 0, , .		2
2001	Electrostatic Interactions Leading to Hierarchical Interpenetrating Electroconductive Networks in Silicon Anodes for Fast Lithium Storage. Chemistry - A European Journal, 2021, 27, 9320-9327.	1.7	6
2002	Attapulgite–MXene Hybrids with Ti3C2Tx Lamellae Surface Modified by Attapulgite as a Mechanical Reinforcement for Epoxy Composites. Polymers, 2021, 13, 1820.	2.0	9
2003	Electrochemical Biosensor Based on HRP/Ti ₃ C ₂ /Nafion Film for Determination of Hydrogen Peroxide in Serum Samples of Patients with Acute Myocardial Infarction. ACS Biomaterials Science and Engineering, 2021, 7, 2767-2773.	2.6	24
2004	Synthesis and characterization of Cr2C MXenes. Journal of Materials Research, 2021, 36, 1980-1989.	1.2	23
2005	Singleâ€Atom Sites on MXenes for Energy Conversion and Storage. Small Science, 2021, 1, 2100017.	5.8	48
2006	Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods, 2021, 5, e2100409.	4.6	67
2007	Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26074-26083.	4.0	32
2008	Electronically coupled layered double hydroxide/ <scp>MXene</scp> quantum dot metallic hybrids for highâ€performance flexible zinc–air batteries. InformaÄnÃ-Materiály, 2021, 3, 1134-1144.	8.5	73
2009	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. Advanced Materials Technologies, 2021, 6, 2001197.	3.0	16
2010	Multitasking tartaric-acid-enabled, highly conductive, and stable MXene/conducting polymer composite for ultrafast supercapacitor. Cell Reports Physical Science, 2021, 2, 100449.	2.8	19
2011	Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021, 46, 183-211.	8.3	83
2012	TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis B: Environmental, 2021, 286, 119885.	10.8	111
2013	The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372, .	6.0	1,209
2014	Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion. Nano-Micro Letters, 2021, 13, 150.	14.4	197
2016	Electrochemical Behavior of Vanadium Carbide in Neutral Aqueous Electrolytes. Chinese Physics Letters, 2021, 38, 058201.	1.3	5
2017	2D transition metal carbides (MXenes) in metal and ceramic matrix composites. Nano Convergence, 2021, 8, 16.	6.3	33
2018	Aligned Ti ₃ C ₂ T <i>_x</i> Electrodes Induced by Magnetic Field for High-Performance Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 5590-5598.	2.5	7

#	Article	IF	CITATIONS
2019	An Mxene-Edot Nanocomposite Based Strain Sensor Patch for Wireless Human Motion Monitoring. , 2021, , .		0
2020	A comprehensive review of <scp>MXenes</scp> as catalyst supports for the oxygen reduction reaction in fuel cells. International Journal of Energy Research, 2021, 45, 15760-15782.	2.2	49
2021	Recent advances in the rational design of <scp>2D MXenes</scp> in energy conversion and storage systems. International Journal of Energy Research, 2021, 45, 17563-17576.	2.2	4
2022	Sustainable MXenes-based membranes for highly energy-efficient separations. Renewable and Sustainable Energy Reviews, 2021, 143, 110878.	8.2	39
2023	Ti ₃ C ₂ MXene-Based Nanobiosensors for Detection of Cancer Biomarkers. , 0, , .		3
2024	MXene—manganese oxides aqueous asymmetric supercapacitors with high mass loadings, high cell voltages and slow self-discharge. Energy Storage Materials, 2021, 38, 438-446.	9.5	40
2025	A general strategy towards transition metal nitrides (TMNs)/rGO nanocomposites for superior lithium ion storage. Journal of Alloys and Compounds, 2021, 865, 158968.	2.8	9
2026	MXeneâ€Based Membranes for Separation Applications. Small Science, 2021, 1, 2100013.	5.8	49
2027	On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Materials, 2021, 38, 520-527.	9.5	39
2028	Preparation and Photocatalytic Performance of Double-Shelled Hollow W18O49@C3N4@Ti3C2 Microspheres. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 311-317.	0.4	2
2029	Engineering the Interlayer Spacing by Preâ€intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Advanced Functional Materials, 2021, 31, 2104007.	7.8	64
2030	Construction of Few-Layer Ti ₃ C ₂ MXene and Boron-Doped g-C ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 8425-8434.	3.2	63
2031	Acoustomicrofluidic Synthesis of Pristine Ultrathin Ti ₃ C ₂ T _{<i>z</i>/i>} MXene Nanosheets and Quantum Dots. ACS Nano, 2021, 15, 12099-12108.	7.3	46
2032	MXene/air-laid paper composite sensors for both tensile and torsional deformations detection. Composites Communications, 2021, 25, 100768.	3.3	5
2033	High electrochemical performance of Ni-foam supported Ti ₃ C ₂ T _x MXene/rGO nanocomposite. Nanotechnology, 2021, 32, 375710.	1.3	4
2034	Carbon-Dots-Initiated Photopolymerization: An <i>In Situ</i> Synthetic Approach for MXene/Poly(norepinephrine)/Copper Hybrid and its Application for Mitigating Water Pollution. ACS Applied Materials & Interfaces, 2021, 13, 31038-31050.	4.0	73
2035	Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Applied Materials Today, 2021, 23, 101025.	2.3	64
2036	MXene and MoS _{3â^'} <i>_x</i> Coated 3Dâ€Printed Hybrid Electrode for Solidâ€State Asymmetric Supercapacitor. Small Methods, 2021, 5, e2100451.	4.6	56

#	Article	IF	CITATIONS
2037	The eruption of carbon chains in the oxidation of 2D Tin+1Cn (nÂ=Â1, 2, 3) MXenes. Applied Surface Science, 2021, 550, 149310.	3.1	8
2038	Anchoring single atom cobalt on two-dimensional MXene for activation of peroxymonosulfate. Applied Catalysis B: Environmental, 2021, 286, 119898.	10.8	103
2039	Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Materials Today Advances, 2021, 10, 100139.	2.5	64
2040	Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. Npj 2D Materials and Applications, 2021, 5, .	3.9	163
2041	Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 2021, 497, 229882.	4.0	46
2042	Enhanced tensile and electrochemical performance of MXene/CNT hierarchical film. Nanotechnology, 2021, 32, 355706.	1.3	19
2044	Flexible MXene Framework as a Fast Electron/Potassiumâ€lon Dualâ€Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes. Advanced Functional Materials, 2021, 31, 2102126.	7.8	77
2045	V ₂ CT _{<i>x</i>} and Ti ₃ C ₂ T _{<i>x</i>} MXenes Nanosheets for Gas Sensing. ACS Applied Nano Materials, 2021, 4, 6257-6268.	2.4	52
2046	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3
2047	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 1768-1800.	5.0	39
2048	High-Throughput Screening of Atomic Defects in MXenes for CO ₂ Capture, Activation, and Dissociation. ACS Applied Materials & Interfaces, 2021, 13, 35585-35594.	4.0	30
2049	Structural, magnetic properties of in-plane chemically ordered (Mo2/3R)2AlC (RÂ= Gd, Tb, Dy, Ho, Er and) Tj ETQo	1 1 0.784ء _{5.4}	-314 rgBT /○
2050	Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti ₃ C ₂ T _x MXene fiber membranes. Nanotechnology, 2021, 32, 415204.	1.3	13
2051	Review on <scp>MXene</scp> synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. International Journal of Energy Research, 2021, 45, 19746-19771.	2.2	51
2052	Self-Healed and Shape-Adaptive MXene Integrated Hydrogel for Wearable Electronic Applications. , 2021, , .		0
2053	Tailoring Ti3CNT MXene via an acid molecular scissor. Nano Energy, 2021, 85, 106007.	8.2	36
2054	Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy. Carbon, 2021, 179, 493-504.	5.4	54
2055	2D nanomaterials in 3D/4D-printed biomedical devices. Journal of Materials Research, 2021, 36, 4024-4050.	1.2	16

ARTICLE IF CITATIONS Ultra-small Fe3O4 nanoparticles encapsulated in hollow porous carbon nanocapsules for high 2056 5.4 59 performance supercapacitors. Carbon, 2021, 179, 327-336. Modulate the work function of Nb2CTx MXene as the hole transport layer for perovskite solar cells. 1.5 24 Applied Physics Letters, 2021, 119, . 2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects. 2058 5.257 Small, 2021, 17, e2100946. Twoâ€Dimensional MXene Synapse for Brainâ€Inspired Neuromorphic Computing. Small, 2021, 17, e2102595. 5.2 Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. Micromachines, 2060 1.4 2 2021, 12, 867. Photocatalysis over MX ene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. A PL Materials, 2021, 9, . 2.2 Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional 2062 14.4 71 Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156. Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors. Journal of Applied 2063 1.5 Electrochemistry, 2021, 51, 1509-1522. 2D TiN@C sheets derived from MXene as highly efficient polysulfides traps and catalysts for 2064 32 2.6 lithiumâ''sulfur batteries. Electrochimica Acta, 2021, 384, 138187. Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti₃C₂T<i>_x</i>MXene Inks for Multifunctional Sensing and EMI Shielding Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 36221-36231. Fabrication of two-dimensional 3d transition metal oxides through template assisted cations 2066 6.6 6 hydrolysis method. Chemical Engineering Journal, 2021, 415, 129044. MXene as emerging nanofillers for high-performance polymer composites: A review. Composites Part B: Engineering, 2021, 217, 108867. 2067 5.9 161 MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. 2068 2.8 62 Journal of Alloys and Compounds, 2021, 868, 159159. Highly Sensitive Capacitive Flexible Pressure Sensor Based on a High-Permittivity MXene Nanocomposite and 3D Network Electrode for Wearable Electronics. ACS Sensors, 2021, 6, 2630-2641. 2069 4.0 61 Metal Ionâ€Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. Advanced Energy 2070 10.2 61 Materials, 2021, 11, 2101494. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy, 2021, 2071 230 85, 105942. Sandwich-like N-doped carbon nanotube@Nb2C MXene composite for high performance alkali ion 2072 2.318 batteries. Ceramics International, 2021, 47, 20610-20616. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. 3.8 Composites Part A: Applied Science and Manufacturing, 2021, 146, 106417.

#	Article	IF	CITATIONS
2074	Two-dimensional Hf2CO2/GaN van der Waals heterostructure for overall water splitting: a density functional theory study. Journal of Materials Science: Materials in Electronics, 2021, 32, 19368-19379.	1.1	4
2075	Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem, 2021, 28, 100256.	2.8	35
2076	MXenes@Te as a composite material for high-performance aluminum batteries. Science China Materials, 2022, 65, 85-94.	3.5	10
2077	V ₂ CT _{<i>x</i>} MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9961-9969.	3.2	13
2078	MXenes: Emerging 2D materials for hydrogen storage. Nano Energy, 2021, 85, 105989.	8.2	132
2079	MXenes: synthesis, incorporation, and applications in ultrafast lasers. Nanotechnology, 2021, 32, 392003.	1.3	12
2080	Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. Nanomaterials, 2021, 11, 1778.	1.9	31
2081	Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: A review. Solar Energy, 2021, 222, 48-73.	2.9	53
2082	Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breathâ€Based Biomarker Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100970.	3.9	41
2083	MXene Nanosheet-Based Microneedles for Monitoring Muscle Contraction and Electrostimulation Treatment. ACS Applied Nano Materials, 2021, 4, 7917-7924.	2.4	27
2084	Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Science China Materials, 2022, 65, 51-58.	3.5	18
2085	Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 63, 393-429.	7.1	52
2086	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	7.8	57
2087	Highâ€Capacity and Kinetically Accelerated Lithium Storage in MoO ₃ Enabled by Oxygen Vacancies and Heterostructure. Advanced Energy Materials, 2021, 11, 2101712.	10.2	184
2088	Amine-Assisted Delaminated 2D Ti ₃ C ₂ T <i>_x</i> MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 35878-35888.	4.0	26
2089	Solvothermal synthesis of Ti3C2T /WO3â^ flexible and self-standing films for aqueous proton supercapacitor electrodes. Materials Letters, 2021, 297, 129901.	1.3	3
2090	Recent Advances in the Synthesis and Energy Applications of 2D MXenes. ChemElectroChem, 2021, 8, 3804-3826.	1.7	18
2091	Theoretical study on Fe2C MXene as electrode material for secondary battery. Chemical Physics, 2021, 548, 111223.	0.9	6

#	Article	IF	CITATIONS
2092	Highly selective MXene/V2O5/CuWO4-based ultra-sensitive room temperature ammonia sensor. Journal of Hazardous Materials, 2021, 416, 126196.	6.5	36
2093	Nanosheets assembled layered MXene/MoSe2 nanohybrid positive electrode materials for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2021, 40, 102721.	3.9	26
2094	MXene Reinforced Thermosetting Composite for Lightning Strike Protection of Carbon Fiber Reinforced Polymer. Advanced Materials Interfaces, 2021, 8, 2100803.	1.9	7
2095	Highâ€Entropy Atomic Layers of Transitionâ€Metal Carbides (MXenes). Advanced Materials, 2021, 33, e2101473.	11.1	122
2096	MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance. Electrochimica Acta, 2021, 386, 138420.	2.6	34
2097	Application of Titanium-Carbide MXene-Based Transparent Conducting Electrodes in Flexible Smart Windows. ACS Applied Materials & Interfaces, 2021, 13, 40976-40985.	4.0	37
2098	Exploration of 2D Ti3C2 MXene for all solution processed piezoelectric nanogenerator applications. Scientific Reports, 2021, 11, 17432.	1.6	14
2099	MXene and MXene-based materials for lithium-sulfur batteries. Progress in Natural Science: Materials International, 2021, 31, 501-513.	1.8	32
2100	2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials. Advanced Functional Materials, 2021, 31, 2105043.	7.8	50
2101	Fabrication of 3D interconnected porous MXene-based PtNPs as highly efficient electrocatalysts for methanol oxidation. Journal of Electroanalytical Chemistry, 2021, 894, 115338.	1.9	20
2102	A Universal Atomic Substitution Conversion Strategy Towards Synthesis of Large-Size Ultrathin Nonlayered Two-Dimensional Materials. Nano-Micro Letters, 2021, 13, 165.	14.4	12
2103	Design and characterization of 2D MXene-based electrode with high-rate capability. MRS Bulletin, 2021, 46, 755-766.	1.7	9
2104	Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chemistry of Materials, 2021, 33, 6346-6355.	3.2	102
2105	Design rules of pseudocapacitive electrode materials: ion adsorption, diffusion, and electron transmission over prototype TiO2. Science China Materials, 2022, 65, 391-399.	3.5	6
2106	Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Materials, 2021, 39, 305-346.	9.5	27
2107	Probing the <i>In Situ</i> Pseudocapacitive Charge Storage in Ti ₃ C ₂ MXene Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces, 2021, 13, 43597-43605.	4.0	8
2108	Freestanding MXene–MnO ₂ Films for Li–CO ₂ Cathodes with Low Overpotential and Long-Term Cycling. ACS Applied Energy Materials, 2021, 4, 9961-9968.	2.5	13
2109	Recent advances in the rational design of <scp>2D MXenes</scp> in energy conversion and storage systems. International Journal of Energy Research, 2021, 45, 20448-20462.	2.2	5

#	Article	IF	CITATIONS
2110	Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges. Chemical Engineering Journal, 2021, 418, 129296.	6.6	70
2111	The Role of Alkali Cation Intercalates on the Electrochemical Characteristics of Nb ₂ CT _{<i>X</i>} MXene for Energy Storage. Chemistry - A European Journal, 2021, 27, 13235-13241.	1.7	9
2112	High-Performance Flexible Asymmetric Supercapacitor Paired with Indanthrone@Graphene Heterojunctions and MXene Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 41537-41544.	4.0	36
2113	Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. Journal of Chemical Health and Safety, 2021, 28, 326-338.	1.1	102
2114	Ti3C2T MXene cathode catalyst with efficient decomposition Li2O2 and high-rate cycle stability for Li-O2 batteries. Electrochimica Acta, 2021, 388, 138622.	2.6	4
2115	Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance. Nano Research, 2023, 16, 4895-4900.	5.8	3
2116	MXene Enables Stable Solidâ€Electrolyte Interphase for Si@MXene Composite with Enhanced Cycling Stability. ChemElectroChem, 2021, 8, 3089-3094.	1.7	8
2117	Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. Nano-Micro Letters, 2021, 13, 183.	14.4	82
2118	Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials, 2021, 33, e2103393.	11.1	410
2119	High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Applied Surface Science, 2021, 556, 149710.	3.1	61
2120	Selective Enhancement of SERS Spectral Bands of Salicylic Acid Adsorbate on 2D Ti3C2Tx-Based MXene Film. Chemosensors, 2021, 9, 223.	1.8	21
2121	Preparation and Application of 2D MXene-Based Gas Sensors: A Review. Chemosensors, 2021, 9, 225.	1.8	66
2122	Unveiling the Interfacial and Structural Heterogeneity of Ti ₃ C ₂ T _{<i>x</i>} MXene Etched with CoF ₂ /HCl by Integrated <i>in Situ</i> Thermal Analysis. ACS Applied Materials & Interfaces, 2021, 13, 52125-52133.	4.0	10
2123	A fast and mild method to prepare d-Ti3C2Tx/ZnO composites at room temperature with excellent catalytic performance. Applied Surface Science, 2021, 558, 149863.	3.1	33
2124	Interfaceâ€Induced Selfâ€Assembly Strategy Toward 2D Ordered Mesoporous Carbon/MXene Heterostructures for Highâ€Performance Supercapacitors. ChemSusChem, 2021, 14, 4422-4430.	3.6	14
2125	Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chemical Engineering Journal, 2021, 418, 129275.	6.6	61
2126	Bionics inspired modified two-dimensional MXene composite membrane for high-throughput dye separation. Journal of Environmental Chemical Engineering, 2021, 9, 105711.	3.3	38
2127	Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chemistry - an Asian Journal, 2021, 16, 2932-2938.	1.7	6

#	Article	IF	CITATIONS
2128	Tuning of electronic structure, magnetic phase, and transition temperature in two-dimensional Cr-based Janus MXenes. Physical Review Materials, 2021, 5, .	0.9	23
2129	Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor. Chemical Engineering Journal, 2021, 418, 129396.	6.6	48
2130	Outâ€Ofâ€Plane Ordered Laminate Borides and Their 2D Tiâ€Based Derivative from Chemical Exfoliation. Advanced Materials, 2021, 33, e2008361.	11.1	14
2131	Advances in the Synthesis of 2D MXenes. Advanced Materials, 2021, 33, e2103148.	11.1	488
2132	MXenes-based nanocomposites for supercapacitor applications. Current Opinion in Chemical Engineering, 2021, 33, 100710.	3.8	56
2133	Environmental applications ofÂtwo-dimensional transition metal carbides and nitrides for water purification: a review. Environmental Chemistry Letters, 2022, 20, 633-660.	8.3	19
2134	Interfacial assembly of two-dimensional MXenes. Journal of Energy Chemistry, 2021, 60, 417-434.	7.1	104
2135	Sunshine foaming of compact Ti3C2T MXene film for highly efficient electromagnetic interference shielding and energy storage. Carbon, 2021, 182, 124-133.	5.4	27
2136	Magnetic borate-modified Mxene: A highly affinity material for the extraction of catecholamines. Analytica Chimica Acta, 2021, 1176, 338769.	2.6	24
2137	Work Function Adjustment of Nb ₂ CT _{<i>x</i>} Nanoflakes as Hole and Electron Transport Layers in Organic Solar Cells by Controlling Surface Functional Groups. ACS Energy Letters, 2021, 6, 3464-3472.	8.8	54
2138	Low-temperature annealing of 2D Ti3C2Tx MXene films using electron wind force in ambient conditions. Journal of Materials Research, 2021, 36, 3398-3406.	1.2	4
2139	Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Materials, 2021, 43, 509-530.	9.5	60
2140	Machine learning-based prediction of supercapacitor performance for a novel electrode material: Cerium oxynitride. Energy Storage Materials, 2021, 40, 426-438.	9.5	35
2141	A facile method for preparation of porous nitrogen-doped Ti ₃ C ₂ Tx MXene for highly responsive acetone detection at high temperature. Functional Materials Letters, 2021, 14, .	0.7	11
2142	Supercapacitor performances of titanium–polymeric nanocomposites: a review study. Iranian Polymer Journal (English Edition), 2022, 31, 31-57.	1.3	6
2143	An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti3C2Tx MXene with Controllable Sizes and Improved Yield. Nano-Micro Letters, 2021, 13, 188.	14.4	36
2144	In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance. Journal of Advanced Ceramics, 2021, 10, 1061-1071.	8.9	78
2145	Crumpled MXene Electrodes for Ultrastretchable and High-Area-Capacitance Supercapacitors. Nano Letters, 2021, 21, 7561-7568.	4.5	50

#	Article	IF	CITATIONS
2146	A high-voltage and high-capacity Ti3C2T /BiCuS2.5 heterostructure to boost up the energy density and recyclability of zinc-ion-hybrid capacitors. Nano Energy, 2021, 87, 106136.	8.2	28
2147	Interfaceâ€Induced Selfâ€Assembly Strategy Toward 2D Ordered Mesoporous Carbon/MXene Heterostructures for Highâ€Performance Supercapacitors. ChemSusChem, 2021, 14, 4353.	3.6	1
2148	Spontaneous three-dimensional self-assembly of MXene and graphene for impressive energy and rate performance pseudocapacitors. Electrochimica Acta, 2021, 391, 138959.	2.6	37
2149	Energy Storing Plant Stem with Cytocompatibility for Supercapacitor Electrode. Advanced Functional Materials, 2021, 31, 2106787.	7.8	6
2150	MnO2 nanoshells/Ti3C2Tx MXene hybrid film as supercapacitor electrode. Applied Surface Science, 2021, 560, 150040.	3.1	30
2151	SnS particles anchored on Ti3C2 nanosheets as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 893, 162089.	2.8	14
2152	Construction of Ti ₃ C ₂ T _x MXene Supported Low-Platinum Electrocatalyst for Hydrogen Evolution Reaction by Direct Electrochemical Strategy. Journal of the Electrochemical Society, 2021, 168, 096504.	1.3	12
2153	Chemical bonding of termination species in 2D carbides investigated through valence band UPS/XPS of Ti ₃ C ₂ T _x MXene. 2D Materials, 2021, 8, 045026.	2.0	19
2154	Wearable, Washable, and Highly Sensitive Piezoresistive Pressure Sensor Based on a 3D Sponge Network for Real-Time Monitoring Human Body Activities. ACS Applied Materials & Interfaces, 2021, 13, 46848-46857.	4.0	61
2155	Electrochemical Performance and Charge Storage Mechanism of Few-Layer MXene Titanium Carbide for Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 090549.	1.3	11
2156	MXene opper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 25318-25322.	7.2	295
2157	Elucidating the electrochemical mechanism for enhanced corrosion of Ti ₃ C ₂ T _x -coated mild steel. Surface Topography: Metrology and Properties, 2021, 9, 035033.	0.9	6
2158	Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	3.9	133
2159	Oxygen and Titanium Vacancies in a BiOBr/MXene-Ti ₃ C ₂ Composite for Boosting Photocatalytic N ₂ Fixation. ACS Applied Materials & Interfaces, 2021, 13, 42624-42634.	4.0	47
2160	Ultrathin 2D Titanium Carbide MXene (Ti ₃ C ₂ T <i>_x</i>) Nanoflakes Activate WNT/HIFâ€l <i>α</i> â€Mediated Metabolism Reprogramming for Periodontal Regeneration. Advanced Healthcare Materials, 2021, 10, e2101215.	3.9	30
2161	Mechanism of Nitrogen-Doped Ti ₃ C ₂ Quantum Dots for Free-Radical Scavenging and the Ultrasensitive H ₂ O ₂ Detection Performance. ACS Applied Materials & Interfaces, 2021, 13, 42442-42450.	4.0	30
2162	Engineering MXenes (Ti3C2Tx) surface with TiO2 for enhancing anti-corrosion performance of coatings. Polymer, 2021, 230, 124086.	1.8	24
2163	MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy, 2021, 87, 106151.	8.2	82

#	Article	IF	CITATIONS
2164	Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem, 2021, 29, 100281.	2.8	20
2165	Dual Active and Kinetically Inter-Promoting Li3VO4/Graphene Anode Enabling Printable High Energy Density Lithium Ion Micro Capacitors. Energy Storage Materials, 2021, 43, 482-491.	9.5	29
2166	V2CTx MXene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Metals, 2022, 41, 775-797.	3.6	64
2167	High-performance flexible and free-standing N-doped Ti3C2T / MoO films as electrodes for supercapacitors. Electrochimica Acta, 2021, 389, 138774.	2.6	13
2168	MXeneâ€Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angewandte Chemie, 2021, 133, 25522-25526.	1.6	99
2169	Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule, 2021, 5, 2466-2478.	11.7	30
2170	Safer lithium-ion battery anode based on Ti3C2Tz MXene with thermal safety mechanistic elucidation. Chemical Engineering Journal, 2021, 419, 129387.	6.6	21
2171	Tunable nitrogen-doped delaminated 2D MXene obtained by NH3/Ar plasma treatment as highly efficient hydrogen and oxygen evolution reaction electrocatalyst. Chemical Engineering Journal, 2021, 420, 129832.	6.6	30
2172	Recent Developments in All-Solid-State Micro-Supercapacitors Based on Two-Dimensional Materials. , 0, , .		1
2173	Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy. Advanced Functional Materials, 2021, 31, 2106786.	7.8	42
2174	Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. Chemosphere, 2022, 287, 132319.	4.2	84
2175	Design principles of high-voltage aqueous supercapacitors. Materials Today Energy, 2021, 21, 100739.	2.5	17
2176	Highly sensitive and selective NO2 sensor of alkalized V2CT MXene driven by interlayer swelling. Sensors and Actuators B: Chemical, 2021, 344, 130150.	4.0	104
2177	Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots. Journal of Colloid and Interface Science, 2021, 600, 161-173.	5.0	51
2178	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 16207-16217.	7.3	46
2180	High-performance all-solid-state flexible asymmetric supercapacitors composed of PPy@Ti3C2Tx/CC and Ti3C2Tx/CC electrodes. Surfaces and Interfaces, 2021, 26, 101393.	1.5	8
2181	Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte. Energy Storage Materials, 2021, 41, 203-208.	9.5	30
2182	New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials. Journal of Energy Storage, 2021, 42, 102993.	3.9	10

#	Article	IF	CITATIONS
2183	Nanosphere-like NiSe2/SnSe2 composite electrode materials with excellent performance for asymmetric supercapacitor. Journal of Energy Storage, 2021, 42, 103032.	3.9	19
2184	Prediction of high spin polarization and perpendicular magnetic anisotropy in two dimensional ferromagnetic Mn2CXX' (X, X′=F, Cl, Br, I) Janus monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114932.	1.3	7
2185	Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (RÂ= Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon, 2021, 183, 76-83.	5.4	20
2186	Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 109-118.	5.0	72
2187	Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy, 2021, 88, 106257.	8.2	50
2188	2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Materials, 2021, 41, 554-562.	9.5	57
2189	Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chemical Engineering Journal, 2021, 421, 129944.	6.6	50
2190	Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes. Electrochemical Energy Reviews, 2022, 5, 112-144.	13.1	99
2191	MnCo2S4 – MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. Journal of Colloid and Interface Science, 2021, 600, 264-277.	5.0	57
2192	Spark plasma sintering and improved fracture toughness of silicoboron carbonitride ceramics with the integration of 2D MXene. Ceramics International, 2021, 47, 27730-27735.	2.3	4
2193	Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today, 2021, 40, 101273.	6.2	91
2194	BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Composites Part B: Engineering, 2021, 223, 109130.	5.9	70
2195	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38
2196	Dualâ€ion Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie - International Edition, 2021, 60, 27119-27125.	7.2	17
2197	Dodecylamine/Ti3C2-pectin form-stable phase change composites with enhanced light-to-thermal conversion and mechanical properties. Renewable Energy, 2021, 176, 663-674.	4.3	30
2198	Synthesis of Ti3C2Fx MXene with controllable fluorination by electrochemical etching for lithium-ion batteries applications. Ceramics International, 2021, 47, 28642-28649.	2.3	38
2199	Flexible pressure sensor based on cigarette filter and highly conductive MXene sheets. Composites Communications, 2021, 27, 100889.	3.3	14
2200	Mixed MXenes: Mo1.33CTz and Ti3C2Tz freestanding composite films for energy storage. Nano Energy, 2021, 88, 106271.	8.2	21

#	Article	IF	CITATIONS
2201	Hierarchical MoS2/m-C@a-C@Ti3C2 nanohybrids as superior electrodes for enhanced sodium storage and hydrogen evolution reaction. Chemical Engineering Journal, 2021, 421, 129680.	6.6	22
2202	Ti3C2Tx MXene compounds for electrochemical energy storage. Current Opinion in Electrochemistry, 2021, 29, 100764.	2.5	17
2203	Scalable fabrication of vanadium carbide/graphene electrodes for high-energy and flexible microsupercapacitors. Carbon, 2021, 183, 840-849.	5.4	16
2204	Adjustable electrochemical properties of solid-solution MXenes. Nano Energy, 2021, 88, 106308.	8.2	55
2205	Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor. Sensors and Actuators A: Physical, 2021, 332, 113148.	2.0	17
2206	Dualâ€ion Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie, 2021, 133, 27325-27331.	1.6	2
2207	Insights into host materials for aqueous proton batteries: structure, mechanism and prospect. Nano Energy, 2021, 89, 106400.	8.2	55
2208	Enhanced chemical trapping and catalytic conversion of polysulfides by diatomite/MXene hybrid interlayer for stable Li-S batteries. Journal of Energy Chemistry, 2021, 62, 590-598.	7.1	46
2209	Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47, 29930-29940.	2.3	16
2210	Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in-situ formation of Schottky barrier. Applied Surface Science, 2021, 567, 150747.	3.1	53
2211	Rational fabrication of flower-like VS2-decorated Ti3C2 MXene heterojunction nanocomposites for supercapacitance performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127381.	2.3	17
2212	Ti3C2Tx-AgNPs@beta-cyclodextrin SERS substrate for rapid and selective determination of erythrosin B in dyed food. Sensors and Actuators B: Chemical, 2021, 346, 130595.	4.0	20
2213	Enhanced visible-light photocatalytic degradation activity of Ti3C2/PDIsm via π–π interaction and interfacial charge separation: Experimental and theoretical investigations. Applied Catalysis B: Environmental, 2021, 297, 120439.	10.8	61
2214	Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. Journal of Molecular Liquids, 2021, 342, 117524.	2.3	35
2215	Studies on improved stability and electrochemical activity of titanium carbide MXene-polymer nanocomposites. Journal of Electroanalytical Chemistry, 2021, 900, 115708.	1.9	11
2216	Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274, 118652.	5.1	23
2217	Tunable electronic structure and magnetic anisotropy of two dimensional Mn2CFCl/MoSSe van der Waals heterostructures by electric field and biaxial strain. Applied Surface Science, 2021, 566, 150683.	3.1	14
2218	Rational design of hierarchically sulfide and MXene-reinforced porous carbon nanofibers as advanced electrode for high energy density flexible supercapacitors. Composites Part B: Engineering, 2021, 224, 109246.	5.9	43

#	Article	IF	CITATIONS
2219	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
2220	Ultralow Ti3C2TX doping polysulfate membrane for high ultrafiltration performance. Journal of Membrane Science, 2021, 637, 119603.	4.1	15
2221	Electron transport properties of TiC molecular devices with different interfacial contact. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 415, 127650.	0.9	2
2222	2D titanoniobate-titaniumcarbide nanohybrid anodes for ultrafast lithium-ion batteries. Journal of Power Sources, 2021, 512, 230523.	4.0	5
2223	Insights into different dimensional MXenes for photocatalysis. Chemical Engineering Journal, 2021, 424, 130340.	6.6	60
2224	Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Materials Today Physics, 2021, 21, 100527.	2.9	50
2225	Ultra-thin carbon nanosheets coated with SnO2–NbC nanoparticles as high-performance anode materials for lithium-ion batteries. Ceramics International, 2021, 47, 31062-31072.	2.3	9
2226	3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn–air batteries. Carbon, 2021, 185, 17-26.	5.4	33
2227	Magnesium hydride nanoparticles anchored on MXene sheets as high capacity anode for lithium-ion batteries. Journal of Energy Chemistry, 2021, 62, 431-439.	7.1	26
2228	The enhanced near-infrared photocatalytic and photothermal effects of MXene-based heterojunction for rapid bacteria-killing. Applied Catalysis B: Environmental, 2021, 297, 120500.	10.8	68
2229	Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106594.	3.8	32
2230	Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. Journal of Alloys and Compounds, 2021, 887, 161318.	2.8	8
2231	Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. Journal of Alloys and Compounds, 2021, 887, 161304.	2.8	26
2232	In-situ construction of 3D marigold-like CoAl-LDH/Ti3C2 heterosystem collaborating with 2D/2D interface for efficient photodegradation of multiple antibiotics. Applied Surface Science, 2021, 569, 151084.	3.1	22
2233	Construction Znln2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study. Applied Surface Science, 2021, 570, 151183.	3.1	29
2234	Improved performance of three-component structure mixed membrane for pervaporation modified by lignosulfonates@2D-MXene. Separation and Purification Technology, 2021, 276, 119294.	3.9	14
2235	SnO2/MXene nanoparticles as a superior high-rate and cycling-stable anode for sodium ion batteries. Materials Letters, 2021, 304, 130704.	1.3	9
2236	MXene-motivated accelerated charge transfer over TMCs quantum dots for solar-powered photoreduction catalysis. Journal of Catalysis, 2021, 404, 56-66.	3.1	18

#	Article	IF	CITATIONS
2237	A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. Journal of Colloid and Interface Science, 2021, 604, 239-247.	5.0	30
2238	Plasmonic gold nanorods decorated Ti3C2 MXene quantum dots-interspersed nanosheet for full-spectrum photoelectrochemical water splitting. Chemical Engineering Journal, 2021, 426, 130818.	6.6	23
2239	Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 2021, 90, 106528.	8.2	43
2240	Post-processing strategies for improving the electrical and mechanical properties of MXenes. Chemical Engineering Journal, 2021, 425, 131472.	6.6	21
2241	MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination. Journal of Membrane Science, 2021, 640, 119808.	4.1	48
2242	High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries. Chemical Engineering Journal, 2021, 426, 130747.	6.6	18
2243	Investigating the potentials of TiVC MXenes as anode materials for Li-ion batteries by DFT calculations. Applied Surface Science, 2021, 569, 151002.	3.1	13
2244	Magnetic phase transition and magnetic properties in rare-earth-based RAI3C3 layered carbides. Journal of Magnetism and Magnetic Materials, 2021, 540, 168445.	1.0	0
2245	Highly surface-active Si-doped TiO2/Ti3C2Tx heterostructure for gas sensing and photodegradation of toxic matters. Chemical Engineering Journal, 2021, 425, 131437.	6.6	33
2246	Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2T composite anodes. Journal of Energy Chemistry, 2022, 65, 654-665.	7.1	34
2247	Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chemical Engineering Journal, 2022, 427, 130960.	6.6	15
2248	Nanoscopic humidity-dependent adhesion behaviors of 2D materials. Applied Surface Science, 2022, 572, 151394.	3.1	15
2249	Recent advances in MXene-based nanomaterials for desalination at water interfaces. Environmental Research, 2022, 203, 111845.	3.7	28
2250	One-step synthesis Nb2CT MXene with excellent lithium-ion storage capacity. Journal of Alloys and Compounds, 2021, 889, 161542.	2.8	14
2251	Development of a MXene-based membrane with excellent anti-fouling for air humidification-dehumidification type desalination. Journal of Membrane Science, 2022, 641, 119907.	4.1	22
2252	Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode. Chemical Engineering Journal, 2022, 429, 132392.	6.6	28
2253	Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries. Chemical Engineering Journal, 2022, 428, 131031.	6.6	19
2254	Processing Techniques and Application Areas of MXene-Reinforced Nanocomposites. , 2021, , .		1

IF

ARTICLE

CITATIONS

2255	Introduction to supercapattery. , 2021, , 45-61.		8
2256	Comparative evaluation of MAX-Ti ₃ AlC ₂ and MXene-Ti ₃ C ₂ as affinity chromatographic materials for highly selective enrichment of phosphopeptides. Nanoscale, 2021, 13, 2923-2930.	2.8	21
2257	Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. Analytical Methods, 2021, 13, 2512-2518.	1.3	13
2258	MXene-supported stable adsorbents for superior CO ₂ capture. Journal of Materials Chemistry A, 2021, 9, 12763-12771.	5.2	19
2259	High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications. Journal of Materials Chemistry C, 2021, 9, 10193-10215.	2.7	31
2260	MXene: A Non-oxide Next-Generation Energy Storage Materials for Batteries and Supercapacitors. Materials Horizons, 2021, , 73-98.	0.3	2
2261	Nano Coatings and Thin Films of 2D Nanomaterials (MXenes) as Transparent Conductivity Electrodes and Supercapacitors. Materials Horizons, 2021, , 99-119.	0.3	0
2262	Understanding the Oxidation Degradation Mechanism to Enable Preparation of Ambient Ultra Stable Ti ₃ C ₂ T _x -MXene. SSRN Electronic Journal, 0, , .	0.4	1
2263	Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Science China Materials, 2021, 64, 1437-1448.	3.5	44
2264	Facile fabrication of CuCo ₂ S ₄ nanoparticles/MXene composite as anode for high-performance asymmetric supercapacitor. Materials Chemistry Frontiers, 2021, 5, 7606-7616.	3.2	12
2265	Study on contact angles and surface energy of MXene films. RSC Advances, 2021, 11, 5512-5520.	1.7	31
2266	A Q-switched fiber laser using a Ti ₂ AlN-based saturable absorber. Laser Physics, 2021, 31, 025103.	0.6	9
2267	A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. Journal of Materials Chemistry A, 2021, 9, 22082-22094.	5.2	83
2268	Enhanced Redox Kinetics and Duration of Aqueous I ₂ /I ^{â^`} Conversion Chemistry by MXene Confinement. Advanced Materials, 2021, 33, e2006897.	11.1	121
2269	Synthesis of new M-layer solid-solution 312 MAX phases (Ta _{1â^'<i>x</i>} Ti _{<i>x</i>}) ₃ AlC ₂ (<i>x</i> AlC ₂	Qq Ω7 0 0 rg	B₽₽Øverlock
2270	Current trends in MXene research: properties and applications. Materials Chemistry Frontiers, 2021, 5, 7134-7169.	3.2	30
2271	Improved charge storage performance of a layered Mo _{1.33} C MXene/MoS ₂ /graphene nanocomposite. Nanoscale Advances, 2021, 3, 6689-6695.	2.2	2
2272	Pre-Sodiated Ti ₃ C ₂ T _{<i>x</i>} MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors. ACS Nano, 2021, 15, 2994-3003.	7.3	54

#	Article	IF	CITATIONS
2273	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049
2274	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
2275	Angled-stencil lithography based metal mesh/Ti ₃ C ₂ T _x MXene hybrid transparent electrodes for low-power and high-performance wearable thermotherapy. Journal of Materials Chemistry C, 0, , .	2.7	7
2276	<i>In situ</i> crystallization and growth of TiO ₂ nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catalysis Science and Technology, 2021, 11, 3834-3844.	2.1	44
2277	Nanostructured photocatalysts: Introduction to photocatalytic mechanism and nanomaterials for energy and environmental applications. , 2021, , 3-33.		2
2278	3D hollow MXene (Ti ₃ C ₂)/reduced graphene oxide hybrid nanospheres for high-performance Li-ion storage. Journal of Materials Chemistry A, 2021, 9, 23841-23849.	5.2	24
2279	Stretchable Ti ₃ C ₂ T _x MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. Journal of Materials Chemistry A, 2021, 9, 4664-4672.	5.2	15
2280	Nb ₂ CT <i>_x</i> MXene as High-Performance Energy Storage Material with Na, K, and Liquid K–Na Alloy Anodes. Langmuir, 2021, 37, 1102-1109.	1.6	22
2281	Accurately Engineering 2 <i>D</i> /2D/0D Heterojunction In Hierarchical Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding. ACS Applied Materials & Interfaces, 2021, 13, 5866-5876.	4.0	56
2282	Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors. Nanoscale, 2021, 13, 3079-3091.	2.8	24
2283	Ti ₃ C ₂ T _{<i>x</i>} MXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons, 2021, 8, 2886-2912.	6.4	41
2284	Recent Advance in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications. Nanomaterials, 2021, 11, 246.	1.9	34
2285	MXene binder stabilizes pseudocapacitance of conducting polymers. Journal of Materials Chemistry A, 2021, 9, 20356-20361.	5.2	15
2286	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
2287	Pillared Mo ₂ TiC ₂ MXene for high-power and long-life lithium and sodium-ion batteries. Nanoscale Advances, 2021, 3, 3145-3158.	2.2	46
2288	MXene derivatives: synthesis and applications in energy convention and storage. RSC Advances, 2021, 11, 16065-16082.	1.7	25
2289	Transforming Ti ₃ C ₂ T _x MXenes into nanoscale ionic materials <i>via</i> an electronic interaction strategy. Journal of Materials Chemistry A, 2021, 9, 15441-15451.	5.2	21
2290	A Facile, Highâ€Yield, and Freezeâ€andâ€Thawâ€Assisted Approach to Fabricate MXene with Plentiful Wrinkles and Its Application in Onâ€Chip Microâ€Supercapacitors. Advanced Functional Materials, 2020, 30, 1910048.	7.8	158

#	Article	IF	CITATIONS
2291	Doping and Design of Flexible Transparent Electrodes for Highâ€Performance Flexible Organic Solar Cells: Recent Advances and Perspectives. Advanced Functional Materials, 2021, 31, 2009399.	7.8	56
2292	Emerging 2D Materials Produced via Electrochemistry. Advanced Materials, 2020, 32, e1907857.	11.1	127
2293	Flexible Free‣tanding MoO ₃ /Ti ₃ C ₂ T <i>_z</i> MXene Composite Films with High Gravimetric and Volumetric Capacities. Advanced Science, 2021, 8, 2003656.	5.6	59
2294	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1702364.	10.2	33
2295	MXenes for Supercapacitor Application. , 2019, , 349-365.		3
2296	MXenes for Environmental and Water Treatment Applications. , 2019, , 417-444.		11
2297	MXenes for Transparent Conductive Electrodes and Transparent Energy Storage Devices. , 2019, , 481-501.		1
2298	Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 29-70.	0.4	16
2299	Controlled nanosheet morphology of titanium carbide Ti3C2Tx MXene via drying methods and its electrochemical analysis. Journal of Solid State Electrochemistry, 2020, 24, 675-686.	1.2	29
2300	Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15, 882-891.	2.3	22
2301	2D MXene-Based Materials for Electrocatalysis. Transactions of Tianjin University, 2020, 26, 149-171.	3.3	65
2302	Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Science China Materials, 2021, 64, 1127-1138.	3.5	44
2303	2D Ti3C2TxMXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells. Acta Biomaterialia, 2022, 139, 105-117.	4.1	86
2304	Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosensors and Bioelectronics, 2020, 169, 112637.	5.3	85
2305	Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chemical Engineering Journal, 2020, 397, 125439.	6.6	61
2306	Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105956.	3.8	175
2307	Understanding the rate performance of microporous carbons in aqueous electrolytes. Electrochimica Acta, 2020, 350, 136408.	2.6	3
2308	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	9.5	95

#	Article	IF	CITATIONS
2310	Theoretical and Experimental Exploration of a Novel In-Plane Chemically Ordered (Cr _{2/3} M _{1/3}) ₂ AlC <i>i</i> MAX Phase with M = Sc and Y. Crystal Growth and Design, 2017, 17, 5704-5711.	1.4	79
2311	Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo ₂ C MXene. Journal of Physical Chemistry C, 2016, 120, 15082-15088.	1.5	139
2312	Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors. Energy and Environmental Science, 2020, 13, 949-957.	15.6	78
2313	Significant strengthening effect in few-layered MXene-reinforced Al matrix composites. Materials Research Letters, 2021, 9, 148-154.	4.1	22
2314	Tensile behaviors of Ti ₃ C ₂ T _x (MXene) films. Nanotechnology, 2020, 31, 395704.	1.3	35
2315	MXene-based ultra-thin film for terahertz radiation shielding. Nanotechnology, 2020, 31, 505710.	1.3	17
2316	An outlook into the flat land of 2D materials beyond graphene: synthesis, properties and device applications. 2D Materials, 2021, 8, 013001.	2.0	32
2317	Enhanced field emission properties From plasma treated Ti ₃ C ₂ T _x (MXene) emitters. Materials Research Express, 2020, 7, 115011.	0.8	5
2318	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	2.3	14
2319	xmlns:mml="http://www.w3.org/1998/Math/MathML [*] > < mml:mrow> < mml:mi mathvariant="normal">M < mml:mi> < mml:msub> < mml:mi mathvariant="normal">O < / mml:mi> < mml:mn>2 < / mml:mn> < / mml:msub> < mml:mi mathvariant="normal">C < / mml:mi> < / mml:mrouv < / mml:math> ultrathia superconducting films	0.9	53
2320	First-order Raman scattering of rare-earth containing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>i</mml:mi>-MAX single crystals <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo> (Physical Review Materials, 2019, 3000 Math/MathML"></mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math </mml:math 	0.9 :mo> <mm< td=""><td>10 l:msub><mr< td=""></mr<></td></mm<>	10 l:msub> <mr< td=""></mr<>
2321	mathyariant="normal">C <mml:mn>2</mml:mn> MAX phase and <mml:math _xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub>Ti<mml:mr< td=""><td>1.3 1.3 23<td>16 mn></td></td></mml:mr<></mml:msub></mml:mrow></mml:math 	1.3 1.3 23 <td>16 mn></td>	16 mn>
2322	mathvariant="normal">C <mmbm>>C</mmbm> >C/mmbm>>C/mmb. Physical Review Research, 2020, 2, . Synthesis of Porous N-Rich Carbon/MXene from MXene@Polypyrrole Hybrid Nanosheets as Oxygen Reduction Reaction Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 116503.	1.3	24
2323	2D/2D Heterojunction of R-scheme Ti3C2 MXene/MoS2 Nanosheets for Enhanced Photocatalytic Performance. Nanoscale Research Letters, 2020, 15, 78.	3.1	55
2324	Ti ₂ AlC-based saturable absorber for passive Q-switching of a fiber laser. Optical Materials Express, 2019, 9, 2057.	1.6	50
2325	Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics, 2020, 9, 2125-2145.	2.9	61
2326	MXenes: focus on optical and electronic properties and corresponding applications. Nanophotonics, 2020, 9, 1601-1620.	2.9	82
2327	Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics, 2020, 9, 2233-2249.	2.9	85

	Сітатіс	on Report	
#	Article	IF	CITATIONS
2328	MXenes for future nanophotonic device applications. Nanophotonics, 2020, 9, 1831-1853.	2.9	31
2329	Protein-based functional nanocomposites. MRS Bulletin, 2020, 45, 1017-1026.	1.7	11
2330	An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200796.	0.3	5
2331	Studying of 2D Titanium Carbide Structure by Raman Spectroscopy after Heat Treatment in Argon and Hydrogen Atmospheres. Eurasian Chemico-Technological Journal, 2017, 19, 181.	0.3	16
2332	A Review on Synthesis of 2-Dimensional Mn+1X (MXene) materials. E3S Web of Conferences, 2021, 309, 01062.	0.2	0
2333	Investigation on the nonlinear optical properties of V ₂ C MXene at 1.9 μm. Journal of Materials Chemistry C, 2021, 9, 15346-15353.	2.7	27
2334	Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti ₃ C ₂ T _{<i>x</i>} MXene based electrochemical sensor. Analyst, The, 2021, 146, 7593-7600.	1.7	13
2335	Surface functionalization of MXenes. Materials Advances, 2021, 2, 7277-7307.	2.6	73
2336	Freestanding MXene-hydrogels prepared <i>via</i> critical density-controlled self-assembly: high-performance energy storage with ultrahigh capacitive <i>vs.</i> diffusion-limited contribution. Journal of Materials Chemistry A, 2021, 9, 25013-25023.	5.2	7
2337	An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination. Journal of Materials Chemistry A, 2021, 9, 25964-25973.	5.2	43
2338	Towards Watt-scale hydroelectric energy harvesting by Ti ₃ C ₂ T _{<i>x</i>} -based transpiration-driven electrokinetic power generators. Energy and Environmental Science, 2022, 15, 123-135.	15.6	70
2339	MXene titanium carbide synthesized by hexagonal titanium aluminum carbide with high specific capacitance and low impedance. Dalton Transactions, 2022, 51, 3263-3274.	1.6	12
2340	A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy and Fuels, 2021, 5, 5672-5693.	2.5	55
2341	An artificial synaptic thin-film transistor based on 2D MXene–TiO2. , 2021, , .		0
2342	Spinâ€Ðependent Electronic Structure and Magnetic Properties of 2D JANUS Mn ₂ CFCl/CuBiP ₂ Se ₆ Van Der Waals Multiferroic Heterostructures. Advanced Theory and Simulations, 2021, 4, 2100302.	1.3	5
2343	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
2344	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
2345	Delamination and Engineered Interlayers of Ti ₃ C ₂ MXenes using Phosphorous Vapor toward Flame-Retardant Epoxy Nanocomposites. ACS Applied Materials & amp; Interfaces, 2021, 13, 48196-48207.	4.0	33

CITAT	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
2346	A highly efficient A-site deficient perovskite interlaced within two dimensional MXene nanosheets as an active electrocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 37476-37489.	3.8	20
2347	MXene for aqueous zinc-based energy storage devices. Functional Materials Letters, 2021, 14, .	0.7	15
2348	Electrochemical storage mechanism of interstratification-assembled Ti3C2Tx MXene/NiCo-LDHs electrode in alkaline, acid and neutral electrolytes. Ceramics International, 2022, 48, 3884-3894.	2.3	9
2349	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
2350	Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021, 5, 2993-3005.	11.7	74
2351	Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chinese Journal of Chemical Engineering, 2022, 41, 260-266.	1.7	12
2352	Oneâ€Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angewandte Chemie, 2021, 133, 27219-27224.	1.6	16
2353	Stretchable Znâ€lon Hybrid Battery with Reconfigurable V ₂ CT <i>_x</i> and Ti ₃ C ₂ T <i>_x</i> MXene Electrodes as a Magnetically Actuated Soft Robot. Advanced Energy Materials, 2021, 11, 2101862.	10.2	26
2354	Aqueous Electrolytes, MXeneâ€Based Supercapacitors and Their Selfâ€Discharge. Advanced Energy and Sustainability Research, 2022, 3, 2100147.	2.8	11
2355	Enhanced thermoelectric performance of polycrystalline SnSe by compositing with layered Ti3C2. Journal of Materials Science: Materials in Electronics, 2021, 32, 28192-28203.	1.1	1
2356	Synthesis and Electronic Applications of Particle-Templated Ti ₃ C ₂ T _{<i>z</i>/i>} MXene–Polymer Films via Pickering Emulsion Polymerization. ACS Applied Materials & Interfaces, 2021, 13, 51556-51566.	4.0	21
2357	Oneâ€Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angewandte Chemie - International Edition, 2021, 60, 27013-27018.	7.2	82
2358	3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption. Nano-Micro Letters, 2021, 13, 206.	14.4	165
2359	MXene/Ag2CrO4 Nanocomposite as Supercapacitors Electrode. Materials, 2021, 14, 6008.	1.3	13
2360	Flexible and Highâ€Performance MXene/MnO ₂ Film Electrodes Fabricated by Inkjet Printing: Toward a New Generation Supercapacitive Application. Advanced Materials Interfaces, 2021, 8, 2101453.	1.9	16
2361	Titanium Carbideâ€Based Adsorbents for Removal of Heavy Metal Ions and Radionuclides: From Nanomaterials to 3D Architectures. Advanced Materials Interfaces, 2021, 8, 2100703.	1.9	8
2362	Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes. Small, 2022, 18, e2102250.	5.2	46
2363	Performance improvement of photovoltaic: Utilization of two-dimensional Ti3C2Tx MXene. Surfaces and Interfaces, 2021, 27, 101566.	1.5	3

#	Article	IF	CITATIONS
2364	Muscle Fatigue Sensor Based on Ti ₃ C ₂ T <i>_x</i> MXene Hydrogel. Small Methods, 2021, 5, e2100819.	4.6	49
2365	Effect of Aâ€site atom on static corrosion behavior and irradiation damage of Ti ₂ SC phases. Journal of the American Ceramic Society, 2022, 105, 1386-1393.	1.9	2
2366	A Fast Protonâ€Induced Pseudocapacitive Supercapacitor with High Energy and Power Density. Advanced Functional Materials, 2022, 32, 2107720.	7.8	53
2367	Molten salt synthesis and formation mechanisms of ternary Vâ€based MAX phases by V–Al alloy strategy. Journal of the American Ceramic Society, 2022, 105, 2277-2287.	1.9	6
2368	Mo1.33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors. Materials Today Energy, 2021, 22, 100878.	2.5	17
2369	MXeneâ€Coupled Sandwichâ€Like Polyaniline as Dual Conductive Electrode for Flexible Allâ€Solidâ€State and Ionicâ€liquidâ€Based Supercapacitors with Superior Energy Density. Advanced Materials Interfaces, 2021, 8, 2101263.	1.9	14
2370	Regulating high specific capacitance NCS/α-MnO2 cathode and a wide potential window α-Fe2O3/rGO anode for the construction of 2.7ÂV for high performance aqueous asymmetric supercapacitors. Journal of Energy Storage, 2021, 44, 103343.	3.9	32
2372	Synthesis of a Novel Two Dimensional Material: Mxene. Material Sciences, 2017, 07, 463-468.	0.0	0
2373	First-principles investigation of semiconductor-like MXenes. , 2018, , .		0
2374	Advanced Coupling of Energy Storage and Photovoltaics. , 2019, , 317-350.		0
2375	Techniques for MXene Delamination into Single-Layer Flakes. , 2019, , 177-195.		6
2376	MXenes for Sodium-Ion Batteries. Materials Research Foundations, 2019, , 175-188.	0.2	1
2377	Ti3AlC2/Ti3C2 Katkılanmış Epoksi Kompozitlerinin Üretimi. Konya Journal of Engineering Sciences, 2019, 7 632-644.	'0.1	0
2378	Nanomaterials for Supercapacitors. , 2020, , 195-220.		1
2379	Energy Related Applications. Engineering Materials, 2020, , 207-302.	0.3	0
2381	Manipulating the Interlayer Spacing of 3D MXenes with Improved Stability and Zincâ€lon Storage Capability. Advanced Functional Materials, 2022, 32, 2109524	7.8	97
2382	MXenes as a versatile platform for reactive surface modification and superior sodiumâ€ion storages. Exploration, 2021, 1, 20210024.	5.4	80
2383	3D Cross-linked Ti3C2Tx-Ca-SA films with expanded Ti3C2Tx interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. Journal of Colloid and Interface Science, 2022, 610, 295-303.	5.0	11

#	Article	IF	CITATIONS
2384	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
2385	Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production. Advanced Powder Technology, 2021, 32, 4857-4861.	2.0	19
2386	High‥ield Ti ₃ C ₂ T <i>_x</i> MXene–MoS ₂ Integrated Circuits. Advanced Materials, 2022, 34, e2107370.	11.1	24
2387	Boosting photo-Fenton process enabled by ligand-to-cluster charge transfer excitations in iron-based metal organic framework. Applied Catalysis B: Environmental, 2022, 302, 120882.	10.8	58
2388	Synthesis of 2D material MXene from Ti3AlC2 MAX-phase for electromagnetic shielding applications. AIP Conference Proceedings, 2020, , .	0.3	3
2389	Synthesis of Ce-doped SnO ₂ @Ti ₃ C ₂ nanocomposites for enhanced lithium-ion storage. Functional Materials Letters, 2021, 14, 2151003.	0.7	4
2390	Partially Oxidized MXene Ti ₃ C ₂ T <i>_x</i> Sheets for Memristor having Synapse and Threshold Resistive Switching Characteristics. Advanced Electronic Materials, 2021, 7, 2000866.	2.6	38
2391	Characterization of microsupercapacitors. , 2022, , 117-162.		0
2392	Interface design of Ti3C2TX/ZK61 composites by thermal reduction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142142.	2.6	6
2393	Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance. Progress in Organic Coatings, 2022, 162, 106559.	1.9	7
2394	High-volumetric capacitance and high-rate performance in liquid-mediated densified holey MXene film. Carbon, 2022, 186, 150-159.	5.4	20
2395	Fluorine-free strategy for hydroxylated Ti3C2/Ti3AlC2 catalysts with enhanced aerobic oxidative desulfurization and mechanism. Chemical Engineering Journal, 2022, 430, 132950.	6.6	30
2396	Fast fabrication of freestanding MXene-ZIF-8 dual-layered membranes for H2/CO2 separation. Journal of Membrane Science, 2022, 642, 119982.	4.1	54
2397	CO2 reduction mechanism on the Nb2CO2 MXene surface: Effect of nonmetal and metal modification. Computational Materials Science, 2022, 202, 110971.	1.4	16
2398	Rapid one-step scalable microwave synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene. Chemical Communications, 2021, 57, 12611-12614.	2.2	14
2399	Flexible but robust Ti ₃ C ₂ T _{<i>x</i>} MXene/bamboo microfibril composite paper for high-performance wearable electronics. Journal of Materials Chemistry A, 2021, 9, 26758-26766.	5.2	15
2400	Transition metal nitride nanoflake thin film grown by DC-magnetron sputtering for high-performance supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.3	7
2401	Synthesis of Two-Dimensional (2D) Nanomaterials. , 2020, , 55-78.		0

#	Article	IF	CITATIONS
2402	Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. Journal of Materials Chemistry A, 2022, 10, 6134-6145.	5.2	34
2403	Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 361.	0.6	2
2404	Microscopic conductivity and ultrafast carrier dynamics in molybdenum-based MXenes: THz spectroscopy study. , 2020, , .		0
2407	Twoâ€Dimensional MXeneâ€Polymer Heterostructure with Ordered Inâ€Plane Mesochannels for Highâ€Performance Capacitive Deionization. Angewandte Chemie - International Edition, 2021, 60, 26528-26534.	7.2	147
2408	Theoretical investigation of capacitances in functionalised MXene supercapacitors M _{ n+1} C _n O ₂ , M = Ti, V, Nb, Mo. Journal Physics D: Applied Physics, 2022, 085502.	5153	6
2409	Temperature-Invariant Superelastic Multifunctional MXene Aerogels for High-Performance Photoresponsive Supercapacitors and Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 54170-54184.	4.0	39
2410	High capacitance of MXene (Ti3C2T) through Intercalation and Surface Modification in Molten Salt. Electrochimica Acta, 2022, 401, 139476.	2.6	16
2411	A review of MXenes as emergent materials for dye removal from wastewater. Separation and Purification Technology, 2022, 282, 120083.	3.9	56
2412	Twoâ€Dimensional MXeneâ€Polymer Heterostructure with Ordered Inâ€Plane Mesochannels for Highâ€Performance Capacitive Deionization. Angewandte Chemie, 2021, 133, 26732-26738.	1.6	35
2413	High supercapacitance performance of nitrogen-doped Ti3C2T prepared by molten salt thermal treatment. Electrochimica Acta, 2022, 403, 139528.	2.6	10
2414	Hollow Ti ₃ C ₂ MXene/Carbon Nanofibers as an Advanced Anode Material for Lithiumâ€ion Batteries. ChemElectroChem, 2022, 9, .	1.7	18
2415	Perspectives on preparation of two-dimensional MXenes. Science and Technology of Advanced Materials, 2021, 22, 917-930.	2.8	22
2416	Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. IScience, 2021, 24, 103403.	1.9	60
2417	Recent Advances on MXeneâ€Based Electrocatalysts toward Oxygen Reduction Reaction: A Focused Review. Advanced Materials Interfaces, 2021, 8, 2100975.	1.9	30
2418	Self-Assembled Polyaniline/Ti3C2Tx Nanocomposites for High-Performance Electrochromic Films. Nanomaterials, 2021, 11, 2956.	1.9	16
2420	Quantum transport: general concepts. , 0, , 91-117.		1
2421	Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale, 2021, 13, 19740-19770.	2.8	41
2422	Novel nanomaterials for environmental remediation of toxic metal ions and radionuclides. , 2022, , 1-47.		2

#	Article	IF	CITATIONS
2423	Ag Nanoparticles decorated few-layer Nb2CT nanosheets architectures with superior lithium/sodium-ion storage. Electrochimica Acta, 2022, 402, 139566.	2.6	16
2424	Two-dimensional transition metal carbide/nitride (MXene)-based nanomaterials for removal of toxic/radioactive metal ions from wastewater. , 2022, , 161-194.		0
2425	A comprehensive review of MXene-based water-treatment membranes and technologies: Recent progress and perspectives. Desalination, 2022, 522, 115448.	4.0	53
2426	A hydrophobic-hydrophilic MXene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination. Journal of Membrane Science, 2022, 644, 120146.	4.1	22
2427	Hydrothermal growth of ZnCdS/TiO2 nanoparticles on the surface of the Ti3C2 MXene sheet to enhance photocatalytic performance under visible light. Journal of Solid State Chemistry, 2022, 306, 122750.	1.4	33
2428	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	7.3	81
2429	Emergence of Novel 2D Materials for High-Performance Supercapacitor Electrode Applications: A Brief Review. Energy & Fuels, 2021, 35, 19881-19900.	2.5	72
2430	MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. Chemosphere, 2022, 291, 132923.	4.2	27
2431	Oxide Nanoclusters on Ti ₃ C ₂ MXenes to Deactivate Defects for Enhanced Lithium Ion Storage Performance. Small, 2022, 18, e2104439.	5.2	15
2432	Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries. Journal of Energy Storage, 2022, 47, 103572.	3.9	31
2433	"Porous and Yet Dense―Electrodes for Highâ€Volumetricâ€Performance Electrochemical Capacitors: Principles, Advances, and Challenges. Advanced Science, 2022, 9, e2103953.	5.6	9
2434	Role of Ti ₃ C ₂ MXene as Prominent Schottky Barriers in Driving Hydrogen Production through Photoinduced Water Splitting: A Comprehensive Review. ACS Applied Energy Materials, 2021, 4, 11982-12006.	2.5	57
2435	3D Macroporous Oxidationâ€Resistant Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life. Advanced Functional Materials, 2022, 32, 2109479.	7.8	74
2436	In situ investigation of water on MXene interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
2437	Advances in 3D Printing for Electrochemical Energy Storage Systems. Journal of Material Science and Technology Research, 0, 8, 50-69.	0.2	2
2438	Oxygen Vacanciesâ€Rich Heterojunction of Ti ₃ C ₂ /BiOBr for Photoâ€Excited Antibacterial Textiles. Small, 2022, 18, e2104448.	5.2	31
2439	Nitrogen-Doped Ti ₂ C MXene Quantum Dots as Antioxidants. ACS Applied Nano Materials, 2021, 4, 12308-12315.	2.4	24
2440	Exfoliation and Delamination of Ti ₃ C ₂ T _{<i>x</i>} MXene Prepared <i>via</i> Molten Salt Etching Route. ACS Nano, 2022, 16, 111-118.	7.3	107

#	Article	IF	CITATIONS
2441	Interface Catalysis of Nickel Molybdenum (NiMo) Alloys on Two-Dimensional (2D) MXene for Enhanced Hydrogen Electrochemistry. Journal of Physical Chemistry Letters, 2021, 12, 11361-11370.	2.1	26
2442	In-situ growth of bamboo-shaped carbon nanotubes and helical carbon nanofibers on Ti3C2Tx MXene at ultra-low temperature for enhanced electromagnetic wave absorption properties. Ceramics International, 2022, 48, 6338-6346.	2.3	24
2443	Flexible Ti2C MXene film: Synthesis, electrochemical performance and capacitance behavior. Chemical Engineering Journal, 2022, 433, 133582.	6.6	43
2444	Eutectic Etching toward Inâ€Plane Porosity Manipulation of Clâ€Terminated MXene for Highâ€Performance Dualâ€Ion Battery Anode. Advanced Energy Materials, 2022, 12, 2102493.	10.2	37
2445	Inverse Opaline Metallic Membrane Addresses the Tradeoff Between Volumetric Capacitance and Areal Capacitance of Supercapacitor. Advanced Energy Materials, 2022, 12, 2102802.	10.2	13
2446	In Situ Controllable Fabrication of Two-Dimensional Magnetic Fe ₃ O ₄ /TiO ₂ @Ti ₃ C ₂ T _{<i>x</i>} Composites for Highly Efficient Phosphopeptides Enrichment. ACS Applied Materials & amp; Interfaces, 2021, 13, 54665-54676.	4.0	12
2447	Ti3C2-graphene oxide nanocomposite films for lubrication and wear resistance. Tribology International, 2022, 167, 107361.	3.0	26
2448	Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Advanced Materials, 2022, 34, e2107554.	11.1	163
2449	Conversion of 2D MXene to Multi‣owâ€Dimensional GerMXene Superlattice Heterostructure. Advanced Functional Materials, 2022, 32, 2108495.	7.8	9
2450	2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. Journal of Electroanalytical Chemistry, 2022, 904, 115920.	1.9	72
2451	Effect of the Fabrication Method of Chlorophyllâ€Ti ₃ C ₂ T _{<i>x</i>} â€Based Photocatalysts on Noble Metalâ€Free Hydrogen Evolution. Energy Technology, 2022, 10, 2100713.	1.8	5
2452	From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics, 2021, 10, 1194-1242.	8.9	122
2453	MXenes nanocomposites for energy storage and conversion. Rare Metals, 2022, 41, 1101-1128.	3.6	47
2454	MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. Chemosphere, 2022, 291, 132921.	4.2	60
2455	Green synthesis of molybdenum-based nanoparticles and their applications in energy conversion and storage: A review. International Journal of Hydrogen Energy, 2022, 47, 31014-31057.	3.8	18
2456	In Situ Preparation of MXenes in Ambient-Temperature Organic Ionic Liquid Aluminum Batteries with Ultrastable Cycle Performance. ACS Applied Materials & Interfaces, 2021, 13, 55112-55122.	4.0	10
2457	Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti ₂ AlC. International Journal of Materials Research, 2021, 112, 852-859.	0.1	2
2458	Electrical Conductivity Enhancement and Electronic Applications of 2D Ti ₃ C ₂ T _x MXene Materials. Advanced Materials Interfaces, 2021, 8, 2100903.	1.9	26

#	Article	IF	CITATIONS
2459	Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review. Catalysts, 2021, 11, 1435.	1.6	16
2460	Microâ€&tructural and Flexible Reduced Graphene Oxide/Ti ₃ C ₂ T <i>_x</i> Composite Film Electrode with Long Cycle Life for Supercapacitor. Advanced Materials Interfaces, 2022, 9, 2101619.	1.9	18
2461	MXene-based hybrid composites as photocatalyst for the mitigation of pharmaceuticals. Chemosphere, 2022, 291, 133062.	4.2	15
2462	3D Printed MXene Aerogels with Truly 3D Macrostructure and Highly Engineered Microstructure for Enhanced Electrical and Electrochemical Performance. Advanced Materials, 2022, 34, e2104980.	11.1	64
2463	DFT computation of quantum capacitance of transition-metals and vacancy doped Sc2CF2 MXene for supercapacitor applications. Journal of Molecular Liquids, 2022, 345, 118263.	2.3	9
2464	Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuliâ€Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2022, 2, 2100108.	1.7	8
2465	Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO ₂ /Ti ₃ C ₂ T _{<i>x</i>} MXene Composites under UV and Solar Light. ACS Omega, 2021, 6, 33325-33338.	1.6	36
2466	Photocatalytic and electrocatalytic reduction of CO2 and N2 by Ti3C2 MXene supported composites for a cleaner environment: A review. Journal of Cleaner Production, 2021, 328, 129647.	4.6	24
2467	Study on finishing and electromagnetic properties of electromagnetic shielding fabric based on multilayer Ti ₃ C ₂ T <i>_x</i> medium. Journal of the Textile Institute, 2022, 113, 2704-2713.	1.0	3
2468	Surfaceâ€Activated Ti ₃ C ₂ T _{<i>x</i>} MXene Cocatalyst Assembled with CdZnSâ€Formed 0D/2D CdZnS/Ti ₃ C ₂ â€A ₄₀ Schottky Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Solar Rrl, 2022, 6, .	3.1	23
2469	1T-VS ₂ /MXene Hybrid as a Superior Electrode Material for Asymmetric Supercapacitors: Experimental and Theoretical Investigations. ACS Applied Energy Materials, 2021, 4, 14198-14209.	2.5	34
2470	MXenes—An Emerging Class of 2D Materials for Solar Water Desalination: Feasibility and Recent Advances. Solar Rrl, 2022, 6, 2100888.	3.1	14
2471	Improvement of the electromagnetic properties of blended electromagnetic shielding fabric of cotton/stainless steel/polyester based on multi-layer MXenes. Textile Reseach Journal, 2022, 92, 1495-1505.	1.1	11
2472	Theoretical study of optical and electronic properties of silicether/graphether heterostructure. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 123102.	0.2	0
2473	2D-on-2D core–shell Co ₃ (PO ₄) ₂ stacked micropetals@Co ₂ Mo ₃ O ₈ nanosheets and binder-free 2D CNT–Ti ₃ C ₂ T _{<i>X</i>} –MXene electrodes for high-energy solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2021, 9, 26135-26148.	5.2	22
2474	Vertically Pillared V ₂ CT _x /Ti ₃ C ₂ T _x Flexible Films for High-Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
2475	3D Hierarchical Ti ₃ C ₂ T _X @NiO-Reduced Graphene Oxide Heterostructure Hydrogel as Free-Standing Electrodes for High Performance Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
2476	Freestanding Hierarchically Sandwich-Like TiS ₂ -TiO ₂ /MXene Film as Bi-Functional Interlayer for Stable Li-S Batteries. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
2477	Influence of Doping with Selected Organic Molecules on Magnetic and Electronic Properties of Bare, Surface Terminated and Defect Patterned Ti2C MXene Monolayer. Physical Chemistry Chemical Physics, 2022, , .	1.3	5
2478	Constructing 2D Layered PCN/Ti ₃ C ₂ /Bi ₂ MoO ₆ Heterojunction with MXene As Charge Mediator for Enhanced Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
2480	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.3	2
2481	Engineering 3Dâ€Architected Gyroid MXene Scaffolds for Ultrasensitive Micromechanical Sensing. Advanced Engineering Materials, 2022, 24, .	1.6	8
2482	Europium(III) removal from aqueous solution using citric acid modified alkalized Mxene as an adsorbent. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 1063-1073.	0.7	5
2483	The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Advanced Drug Delivery Reviews, 2022, 182, 114099.	6.6	28
2484	Solar fuels: research and development strategies to accelerate photocatalytic CO ₂ conversion into hydrocarbon fuels. Energy and Environmental Science, 2022, 15, 880-937.	15.6	304
2485	Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion. Sustainable Energy and Fuels, 2022, 6, 299-308.	2.5	11
2486	Nano Carbon/Vertical Graphene/MnO ₂ Nanosheets Composite Particles for Highâ€Performance Supercapacitors. Energy Technology, 2022, 10, 2100884.	1.8	13
2487	First-principles investigation of the structural and dynamical stability, electronic and thermal properties of two-dimensional Yn+1Cn (nÂ=Â1, 2, and 3) MXenes. FlatChem, 2022, 31, 100328.	2.8	8
2488	Effect of Base/Nucleophile Treatment on Interlayer Ion Intercalation, Surface Terminations, and Osmotic Swelling of Ti ₃ C ₂ T <i>_z</i> MXene Multilayers. Chemistry of Materials, 2022, 34, 678-693.	3.2	33
2489	Engineering a surface defect-rich Ti ₃ C ₂ quantum dots/mesoporous C ₃ N ₄ hollow nanosphere Schottky junction for efficient N ₂ photofixation. Journal of Materials Chemistry A, 2022, 10, 3134-3145.	5.2	41
2490	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	5.2	63
2491	MXene-polypyrrole electrodes for asymmetric supercapacitors. Electrochimica Acta, 2022, 406, 139843.	2.6	23
2492	Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. Journal of Power Sources, 2022, 521, 230965.	4.0	34
2493	Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. Journal of Power Sources, 2022, 521, 230963.	4.0	7
2494	3D nitrogen-doped Ti3C2Tx/rGO foam with marco- and microporous structures for enhance supercapacitive performance. Electrochimica Acta, 2022, 404, 139752.	2.6	9
2495	Interfacial assembly of functional mesoporous nanomatrices for laser desorption/ionization mass spectrometry. Nano Today, 2022, 42, 101365.	6.2	8

#	Article	IF	CITATIONS
2496	A synergetic strategy of well dispersing hydrophilic Ti3C2Tx MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances. Composites Science and Technology, 2022, 219, 109248.	3.8	24
2497	MXene membrane in planar microwave resonant structures for 5G applications. Applied Materials Today, 2022, 26, 101294.	2.3	15
2498	Photosensitive Ti3C2 for dyes degradation. Results in Materials, 2022, 13, 100247.	0.9	2
2499	3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage. Journal of Energy Storage, 2022, 47, 103911.	3.9	26
2500	Constructing oxidized carbon spheres-based heterogeneous membrane with high surface energy for energy-free water purification. Chemical Engineering Journal, 2022, 431, 134132.	6.6	6
2501	A pinning effect for the enhanced oxidation resistance at 1600°C of silicoboron carbonitride ceramics with the addition of MXene. Corrosion Science, 2022, 196, 110041.	3.0	1
2502	Freestanding sandwich-like hierarchically TiS2–TiO2/Mxene bi-functional interlayer for stable Li–S batteries. Carbon, 2022, 188, 533-542.	5.4	42
2503	Recent advances on energy storage microdevices: From materials to configurations. Energy Storage Materials, 2022, 45, 741-767.	9.5	15
2504	In situ configuration of dual S-scheme BP/(Ti3C2Tx@TiO2) heterojunction for broadband spectrum solar-driven photocatalytic H2 evolution in pure water. Journal of Colloid and Interface Science, 2022, 610, 13-23.	5.0	20
2505	MXenes as emerging nanomaterials in water purification and environmental remediation. Science of the Total Environment, 2022, 811, 152280.	3.9	255
2506	Two-dimensional nanoporous and lamellar membranes for water purification: Reality or a myth?. Chemical Engineering Journal, 2022, 432, 134335.	6.6	38
2507	Superior pseudocapacitive performance and mechanism of self-assembled MnO2/MXene films as positive electrodes for flexible supercapacitors. Journal of Alloys and Compounds, 2022, 899, 163241.	2.8	20
2508	First-principles study of metal-semiconductor contact OF CS and X2CO2 (X=Ti, Zr, Hf) monolayers. Materials Science in Semiconductor Processing, 2022, 141, 106424.	1.9	7
2509	Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews, 2022, 454, 214339.	9.5	71
2510	Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon, 2022, 189, 305-318.	5.4	55
2511	3D hierarchical Ti3C2TX @NiO-reduced graphene oxide heterostructure hydrogel as free-standing electrodes for high performance supercapacitor. Journal of Alloys and Compounds, 2022, 901, 163614.	2.8	20
2512	Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors. Journal of Alloys and Compounds, 2022, 899, 163275.	2.8	19
2513	Exploring the potential of MXene-based advanced solar-absorber in improving the performance and efficiency of a solar-desalination unit for brackish water purification. Desalination, 2022, 526, 115521.	4.0	33

#	Article	IF	CITATIONS
2514	Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 899, 163354.	2.8	23
2515	Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage. Journal of Alloys and Compounds, 2022, 901, 163426.	2.8	16
2516	Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Applied Surface Science, 2022, 581, 152432.	3.1	78
2517	Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. Journal of Alloys and Compounds, 2022, 900, 163436.	2.8	34
2518	Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106809.	3.8	58
2519	Cation-induced Ti3C2Tx MXene hydrogel for capacitive energy storage. Chemical Engineering Journal, 2022, 433, 134488.	6.6	41
2520	Stable TiVCTx/poly-o-phenylenediamine composites with three-dimensional tremella-like architecture for supercapacitor and Li-ion battery applications. Chemical Engineering Journal, 2022, 433, 134578.	6.6	21
2521	Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER. Applied Catalysis B: Environmental, 2022, 304, 120989.	10.8	58
2522	Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere, 2022, 293, 133542.	4.2	34
2523	Study on MnO2/MXene-V2C composite as cathode for magnesium ion battery. International Journal of Electrochemical Science, 2020, 15, 11227-11237.	0.5	13
2524	Ultra-High Energy Stored into Multi-Layered Functional Porous Carbon Tubes Enabled by High-Rate Intercalated Pseudocapacitance. SSRN Electronic Journal, 0, , .	0.4	0
2525	Advanced Membranes Functionalized with Carbon-based 2D Nanomaterials for Liquid Separation. Chemistry in the Environment, 2021, , 83-107.	0.2	0
2526	Recent Trends in Synthesis and Applications of Porous MXene Assemblies: A Topical Review. Chemical Record, 2022, 22, .	2.9	22
2527	MXenes and their composites: a promising material for hydrogen storage. , 2022, , 397-422.		0
2528	Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects. , 2022, , 1-47.		0
2529	A new trial for lightweight MXene hybrid aerogels with high electromagnetic interference shielding performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 4093-4103.	1.1	8
2530	Inorganicâ€Organic Hybrid Membrane based on Pillarareneâ€intercalated MXene Nanosheets for Efficient Water Purification. Angewandte Chemie, 0, , .	1.6	1
2531	Noncovalent functionalization of Ti ₃ C ₂ T _{<i>X</i>} using cationic porphyrins with enhanced stability against oxidation. Materials Chemistry Frontiers, 2022, 6, 561-569.	3.2	9

#	Article	IF	CITATIONS
2532	MXene-based symmetric supercapacitors with high voltage and high energy density. Materials Reports Energy, 2022, 2, 100078.	1.7	10
2533	Prospects of MXenes/graphene nanocomposites for advanced supercapacitor applications. Journal of Electroanalytical Chemistry, 2022, 905, 115973.	1.9	10
2534	MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution. New Journal of Chemistry, 2022, 46, 1127-1134.	1.4	4
2535	MXene-based molecular sieving membranes for highly efficient gas separation. , 2022, , 595-616.		2
2536	<scp>Inâ€situ</scp> growth of ultrathin sulfur <scp>microcrystal</scp> on <scp>MXene</scp> â€based <scp>3D</scp> matrice for flexible lithium–sulfur batteries. EcoMat, 2022, 4, .	6.8	30
2537	Tunable magnetic order in two-dimensional layered GdGe ₂ . Journal of Materials Chemistry C, 2022, 10, 1259-1269.	2.7	9
2538	3D Printed Template-Assisted Assembly of Additive-Free Ti ₃ C ₂ T _{<i>x</i>} MXene Microlattices with Customized Structures toward High Areal Capacitance. ACS Nano, 2022, 16, 2699-2710.	7.3	43
2539	Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Applied Nano Materials, 2022, 5, 18-54.	2.4	41
2540	Pt Decorated Ti ₃ C ₂ T _{<i>x</i>} MXene with NIR-II Light Amplified Nanozyme Catalytic Activity for Efficient Phototheranostics. ACS Nano, 2022, 16, 3105-3118.	7.3	144
2541	Single-Atom Pt Anchored on Oxygen Vacancy of Monolayer Ti ₃ C ₂ T _{<i>x</i>} for Superior Hydrogen Evolution. Nano Letters, 2022, 22, 1398-1405.	4.5	76
2542	MXene-based nanomaterials for electrocatalysis. , 2022, , 23-46.		0
2543	Flame Retardancy, Thermal and Mechanical Properties of Novel Intumescent Flame Retardant/MXene/Poly(Vinyl Alcohol) Nanocomposites. Nanomaterials, 2022, 12, 477.	1.9	14
2544	Redoxâ€mediated proton transport of twoâ€dimensional polyanilineâ€based nanochannels for fast capacitive performance. , 2022, 1, .		6
2545	Wrinkled and flexible N-doped MXene additive for improving the mechanical and electrochemical properties of the nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode. Electrochimica Acta, 2022, 410, 139989.	2.6	6
2546	2D conductive MOF modified MXene nanosheets for poly (vinylidene fluoride) nanocomposite with high permittivity. Materials Letters, 2022, 314, 131820.	1.3	8
2547	Synthesis of Ti ₃ C ₂ T _x MXene from the Ti ₃ AlC ₂ MAX phase with enhanced optical and morphological properties by using ammonia solution with the in-situ HF forming method. Physica Scripta, 2022, 97, 025807.	1.2	12
2548	Conductive polymer doped two-dimensional MXene materials: opening the channel of magnesium ion transport. RSC Advances, 2022, 12, 4329-4335.	1.7	12
2549	Research about the capacitance properties of ion-induced multilayer and self-assembled monolayer Ti ₃ C ₂ T _{<i>x</i>} . RSC Advances, 2022, 12, 3554-3560.	1.7	1

#	Article	IF	CITATIONS
2550	Optical and mechanical properties of MXenes. , 2022, , 131-169.		3
2551	MXenes and their composites for energy storage and conversion. , 2022, , 201-240.		1
2552	Synthesis methods and surface chemistry/functionalization of MXene. , 2022, , 49-89.		3
2553	Ion Intercalation Process in MXene Pseudocapacitors With Aqueous and Non-Aqueous Electrolytes. , 2022, , .		Ο
2555	Synthesis of ZnO/Ti2C composites by electrostatic self-assembly for the photocatalytic degradation of methylene blue. Journal of Materials Science, 2022, 57, 3954-3970.	1.7	9
2556	Applications of MXenes and their composites in catalysis and photoelectrocatalysis. , 2022, , 449-498.		0
2557	Porous carbons for energy storage and conversion. , 2022, , 239-540.		1
2558	MXenes and their composites for potential antimicrobial applications. , 2022, , 525-551.		3
2559	<i>In situ</i> synthesis of N-doped TiO ₂ on Ti ₃ C ₂ MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N ₂ . Inorganic Chemistry Frontiers, 2022, 9, 1195-1207.	3.0	11
2560	Vertically aligned ZnCo ₂ O ₄ nanoplates on Ti ₃ C ₂ for high-efficiency hybrid supercapacitors. New Journal of Chemistry, 2022, 46, 4385-4394.	1.4	10
2561	Ultrathick MoS ₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2022, 12, .	10.2	44
2562	Inorganic–Organic Hybrid Membrane Based on Pillarareneâ€Intercalated MXene Nanosheets for Efficient Water Purification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
2563	MXene-based materials for remediation of environmental pollutants. , 2022, , 553-594.		1
2564	Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 4533-4557.	5.2	38
2565	Hybrid Carbon Nanofibers Derived from MXene Nanosheets and Aromatic Poly(ether amide) for Self‧tanding Electrochemical Energy Storage Materials. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
2566	Simplified Synthesis of Fluoride-Free Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching toward High-Performance Electrochemical Capacitors. ACS Nano, 2022, 16, 2461-2470.	7.3	99
2567	MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. Journal of Materials Chemistry A, 2022, 10, 4558-4584.	5.2	33
2568	Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene-Prussian Blue Hybrid Microsupercapacitors by Water Lift-Off Lithography. ACS Nano, 2022, 16, 1974-1985.	7.3	25

#	Article	IF	CITATIONS
2569	A binder jet 3D printed MXene composite for strain sensing and energy storage application. Nanoscale Advances, 2022, 4, 916-925.	2.2	8
2570	Highly Performed Fiberâ€Based Supercapacitor in a Conjugation of Mesoporous MXene. Advanced Materials Interfaces, 2022, 9, .	1.9	10
2571	Inlaid LDH and MXene Composite Electrodes with High Rate Performance are Used as Asymmetric Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
2572	Holdups in Nitride MXene's Development and Limitations in Advancing the Field of MXene. Small, 2022, 18, e2106129.	5.2	36
2573	MXenes and their composites for energy harvesting applications. , 2022, , 687-723.		1
2574	Cellulose-based composite carbon nanofibers. , 2022, , 159-174.		0
2576	Hierarchical Ti3C2T@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection. Journal of Materials Science and Technology, 2022, 116, 151-160.	5.6	42
2577	Simple Synthesis of 2D Molybdenum Carbide Nanosheets and Their Application in the Hydrogen Evolution Reaction. European Journal of Inorganic Chemistry, 0, , .	1.0	4
2578	Ionically Active MXene Nanopore Actuators. Small, 2022, 18, e2105857.	5.2	9
2579	3D Porous MXene (Ti3C2Tx) Prepared by Alkaline-Induced Flocculation for Supercapacitor Electrodes. Materials, 2022, 15, 925.	1.3	6
2580	MXene Heterostructures as Perspective Materials for Gas Sensing Applications. Sensors, 2022, 22, 972.	2.1	26
2581	New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 971-1013.	2.5	18
2582	Degradable Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets Containing a Lignin Polyurethane Photothermal Foam (LPUF) for Rapid Crude Oil Cleanup. ACS Applied Nano Materials, 2022, 5, 2848-2858.	2.4	36
2583	Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Nextâ€Generation Supercapacitors: A Review. Advanced Functional Materials, 2022, 32, .	7.8	152
2584	Responses to comments on the paper "two-dimensional Sc2C: A reversible and high capacity hydrogen storage material predicted by first-principles calculations― International Journal of Hydrogen Energy, 2022, 47, 9829-9834.	3.8	0
2585	MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. Materials Reports Energy, 2022, 2, 100080.	1.7	19
2586	Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chinese Journal of Catalysis, 2022, 43, 359-369.	6.9	246
2587	A Flexible Triboelectric Nanogenerator Based on Celluloseâ€Reinforced MXene Composite Film. Advanced Materials Interfaces, 2022, 9, 2102124.	1.9	24

# 2588	ARTICLE MXene-containing pressure sensor based on nanofiber film and spacer fabric with ultrahigh	IF 1.1	Citations 8
2589	Beyond sonication: Advanced exfoliation methods for scalable production of 2D materials. Matter, 2022, 5, 515-545.	5.0	33
2590	Influence of aqueous solutions treatment on the Li+ storage properties of molten salt derived Ti3C2Cl MXene. Electrochemistry Communications, 2022, 136, 107236.	2.3	9
2591	Exploring the mechanism of electrocatalytic water oxidation on CoO decorated Ti3C2Tx nanoplatelets. Electrochimica Acta, 2022, 409, 139969.	2.6	2
2592	Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Progress in Polymer Science, 2022, 126, 101505.	11.8	105
2593	One-step in-situ synthesis of Sn-nanoconfined Ti3C2Tx MXene composites for Li-ion battery anode. Electrochimica Acta, 2022, 407, 139916.	2.6	25
2594	Multifunctional skin-inspired resilient MXene-embedded nanocomposite hydrogels for wireless wearable electronics. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106835.	3.8	30
2595	Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review. Chemosphere, 2022, 293, 133563.	4.2	46
2596	Role of surface functional groups to superconductivity in Nb2C-MXene: Experiments and density functional theory calculations. Surfaces and Interfaces, 2022, 29, 101711.	1.5	12
2597	Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations. Journal of Environmental Chemical Engineering, 2022, 10, 107211.	3.3	43
2598	Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating. Progress in Organic Coatings, 2022, 165, 106673.	1.9	20
2599	Trimetal NiCoMn sulfides cooperated with two-dimensional Ti3C2 for high performance hybrid supercapacitor. Journal of Solid State Chemistry, 2022, 308, 122909.	1.4	12
2600	Advances in MXenes-based optical biosensors: A review. Biosensors and Bioelectronics, 2022, 202, 113995.	5.3	52
2601	Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production. Journal of Membrane Science, 2022, 647, 120280.	4.1	27
2602	Mxene pseudocapacitive electrode material for capacitive deionization. Chemical Engineering Journal, 2022, 435, 134959.	6.6	48
2603	The roles of MXenes in developing advanced lithium metal anodes. Journal of Energy Chemistry, 2022, 69, 132-149.	7.1	24
2604	Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects. Journal of Materials Science and Technology, 2022, 114, 143-164.	5.6	28
2605	MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy, 2022, 95, 106986.	8.2	58

#	Article	IF	CITATIONS
2606	Conductive Hydrogel with Excellent Self-Healing Properties for Supercapacitor Electrodes Using PbS/Ti ₃ C ₂ T _x Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
2607	A two-dimensional Ti ₃ C ₂ T _{<i>X</i>} MXene@TiO ₂ /MoS ₂ heterostructure with excellent selectivity for the room temperature detection of ammonia. Journal of Materials Chemistry A, 2022, 10, 5505-5519.	5.2	76
2608	Chemical order or disorder – a theoretical stability expose for expanding the compositional space of quaternary metal borides. Materials Advances, 2022, 3, 2908-2917.	2.6	9
2609	Nickel-adsorbed two-dimensional Nb ₂ C MXene for enhanced energy storage applications. RSC Advances, 2022, 12, 4624-4634.	1.7	26
2610	Interplay of Electronic Structure, Magnetism, Strain, and Defects in Carbide MXenes. SSRN Electronic Journal, 0, , .	0.4	0
2611	Investigation of interaction between MXene nanosheets and human plasma and protein corona composition. Nanoscale, 2022, 14, 3777-3787.	2.8	15
2612	MXene-based composite forward osmosis (FO) membrane intercalated by halloysite nanotubes with superior water permeance and dye desalination performance. Chemical Engineering Research and Design, 2022, 180, 55-66.	2.7	8
2613	Aligned Ti3C2TX Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability. Energies, 2022, 15, 1191.	1.6	6
2614	Firstâ€principles investigation of elastic and electronic properties of double transition metal carbide MXenes. Journal of the American Ceramic Society, 2022, 105, 4400-4413.	1.9	7
2615	Enhancing Electric Double Layer Capacitance of Two-Dimensional Titanium Carbide (MXene) with Facile Synthesis and Accentuated Properties. Energy & Fuels, 2022, 36, 2811-2820.	2.5	9
2616	Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption–photocatalytic degradation of organic dyes in wastewater. Ceramics International, 2022, 48, 14451-14459.	2.3	25
2617	Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified Nitrogen-doped MXene as highly efficient hydrogen and oxygen Evolution reaction electrocatalysts. Journal of Colloid and Interface Science, 2022, 615, 831-839.	5.0	16
2618	Review of MXene-based Resistance Pressure Sensors for Vital Signs Monitor. Journal of Electronic Materials, 2022, 51, 1443-1472.	1.0	10
2619	Chitosan for constructing stable polymer-inorganic suspensions and multifunctional membranes for wound healing. Carbohydrate Polymers, 2022, 285, 119209.	5.1	15
2620	Ti ₃ C ₂ T _{<i>x</i>} @nonwoven Fabric Composite: Promising MXene-Coated Fabric for Wearable Piezoresistive Pressure Sensors. ACS Applied Materials & Interfaces, 2022, 14, 9632-9643.	4.0	58
2621	Mixed-dimensional engineering of 3D MXene ultralight hybrid aerogel for anticorrosive and microwave absorption applications. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106865.	3.8	17
2622	Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano, 2022, 16, 1734-1758.	7.3	177
2623	Effect of vacancies on the electrochemical behavior of Mo-based MXenes in aqueous supercapacitors. Journal of Power Sources, 2022, 525, 231064.	4.0	13
#	Article	IF	CITATIONS
------	---	-----	-----------
2624	A review of etching methods of MXene and applications of MXene conductive hydrogels. European Polymer Journal, 2022, 167, 111063.	2.6	79
2625	NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 49, 104176.	3.9	12
2626	3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chemical Engineering Journal, 2022, 435, 135052.	6.6	31
2627	Iodine-Functionalized Titanium Carbide MXene with Ultra-Stable Pseudocapacitor Performance. Journal of Colloid and Interface Science, 2022, 615, 643-649.	5.0	25
2628	MXene-Coated Wrinkled Fabrics for Stretchable and Multifunctional Electromagnetic Interference Shielding and Electro/Photo-Thermal Conversion Applications. ACS Applied Materials & Interfaces, 2021, 13, 60478-60488.	4.0	81
2629	MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials, 2021, 11, 3412.	1.9	52
2630	Mxene-Integrated Metal Oxide Transparent Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	0
2632	Anion-Kinetics-Selective Graphene Anode and Cation-Energy-Selective Mxene Cathode for High-Performance Capacitive Deionization. SSRN Electronic Journal, 0, , .	0.4	0
2633	A strategic review of MXenes as emergent building blocks for future two-dimensional materials: recent progress and perspectives. Journal of Materials Chemistry C, 2022, 10, 4096-4123.	2.7	18
2634	Modulating the Electronic Structures and Potential Applications of Zr2co2/Mse2 (M = Mo, W) Heterostructures by Different Stacking Modes: A Density Functional Theory Calculation. SSRN Electronic Journal, 0, , .	0.4	0
2635	MXenes: Synthesis, properties, and electrochemical performance of titanium, vanadium, and tantalum carbide MXenes as supercapacitor electrodes. , 2022, , 387-416.		1
2636	MoO ₃ /TiO ₂ /Ti ₃ C ₂ T _{<i>x</i>} nanocomposite based gas sensors for highly sensitive and selective isopropanol detection at room temperature. Journal of Materials Chemistry A, 2022, 10, 8283-8292.	5.2	54
2637	Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 6414-6441.	5.2	43
2638	Atomic bridging modulation of Ir–N, S co-doped MXene for accelerating hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 9878-9885.	5.2	31
2639	Antibacterial properties of MXene-based nanomaterials: A review. Materials Express, 2022, 12, 34-48.	0.2	10
2640	MXene-regulation polyamide membrane featuring with bubble-like nodule for efficient dye/salt separation and antifouling performance. RSC Advances, 2022, 12, 10267-10279.	1.7	21
2641	MXene wearables: properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 2022, 3, 3784-3808.	2.6	29
2642	From 0D to 3D MXenes: their diverse syntheses, morphologies and applications. Materials Chemistry Frontiers, 2022, 6, 818-842.	3.2	24

#	Article	IF	CITATIONS
2643	Dua L-Signal ElectrochemicalÂBiosensor for Neutrophil Gelatinase-Associated LipocalinÂBased on Mxene and Cu-Metal Organic Framework/Single-Walled Carbon Nanohorns HeterogeneousÂNanocomposites. SSRN Electronic Journal, 0, , .	0.4	0
2644	Two-dimensional transition metal carbide (MXene) for enhanced energy storage. , 2022, , 255-283.		0
2645	Three-Dimensional Ordered and Porous Ti3c2tx@Chitosan Film Enabled by Self-Assembly Strategy for High-Rate Pseudocapacitive Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
2646	Dispersing Single-Layered Ti3c2tx Nanosheets in Hierarchically-Porous Membrane for High-Efficiency Li+ Transporting and Polysulfide Anchoring in Li-S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2649	Ultrasound-Aided Fabrication of Ti3c2tx Mxene by UsingÂln-Situ Forming of Hydrofluoric Acid Approach. SSRN Electronic Journal, 0, , .	0.4	0
2650	Crumpled and Eccentric Nanospheres of Ti ₃ C ₂ T _{<i>x</i>} MXene by Aerosol Jet Printing on Heat Substrate. Advanced Engineering Materials, 2022, 24, .	1.6	5
2651	New Findings of Pseudocapacitive Behaviors in Cupric Tungstate Dihydrate. Journal of Physical Chemistry C, 2022, 126, 3853-3863.	1.5	0
2652	Strategy to Improve the Photovoltaic Performance of Si/CuO Heterojunction via Incorporation of Ta ₂ O ₅ Hopping Layer and MXene as Transparent Electrode. ACS Applied Energy Materials, 2022, 5, 3941-3951.	2.5	8
2653	Fabrication of PANI@Ti3C2Tx/PVA hydrogel composite as flexible supercapacitor electrode with good electrochemical performance. Ceramics International, 2022, 48, 15721-15728.	2.3	35
2654	MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. Materials Reports Energy, 2022, 2, 100077.	1.7	1
2655	High-Entropy Laminate Metal Carbide (MAX Phase) and Its Two-Dimensional Derivative MXene. Chemistry of Materials, 2022, 34, 2098-2106.	3.2	60
2656	2D MXene: A Potential Candidate for Photovoltaic Cells? A Critical Review. Advanced Science, 2022, 9, e2104743.	5.6	41
2657	Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: A concise review. Journal of Industrial and Engineering Chemistry, 2022, 109, 52-67.	2.9	20
2658	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & amp; Fuels, 2022, 36, 2390-2406.	2.5	67
2659	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- Materiály, 2022, 4, .	8.5	102
2660	A General Strategy for Engineering Single-Metal Sites on 3D Porous N, P Co-Doped Ti ₃ C ₂ T _X MXene. ACS Nano, 2022, 16, 4116-4125.	7.3	63
2661	Thermal Selfâ€Protection Behavior of Energy Storage Devices Using a Thermally Responsive Smart Polymer Electrolyte. ChemistrySelect, 2022, 7, .	0.7	7
2662	Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors. National Science Review, 2022, 9, .	4.6	39

#	Article	IF	CITATIONS
2663	Alkali-Induced Porous MXene/Carbon Nanotube-Based Film Electrodes for Supercapacitors. ACS Applied Nano Materials, 2022, 5, 4180-4186.	2.4	20
2664	Heterostructured Metallic 1T-VSe ₂ /Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Energy Storage. ACS Applied Nano Materials, 2022, 5, 4423-4436.	2.4	21
2665	Columnâ€ŧoâ€Beam Structure House Inspired MXeneâ€Based Integrated Membrane with Stable Interlayer Spacing for Water Purification. Advanced Functional Materials, 2022, 32, .	7.8	51
2666	Robust Roomâ€Temperature Sodiumâ€Sulfur Batteries Enabled by a Sandwichâ€Structured MXene@C/Polyolefin/MXene@C Dualâ€functional Separator. Small, 2022, 18, e2106983.	5.2	17
2667	Review on Ti3C2-Based MXene Nanosheets for Flexible Electrodes. Electronic Materials Letters, 2022, 18, 256-274.	1.0	16
2668	Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science, 2022, 9, e2200296.	5.6	44
2669	Relationship between Electric Double-Layer Structure of MXene Electrode and Its Surface Functional Groups. Chemistry of Materials, 2022, 34, 2069-2075.	3.2	28
2670	A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors. Nano-Micro Letters, 2022, 14, 64.	14.4	65
2671	Deformation of and Interfacial Stress Transfer in Ti ₃ C ₂ MXene–Polymer Composites. ACS Applied Materials & Interfaces, 2022, 14, 10681-10690.	4.0	19
2672	Platinum Nanoparticle-Electrodeposited Ti ₃ C ₂ T _{<i>x</i>} MXene as a Binder-Free Electrocatalyst for Improved Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 3092-3099.	2.5	12
2673	Quasi zero-dimensional MoS2 quantum dots decorated 2D Ti3C2Tx MXene as advanced electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 10583-10593.	3.8	13
2674	Aqueous MXene/Xanthan Gum Hybrid Inks for Screenâ€Printing Electromagnetic Shielding, Joule Heater, and Piezoresistive Sensor. Small, 2022, 18, e2107087.	5.2	48
2675	Monolayer Sc ₂ CF ₂ as a Potential Selective and Sensitive NO ₂ Sensor: Insight from First-Principles Calculations. ACS Omega, 2022, 7, 9267-9275.	1.6	3
2676	The SnO2/MXene Composite Ethanol Sensor Based on MEMS Platform. Chemosensors, 2022, 10, 109.	1.8	18
2677	Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice. Journal of Nanobiotechnology, 2022, 20, 108.	4.2	8
2678	Building durable aqueous K-ion capacitors based on MXene family. , 2022, 1, e9120002.		131
2679	Mussel-Inspired Polynorepinephrine/MXene-Based Magnetic Nanohybrid for Electromagnetic Interference Shielding in X-Band and Strain-Sensing Performance. Langmuir, 2022, 38, 3936-3950.	1.6	65
2680	Emerging Advancements in Polypyrrole MXene Hybrid Nanoarchitectonics for Capacitive Energy Storage Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1521-1540.	1.9	15

#	Article	IF	CITATIONS
2682	Optimizing the electronic spin state and delocalized electron of NiCo2(OH) /MXene composite by interface engineering and plasma boosting oxygen evolution reaction. Journal of Energy Chemistry, 2022, 71, 129-140.	7.1	25
2683	An Ion Selective Electrode Based on Ti3C2 Solidâ€state Transduction for Rapid Detection of Lead Ion Concentration in Aqueous Solution. Electroanalysis, 0, , .	1.5	0
2684	A Structural Gel Composite Enabled Robust Underwater Mechanosensing Strategy with High Sensitivity. Advanced Functional Materials, 2022, 32, .	7.8	66
2685	âº-NSA doped PPy @ Ti3C2Tx hybrid material as a high-performance supercapacitor electrode. Journal of Materials Research, 2022, 37, 3965-3975.	1.2	7
2687	MXeneâ€Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Advanced Healthcare Materials, 2022, 11, e2102367.	3.9	29
2688	Ti ₃ C ₂ T _{<i>x</i>} MXene Liquid Crystal: Access to Create Background-Free and Easy-Made Alignment Medium. ACS Nano, 2022, 16, 5454-5462.	7.3	14
2689	Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS Nano, 2022, 16, 6700-6711.	7.3	120
2690	Pt Atom on the Wall of Atomic Layer Deposition (ALD)â€Made MoS ₂ Nanotubes for Efficient Hydrogen Evolution. Small, 2022, 18, e2105129.	5.2	29
2691	Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	1.2	15
2692	Threeâ€Ðimensional MXenes for Supercapacitors: A Review. Small Methods, 2022, 6, e2101537.	4.6	75
2693	Native Vacancy Defects in MXenes at Etching Conditions. Chemistry of Materials, 2022, 34, 2896-2906.	3.2	23
2694	Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Advanced Materials, 2022, 34, e2110608.	11.1	90
2695	Recent advance on machine learning of <scp>MXenes</scp> for energy storage and conversion. International Journal of Energy Research, 2022, 46, 21511-21522.	2.2	10
2696	Rapid Advances of Versatile MXenes for Electrochemical Enzymeâ€Based Biosensors, Immunosensors, and Nucleic Acidâ€Based Biosensors. ChemElectroChem, 2022, 9, .	1.7	10
2697	Water dynamics in pristine and porous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Ti</mml:mi> <mml:mr mathvariant="normal">C <mml:mn>2</mml:mn> </mml:mr </mml:msub> <mml:msub> <mml:mi mathvariant="normal">T <mml:mi> x</mml:mi> </mml:mi </mml:msub> </mml:mrow> MXene</mml:math 	1>30.9	:mn>1
2698	Highly Sensitive and Stretchable MXene/CNTs/TPU Composite Strain Sensor with Bilayer Conductive Structure for Human Motion Detection. ACS Applied Materials & amp; Interfaces, 2022, 14, 15504-15516.	4.0	116
2699	Ti ₃ C ₂ MXene-Reduced Graphene Oxide Composite Polymer-Based Printable Electrolyte for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 3329-3338.	2.5	22
2700	Langmuir–Blodgett Assembly of Ti ₃ C ₂ T <i>_x</i> Nanosheets for Planar Microsupercapacitors. ACS Applied Nano Materials, 2022, 5, 4170-4179.	2.4	4

#	Article	IF	CITATIONS
2701	Covalently grafting first-generation PAMAM dendrimers onto MXenes with self-adsorbed AuNPs for use as a functional nanoplatform for highly sensitive electrochemical biosensing of cTnT. Microsystems and Nanoengineering, 2022, 8, 35.	3.4	23
2702	Layered Nanoâ€Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	6
2703	MXenes: Synthesis strategies and lithium-sulfur battery applications. EScience, 2022, 2, 164-182.	25.0	80
2704	MXene-based nanomaterials as adsorbents for wastewater treatment: a review on recent trends. Frontiers of Materials Science, 2022, 16, .	1.1	5
2705	MnO ₂ -MXene Composite as Electrode for Supercapacitor. Journal of the Electrochemical Society, 2022, 169, 030524.	1.3	17
2706	Recent progress and new perspective of MXene-based membranes for water purification: A review. Ceramics International, 2022, 48, 16477-16491.	2.3	23
2708	Comb-type polymer-hybridized MXene nanosheets dispersible in arbitrary polar, nonpolar, and ionic solvents. Science Advances, 2022, 8, eabl5299.	4.7	27
2709	Selfâ€Assembling Delaminated V ₄ C ₃ T <i>_x</i> MXene into Highly Stable Pseudocapacitive Flexible Film Electrode for Supercapacitors. Advanced Materials Interfaces, 2022, 9, .	1.9	10
2710	MXene (Ti3C2Tx)/Cellulose Acetate Mixed-Matrix Membrane Enhances Fouling Resistance and Rejection in the Crossflow Filtration Process. Membranes, 2022, 12, 406.	1.4	7
2711	Ti1.1V0.7Cr Nb1.0Ta0.6C3T high-entropy MXene freestanding films for charge storage applications. Electrochemistry Communications, 2022, 137, 107264.	2.3	23
2712	Device-Scaled Controlled Crumpling of MXene-Based Ultrathin Supercapacitors as Stretchable Power Sources. ACS Applied Energy Materials, 2022, 5, 4296-4306.	2.5	3
2713	Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy, 2022, 98, 107229.	8.2	78
2714	Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomaterialia, 2022, 142, 113-123.	4.1	58
2715	Quantum capacitance of supercapacitor electrodes based on the F-functionalized M2C MXenes: A first-principles study. Vacuum, 2022, 201, 111094.	1.6	12
2716	Enhanced Performance of Silicon Negative Electrodes Composited with Titanium Carbide Based MXenes for Lithium-Ion Batteries. Nanoenergy Advances, 2022, 2, 165-196.	3.6	5
2717	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
2718	Three-dimensional ordered and porous Ti3C2Tx@Chitosan film enabled by self-assembly strategy for high-rate pseudocapacitive energy storage. Chemical Engineering Journal, 2022, 442, 136255.	6.6	12
2719	A Facile Etching Route for Preparing Ti ₃ C ₂ MXene with Enhanced Electrochemical Performance in Silver Nitrate Solution. Journal of the Electrochemical Society, 2022, 169. 043506.	1.3	2

#	Article	IF	Citations
2720	Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sensors and Actuators B: Chemical, 2022, 364, 131867.	4.0	27
2721	Preparation of 3D flower-like Ti3C2Tx microspheres by W/O emulsion-assisted assembly and their application for supercapacitors. Ceramics International, 2022, 48, 10834-10842.	2.3	5
2722	Biomedical engineering of two-dimensional MXenes. Advanced Drug Delivery Reviews, 2022, 184, 114178.	6.6	69
2723	Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review. Environmental Pollution, 2022, 301, 119034.	3.7	24
2724	Exploring the electrochemical behavior of Mo1.33CTz MXene in aqueous sulfates electrolytes: Effect of intercalating cations on the stored charge. Journal of Power Sources, 2022, 531, 231302.	4.0	6
2725	Removal of pollutants via synergy of adsorption and photocatalysis over MXene-based nanocomposites. Chemical Engineering Journal Advances, 2022, 10, 100285.	2.4	18
2726	Polyphenylene sulfide scaffold based flexible supercapacitor electrode with competitive areal capacitance and flame-retardant behavior. Reactive and Functional Polymers, 2022, 174, 105216.	2.0	4
2727	Ultrathin cellulose nanofiber/carbon nanotube/Ti3C2T film for electromagnetic interference shielding and energy storage. Carbohydrate Polymers, 2022, 286, 119302.	5.1	24
2728	Hydrothermal synthesis of MXene-MoS2 composites for highly efficient removal of pesticides. Applied Surface Science, 2022, 588, 152597.	3.1	26
2729	MXene materials for advanced thermal management and thermal energy utilization. Nano Energy, 2022, 97, 107177.	8.2	56
2730	Vertically pillared V2CT /Ti3C2T flexible films for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 906, 164302.	2.8	15
2731	MXenes: An emerging 2D material. Carbon, 2022, 192, 366-383.	5.4	46
2732	Prospects of MXenes in energy storage applications. Chemosphere, 2022, 297, 134225.	4.2	50
2733	Layer structured materials for ambient nitrogen fixation. Coordination Chemistry Reviews, 2022, 460, 214468.	9.5	28
2734	Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries. Chemical Engineering Journal, 2022, 438, 135328.	6.6	18
2735	Co-MOF@MXene-carbon nanofiber-based freestanding electrodes for a flexible and wearable quasi-solid-state supercapacitor. Chemical Engineering Journal, 2022, 437, 135338.	6.6	58
2736	Fluoropolymer grafted Ti3C2Tx MXene as an efficient lubricant additive for fluorine-containing lubricating oil. Tribology International, 2022, 170, 107500.	3.0	30
2737	Ultra-high energy stored into multi-layered functional porous carbon tubes enabled by high-rate intercalated pseudocapacitance. Carbon, 2022, 192, 153-161.	5.4	7

#	Article	IF	CITATIONS
2738	Self-assembly and in-situ characterization of Ti3C2T in Al: A step toward additive manufacturing of MXene-metal composites. Applied Materials Today, 2022, 27, 101451.	2.3	7
2739	A self-healing PVDF-ZnO/MXene membrane with universal fouling resistance for real seawater desalination. Water Research, 2022, 216, 118349.	5.3	21
2740	Ti3C2Tx@CNF nanohybrid improving the corrosion resistance of waterborne epoxy coating under 15ÂMPa alternating hydrostatic pressure. Chemical Engineering Journal, 2022, 438, 135483.	6.6	32
2741	Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies. Renewable and Sustainable Energy Reviews, 2022, 161, 112412.	8.2	27
2742	Bionic artificial synaptic floating gate transistor based on MXene. Solid-State Electronics, 2022, 192, 108257.	0.8	6
2743	MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews, 2022, 462, 214518.	9.5	148
2744	Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chemical Engineering Journal, 2022, 440, 135862.	6.6	116
2745	Rapid electrochemical dual-target biosensor composed of an Aptamer/MXene hybrid on Au microgap electrodes for cytokines detection. Biosensors and Bioelectronics, 2022, 207, 114159.	5.3	36
2746	Hierarchical ZnO/MXene (Nb2C and V2C) heterostructure with efficient electron transfer for enhanced photocatalytic activity. Applied Surface Science, 2022, 590, 153095.	3.1	28
2747	Free-standing p-Type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance. Chemical Engineering Journal, 2022, 439, 135706.	6.6	22
2748	Regulation of the rutile/anatase TiO2 phase junction in-situ grown on –OH terminated Ti3C2T (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 439, 135685.	6.6	68
2749	An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. Chemosphere, 2022, 298, 134221.	4.2	34
2750	Unveiling the promotion of intermediates transport kinetics on the N/S co-doping 3D structure titanium carbide aerogel for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 618, 161-172.	5.0	8
2751	Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water. Journal of Colloid and Interface Science, 2022, 617, 673-682.	5.0	16
2752	Constructing 2D layered PCN/Ti3C2/Bi2MoO6 heterojunction with MXene as charge mediator for enhanced photocatalytic performance. Applied Surface Science, 2022, 589, 152883.	3.1	14
2753	Electrically conductive porous MXene-polymer composites with ultralow percolation threshold via Pickering high internal phase emulsion templating strategy. Journal of Colloid and Interface Science, 2022, 618, 290-299.	5.0	18
2754	MXene nanosheets as a novel nanomaterial with antimicrobial applications: A literature review. Journal of Molecular Structure, 2022, 1262, 132958.	1.8	9
2755	Evaluation of MXene as an adsorbent in dispersive solid phase extraction of several pesticides from fresh fruit juices prior to their determination by HPLC-MS/MS. Food Chemistry, 2022, 386, 132773.	4.2	15

#	Article	IF	CITATIONS
2756	Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene. Environmental Research, 2022, 212, 113138.	3.7	31
2757	Microfluidic Fabrication of Hierarchicalâ€Ordered ZIF‣(Zn)@Ti ₃ C ₂ T _{<i>x</i>} Core–Sheath Fibers for Highâ€Performance Asymmetric Supercapacitors. Angewandte Chemie, 2022, 134, .	1.6	6
2758	Highâ€Entropy Carbonitride MAX Phases and Their Derivative MXenes. Advanced Energy Materials, 2022, 12, .	10.2	69
2759	MXene-Derived Quantum Dot@Gold Nanobones Heterostructure-Based Electrochemiluminescence Sensor for Triple-Negative Breast Cancer Diagnosis. Analytical Chemistry, 2021, 93, 17086-17093.	3.2	29
2760	Effect of Aqueous Electrolytes on the Performance of a Ti ₃ C ₂ T _{<i>x</i>} (MXene)â^Î^MnO ₂ Asymmetric Supercapacitor. Energy & Fuels, 2022, 36, 703-709.	2.5	21
2761	Improved Thermo-Mechanical Properties and Reduced Hydrogen Permeation of Short Side-Chain Perfluorosulfonic Acid Membranes Doped with Ti3C2Tx. Materials, 2021, 14, 7875.	1.3	8
2762	Colorless-to-colorful switching of electrochromic MXene by reversible ion insertion. Nano Research, 2022, 15, 3587-3593.	5.8	16
2763	MXene─A New Paradigm Toward Artificial Nitrogen Fixation for Sustainable Ammonia Generation: Synthesis, Properties, and Future Outlook. , 2022, 4, 212-245.		20
2764	3D V ₂ CT _{<i>x</i>} –rGO Architectures with Optimized Ion Transport Channels toward Fast Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 61258-61266.	4.0	9
2765	Synthesis of new <scp>twoâ€dimensional</scp> titanium carbonitride <scp>Ti₂C₀</scp> _. <scp>₅N₀</scp> _{.5} and its performance as an electrode material for <scp>sodiumâ€ion</scp> battery. InformaÄnÃ-MateriÃily, 2021_3_1422-1430	sub>T <sub< td=""><td>o> <i>x</i>∢ 49</td></sub<>	o> <i>x</i> ∢ 49
2766	Architecting Nbâ€TiO _{2â^'} <i>_x</i> /(Ti _{0.9} Nb _{0.1}) ₃ C ₂ MXene Nanohybrid Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022. 9.	sub>T <i><: 1.9</i>	sub>x
2767	Microfluidic Fabrication of Hierarchicalâ€Ordered ZIF‣(Zn)@Ti ₃ C ₂ T _{<i>x</i>Highâ€Performance Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .}	7.2	76
2768	Hierarchical Cobaltâ€Nickel Double Hydroxide Arrays Assembled on Naturally Sedimented Ti ₃ C ₂ T _x for Highâ€Performance Flexible Supercapacitors. Advanced Sustainable Systems, 2022, 6, .	2.7	11
2769	MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surfaces, 2022, 5, 1-36.	1.0	25
2770	Theoretical Predictions, Experimental Modulation Strategies, and Applications of MXene‧upported Atomically Dispersed Metal Sites. Small, 2022, 18, e2105883.	5.2	28
2771	Recent Progress in Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Flexible Pressure Sensors. ACS Nano, 2021, 15, 18880-18894.	7.3	77
2772	Effect of alkaline environment on Ti3C2Tx-MXene etching. , 2021, , .		0
2773	Role of the A-Element in the Structural, Mechanical, and Electronic Properties of Ti ₃ AC ₂ MAX Phases. Inorganic Chemistry, 2022, 61, 2129-2140.	1.9	4

	Сітаті	ion Report	
#	Article	IF	Citations
2774	Shearing MXene Sediment Enables Formation of the Liquid Crystal Phase for Spinning Ultradense Fibers with High Electrochemical Performance. ACS Applied Nano Materials, 2022, 5, 303-308.	2.4	7
2775	Highly Sensitive Multifunctional Electronic Skin Based on Nanocellulose/MXene Composite Films with Good Electromagnetic Shielding Biocompatible Antibacterial Properties. Biomacromolecules, 2022, 23, 182-195.	2.6	41
2776	Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews, 2022, 51, 2972-2990.	18.7	101
2777	SnSe/SnS: Multifunctions Beyond Thermoelectricity. , 0, 1, 1-20.		18
2778	Billiard Catalysis at Ti3c2 Mxene/Max Heterostructure for Efficient Nitrogen Fixation. SSRN Electronic Journal, 0, , .	0.4	1
2779	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
2780	Recent advances in solidâ€state supercapacitors: From emerging materials to advanced applications. International Journal of Energy Research, 2022, 46, 10389-10452.	2.2	16
2781	Low-Pt Amount Supported Polypyrrole/MXene 1D/2D Electrocatalyst for Efficient Hydrogen Evolution Reaction. Electrocatalysis, 2022, 13, 469-478.	1.5	6
2782	Lithium storage properties of Ti3C2T (T  = F, Cl, Br) MXenes. Chinese Chemical Letters, 2023, 34, 102	7426. 4.8	12
2783	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	1.9	9
2784	Synthesis of MXene and its application for zincâ€ion storage. SusMat, 2022, 2, 293-318.	7.8	51
2785	Advances in preparation, mechanism and applications of various carbon materials in environmental applications: A review. Chemosphere, 2022, 300, 134596.	4.2	21
2786	Two-dimensional molybdenum carbide (MXene) as an efficient nanoadditive for achieving superlubricity under ultrahigh pressure. Friction, 2023, 11, 369-382.	3.4	18
2787	MXene (Ti3C2Tx) supported CoS2/CuCo2S4 nanohybrid for highly stable asymmetric supercapacitor device. Journal of Energy Storage, 2022, 50, 104617.	3.9	20
2788	Hydrogen-bonded quasi-layered polypyrrole-tungstate complex with exceptional electrochemical capacitance over 25000 cycles. Composites Part B: Engineering, 2022, 238, 109910.	5.9	3
2789	Recent advances in two-dimensional MXenes for power and smart energy systems. Journal of Energy Storage, 2022, 50, 104604.	3.9	19
2790	XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Applied Surface Science, 2022, 593, 153442.	3.1	37
2791	PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchemical Journal, 2022, 179, 107467.	2.3	13

#	Article	IF	CITATIONS
2792	Construction and electrochemical energy storage performance of free-standing hexagonal Ti3C2 film for flexible supercapacitor. Applied Surface Science, 2022, 593, 153380.	3.1	15
2793	Preparation of Ti3C2Tx quantum dots/activated semi-coke composite and its electrocatalytic performance. Fuel, 2022, 322, 124259.	3.4	6
2794	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		0
2795	Quantum transport in disordered graphene-based materials. , 0, , 143-218.		0
2796	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		0
2797	Electronic structure calculations: the density functional theory (DFT). , 0, , 314-331.		0
2798	Electronic structure calculations: the many-body perturbation theory (MBPT). , 0, , 332-337.		0
2799	Green's functions and ab initio quantum transport in the Landauer–Büttiker formalism. , 0, , 338-357.		0
2801	High-Energy-Density Asymmetric Supercapacitor Based on Free-Standing Ti ₃ C ₂ T <i>_X</i> @NiO-Reduced Graphene Oxide Heterostructured Anode and Defective Reduced Graphene Oxide Hydrogel Cathode. ACS Applied Materials & Interfaces, 2022, 14, 19534-19546.	4.0	14
2802	Fluorine-Free Fabrication of MXene via Photo-Fenton Approach for Advanced Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 7971-7981.	7.3	50
2803	Controlled local orientation of 2D nanomaterials in 3D devices: methods and prospects for multifunctional designs and enhanced performance. Journal of Materials Chemistry A, 2022, 10, 19129-19168.	5.2	9
2804	Insight into the Mechanisms of Chloramphenicol Degradation by Photocatalysis Coupled Microbial Fuel Cell with Ni/Mxene Photocathode. SSRN Electronic Journal, 0, , .	0.4	0
2805	Progressively stimulating carrier motion over transient metal chalcogenide quantum dots towards solar-to-hydrogen conversion. Journal of Materials Chemistry A, 2022, 10, 11926-11937.	5.2	32
2806	Electrical and magneto-transport in the 2D semiconducting MXene Ti ₂ CO ₂ . Journal of Materials Chemistry C, 2022, 10, 9062-9072.	2.7	5
2807	Synthesis of Ultrathin, Nano-Sized Ti3c2tx with Abundant =O and -Oh Terminals and High Transparency as a Cocatalyst: Enabling Design of High-Performance Titania-Ti3c2tx Hybrid Photocatalysts. SSRN Electronic Journal, 0, , .	0.4	0
2808	Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructured Mxene/Polymethylmethacrylate for Wireless Human Health Monitor. SSRN Electronic Journal, 0, , .	0.4	0
2809	Ws2 Nanosheets Integrated with Ti3c2 Mxene for Electrocatalytic Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
2810	A 1D:2D structured AgNW:MXene composite transparent electrode with high mechanical robustness for flexible photovoltaics. Journal of Materials Chemistry C, 2022, 10, 8625-8633.	2.7	18

#	Article	IF	CITATIONS
2811	Biochar-Derived Material Decorated by Mxene/Reduced Graphene Oxide Using One-Step Hydrothermal Treatment as High-Performance Supercapacitor Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
2812	Advances in flexible sensors with MXene materials. New Carbon Materials, 2022, 37, 303-320.	2.9	20
2813	Ti ₃ AlC ₂ MAX and Ti ₃ C ₂ MXene Quantum Sheets for Record-High Optical Nonlinearity. Journal of Physical Chemistry Letters, 2022, 13, 3929-3936.	2.1	7
2814	Enhanced Ion Diffusion in Flexible Ti ₃ C ₂ T _{<i>X</i>} MXene Film for Highâ€Performance Supercapacitors. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
2815	Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive. Friction, 2022, 10, 2018-2032.	3.4	23
2816	In situ ice template approach to fabricate Ag modified 3D Ti3C2Tx film electrode for supercapacitors. Electrochimica Acta, 2022, 422, 140461.	2.6	6
2817	2D MXenes for combatting COVID-19 Pandemic: A perspective on latest developments and innovations. FlatChem, 2022, 33, 100377.	2.8	16
2818	Boosting the energy density of aqueous MXeneâ€based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat, 2022, 2, 379-390.	7.8	29
2819	A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage. Nanomaterials, 2022, 12, 1422.	1.9	13
2820	Broadband and Wide-Angle Performance of a Perfect Absorber Using a MIM Structure with 2D MXene. Electronics (Switzerland), 2022, 11, 1370.	1.8	3
2821	2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric energy density toward a self-sufficient integrated microsystem. Fundamental Research, 2024, 4, 307-314.	1.6	13
2822	Design of functionalized double-metal MXenes (M2M'C2T2: M = Cr, Mo, M' = Ti, V) for magnetic and catalytic applications. International Journal of Hydrogen Energy, 2022, , .	3.8	5
2823	Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. Biosensors, 2022, 12, 314.	2.3	103
2824	Unleashing Insulating Polymer as Charge Transport Cascade Mediator. Advanced Functional Materials, 2022, 32, .	7.8	30
2825	Preparation and application of heterojunction KH570–TiO2/MXene/PAN membranes with photocatalytic degradation and photothermal conversion properties. Journal of Solid State Chemistry, 2022, 312, 123142.	1.4	4
2826	Role of Rotation Angle and Grain Boundary in Tuning the Li Intercalation Concentration to Induce Phase Transition in Bilayer MoS ₂ . Journal of Physical Chemistry C, 2022, 126, 8539-8544.	1.5	1
2827	Rational design of MXene/activated carbon/polyoxometalate triple hybrid electrodes with enhanced capacitance for organic-electrolyte supercapacitors. Journal of Colloid and Interface Science, 2022, 623, 947-961.	5.0	21
2828	Sulfur confined MXene hosts enabling the use of carbonate-based electrolytes in alkali metal (Li/Na/K)-sulfur batteries. Materials Today Energy, 2022, 27, 101000.	2.5	9

#	Article	IF	CITATIONS
2829	Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite. Radiochimica Acta, 2022, 110, 311-322.	0.5	2
2830	Two-Dimensional Ti3C2 MXene-Based Novel Nanocomposites for Breath Sensors for Early Detection of Diabetes Mellitus. Biosensors, 2022, 12, 332.	2.3	6
2831	Effects of Polyelectrolyte Surface Coating on the Energy Storage Performance in Supercapacitors. Journal of Physical Chemistry C, 2022, 126, 8218-8226.	1.5	9
2832	Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chemical Engineering Journal, 2022, 446, 136914.	6.6	49
2833	Regulated layer spacing and functional surface group of MXene film by hexamethylenetetramine for high-performance supercapacitors. Applied Surface Science, 2022, 596, 153632.	3.1	14
2834	Highly Transparent and Flexible Zn-Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrid Capacitors. Langmuir, 2022, 38, 5968-5976.	1.6	6
2835	Flexible MXene films for batteries and beyond. , 2022, 4, 598-620.		42
2836	The disruption of human trophoblast functions by autophagy activation through PI3K/AKT/mTOR pathway induced by exposure to titanium carbide (Ti3C2) MXene. Food and Chemical Toxicology, 2022, 165, 113128.	1.8	7
2837	Synthesis of MXene-Based Self-dispersing Additives for Enhanced Tribological Properties. Tribology Letters, 2022, 70, .	1.2	19
2838	The future of energy materials: A case of MXenes-carbon dots nanocomposites. Journal of Energy Storage, 2022, 50, 104711.	3.9	9
2839	An Fe-MOF/MXene-based ultra-sensitive electrochemical sensor for arsenic(III) measurement. Journal of Electroanalytical Chemistry, 2022, 916, 116382.	1.9	26
2840	Robust biomimetic Ti3C2Tx nanocomposite films enhanced by mussel-inspired polymer for highly efficient electromagnetic shielding and thermal camouflage. Carbon, 2022, 196, 410-421.	5.4	8
2841	C60 intercalating Ti3C2T MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. Journal of Materials Science and Technology, 2022, 127, 71-77.	5.6	26
2842	Solar-assisted self-heating Ti3C2Tx-decorated wood aerogel for adsorption and recovery of highly viscous crude oil. Journal of Hazardous Materials, 2022, 435, 129068.	6.5	34
2843	Self-supported VO(PO3)2 electrode for 2.8ÂV symmetric aqueous supercapacitors. Chemical Engineering Journal, 2022, 445, 136726.	6.6	9
2844	Ultraviolet emissive Ti3C2Tx MXene quantum dots for multiple anti-counterfeiting. Applied Surface Science, 2022, 595, 153563.	3.1	10
2846	Electric field modulated water permeation through laminar Ti3C2Tx MXene membrane. Water Research, 2022, 219, 118598.	5.3	26
2847	Verification of stability and unraveling the electronic and physical properties of bulk and (001)-surfaces of newly synthesized Ti2ZnX (XÂ=ÂC, N) MAX phases. Surfaces and Interfaces, 2022, 31, 102032.	1.5	4

#	Article	IF	CITATIONS
2848	MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceramics International, 2022, 48, 24144-24156.	2.3	44
2849	Application of MXenes for air purification, gas separation and storage: A review. Renewable and Sustainable Energy Reviews, 2022, 164, 112527.	8.2	42
2850	Metallic 1T-MoS ₂ coupled with MXene towards ultra-high rate-capabilities for supercapacitors. Journal of Materials Chemistry A, 2022, 10, 12258-12268.	5.2	22
2851	Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale, 2022, 14, 9218-9247.	2.8	31
2852	Silver-decorated MXene nanosheets as a radical initiator for polymerization and multifunctional hydrogels. Chemical Communications, 2022, 58, 6821-6824.	2.2	8
2853	Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11, 3139-3148.	2.9	6
2854	Multilayer MXene Heterostructures and Nanohybrids for Multifunctional Applications: A Review. , 2022, 4, 1174-1206.		25
2855	Facile fabrication of a metal-free 2D–2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes. Journal of Alloys and Compounds, 2022, 916, 165459.	2.8	35
2856	Single‣tep Synthesis of Exfoliated Ti ₃ C ₂ T _x MXene through NaBF ₄ /HCl Etching as Electrode Material for Asymmetric Supercapacitor. ChemistrySelect, 2022, 7, .	0.7	6
2857	Molecular‣evel Methylcellulose/MXene Hybrids with Greatly Enhanced Electrochemical Actuation. Advanced Materials, 2022, 34, e2200660.	11.1	18
2858	Flexible and Transparent Electrode of Hybrid Ti ₃ C ₂ T _X MXene–Silver Nanowires for High-Performance Quantum Dot Light-Emitting Diodes. ACS Nano, 2022, 16, 9203-9213.	7.3	22
2859	Self-Supporting, Binder-Free, and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitor Electrode with Improved Electrochemical Performance. ACS Nano, 2022, 16, 9713-9727.	7.3	76
2860	MXene//MnO ₂ Asymmetric Supercapacitors with High Voltages and High Energy Densities. Batteries and Supercaps, 2022, 5, .	2.4	4
2861	Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Reports Physical Science, 2022, 3, 100908.	2.8	8
2862	Functionalized-MXene Thin-Film Nanocomposite Hollow Fiber Membranes for Enhanced PFAS Removal from Water. ACS Applied Materials & Interfaces, 2022, 14, 25397-25408.	4.0	23
2863	Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: A review. Synthetic Metals, 2022, 287, 117095.	2.1	15
2864	Optimization of etching and sonication time to prepare monolayer Ti3C2T MXene flakes: A structural, vibrational, and optical spectroscopy study. , 2022, 167, 207256.		9
2865	MXene-based Zn-ion hybrid supercapacitors: Effects of anion carriers and MXene surface coatings on the capacities and life span. Journal of Energy Storage, 2022, 52, 104823.	3.9	12

\sim			-	
	ITAT	ION	REDC) R T
<u> </u>	/		ILLI C	

#	Article	IF	CITATIONS
2866	Multi-function adsorbent-photocatalyst MXene-TiO2 composites for removal of enrofloxacin antibiotic from water. Journal of Environmental Sciences, 2023, 124, 414-428.	3.2	28
2867	Three-Dimensional Ti3c2 Mxene@Silicon@Nitrogen-Doped Carbon Foam as High Performance Self-Standing Lithium-Ion Battery Anodes. SSRN Electronic Journal, 0, , .	0.4	0
2868	3d Crumpled Ti 3 C 2 T X -Xerogel Architectures for Optimized Lithium Storage. SSRN Electronic Journal, 0, , .	0.4	0
2869	In Situ Bridges of Nano-Titanium Dioxide Constructed in Mxene Self-Cleaning Loose Nanofiltration Membranes for Dye Wastewater Treatment. SSRN Electronic Journal, 0, , .	0.4	0
2870	Interface Design for Enhancing Carbon Dioxide Electrolysis in a Fluidized Electrode of Photoelectrochemical Cell. SSRN Electronic Journal, 0, , .	0.4	0
2871	Rationally Designed Multifunctional Ti3c2ÂMxene@Graphene Composite Aerogel Integrated with Bimetallic Selenides for Enhanced Supercapacitor Performance and Overall Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
2872	Ws2 Nanosheets Integrated with Ti3c2 Mxene for Electrocatalytic Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
2873	Synthesis of freeâ€standing flexible <scp> gâ€C ₃ N ₄ </scp> / <scp>MXene</scp> film as electrode materials for supercapacitors. International Journal of Energy Research, 2022, 46, 13308-13315.	2.2	6
2874	The Emergence of 2D MXenes Based Znâ€ion Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
2875	New horizons in surface topography modulation of MXenes for electrochemical sensing toward potential biomarkers of chronic disorders. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 580-622.	6.8	7
2876	Conformal Layer-by-Layer Assembly of Ti ₃ C ₂ T <i>_z</i> MXene-Only Thin Films for Optoelectronics and Energy Storage. Chemistry of Materials, 2022, 34, 4884-4895.	3.2	14
2877	MXene (Ti ₃ C ₂ T _{<i>x</i>})-/Amine-Functionalized Graphene-Supported Self-Assembled Co ₉ S ₈ Nanoflower for Ultrastable Hybrid Supercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7727-7738.	1.8	15
2878	3D Porous MXene Films for Advanced Electromagnetic Interference Shielding and Capacitive Storage. Crystals, 2022, 12, 780.	1.0	1
2879	Improving stability of MXenes. Nano Research, 2022, 15, 6551-6567.	5.8	87
2880	Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100905.	2.8	17
2881	CuS/Ti3C2Tx homostructure with enhanced hydrogel performance for supercapacitor electrode materials. European Polymer Journal, 2022, 175, 111312.	2.6	3
2882	Threeâ€Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregationâ€Induced Emission Photosensitizer for Potent Cancer Theranostics. Small Methods, 2022, 6, .	4.6	11
2883	Flexible and highlyâ€sensitive pressure sensor based on controllably oxidized MXene. InformaÄnÃ- Materiály, 2022, 4,	8.5	74

#	Article	IF	Citations
2884	How Water Attacks MXene. Chemistry of Materials, 2022, 34, 4975-4982.	3.2	44
2885	Surface Modification of Carbon Fiber-Reinforced Polyetheretherketone with MXene Nanosheets for Enhanced Photothermal Antibacterial Activity and Osteogenicity. ACS Biomaterials Science and Engineering, 2022, 8, 2375-2389.	2.6	18
2886	Carbon-coated MoSe2/MXene heterostructures as active materials for high-performance Na+ batteries. Materials Today Communications, 2022, 31, 103740.	0.9	7
2887	Lightweight and robust Ti3C2Tx/carbon nanotubes foam with tuneable and highly efficient microwave absorption performance. Ceramics International, 2022, 48, 31129-31137.	2.3	5
2888	Overview of MXene/conducting polymer composites for supercapacitors. Journal of Energy Storage, 2022, 52, 105008.	3.9	63
2889	Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Materials, 2022, 50, 395-406.	9.5	32
2890	Analytical methods to determine and sense heavy metal pollutants using MXene and MXene-based composites: Mechanistic prophecy into sensing properties. Chemosphere, 2022, 303, 135166.	4.2	8
2891	Recent progress in Ti3C2Tx-based materials: From fundamentals to emerging applications. Materials Science in Semiconductor Processing, 2022, 148, 106835.	1.9	9
2893	Submicron Ti ₂ CT _{<i>x</i>} MXene particulates as high-rate intercalation anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15474-15484.	5.2	7
2894	Multi-nanocomponent-assembled films with exceptional capacitance performance and electromagnetic interference shielding. Materials Chemistry Frontiers, 2022, 6, 2201-2210.	3.2	4
2895	Fabricating flexible conductive structures by printing techniques and printable conductive materials. Journal of Materials Chemistry C, 2022, 10, 9441-9464.	2.7	22
2896	Interfacial structure design of MXene-based nanomaterials for supercapacitors and batteries. , 2022, , .		0
2897	Investigation of Interfacial Interaction of Graphene Oxide and Ti3c2tx (Mxene) Via Atomic Force Microscopy. SSRN Electronic Journal, 0, , .	0.4	0
2898	Stability and Degradation of MXene. Engineering Materials, 2022, , 87-107.	0.3	4
2899	Energy Storage Applications of MXene. Engineering Materials, 2022, , 139-169.	0.3	1
2900	Syntheses and electronic structure engineering of transition metal nitrides for supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 14655-14673.	5.2	40
2901	Double Reaction Initiated Self-Assembly Process Fabricated Hard Carbon with High Power Capability for Lithium Ion Capacitor Anodes. SSRN Electronic Journal, 0, , .	0.4	0
2902	Synthesis and Processing Strategies. Engineering Materials, 2022, , 17-36.	0.3	4

#	Article	IF	CITATIONS
2903	Understanding the Effect of Pore Size on Electrochemical Capacitive Performance of MXene Foams. Small, 2022, 18, .	5.2	24
2904	Advances of MXenes; Perspectives on Biomedical Research. Biosensors, 2022, 12, 454.	2.3	22
2905	Fibrous asymmetric supercapacitor based on wet spun MXene/PAN Fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/CF positrode. Chemical Engineering Journal, 2022, 449, 137732.	6.6	44
2906	The Role of Antioxidant Structure in Mitigating Oxidation in Ti ₃ C ₂ T <i>_x</i> and Ti ₂ CT <i>_x</i> MXenes. Advanced Materials Interfaces, 2022, 9, .	1.9	16
2907	Review—Recent Trends on the Synthesis and Different Characterization Tools for MXenes and their Emerging Applications. Journal of the Electrochemical Society, 2022, 169, 077501.	1.3	9
2908	Emergence of MXene–Polymer Hybrid Nanocomposites as Highâ€Performance Nextâ€Generation Chemiresistors for Efficient Air Quality Monitoring. Advanced Functional Materials, 2022, 32, .	7.8	77
2909	Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium–Sulfur Batteries. International Journal of Molecular Sciences, 2022, 23, 6329.	1.8	8
2910	Recent progress in MXene layers materials for supercapacitors: Highâ€performance electrodes. SmartMat, 2023, 4, .	6.4	31
2911	DFT practice in MXene-based materials for electrocatalysis and energy storage: From basics to applications. Ceramics International, 2022, 48, 27217-27239.	2.3	8
2912	High-Capacity Ti ₃ C ₂ T _{<i>x</i>} MXene Electrodes Achieved by Eliminating Intercalated Water Molecules Using a Co-solvent System. ACS Applied Materials & Interfaces, 2022, 14, 30080-30089.	4.0	2
2913	Anisotropic electromagnetic absorption of the aligned Ti3C2Tx MXene/RGO nanocomposite foam. Composites Science and Technology, 2022, 227, 109609.	3.8	31
2914	Combination of High pH and an Antioxidant Improves Chemical Stability of Two-Dimensional Transition-Metal Carbides and Carbonitrides (MXenes) in Aqueous Colloidal Solutions. Inorganic Chemistry, 2022, 61, 9877-9887.	1.9	23
2915	MXenes for magnesium-based hydrides: A review. Applied Materials Today, 2022, 29, 101570.	2.3	8
2916	Intercalation Effects on the Electrochemical Properties of Ti ₃ C ₂ T _{<i>x</i>>/sub> MXene Nanosheets for High-Performance Supercapacitors. ACS Applied Nano Materials, 2022, 5, 8794-8803.}	2.4	18
2917	MXene-based nanocomposites for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00462.	1.7	7
2918	Insights into MXenes-based electrocatalysts for oxygen reduction. Energy, 2022, 255, 124465.	4.5	15
2919	POMCPs with Novel Two Waterâ€Assisted Proton Channels Accommodated by MXenes for Asymmetric Supercapacitors. Small, 2022, 18, .	5.2	13
2920	Flexible MXeneâ€Based Composite Films: Synthesis, Modification, and Applications as Electrodes of Supercapacitors. Small, 2022, 18, .	5.2	41

#	Article	IF	CITATIONS
2921	Electrostatic Selfâ€Assembly of <scp>Ti₃C₂T_x MXene</scp> /Cellulose Nanofiber Composite Films for Wearable Supercapacitor and Joule Heater. Energy and Environmental Materials, 2023, 6, .	7.3	10
2922	Comparative study on fabrication and energy storage performance of <scp> Ti ₃ C ₂ Tx MXene </scp> by using hydrofluoric acid and in situ forming of hydrofluoric acidâ€based approaches. International Journal of Energy Research, 2022, 46, 15559-15570.	2.2	2
2923	Tunable Infrared Sensing Properties of MXenes Enabled by Intercalants. Advanced Optical Materials, 2022, 10, .	3.6	8
2924	Plasmon spectroscopy for the determination of Ti ₃ C ₂ T _x MXene few layer stacks architecture. 2D Materials, 2022, 9, 035017.	2.0	2
2925	Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Composites Science and Technology, 2022, 227, 109602.	3.8	25
2926	High-efficiency ultraviolet shielding and high transparency of Ti3C2T MXene/poly(vinyl alcohol) nanocomposite films. Composites Communications, 2022, 33, 101235.	3.3	14
2927	MXenes for electrocatalysis applications: Modification and hybridization. Chinese Journal of Catalysis, 2022, 43, 2057-2090.	6.9	76
2928	Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Composites Part B: Engineering, 2022, 242, 110068.	5.9	18
2929	Remove the –F Terminal Groups on Ti3C2Tx by Reaction with Sodium Metal to Enhance Pseudocapacitance. Energy Storage Materials, 2022, 50, 802-809.	9.5	14
2930	Microwave-assisted rapid MAX phase etching and delamination: A paradigm shift in MXene synthesis. Materials Chemistry and Physics, 2022, 288, 126429.	2.0	26
2931	MXene-mediated electron transfer in Cu(II)/PMS process: From Cu(III) to Cu(I). Separation and Purification Technology, 2022, 297, 121428.	3.9	13
2932	MSSe-N2CO2 (MÂ=ÂMo, W and NÂ=ÂZr, Hf) van der Waals heterostructures; A first principles study. Chemical Physics, 2022, 561, 111607.	0.9	1
2933	Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated. Applied Catalysis B: Environmental, 2022, 315, 121606.	10.8	46
2934	Modulating the electronic structures and potential applications of Zr2CO2/MSe2 (MÂ=ÂMo, W) heterostructures by different stacking modes: A density functional theory calculation. Applied Surface Science, 2022, 599, 154014.	3.1	9
2935	Steering interfacial charge kinetics: Synergizing cocatalyst roles of Ti3C2M (MXene) and NCDs for superior photocatalytic performance over TiO2. Applied Surface Science, 2022, 599, 154001.	3.1	17
2936	Bio-inspired, bimetal ZIF-derived hollow carbon/MXene microstructure aim for superior microwave absorption. Journal of Colloid and Interface Science, 2022, 625, 317-327.	5.0	24
2937	Tetra germanium nonaselenide enwrapped with reduced graphene oxide and functionalized carbon nanotubes (Ge ₄ Se ₉ /RGO/FCNTs) hybrids for improved energy storage performances. Dalton Transactions, 0, , .	1.6	4
2938	Temperature-dependent swelling transitions in MXene Ti ₃ C ₂ T _{<i>x</i>) Sub>. Nanoscale, 2022, 14, 10940-10949.}	2.8	5

#	Article	IF	CITATIONS
2939	Enhanced ion transport in nanochannels of MXenes by Mg ²⁺ pre-intercalation. Physical Chemistry Chemical Physics, 2022, 24, 18824-18829.	1.3	3
2940	Surface potential-determined performance of Ti ₃ C ₂ T ₂ (T = O, F,) Tj ETQq1 sodium ion batteries. Nanoscale, 2022, 14, 10549-10558.	1 0.78431 2.8	L4 rgBT /O 9
2941	Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Advances, 2022, 12, 19590-19610.	1.7	35
2942	Recent progress in environmental remediation, colloidal behavior and biological effects of MXene: a review. Environmental Science: Nano, 2022, 9, 3168-3205.	2.2	6
2943	Rational Design of Conductive Mxenes-Based "Interpenetrating―Networks by Sn and Sn4p3 Nanoparticles for Durable Sodium-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
2944	Hydrophobic Ti3c2tx/Pu Sponge Prepared from Commercial Amphiphilic Pu Sponge for Oil/Water Separation with Ultrahigh Flux. SSRN Electronic Journal, 0, , .	0.4	0
2945	Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 15370-15389.	5.2	19
2946	Microwave-assisted rapid synthesis of titanium phosphate free phosphorus doped Ti ₃ C ₂ MXene with boosted pseudocapacitance. Journal of Materials Chemistry A, 2022, 10, 15794-15810.	5.2	24
2947	Two-dimensional carbide/nitride (MXene) materials in thermal catalysis. Journal of Materials Chemistry A, 2022, 10, 19444-19465.	5.2	25
2948	Enhanced photocatalytic activities of a hierarchical ZnO/V ₂ C MXene hybrid with a close coupling heterojunction for the degradation of methyl orange, phenol and methylene blue dye. New Journal of Chemistry, 2022, 46, 14793-14804.	1.4	3
2949	Simultaneous Regulation of Li-Ion Intercalation and Oxygen Termination Decoration on Ti3c2tx Mxene Toward Enhanced Oxygen Electrocatalysis for Li-O2 Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2950	MXene-Integrated Metal Oxide Transparent Photovoltaics and Self-Powered Photodetectors. ACS Applied Energy Materials, 2022, 5, 7134-7143.	2.5	27
2951	Highâ€Barrierâ€Height Ti ₃ C ₂ T <i>_x</i> /Si Microstructure Schottky Junctionâ€Based Selfâ€Powered Photodetectors for Photoplethysmographic Monitoring. Advanced Materials Technologies, 2022, 7, .	3.0	15
2952	Paper-like Polyphenylene Sulfide/Aramid Fiber Electrode with Excellent Areal Capacitance and Flame-Retardant Performance. Advanced Fiber Materials, 2022, 4, 1246-1255.	7.9	13
2953	MXenes for advanced separator in rechargeable batteries. Materials Today, 2022, 57, 146-179.	8.3	38
2954	Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon, 2022, 198, 179-187.	5.4	38
2955	High-Performance Flexible Supercapacitor Device Composed of a Hierarchical 2-D MXene-Ni(OH) ₂ Nanocomposite and Biomass-Derived Porous Carbon Electrodes. Energy & Fuels, 2022, 36, 8488-8499.	2.5	24
2956	Single-Atom Pt-Functionalized Ti ₃ C ₂ T _{<i>x</i>} Field-Effect Transistor for Volatile Organic Compound Gas Detection. ACS Sensors, 2022, 7, 1874-1882.	4.0	51

#	Article	IF	CITATIONS
2957	Ultrastrong and Hydrophobic Sandwich-Structured MXene-Based Composite Films for High-Efficiency Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2022, 14, 33817-33828.	4.0	22
2958	Flexible Ti ₃ C ₂ T <i>_x</i> /Carbon Nanotubes/CuS Film Electrodes Based on a Dual-Structural Design for High-Performance All-Solid-State Supercapacitors. ACS Applied Energy Materials, 2022, 5, 9158-9172.	2.5	54
2959	Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2022, 5, 704-754.	9.9	133
2960	Elucidating the Charge Storage Mechanism on Ti ₃ C ₂ MXene through In Situ Raman Spectroelectrochemistry. ChemElectroChem, 2022, 9, .	1.7	13
2961	Thermoelectric properties of 2D semiconducting Pt ₂ CO ₂ . Physica Scripta, 2022, 97, 085706.	1.2	5
2962	Negative photoresponse in Ti ₃ C ₂ T _{<i>x</i>} MXene monolayers. Nanophotonics, 2022, 11, 3953-3960.	2.9	10
2963	MXene-mediated regulation of local electric field surrounding polyoxometalate nanoparticles for improved lithium storage. Science China Materials, 2022, 65, 2958-2966.	3.5	8
2964	Role of ZnO in ZnO Nanoflake/Ti ₃ C ₂ MXene Composites in Photocatalytic and Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 9319-9333.	2.4	29
2965	Fluorescent aptasensor for detection of live foodborne pathogens based on multicolor perovskite-quantum-dot-encoded DNA probes and dual-stirring-bar-assisted signal amplification. Journal of Pharmaceutical Analysis, 2022, 12, 913-922.	2.4	11
2966	A Supercapacitor Electrode Synthesis Strategy: Proton Acidâ€Treated Ti ₃ C ₂ T _X Film with Singleâ€walled Carbon Nanotubes as a Reinforcement. ChemistrySelect, 2022, 7, .	0.7	2
2967	Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter, 2022, 5, 3417-3431.	5.0	34
2968	MXene as Emerging Low Dimensional Material in Modern Energy and Bio Application: A Review. Journal of Nano Research, 0, 74, 109-154.	0.8	0
2969	3D crumpled Ti3C2Tx-xerogel architectures for optimized lithium storage. Electrochimica Acta, 2022, 427, 140857.	2.6	4
2970	Vacancyâ€Rich MXeneâ€Immobilized Ni Single Atoms as a Highâ€Performance Electrocatalyst for the Hydrazine Oxidation Reaction. Advanced Materials, 2022, 34, .	11.1	57
2971	Billiard Catalysis at Ti3C2 MXene/MAX Heterostructure for Efficient Nitrogen Fixation. Applied Catalysis B: Environmental, 2022, 317, 121755.	10.8	17
2972	Application of MXenes in lithium-sulfur batteries. Science China Technological Sciences, 2022, 65, 2259-2273.	2.0	8
2973	Few-layered Ti3C2 MXene-coated Ti–6Al–4V composite powder for high-performance Ti matrix composite. Composites Communications, 2022, 33, 101238.	3.3	5
2974	First-principles study on the electronic, magnetic, and Li-ion mobility properties of N-doped Ti2CO2. Solid State Ionics, 2022, 383, 115983.	1.3	1

#	Article	IF	CITATIONS
2975	Stretchable multifunctional self-powered systems with Cu-EGaIn liquid metal electrodes. Nano Energy, 2022, 101, 107582.	8.2	30
2976	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	9.5	58
2977	Synthesis of ultrathin, nano-sized Ti3C2Tx with abundant =O and –OH terminals and high transparency as a cocatalyst: Enabling design of high-performance Titania-Ti3C2Tx hybrid photocatalysts. Journal of Physics and Chemistry of Solids, 2022, 170, 110875.	1.9	3
2978	Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor. Journal of Alloys and Compounds, 2022, 921, 166138.	2.8	4
2979	Solvent-assisted self-assembly to fabricate a ternary flexible free-standing polyaniline@MXene-CNTs electrode for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 921, 166062.	2.8	23
2981	MXenes in aqueous electrochemical energy systems. Journal of Solid State Electrochemistry, 2022, 26, 1777-1790.	1.2	5
2982	Metal Cation Pre-Intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene as Ultra-High Areal Capacitance Electrodes for Aqueous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 9373-9382.	2.5	20
2983	MXene based nanocomposite films. Exploration, 2022, 2, .	5.4	10
2984	Patternable Nanocellulose/Ti ₃ C ₂ T <i>_x</i> Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS Applied Materials & Interfaces, 2022, 14, 35040-35052.	4.0	35
2985	Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. Journal of Materials Science, 2022, 57, 13962-13973.	1.7	9
2986	MXenes <i>Ã la Carte</i> : Tailoring the Epitaxial Growth Alternating Nitrogen and Transition Metal Layers. ACS Nano, 2022, 16, 12541-12552.	7.3	6
2987	Ti3C2Tx MXene as Janus separators for redox-enhanced electrochemical capacitors with reduced self-discharge. Energy Storage Materials, 2022, 52, 29-39.	9.5	12
2988	MXene Film Prepared by Vacuum-Assisted Filtration: Properties and Applications. Crystals, 2022, 12, 1034.	1.0	15
2989	Electrochemical oxidation degradation of fungicide 5-chloro-2-methyl-4-isothiazoline-3-one (CMIT) in brine of reverse osmosis by a novel Ti/CB@MXene anode. Separation and Purification Technology, 2022, 299, 121763.	3.9	9
2990	Organic-inorganic hybrid engineering MXene derivatives for fire resistant epoxy resins with superior smoke suppression. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107109.	3.8	35
2991	Interface design for enhancing carbon dioxide electrolysis in a fluidized electrode of photoelectrochemical cell. Chemical Engineering Journal, 2022, 450, 138158.	6.6	2
2992	Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale, 2022, 14, 13018-13039.	2.8	22
2993	Monodispersed flower-like MXene@VO ₂ clusters for aqueous zinc ion batteries with superior rate performance. Nanoscale, 2022, 14, 11655-11663.	2.8	11

#	Article	IF	CITATIONS
2994	Confined Gold Single Atoms–MXene Heterostructure-Based Electrochemiluminescence Functional Material and Its Sensing Application. Analytical Chemistry, 2022, 94, 11016-11022.	3.2	18
2995	Compacted Nâ€Doped 3D Bicontinuous Nanoporous Graphene/Carbon Nanotubes@Niâ€Doped MnO ₂ Electrode for Ultrahigh Volumetric Performance Allâ€Solidâ€State Supercapacitors at Wide Temperature Range. Small, 2022, 18, .	5.2	8
2996	Obtaining Ambient‣table MXene Ti ₃ C ₂ T <i> _x </i> through Avoidance of Surface Oxidation Active Sites. Advanced Materials Interfaces, 2022, 9, 2200991.	1.9	1
2997	Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. Journal of Biomedical Materials Research - Part A, 2022, 110, 1840-1859.	2.1	21
2998	MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials. Nano Materials Science, 2023, 5, 39-52.	3.9	22
2999	MXeneâ€Germanium Schottky Heterostructures for Ultrafast Broadband Selfâ€Driven Photodetectors. Advanced Electronic Materials, 2022, 8, .	2.6	11
3000	MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules, 2022, 27, 4909.	1.7	46
3001	Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification. IScience, 2022, 25, 104825.	1.9	7
3002	A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sensors, 2022, 7, 2132-2163.	4.0	30
3004	Fundamentals of MXene synthesis. , 2022, 1, 601-614.		241
3005	Unconventional Photoconversion from Inâ€Plane 2D Heterostructures of MXene/Semiconductor. Solar Rrl, 0, , .	3.1	1
3006	Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS Omega, 2022, 7, 29161-29170.	1.6	13
3007	Synthesis of Largeâ€Area MXenes with High Yields through Powerâ€Focused Delamination Utilizing Vortex Kinetic Energy. Advanced Science, 2022, 9, .	5.6	25
3008	Hydrodeoxygenation of Palmitic Acid with Novel Two-Dimensional Ti ₃ C ₂ T <i>_x</i> MXene-Supported Ni Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 13275-13282.	1.8	3
3009	Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41, 3268-3300.	3.6	51
3010	Fluoride-free synthesis and long-term stabilization of MXenes. Journal of Materials Research, 2022, 37, 3988-3997.	1.2	6
3011	Platinum nickel alloy-MXene catalyst with inverse opal structure for enhanced hydrogen evolution in both acidic and alkaline solutions. Nano Research, 2023, 16, 195-201.	5.8	14
3012	Advances in theoretical calculations of MXenes as hydrogen and oxygen evolution reaction (water) Tj ETQq1 1 ().784314 r 1.3	gBŢ /Overlo

#	Article	IF	CITATIONS
3013	Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers, 2022, 14, 3433.	2.0	28
3014	MXenes Thin Films: From Fabrication to Their Applications. Molecules, 2022, 27, 4925.	1.7	16
3016	Wearable Fiber-Based Supercapacitors Enabled by Additive-Free Aqueous MXene Inks for Self-Powering Healthcare Sensors. Advanced Fiber Materials, 2022, 4, 1535-1544.	7.9	19
3017	MoS2-Graphene Composite Electrode for High Energy Hybrid Li-Ion Capacitors. , 0, , .		1
3018	Ultrasmall NiS2 Nanocrystals Embedded in Ordered Macroporous Graphenic Carbon Matrix for Efficiently Pseudocapacitive Sodium Storage. Transactions of Tianjin University, 2023, 29, 89-100.	3.3	4
3019	Recent advances in MXenes and their composites for wearable sensors. Journal of Physics Condensed Matter, 2022, 34, 453001.	0.7	4
3020	Application dependent stability of Ti3C2Tx MXene in PDLC-based smart-windows. Ceramics International, 2022, 48, 35092-35099.	2.3	9
3021	Abnormal actuating performance of MXene/polyimide electrochemical actuator in neutral aqueous electrolytes. Journal of Materials Research, 2022, 37, 3998-4005.	1.2	3
3022	Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. Small, 2022, 18, .	5.2	14
3023	Shear delamination of multilayer MXenes. Journal of Materials Research, 2022, 37, 4006-4016.	1.2	11
3024	Influence of morphology and architecture on properties and applications of MXene polymeric nanocomposites. Journal of Thermoplastic Composite Materials, 2023, 36, 4124-4161.	2.6	17
3025	Research Progress on MXene-Based Flexible Supercapacitors: A Review. Crystals, 2022, 12, 1099.	1.0	6
3026	Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. Nano-Micro Letters, 2022, 14, .	14.4	74
3027	In Situ Modulation of Al Traces and Interlayer Spacing in Ti ₃ C ₂ T _x â€A2 MXene: Supercapacitor with Ultrahigh Capacitance and Energy Density. Advanced Materials Interfaces, 2022, 9, .	1.9	4
3028	Rational engineering of morphology modulated Ti-ZnO thin films coupled monolayer Ti3C2 MXene for efficient visible light PEC water splitting activity. Journal of Electroanalytical Chemistry, 2022, 921, 116703.	1.9	5
3029	Three-dimensional Ti3C2 MXene@silicon@nitrogen-doped carbon foam for high performance self-standing lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2022, 921, 116664.	1.9	3
3030	Surface functionalization effect on physical properties and quantum capacitance of Ca2C MXenes. FlatChem, 2022, 35, 100414.	2.8	9
3031	Adsorption of ionic liquids forming species on Ti3C2T MXenes surfaces by first-principle calculations. FlatChem, 2022, 35, 100413.	2.8	6

#	Article	IF	CITATIONS
3032	Study on the effect of oxidation on the cycling stability of MXene for capacitive deionization. Chemical Physics Letters, 2022, 805, 139948.	1.2	6
3033	Biochar-derived material decorated by MXene/reduced graphene oxide using one-step hydrothermal treatment as high-performance supercapacitor electrodes. Carbon, 2022, 199, 224-232.	5.4	11
3034	Flexible quasi-solid-state supercapacitors based on Ti3C2-Polypyrrole nanocomposites. Electrochimica Acta, 2022, 429, 141051.	2.6	10
3035	A comprehensive review of MXene-based nanofluids: Preparation, stability, physical properties, and applications. Journal of Molecular Liquids, 2022, 365, 120037.	2.3	8
3036	Review on 2D MXene and graphene electrodes in capacitive deionization. Environmental Technology and Innovation, 2022, 28, 102858.	3.0	10
3037	Antibacterial, antifungal, and anticancer potential of two-dimensional Ti3C2Tx MXene. Materials Letters, 2022, 327, 133020.	1.3	7
3038	Evolution of MXene and its 2D heterostructure in electrochemical sensor applications. Coordination Chemistry Reviews, 2022, 471, 214755.	9.5	29
3039	Pulsed electric field controlled lithium extraction process by LMO/MXene composite electrode from brines. Chemical Engineering Journal, 2022, 450, 138454.	6.6	27
3040	Bioinspired nanocomposite films with graphene and MXene. Giant, 2022, 12, 100117.	2.5	7
3041	Synergic degradation Chloramphenicol in photo-electrocatalytic microbial fuel cell over Ni/MXene photocathode. Journal of Colloid and Interface Science, 2022, 628, 327-337.	5.0	16
3042	Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Applied Materials Today, 2022, 29, 101612.	2.3	13
3043	MXene nanosheet loaded gold nanocluster catalytic amplification–aptamer SERS quantitative assay platform for isocarbophos. Talanta, 2023, 251, 123771.	2.9	14
3044	Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors. Journal of Alloys and Compounds, 2022, 926, 166903.	2.8	28
3045	Interfacial design of silicon/carbon anodes for rechargeable batteries: A review. Journal of Energy Chemistry, 2023, 76, 576-600.	7.1	64
3046	MXenes as Emerging 2D Materials for Anticorrosive Application: Challenges and Opportunities. Advanced Materials Interfaces, 2022, 9, .	1.9	8
3047	Recent Advanced in MXene Research toward Biosensor Development. Critical Reviews in Analytical Chemistry, 0, , 1-18.	1.8	5
3048	MXenes and Other Two-Dimensional Materials for Membrane Gas Separation: Progress, Challenges, and Potential of MXene-Based Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 2309-2328.	1.8	15
3049	Efficient photothermal deicing employing superhydrophobic plasmonic MXene composites. Advanced Composites and Hybrid Materials, 2022, 5, 3035-3044.	9.9	40

		15	C
#	ARTICLE	IF	CITATIONS
3050	9453-9467.	2.4	5
3051	Rationally designed multifunctional Ti3C2 MXene@Graphene composite aerogel integrated with bimetallic selenides for enhanced supercapacitor performance and overall water splitting. Electrochimica Acta, 2022, 431, 141103.	2.6	47
3052	A hybrid 1D/2D coating strategy with MXene and CNT towards the interfacial reinforcement of carbon fiber/poly(ether ether ketone) composite. Composites Part B: Engineering, 2022, 246, 110278.	5.9	24
3053	Structural engineering of α-MnO2 cathode by Ag+ incorporation for high capacity aqueous zinc-ion batteries. Journal of Power Sources, 2022, 548, 232010.	4.0	12
3054	Zirconia-decorated V2CT MXene electrodes for supercapacitors. Journal of Energy Storage, 2022, 55, 105721.	3.9	17
3055	Electrophoretic deposition of Ti3C2Tx MXene nanosheet N-carbon cloth as binder-free supercapacitor electrode material. Journal of Alloys and Compounds, 2022, 927, 166934.	2.8	13
3056	Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g-C3N4 Schottky junction photocatalyst. Chemosphere, 2022, 308, 136461.	4.2	7
3057	Recent trends in MXenes hybrids as efficient 2D materials for photo- and electrocatalysis hydrogen production. Materials Today Chemistry, 2022, 26, 101108.	1.7	0
3058	Dispersing single-layered Ti3C2TX nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li-S batteries. Energy Storage Materials, 2022, 53, 32-41.	9.5	31
3059	Ti3C2@Pd nanocatalytic amplification-polypeptide SERS/RRS/Abs trimode biosensoring platformfor ultratrace trinitrotoluene. Biosensors and Bioelectronics, 2022, 217, 114743.	5.3	10
3060	The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor. Applied Surface Science, 2022, 606, 154817.	3.1	20
3061	Stable carbon encapsulated titanium carbide MXene aqueous ink for fabricating high-performance supercapacitors. Energy Storage Materials, 2022, 53, 51-61.	9.5	19
3062	Electrochemical performance of Ti3C2Tx MXenes obtained via ultrasound assisted LiF-HCl method. Materials Today Communications, 2022, 33, 104384.	0.9	2
3063	Hydrophobic Ti3C2Tx/PU sponge prepared from commercial amphiphilic PU sponge for oil/water separation with ultrahigh flux. Journal of Environmental Chemical Engineering, 2022, 10, 108542.	3.3	3
3064	Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydrate Polymers, 2022, 297, 120039.	5.1	17
3065	Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chemical Engineering Journal, 2023, 451, 138818.	6.6	5
3066	Adsorptive Removal of Sr (Ii) by Means of Multilayer Titanium Carbon Nitrogen (Ti3cntx) Mxene:Box-Behnken Modeling Design and Experimental Study. SSRN Electronic Journal, 0, , .	0.4	0
3067	Dual-Signal Electrochemical Biosensor for Neutrophil Gelatinase-Associated Lipocalin Based on Mxene and Cu-Metal Organic Framework/Single-Walled Carbon Nanohorns Heterogeneous Nanocomposites. SSRN Electronic Journal, 0, , .	0.4	0

		IF	CHATIONS
3068	Intercalation and surface modification of two-dimensional transition metal carbonitride Ti ₃ CNT _{<i>x</i>} for ultrafast supercapacitors. Journal of Materials Chemistry A, 2022, 10, 18812-18821.	5.2	9
3069	Label-Free, Rapid and Ratiometric Detection of Tetracyclines Via Guest Stacking-Induced Emission Triggered by Mxene-Derived Nanosensors. SSRN Electronic Journal, 0, , .	0.4	0
3070	MXenes: promising 2D materials for wound dressing applications – a perspective review. Materials Advances, 2022, 3, 7445-7462.	2.6	4
3071	Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization. Nanoscale, 2022, 14, 11923-11944.	2.8	28
3072	A high-performance supercapacitor based on free-standing V ₄ C ₃ T _{<i>X</i>} @NiO-reduced graphene oxide core–shell hierarchical heterostructured hydrogel electrodes. Sustainable Energy and Fuels, 2022, 6, 4938-4947.	2.5	3
3073	Oxidation-Resistant Vitamin C/Mxene Foam Via Surface Hydrogen Bonding for Stable Electromagnetic Interference Shielding in Air Ambient. SSRN Electronic Journal, 0, , .	0.4	0
3074	Titanium nitride as a promising sodium-ion battery anode: interface-confined preparation and electrochemical investigation. Dalton Transactions, 2022, 51, 12855-12865.	1.6	4
3075	2D MXene nanocomposites: electrochemical and biomedical applications. Environmental Science: Nano, 2022, 9, 4038-4068.	2.2	26
3076	Improved Hydrogen Storage Properties and Mechanisms of Lialh4 Doped with Ni/C Nanoparticles Anchored on Large-Size Ti3c2tx. SSRN Electronic Journal, 0, , .	0.4	0
3077	Controllable Preparation and Pore-Size-Dependent Microwave Absorption Performance of Three-Dimensional Ordered Macroporous Mxene Foam. SSRN Electronic Journal, 0, , .	0.4	0
3078	Structures and Mechanisms of the Two-Dimensional Multi-Layered Titanium Carbide Ti3c2tx Correlated with Properties During Hydrofluoric Acid Etching. SSRN Electronic Journal, 0, , .	0.4	0
3079	Quantum Capacitance Modulation of Mxenes by Metal Atoms Adsorption. SSRN Electronic Journal, 0, ,	0.4	0
3080	Structural Control with Angstrom-Level Precision: Two-Dimensional Titanium Carbide (Ti) Tj ETQq0 0 0 rgBT /Overl Cations Intercalation. SSRN Electronic Journal, 0, , .	ock 10 Tf 0.4	50 267 Td (0
3081	Understanding the effect of sodium polyphosphate on improving the chemical stability of Ti ₃ C ₂ T _{<i>z</i>} MXene in water. Journal of Materials Chemistry A, 2022, 10, 22016-22024.	5.2	6
3082	All-pseudocapacitive coordination towards flexible asymmetric fiber-shaped supercapacitors with ultrahigh energy and power density. Journal of Materials Chemistry A, 2022, 10, 21838-21847.	5.2	7
3083	Adsorptive Removal of Sr (Ii) by Means of Multilayer Titanium Carbon Nitrogen (Ti3cntx) Mxene:Box-Behnken Modeling Design and Experimental Study. SSRN Electronic Journal, 0, , .	0.4	0
3084	First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti ₃ C ₂ T _{<i>x</i>} free-standing MXene film. RSC Advances, 2022, 12, 24571-24578.	1.7	12
3085	MXene terminating groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl?. Journal of Energy Chemistry, 2023, 76, 90-104.	7.1	38

#	Article	IF	CITATIONS
3086	Robust, flexible, and stable CuNWs/MXene/ANFs hybrid film constructed by structural assemble strategy for efficient EMI shielding. Chemical Engineering Journal, 2023, 452, 139395.	6.6	23
3087	Effect of HF etching on titanium carbide (Ti3C2Tx) microstructure and its capacitive properties. Chemical Engineering Journal, 2023, 452, 139512.	6.6	15
3088	Energetic Stability and Interfacial Complexity of Ti ₃ C ₂ T _{<i>x</i>} MXenes Synthesized with HF/HCl and CoF ₂ /HCl as Etching Agents. ACS Applied Materials & Interfaces, 2022, 14, 41542-41554.	4.0	16
3089	Dynamics of Photoexcitations in Ti ₃ C ₂ T _z , Mo ₂ Ti ₂ C ₃ T _z , and Nb ₂ CT _z 2D MXenes. , 2022, , .		0
3090	Metal Carbideâ€Based Cocatalysts for Photocatalytic Solarâ€ŧoâ€Fuel Conversion. Small Structures, 2022, 3, .	6.9	17
3091	Electric Field Guided Fast and Oriented Assembly of MXene into Scalable Pristine Hydrogels for Customized Energy Storage and Water Evaporation Applications. Advanced Functional Materials, 2022, 32, .	7.8	14
3092	Molten salt dynamic sealing synthesis of MAX phases (Ti3AlC2, Ti3SiC2 et al.) powder in air. Ceramics International, 2023, 49, 168-178.	2.3	5
3093	Structural and dynamical characterization of water on Ti2C MXene surface: a molecular dynamics approach. Journal of the Iranian Chemical Society, 0, , .	1.2	0
3094	Construction of an MXene/Organic Superlattice for Flexible Thermoelectric Energy Conversion. ACS Applied Energy Materials, 2022, 5, 11351-11361.	2.5	8
3095	Recent Advances in 2Dâ€MXene Based Nanocomposites for Optoelectronics. Advanced Materials Interfaces, 2022, 9, .	1.9	20
3096	Influencing Factors on Synthesis and Properties of MXene: A Review. Processes, 2022, 10, 1744.	1.3	10
3097	MXene, silicene and germanene: preparation and energy storage applications. Materials Today Energy, 2022, 30, 101144.	2.5	10
3098	MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement. Sustainable Materials and Technologies, 2022, 33, e00490.	1.7	7
3099	Three dimensional Ti ₃ C ₂ T _x and rGO hybrid supported Pt catalyst for the high performance hydrogen evolution reaction. Fullerenes Nanotubes and Carbon Nanostructures, 2023, 31, 130-135.	1.0	1
3100	Anchoring Oxidized MXene Nanosheets on Porous Carbon Nanotube Sponge for Enhancing Ion Transport and Pseudocapacitive Performance. ACS Applied Materials & Interfaces, 2022, 14, 41997-42006.	4.0	6
3101	Recent Advances in Titanium Carbide MXene (Ti ₃ C ₂ T _{<i>x</i>}) Cathode Material for Lithium–Air Battery. ACS Applied Energy Materials, 2022, 5, 11933-11946.	2.5	9
3102	Recent advance in two-dimensional MXenes: New horizons in flexible batteries and supercapacitors technologies. Energy Storage Materials, 2022, 53, 783-826.	9.5	23
3103	Fast and Highâ€Yield Anhydrous Synthesis of Ti ₃ C ₂ T <i>_x</i> MXene with High Electrical Conductivity and Exceptional Mechanical Strength. Small, 2022, 18, .	5.2	6

#	Article	IF	CITATIONS
3104	Electrically conductive porous Ti ₃ C ₂ T _x MXene-polymer composites from high internal phase emulsions (HIPEs). 2D Materials, 2022, 9, 044004.	2.0	4
3105	Synthesis of MoS ₂ @Nâ€MXene/C Heterogeneous Nanosheets and its Enhanced Pseudocapacitance Effects for NIBs. ChemElectroChem, 2022, 9, .	1.7	1
3106	Computational Studies on the Electrochemical Performance of Doped and Substituted Ti ₃ C ₂ T _x (T = O,OH) MXene. Journal of the Electrochemical Society, 2022, 169, 090525.	1.3	2
3107	Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. Chemical Record, 2022, 22, .	2.9	16
3108	Mechanically Induced Nanoscale Architecture Endows a Titanium Carbide MXene Electrode with Integrated High Areal and Volumetric Capacitance. Advanced Materials, 2022, 34, .	11.1	15
3109	Ultrahigh Energy and Power Densities of d-MXene-Based Symmetric Supercapacitors. Nanomaterials, 2022, 12, 3294.	1.9	4
3110	Research Progress on Two-Dimensional Layered MXene/Elastomer Nanocomposites. Polymers, 2022, 14, 4094.	2.0	8
3111	Improved hydrogen storage properties and mechanisms of LiAlH4 doped with Ni/C nanoparticles anchored on large-size Ti3C2Tx. Journal of Alloys and Compounds, 2023, 931, 167353.	2.8	9
3114	Facile Ionization of the Nanochannels of Lamellar Membranes for Stable Ionic Liquid Immobilization and Efficient CO ₂ Separation. ACS Nano, 2022, 16, 14379-14389.	7.3	15
3115	Large Area and Highâ€Efficiency MXene–Silicon Solar Cells by Organic Enhanced Dispersity and Work Function. Solar Rrl, 0, , 2200743.	3.1	1
3116	Ultra‣table Titanium Carbide MXene Functionalized with Heterocyclic Aromatic Amines. Advanced Functional Materials, 2022, 32, .	7.8	9
3117	Ti-based MXenes for Energy Storage Applications: Structure, Properties, Processing Parameters and Stability. ECS Journal of Solid State Science and Technology, 2022, 11, 093008.	0.9	7
3118	Synthesis of MXene and design the high-performance energy harvesting devices with multifunctional applications. Ceramics International, 2023, 49, 1710-1719.	2.3	12
3119	Advanced Ti ₃ C ₂ T _x MXeneâ€modified cement nanocomposites toward high efficiency electromagnetic functional materials for green buildings. International Journal of Applied Ceramic Technology, 2023, 20, 251-260.	1.1	2
3120	Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. Progress in Solid State Chemistry, 2022, 68, 100370.	3.9	9
3121	A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano, 2022, 16, 13370-13429.	7.3	142
3122	Double reaction initiated self-assembly process fabricated hard carbon with high power capability for lithium ion capacitor anodes. Applied Surface Science, 2023, 609, 155083.	3.1	6
3123	Mixed-dimensional V2CTx/Ti3C2Tx composite interlayer to boost electrochemical performance of Li-S batteries. Frontiers in Chemistry, 0, 10, .	1.8	0

ARTICLE IF CITATIONS Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes. 3124 2.0 8 Frontiers in Bioengineering and Biotechnology, 0, 10, . Nonlinear optical limiting property of the carboxyl-functionalized Ti₃C₂ 1.2 MXene nanosheets. Journal of Chemical Physics, 0, , . Molten salts for rechargeable batteries. Materials Today, 2022, 60, 128-157. 3126 8.3 20 Ti–Cl bonds decorated Ti₂NT _x MXene towards high-performance lithium-ion 3127 2.0 batteries. 2D Materials, 2023, 10, 014001. Removing roadblocks and opening new opportunities for MXenes. Ceramics International, 2023, 49, 3128 2.3 8 24112-24122. MXene (Ti3T2CX)-reinforced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal. Chemical Engineering Research and Design, 2022, 168, 275-284. 3129 Flexible solid-state supercapacitor integrated by methanesulfonic acid/polyvinyl acetate hydrogel and 3130 9.5 22 Ti3C2T. Energy Storage Materials, 2023, 54, 164-171. Covalent functionalization of MXenes for tribological purposes - a critical review. Advances in 3131 7.0 28 Colloid and Interface Science, 2022, 309, 102792. Nâ€doped oxygen vacancyâ€rich <scp> NiCo ₂ O ₄ </scp> nanoarrays for 3132 supercapacitor and nonâ€enzymatic glucose sensing. International Journal of Energy Research, 2022, 46, 2.2 3 24501-24515. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Materials, 2022, 53, 827-872. Solar driven photocatalytic dye degradation through the novel Ti2C– ZnCo2O4MXenes 3134 4 1.7 nanocomposite. Optical Materials, 2022, 133, 113034. State-of-the-art progresses for Ti3C2Tx MXene reinforced polymer composites in corrosion and 29 tribology aspect's. Advances in Colloid and Interface Science, 2022, 309, 102790. Two dimensional (2D) MXenes as an emerging class of materials for antimicrobial applications: 3136 3.3 6 properties and mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 108663. Amino-functionalized 3D crosslinked Ti3C2Tx nanosheets for highly efficient UO22+ and ReO4â^٬ immobilization simultaneously from aqueous solutions. Separation and Purification Technology, 2022, 303, 122216. Electrostatic self-assembly of MXene and carbon nanotube@MnO₂ multilevel hybrids for 3138 achieving fast charge storage kinetics in aqueous asymmetric supercapacitors. Journal of Materials 5.24 Chemistry A, 2022, 10, 23886-23895. Headway towards contemporary 2D MXene-based hybrid electrodes for alkali-ion batteries. Energy 1.4 Advances, 2022, 1, 950-979. Max phases and mxenes. , 2023, , 278-289. 3140 0 Ultrathin, flexible, and high-strength polypyrrole/Ti₃C₂T_{<i>x</i>} 3141 film for wide-band gigahertz and terahertz electromagnetic interference shielding. Journal of 5.2 Materials Chemistry A, 2022, 10, 23570-23579.

#	Article	IF	CITATIONS
3142	Facile preparation of a MXene–graphene oxide membrane and its voltage-gated ion transport behavior. Physical Chemistry Chemical Physics, 2022, 24, 27157-27162.	1.3	3
3143	Energy Materials: Fundamentals to Advanced Applications. , 2022, , 1-42.		Ο
3144	Scalable and sustainable production of Ti ₃ C ₂ T _{<i>z</i>} MXene and fluorine recovery from wastewater through cryolite precipitation. RSC Advances, 2022, 12, 30846-30850.	1.7	1
3145	Facile Synthesis of NiCo2O4 Nanowire Arrays/Few-Layered Ti3C2-MXene Composite as Binder-Free Electrode for High-Performance Supercapacitors. Molecules, 2022, 27, 6452.	1.7	6
3146	Effect of pinholes in Nb4C3 MXene sheets on its electrochemical behavior in aqueous electrolytes. Electrochemistry Communications, 2022, 142, 107380.	2.3	10
3147	МÐÐ¥ PHASE (MXENE) IN POLYMER MATERIALS. Polymer Journal, 2022, 44, 165-181.	0.3	Ο
3148	High-Capacity and Long-Lived Silicon Anodes Enabled by Three-Dimensional Porous Conductive Network Design and Surface Reconstruction. ACS Applied Energy Materials, 2022, 5, 13877-13886.	2.5	9
3149	MXene-based flexible sensors: A review. Frontiers in Sensors, 0, 3, .	1.7	11
3150	Ti3C2 MXene Membranes for Gas Separation: Influence of Heat Treatment Conditions on D-Spacing and Surface Functionalization. Membranes, 2022, 12, 1025.	1.4	11
3151	3D Sodiophilic Ti ₃ C ₂ MXene@g-C ₃ N ₄ Hetero-Interphase Raises the Stability of Sodium Metal Anodes. ACS Nano, 2022, 16, 17197-17209.	7.3	26
3152	3D Ti ₃ C ₂ T _{<i>x</i>} MXene–Matrigel with Electroacoustic Stimulation to Promote the Growth of Spiral Ganglion Neurons. ACS Nano, 2022, 16, 16744-16756.	7.3	21
3153	Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion. ACS Omega, 2022, 7, 39498-39519.	1.6	16
3154	Correlating electronic properties with M-site composition in solid solution Ti _y Nb ₂₋ _y CT _x MXenes. 2D Materials, 2023, 10, 014011.	2.0	3
3155	Flexible Carbon Dotsâ€Intercalated MXene Film Electrode with Outstanding Volumetric Performance for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	49
3156	Recent Progress of Electrode Architecture for MXene/MoS2 Supercapacitor: Preparation Methods and Characterizations. Micromachines, 2022, 13, 1837.	1.4	12
3157	Effects of Ti3C2T size on mechanical properties of Ti3C2T /ZK61 alloys. Ceramics International, 2023, 49, 5446-5455.	2.3	4
3158	MXene-coated flexible PVDF membrane as wearable strain sensor. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	3
3159	Highly conductive MXene binder enabling Ge anode for stable sodium storage. Applied Physics Letters, 2022, 121, .	1.5	3

#	Article	IF	CITATIONS
3160	MXene/Ferrite Magnetic Nanocomposites for Electrochemical Supercapacitor Applications. Micromachines, 2022, 13, 1792.	1.4	3
3161	Advances in Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXenes and Their Metal–Organic Framework (MOF)-Based Nanotextures for Solar Energy Applications: A Review. ACS Omega, 2022, 7, 38158-38192.	1.6	23
3162	Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry, 2022, 14, 2232.	1.1	23
3163	The crystallographic structure and properties of novel quaternary nanolaminated rare-earth-Cr-based i-MAX phases. Acta Materialia, 2023, 242, 118479.	3.8	8
3164	Two-dimensional photonic MXene nanomedicine. Nanophotonics, 2022, 11, 4995-5017.	2.9	5
3165	Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines, 2022, 13, 1773.	1.4	11
3166	New Horizons for MXenes in Biosensing Applications. Biosensors, 2022, 12, 820.	2.3	20
3167	Pseudocapacitance of Vanadium Carbide MXenes in Basic and Acidic Aqueous Electrolytes. ACS Energy Letters, 2022, 7, 3864-3870.	8.8	16
3168	3D Porous Compact 1D/2D Fe ₂ O ₃ /MXene Composite Aerogel Film Electrodes for Allâ€Solidâ€State Supercapacitors. Small, 2022, 18, .	5.2	20
3169	Fabrication Strategy of MXenes through Ionic-Liquid-Based Microemulsions toward Supercapacitor Electrodes. Langmuir, 0, , .	1.6	3
3170	Electrostatics and Chemistry Combination Divalent Cobalt Ions and Alkali-Treated MXene for High-Performance Lithium-Ion Batteries. Energy & Fuels, 2022, 36, 13266-13277.	2.5	4
3171	Ultrathin <i>Ti₃C₂T_x</i> nanosheets modified separators for lithium–sulphur batteries. Canadian Journal of Chemical Engineering, 2023, 101, 3719-3732.	0.9	2
3172	Modular Assembly of MXene Frameworks for Noninvasive Disease Diagnosis via Urinary Volatiles. ACS Nano, 2022, 16, 17376-17388.	7.3	20
3173	Highly efficient photocatalytic overall water splitting in two-dimensional van der Waals MoS ₂ /Hf ₂ CO ₂ heterostructure. Journal Physics D: Applied Physics, 2023, 56, 035501.	1.3	5
3174	Advanced Two-Dimensional Materials for Green Hydrogen Generation: Strategies toward Corrosion Resistance Seawater Electrolysis─Review and Future Perspectives. Energy & Fuels, 2022, 36, 13417-13450.	2.5	18
3175	Jujube Shell Based-Porous Carbon Composites Double-Doped by MnO2 and Ti3C2Tx: The Effect of Double Pseudocapacitive Doping on Electrochemical Properties. Materials, 2022, 15, 7532.	1.3	0
3176	Emergence of MXene and MXene–Polymer Hybrid Membranes as Future―Environmental Remediation Strategies. Advanced Science, 2022, 9, .	5.6	70
3177	Recent progress in two dimensional Mxenes for photocatalysis: a critical review. 2D Materials, 2023, 10, 012001.	2.0	8

#	Article	IF	CITATIONS
3178	Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. Journal of Industrial and Engineering Chemistry, 2023, 117, 38-53.	2.9	8
3179	Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries. Nano Materials Science, 2022, , .	3.9	12
3180	Facile preparation of Ti3C2Tx sheets by selectively etching in a H2SO4/H2O2 mixture. Frontiers in Chemistry, 0, 10, .	1.8	1
3181	Importance of Nuclear Quantum Effects on Aqueous Electrolyte Transport under Confinement in Ti ₃ C ₂ MXenes. Journal of Chemical Theory and Computation, 2022, 18, 6920-6931.	2.3	3
3182	Recent progress in synthesis and applications of MXene-based nanomaterials (MBNs) for (bio)sensing of microbial toxins, pathogenic bacteria in food matrices. Microchemical Journal, 2022, 183, 108121.	2.3	6
3183	A bionic solar-driven interfacial evaporation system with a photothermal-photocatalytic hydrogel for VOC removal during solar distillation. Water Research, 2022, 226, 119276.	5.3	24
3184	Thermal insulating walls based on Ti3C2TX as energy storage panels for future smart house. Chemical Engineering Journal, 2023, 454, 140114.	6.6	4
3185	MXenes: Advances in the synthesis and application in supercapacitors and batteries. Journal of Materials Research, 2022, 37, 3865-3889.	1.2	4
3186	MXene Nanosheet/Organics Superlattice for Flexible Thermoelectrics. ACS Applied Nano Materials, 2022, 5, 16872-16883.	2.4	5
3187	Organic quaternary phosphonium salts intercalated MXene towards controllable amphiphilicity and dispersions. Inorganic Chemistry Communication, 2022, 146, 110166.	1.8	2
3188	Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. Chemosphere, 2023, 311, 137056.	4.2	37
3189	Enhanced Supercapacitive Properties of Mixed Oxide Nanotubes Grown by Anodization of Ti–Fe Alloys. Energy Technology, 2022, 10, .	1.8	1
3190	Regenerating MXene by a Facile Chemical Treatment Method. ACS Applied Materials & Interfaces, 2022, 14, 51487-51495.	4.0	4
3191	Advances in 2D MXenes-based materials for water purification and disinfection: Synthesis approaches and photocatalytic mechanistic pathways. Journal of Environmental Management, 2022, 324, 116387.	3.8	22
3192	Synergistically engineered 2D MXenes for metal-ion/Li–S batteries: Progress and outlook. Materials Today Advances, 2022, 16, 100303.	2.5	4
3193	MXenes: An exotic material for hybrid supercapacitors and rechargeable batteries. Journal of Energy Storage, 2022, 56, 105914.	3.9	10
3194	Alkanolamine intercalation assisted liquid phase exfoliation of titanium carbide MXene nanosheets for highly efficient photocatalytic CO2 reduction. Journal of Molecular Liquids, 2022, 367, 120578.	2.3	6
3195	Room-temperature in situ synthesis of MOF@MXene membrane for efficient hydrogen purification. Journal of Membrane Science, 2022, 664, 121097.	4.1	23

#	Article	IF	CITATIONS
3196	Role of divalent metal ions in the function and application of hydrogels. Progress in Polymer Science, 2022, 135, 101622.	11.8	26
3197	Recent advances in MXenes: new horizons in biomedical technologies. Materials Today Chemistry, 2022, 26, 101205.	1.7	5
3198	Investigation of interfacial interaction of graphene oxide and Ti3C2Tx (MXene) via atomic force microscopy. Applied Surface Science, 2023, 609, 155303.	3.1	4
3199	A comprehensive review of hydrogen generation by water splitting using 2D nanomaterials: Photo vs electro-catalysis. Fuel, 2023, 332, 125905.	3.4	38
3200	Interfacial properties of polyethylene/Ti3C2Tx mxene nanocomposites investigated by first-principles calculations. Applied Surface Science, 2023, 609, 155344.	3.1	7
3201	Aging of 2D MXene nanoparticles in air: An XPS and TEM study. Applied Surface Science, 2023, 610, 155351.	3.1	23
3202	Enhanced pseudocapacitive energy storage and thermal stability of Sn ²⁺ ion-intercalated molybdenum titanium carbide (Mo ₂ TiC ₂) MXene. RSC Advances, 2022, 12, 31923-31934.	1.7	10
3203	Recent Advances in the MXenes for Photocatalytic and Hydrogen Production Applications. , 2022, , 2219-2260.		0
3204	Dispersive two-dimensional MXene via potassium fulvic acid for mixed matrix membranes with enhanced organic solvent nanofiltration performance. Journal of Membrane Science, 2023, 666, 121168.	4.1	10
3205	Dual-Signal Electrochemical Biosensor for Neutrophil Gelatinase-Associated Lipocalin Based on MXene-Polyaniline and Cu-MOF/Single-Walled Carbon Nanohorn Nanostructures. ACS Applied Nano Materials, 2022, 5, 16774-16783.	2.4	19
3206	Influence of surface termination groups on electrochemical charge storage of MXene electrodes. 2D Materials, 2023, 10, 014012.	2.0	2
3208	Few-layered Ti3C2Tx MXene synthesized via water-free etching toward high-performance supercapacitors. Journal of Colloid and Interface Science, 2023, 632, 216-222.	5.0	11
3209	Removal of Interlayer Water of two Ti ₃ C ₂ T _x MXenes as a Versatile Tool for Controlling the Fermiâ€Level Pinningâ€Free Schottky Diodes with Nb:SrTiO ₃ . Advanced Functional Materials, 2023, 33, .	7.8	3
3210	MXene/nano-sized carbide-derived carbon composite with enhanced supercapacitive performance in acidic electrolyte. Ionics, 2023, 29, 411-418.	1.2	1
3211	Coupling W ₁₈ O ₄₉ /Ti ₃ C ₂ T <i>_x</i> MXene Pseudocapacitive Electrodes with Redox Electrolytes to Construct Highâ€Performance Asymmetric Supercapacitors. Small, 2022, 18, .	5.2	21
3212	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. , 2023, 5, .		26
3213	Two-dimensional transition metal carbides and nitrides (MXenes) based biosensing and molecular imaging. Nanophotonics, 2022, 11, 4977-4993.	2.9	4
3214	Three-Dimensional Macroporous TiO ₂ -MXene Nanostructure-Based Films for Flexible Freestanding Sulfur Cathodes. ACS Applied Nano Materials, 2022, 5, 16853-16861.	2.4	3

#	Article	IF	CITATIONS
3215	Two-dimensional titanium carbide MXene produced by ternary cations intercalation via structural control with angstrom-level precision. IScience, 2022, 25, 105562.	1.9	6
3216	Two-Dimensional Half-Metallic and Semiconducting Lanthanide-Based MXenes. ACS Omega, 2022, 7, 40929-40940.	1.6	2
3217	Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nature Communications, 2022, 13, .	5.8	36
3218	Emerging MXeneâ€Based Memristors for Inâ€Memory, Neuromorphic Computing, and Logic Operation. Advanced Functional Materials, 2023, 33, .	7.8	32
3219	Ultrafast Spectroscopy of Plasmons and Free Carriers in 2D MXenes. Advanced Materials, 2023, 35, .	11.1	13
3220	Bimetallic NiCo boride nanoparticles confined in a MXene network enable efficient ambient ammonia electrosynthesis. Journal of Energy Chemistry, 2023, 77, 469-478.	7.1	9
3221	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	3
3222	Hierarchical Asymmetric Complementary Bionic Structure for Highly Sensitive Pressure Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	6
3223	2D graphene oxide and MXene nanosheets at carbon fiber surfaces. Carbon, 2023, 203, 161-171.	5.4	8
3224	On the Use of Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene as a Negative Electrode Material for Lithium-Ion Batteries. ACS Omega, 2022, 7, 41696-41710.	1.6	5
3225	Emerging applications of MXenes for photodetection: Recent advances and future challenges. Materials Today, 2022, 61, 169-190.	8.3	8
3226	Identifying the surface properties of Ti3C2Tx MXene through transmission electron microscopy. Cell Reports Physical Science, 2022, 3, 101151.	2.8	4
3227	Insights into electronic and magnetic properties of MXenes: From a fundamental perspective. Sustainable Materials and Technologies, 2022, 34, e00516.	1.7	4
3228	Diverse structural constructions of graphene-based composites for supercapacitors and metal-ion batteries. FlatChem, 2022, 36, 100453.	2.8	6
3229	Facile synthesis of MXeneâ^'Polyvinyl alcohol hybrid material for robust flexible memristor. Journal of Solid State Chemistry, 2023, 318, 123731.	1.4	6
3230	Label-free, rapid and ratiometric detection of tetracyclines via guest stacking-induced emission triggered by MXene-derived nanosensors. Sensors and Actuators B: Chemical, 2023, 377, 133026.	4.0	5
3231	High Power―and Energyâ€density Supercapacitors through the Chlorine Respiration Mechanism. Angewandte Chemie, 0, , .	1.6	0
3232	High Power―and Energyâ€Density Supercapacitors through the Chlorine Respiration Mechanism. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15

#	Article	IF	CITATIONS
3233	Recent advances in 2D metal carbides and nitrides (MXenes): synthesis and biological application. Journal of Materials Chemistry B, 2023, 11, 702-715.	2.9	10
3234	Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 44, 146-159.	6.9	22
3235	A review related to MXene preparation and its sensor arrays of electronic skins. Analyst, The, 2023, 148, 435-453.	1.7	6
3236	Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. Materials Today Chemistry, 2023, 27, 101238.	1.7	8
3237	A review on the synthesis of MXenes and their lubrication performance and mechanisms. Tribology International, 2023, 179, 108170.	3.0	13
3238	Optimized electron/ion transport by constructing radially oriented channels in MXene hybrid fiber electrodes for high-performance supercapacitors at low temperatures. Journal of Materials Chemistry A, 2023, 11, 1742-1755.	5.2	16
3239	Merkel cell-inspired skin-like hybrid hydrogels for wearable health monitoring. Chemical Engineering Journal, 2023, 456, 140976.	6.6	21
3240	Ultrathin Ti3C2Tx MXene-based electrochemical transistor for highly sensitive determination of nitrite. Journal of Electroanalytical Chemistry, 2023, 928, 117012.	1.9	4
3241	Rhenium anchored Ti ₃ C ₂ T _{<i>x</i>} (MXene) nanosheets for electrocatalytic hydrogen production. Nanoscale Advances, 2023, 5, 349-355.	2.2	5
3242	Fabrication of RGO/CNTs/MXene 3D skeleton structure for enhancing thermal and tribological properties of epoxy composites. Tribology International, 2023, 179, 108172.	3.0	10
3243	Cetyltrimethylammonium bromide assisted intercalation and exfoliation for titanium carbide with enlarged interlayer spacing for high-performance supercapacitor. Journal of Power Sources, 2023, 556, 232433.	4.0	3
3244	Methionine aqueous solution loaded vermiculite/MXene aerogels for efficient CO2 storage via gas hydrate. Fuel, 2023, 334, 126833.	3.4	4
3245	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.	14.8	54
3246	Ti3C2Tx MXene@carbon dots hybrid microflowers as a binder-free electrode material toward high capacity capacitive deionization. Desalination, 2023, 548, 116267.	4.0	18
3247	Electrostatic self-assembly of citrus based carbon nanosheets and MXene: Flexible film electrodes and patterned interdigital electrodes for all-solid supercapacitors. Journal of Energy Storage, 2023, 58, 106392.	3.9	7
3248	A review of recent progress in 2D MXenes: Synthesis, properties, and applications. Diamond and Related Materials, 2023, 132, 109634.	1.8	8
3249	Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204, 17-25.	5.4	38
3250	MXene as emerging material for photocatalytic degradation of environmental pollutants. Coordination Chemistry Reviews, 2023, 477, 214965.	9.5	62

#	Article	IF	CITATIONS
3251	Next generation 2D materials for anodes in battery applications. Journal of Power Sources, 2023, 556, 232256.	4.0	15
3252	Synthesis and characterization MXene-Ferrite nanocomposites and its application for dying and shielding. Inorganic Chemistry Communication, 2023, 148, 110319.	1.8	16
3253	Fire-resistant MXene composite aerogels for effective oil/water separation. Journal of Environmental Chemical Engineering, 2023, 11, 109127.	3.3	7
3254	Ti3C2Tx MXene nanosheets enhance the tolerance of Torreya grandis to Pb stress. Journal of Hazardous Materials, 2023, 445, 130647.	6.5	7
3255	Synergistic effect of NaTi2(PO4)3 and MXene synthesized in situ for high-performance sodium-ion capacitors. Applied Surface Science, 2023, 612, 155960.	3.1	7
3256	One-step construction of Ti3C2Tx/MoS2 hierarchical 3D porous heterostructure for ultrahigh-rate supercapacitor. Journal of Colloid and Interface Science, 2023, 634, 460-468.	5.0	10
3257	Titanium carbide MXenes-initiated plasmonic metal-support interaction for effective photocatalysis on uncoated Ag nanoparticles. Applied Surface Science, 2023, 612, 155850.	3.1	6
3258	Investigating the local structure of Ti based MXene materials by temperature dependent X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2023, 25, 3011-3019.	1.3	3
3259	Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes. , 2022, 2, 100046.		3
3260	Dual (pH- and ROS-) Responsive Antibacterial MXene-Based Nanocarrier for Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 14925.	1.8	3
3261	Antimicrobial MXene-based conductive alginate hydrogels as flexible electronics. Chemical Engineering Journal, 2023, 455, 140546.	6.6	6
3262	PtNi Nanoparticles on V ₂ C MXene as Hydrazine Dehydrogenation Catalysts. ACS Applied Nano Materials, 2022, 5, 18357-18364.	2.4	1
3263	Structural, thermal and dielectric properties of <scp>2D</scp> layered <scp>Ti₃C₂T_x</scp> (<scp>MXene</scp>) filled poly (ethyleneâ€coâ€methyl acrylate) (<scp>EMA</scp>) nanocomposites. Journal of Applied Polymer Science, 2023, 140, .	1.3	4
3263 3264	Structural, thermal and dielectric properties of <scp>2D</scp> layered <scp>Ti₃C₂T_x</scp> (<scp>MXene</scp>) filled poly (ethyleneâ€coâ€methyl acrylate) (<scp>EMA</scp>) nanocomposites. Journal of Applied Polymer Science, 2023, 140, . Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346.	1.3 3.2	4
3263 3264 3265	 Structural, thermal and dielectric properties of <scp>2D</scp> layered <scp>Ti₃C₂T_x(scp> MXene</scp>) filled poly (ethyleneâ€coâ€methyl acrylate) (<scp>EMA</scp>) nanocomposites. Journal of Applied Polymer Science, 2023, 140, . Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metalâ€"Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346. Tuning the Surface Chemistry of MXene to Improve Energy Storage: Example of Nitrification by Salt Melt. Advanced Energy Materials, 2023, 13, . 	1.3 3.2 10.2	4 4 25
3263 3264 3265 3266	 Structural, thermal and dielectric properties of <scp>2D</scp> layered <scp>Ti₃C₂T_x</scp> (<scp>MXene</scp>) filled poly (ethyleneâ€coâ€methyl acrylate) (<scp>EMA</scp>) nanocomposites. Journal of Applied Polymer Science, 2023, 140, . Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metalâ€"Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346. Tuning the Surface Chemistry of MXene to Improve Energy Storage: Example of Nitrification by Salt Melt. Advanced Energy Materials, 2023, 13, . Applications of MXenes in human-like sensors and actuators. Nano Research, 2023, 16, 5767-5795. 	1.3 3.2 10.2 5.8	4 4 25 15
3263 3264 3265 3266 3266	Structural, thermal and dielectric properties of <scp>2D</scp> layered <scp>Ti₃C₂T_x</scp> (scp>MXene) filled poly (ethyleneâ€coâ€methyl acrylate) (<scp>EMA</scp>) nanocomposites. Journal of Applied Polymer Science, 2023, 140, . Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metalâ€"Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346. Tuning the Surface Chemistry of MXene to Improve Energy Storage: Example of Nitrification by Salt Melt. Advanced Energy Materials, 2023, 13, . Applications of MXenes in human-like sensors and actuators. Nano Research, 2023, 16, 5767-5795. Maximizing ion dynamics and electrochemical performance of ionic liquid-acetonitrile electrolyte in Ti ₃ C ₂ T _x MXene. 2D Materials, 2023, 10, 014014.	1.3 3.2 10.2 5.8 2.0	4 4 25 15 1

#	Article	IF	CITATIONS
3270	MXenes for Sulfurâ€Based Batteries. Advanced Energy Materials, 2023, 13, .	10.2	24
3271	Hollow Spheres of Ti ₃ C ₂ T _{<i>x</i>} with a Nanometer-Thick Wall for High-Performance Microwave Absorption. ACS Applied Nano Materials, 2022, 5, 18488-18499.	2.4	7
3272	Nanoparticles of Fe ₃ O ₄ Anchored on Ti ₃ C ₂ T _{<i>x</i>} MXene/rGO Aerogels as Hybrid Negative Electrodes for Advanced Supercapacitors. ACS Applied Nano Materials, 2023, 6, 482-491.	2.4	8
3273	Toward Smart Sensing by MXene. Small, 2023, 19, .	5.2	29
3274	TeNWs/Ti ₃ C ₂ T <i>_x</i> Nanohybrid-Based Flexible Pressure Sensors for Personal Safety Applications Using Morse Code. ACS Applied Nano Materials, 2022, 5, 18209-18219.	2.4	12
3275	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€lon Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
3276	Bioinspired Macrocyclic Molecule Supported Twoâ€Dimensional Lamellar Membrane with Robust Interlayer Structure for Highâ€Efficiency Nanofiltration. Advanced Science, 2023, 10, .	5.6	5
3277	Highly Enhanced Photocatalytic Hydrogen Production Performance of Heterostructured Ti ₃ C ₂ /TiO ₂ /rGO Composites. Langmuir, 2022, 38, 15579-15591.	1.6	14
3278	Synergistic adsorption of U(VI) from seawater by MXene and amidoxime mixed matrix membrane with high efficiency. Separation and Purification Technology, 2023, 309, 123024.	3.9	14
3279	Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials, 2022, 12, 4280.	1.9	35
3280	Piezoâ€Activated Atomicâ€Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasoundâ€Triggered Schottky Electric Field. Small, 2023, 19, .	5.2	17
3281	Origin and Regulation of Selfâ€Discharge in MXene Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	42
3282	Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. IScience, 2023, 26, 105824.	1.9	4
3283	Current Understanding of the Wettability of MXenes. Advanced Materials Interfaces, 2023, 10, .	1.9	9
3284	Perspectives of 2D MXene Tribology. Advanced Materials, 2023, 35, .	11.1	69
3285	Supercritical etching method for the large-scale manufacturing of MXenes. Nano Energy, 2023, 107, 108147.	8.2	22
3286	Highly Performant Electromagnetic Absorption at the X Band Based on Co@NCS/Ti ₃ C ₂ T _{<i>x</i>} Composites. ACS Applied Materials & Interfaces, 2022, 14, 56213-56225.	4.0	8
3287	Lewis acid molten salts prepared Ti3C2Cl2 MXenes assembling with g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. Ceramics International, 2023, 49, 13042-13049.	2.3	6
#	Article	IF	CITATIONS
------	--	-----	-----------
3288	Nickel Supported on Multilayer Vanadium Carbide for Dry Reforming of Methane. ChemistrySelect, 2022, 7, .	0.7	8
3289	A Highly Reversible Aqueous Ammoniumâ€lon Battery based on αâ€MoO ₃ /Ti ₃ C ₂ T _{<i>z</i>} Anodes and (NH ₄) _{<i>x</i>} MnO ₂ /CNTs Cathodes. Batteries and Supercaps, 2023, 6	2.4	3
3290	Twoâ€Dimensional MXenes for Energy Storage: Computational and Experimental Approaches. ChemistrySelect, 2022, 7, .	0.7	4
3291	3D MXeneâ€Based Flexible Network for Highâ€Performance Pressure Sensor with a Wide Temperature Range. Advanced Science, 2023, 10, .	5.6	16
3292	Nanostructured Titanium Nitride and Its Composites as High-Performance Supercapacitor Electrode Material. Nanomaterials, 2023, 13, 105.	1.9	14
3293	Electrically Tunable MXene Nanomechanical Resonators Vibrating at Very High Frequencies. ACS Nano, 2022, 16, 20229-20237.	7.3	9
3294	Adsorption of Sr(II) in aqueous solution by multilayer titanium carbon nitrogen (Ti3CNTx) MXene: Box-Behnken modeling design and experimental study. Journal of Environmental Chemical Engineering, 2022, 10, 109019.	3.3	0
3295	ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials, 2022, 12, 4392.	1.9	6
3296	2D MXenes for Fire Retardancy and Fireâ€Warning Applications: Promises and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	70
3297	Vertical Arrangement of Ti ₂ CT _{<i>x</i>} MXene Nanosheets on Carbon Fibers for High-Performance and Flexible Zn-Ion Supercapacitors. ACS Applied Nano Materials, 2023, 6, 315-322.	2.4	6
3298	Recent Progress of MXene-Based Materials as Anodes in Sodium-Ion Batteries. Journal of Electronic Materials, 2023, 52, 847-863.	1.0	4
3299	Bioactive MXene Promoting Angiogenesis and Skeletal Muscle Regeneration through Regulating M2 Polarization and Oxidation Stress. Advanced Healthcare Materials, 2023, 12, .	3.9	12
3300	Dehydroxylation-assisted self-crosslinking of MXene-based pervaporation membranes for treating high-salinity water. Journal of Industrial and Engineering Chemistry, 2023, 119, 506-515.	2.9	5
3301	PET/ZnO@MXene-Based Flexible Fabrics with Dual Piezoelectric Functions of Compression and Tension. Sensors, 2023, 23, 91.	2.1	2
3302	Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zincâ€Ion Storage Capacity in Aqueous Zincâ€Ion Batteries. Advanced Science, 2023, 10, .	5.6	12
3303	Interfacial Engineering of Au@Nb ₂ CT _{<i>x</i>} -MXene Modulates the Growth Strain, Suppresses the Auger Recombination, and Enables an Open-Circuit Voltage of over 1.2 V in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 3961-3973.	4.0	5
3304	An MXene-doped PVA/PVP hydrogel-based strain sensor applicable in liquid environment. Smart Materials and Structures, 2023, 32, 025010.	1.8	5
3305	Four-armed host-defense peptidomimetics-augmented vanadium carbide MXene-based microneedle array for efficient photo-excited bacteria-killing. Chemical Engineering Journal, 2023, 456, 141121.	6.6	5

#	Article	IF	CITATIONS
3306	High Gravimetric Capacitance MXene Supercapacitor Electrode Based on Etched Ti ₃ C ₂ T _{<i>x</i>} by Chemical Etching. Advanced Engineering Materials, 2023, 25, .	1.6	1
3307	Carbon Allotropes and MXenes Composites as Superdurable Nanofillers for Polymer coatings: Emerging Materials. Materials Letters, 2023, , 133892.	1.3	1
3308	Recent Advances for the Synthesis and Applications of 2-Dimensional Ternary Layered Materials. Research, 2023, 6, .	2.8	8
3309	Vibrational properties of TiVC-based Mxenes by first-principles calculation and experiments. Materials Today Communications, 2023, 34, 105396.	0.9	0
3310	Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Metals, 2023, 42, 1249-1260.	3.6	12
3311	Ion-Selective Separation Using MXene-Based Membranes: A Review. , 2023, 5, 341-356.		25
3312	Enhanced Electromagnetic Shielding and Thermal Management Properties in MXene/Aramid Nanofiber Films Fabricated by Intermittent Filtration. ACS Applied Materials & Interfaces, 2023, 15, 4516-4526.	4.0	30
3313	MXene-based separators for redox-enhanced electric capacitors with a suppressed shuttle effect and self-discharge: the effect of MXene ageing. New Journal of Chemistry, 2023, 47, 3516-3523.	1.4	1
3314	MXene/AC Composite Membranes as an Electrode Material for Flexible Supercapacitors with Excellent Properties. Sugar Tech, 2023, 25, 982-994.	0.9	0
3315	A comparative overview of MXenes and metal oxides as cocatalysts in clean energy production through photocatalysis. Journal of Materials Chemistry A, 2023, 11, 12559-12592.	5.2	6
3316	Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Microâ€5upercapacitor. Advanced Energy Materials, 2023, 13, .	10.2	15
3317	Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics, 2023, 8, 35.	1.5	7
3318	Electrophoretic deposition of Ti3C2Tx MXene nanosheets onto high modulus carbon fiber enhances their composites interfacial properties. Materials Today Communications, 2023, 34, 105429.	0.9	3
3319	Selective Etching of Ti ₃ AlC ₂ MAX Phases Using Quaternary Ammonium Fluorides Directly Yields Ti ₃ C ₂ T <i>_z</i> MXene Nanosheets: Implications for Energy Storage. ACS Applied Nano Materials, 2023, 6, 1093-1105.	2.4	10
3320	Flexible two-dimensional MXene-based antennas. Nanoscale Horizons, 2023, 8, 309-319.	4.1	1
3321	Functionalized Ti ₃ C ₂ T _x Nanosheets Based Biosensor for Point-of-Care Detection of SARS-CoV-2 Antigen. , 2023, 1, 495-507.		4
3322	MXeneâ€Nanoflakesâ€Enabled Allâ€Optical Nonlinear Activation Function for Onâ€Chip Photonic Deep Neural Networks. Advanced Materials, 2023, 35, .	11.1	5
3323	MXenes Antibacterial Properties and Applications: A Review and Perspective. Small, 2023, 19, .	5.2	49

#	Article	IF	CITATIONS
3324	C/MoS2@Ti3C2Tx composite flexible films for high performance supercapacitors. Electrochimica Acta, 2023, 441, 141826.	2.6	2
3325	Flexible quasi-3D zinc ion microcapacitor based on V2O5-PANI cathode and MXene anode. Chemical Engineering Journal, 2023, 457, 141339.	6.6	21
3326	Structural, optical, electronic, elastic properties and population inversion of novel 2D carbides and nitrides MXene: A DFT study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116230.	1.7	5
3327	Polysulfide-inhibiting, thermotolerant and nonflammable separators enabled by DNA co-assembled CNT/MXene networks for stable high-safety Li–S batteries. Composites Part B: Engineering, 2023, 251, 110465.	5.9	10
3328	Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. Chemosphere, 2023, 316, 137704.	4.2	14
3329	Fabrication, microstructure and properties of Ti3C2Tx MXene nanosheets reinforced Cu composites. Journal of Materials Research and Technology, 2023, 23, 503-514.	2.6	2
3330	10-Molybdo-2-vanadophosphoric acid derived (V) MoS2 microflowers @ V2CTx MXene designed 3D@2D nanoarchitecture for high-performance aqueous supercapacitors. Journal of Energy Storage, 2023, 59, 106447.	3.9	8
3331	Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system. Nano Energy, 2023, 107, 108131.	8.2	21
3332	MXenes-based nanomaterials for biosensing and biomedicine. Coordination Chemistry Reviews, 2023, 479, 215002.	9.5	28
3333	MXene (Ti3C2Tx)/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors. Carbohydrate Polymers, 2023, 304, 120519.	5.1	18
3334	Influence of N-doped concentration on the electronic properties and quantum capacitance of Hf2CO2 MXene. Vacuum, 2023, 210, 111826.	1.6	7
3335	Interfacial impedance model and ion diffusion mechanism of MXene/NiCo-LDHs interstratification hybrid assembly electrode. Journal of Colloid and Interface Science, 2023, 635, 316-322.	5.0	4
3336	In Situ Synthesis of MXene with Tunable Morphology by Electrochemical Etching of MAX Phase Prepared in Molten Salt. Advanced Energy Materials, 2023, 13, .	10.2	18
3338	High-Tap-Density Sulfur Cathodes Made Beyond 400 °C for Lithium–Sulfur Cells with Balanced Gravimetric/Volumetric Energy Densities. ACS Energy Letters, 2023, 8, 772-779.	8.8	6
3339	Two-Dimensional Materials for Advancement of Fiber Laser Technologies. , 2023, , 177-213.		0
3340	Isolation of pseudocapacitive surface processes at monolayer MXene flakes reveals delocalized charging mechanism. Nature Communications, 2023, 14, .	5.8	17
3341	Advanced materials for smart devices. , 2023, , 457-485.		0
3342	Green and scalable electrochemical routes for costâ€effective mass production of MXenes for supercapacitor electrodes. , 2023, 5, .		12

#	Article	IF	CITATIONS
3343	Two-dimensional nanomaterial MXenes for efficient gas separation: a review. Nanoscale, 2023, 15, 4170-4194.	2.8	21
3344	Hydrofluoric Acid-Free Synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene Nanostructures for Energy Applications. ACS Applied Nano Materials, 2023, 6, 1985-1995.	2.4	4
3345	Recent developments of MXene-based catalysts for hydrogen production by water splitting. Green Chemistry, 2023, 25, 1749-1789.	4.6	24
3346	System design of large-area vertical photothermoelectric detectors based on carbon nanotube forests with MXene electrodes. Nanoscale Advances, 2023, 5, 1133-1140.	2.2	1
3347	MXene-Based Nanomaterials for Multifunctional Applications. Materials, 2023, 16, 1138.	1.3	25
3348	Highly Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene/Waterborne Polyurethane Membranes for High-Efficiency Terahertz Modulation with Low Insertion Loss. ACS Applied Materials & Interfaces, 2023, 15, 7592-7601.	4.0	6
3350	Carbon Nanostructure Embedded Novel Sensor Implementation for Detection of Aromatic Volatile Organic Compounds: An Organized Review. ACS Omega, 2023, 8, 4436-4452.	1.6	21
3351	Applications of MXene-based memristors in neuromorphic intelligence applications. Contemporary Physics, 0, , 1-19.	0.8	1
3352	Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	13
3353	Development of Electromagnetic-Wave-Shielding Polyvinylidene Fluoride–Ti3C2Tx MXene–Carbon Nanotube Composites by Improving Impedance Matching and Conductivity. Nanomaterials, 2023, 13, 417.	1.9	5
3354	Photosensitive ion channels in layered MXene membranes modified with plasmonic gold nanostars and cellulose nanofibers. Nature Communications, 2023, 14, .	5.8	18
3355	Porous Single Crystals at the Macroscale: From Growth to Application. Accounts of Chemical Research, 2023, 56, 374-384.	7.6	12
3356	Redox-Active Nitroxide Radicals Grafted onto MXene: Boosting Energy Storage via Improved Charge Transfer and Surface Capacitance. ACS Energy Letters, 2023, 8, 1096-1106.	8.8	11
3357	Role of Oxygen in the Ti ₃ AlC ₂ MAX Phase in the Oxide Formation and Conductivity of Ti ₃ C ₂ -Based MXene Nanosheets. ACS Applied Materials & Interfaces, 2023, 15, 8393-8405.	4.0	9
3358	Long-Term Stability Studies and Applications of Ti3C2Tx MXene. International Journal of Energy Research, 2023, 2023, 1-12.	2.2	2
3359	Super-elastic and mechanically durable MXene-based nanocomposite aerogels enabled by interfacial engineering with dual crosslinking strategy. Nano Research, 2023, 16, 8025-8035.	5.8	2
3360	Ti3C2Tx MXenes – An effective and long-storable oil lubricant additive. Tribology International, 2023, 180, 108273.	3.0	4
3361	Quantum capacitance modulation of MXenes by metal atoms adsorption. Applied Surface Science, 2023, 618, 156586.	3.1	10

#		IF	CITATIONS
π	Advanced growth of 2D MXene for electrochemical sensors. Environmental Research, 2023, 222,		CHAHONS
3362	115279.	3.7	25
3363	Effects of surface compositions and interlayer distance on electrochemical performance of Mo2CTx MXene as anode of Li-ion batteries. Journal of Physics and Chemistry of Solids, 2023, 176, 111238.	1.9	16
3364	CNT–MXene Ultralight Membranes: Fabrication, Surface Nano/Microstructure, 2D–3D Stacking Architecture, Ion-Transport Mechanism, and Potential Application as Interlayer for Li–O2 Batteries. Nanoscale, 0, , .	2.8	1
3365	Recent advances in the synthesis and electrocatalytic application of MXene materials. Chemical Communications, 2023, 59, 3968-3999.	2.2	15
3366	Recent Progress in Emerging Novel MXenes Based Materials and their Fascinating Sensing Applications. Small, 2023, 19, .	5.2	19
3367	Bioinspired MXeneâ€Based Piezoresistive Sensor with Twoâ€stage Enhancement for Motion Capture. Advanced Functional Materials, 2023, 33, .	7.8	34
3368	MXene Derivatives for Energy Storage and Conversions. Small Methods, 2023, 7, .	4.6	12
3369	High-performance multifunctional piezoresistive/piezoelectric pressure sensor with thermochromic function for wearable monitoring. Chemical Engineering Journal, 2023, 459, 141648.	6.6	15
3370	Synthesis of hierarchical structure MXene/PANI composite hybrid electrodes for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116354.	1.7	5
3371	Application of Two-Dimensional MXene materials in sensors. Materials and Design, 2023, 228, 111867.	3.3	14
3372	Rational design of flower-like MnO ₂ /Ti ₃ C ₂ T _x composite electrode for high performance supercapacitors. Nanotechnology, 2023, 34, 255602.	1.3	1
3373	Rational design of conductive MXenes-based networks by Sn and Sn4P3 nanoparticles for durable sodium-ion battery. Journal of Power Sources, 2023, 562, 232750.	4.0	5
3374	Preparation of Mo2CT MXene as co-catalyst for H2 production by etching of pure/mixed HBr solution. Diamond and Related Materials, 2023, 136, 109922.	1.8	8
3375	A theoretical study of 0D Ti2CO2/2D g-C3N4 Schottky-junction for photocatalytic hydrogen evolution. Applied Surface Science, 2023, 616, 156562.	3.1	7
3376	Recent progress of MXene-based membranes for high-performance and efficient gas separation. Diamond and Related Materials, 2023, 135, 109883.	1.8	6
3377	Giant piezoionic effect of ultrathin MXene nanosheets toward highly-sensitive sleep apnea diagnosis. Chemical Engineering Journal, 2023, 463, 142523.	6.6	7
3378	Gallium-doped MXene/cellulose nanofiber composite membranes with electro/photo thermal conversion property for high performance electromagnetic interference shielding. Chemical Engineering Journal, 2023, 464, 142565.	6.6	10
3379	Rolling flexible double-MXenes TiCT/VCT hybrid films for microsupercapacitors. Chemical Engineering Journal, 2023, 464, 142645.	6.6	1

#	Article	IF	CITATIONS
3380	Oriented Ti3C2Tx MXene-doped silk fibroin/hyaluronic acid hydrogels for sensitive compression strain monitoring with a wide resilience range and high cycling stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665, 131221.	2.3	2
3381	Tuning the pore size distribution of Ti3C2T porous film for high capacity supercapacitor electrode. Journal of Electroanalytical Chemistry, 2023, 936, 117358.	1.9	3
3382	A holistic review of MXenes for solar device applications: Synthesis, characterization, properties and stability. FlatChem, 2023, 39, 100493.	2.8	6
3383	Smart free-standing film force-assembled by Ti3C2Tx/CNC with high sensitivity to humidity and near-infrared light. European Polymer Journal, 2023, 189, 111891.	2.6	0
3384	Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination. Chemical Engineering Journal, 2023, 464, 142508.	6.6	31
3385	Preparation of high electromagnetic interference shielding and humidity responsivity composite film through modified Ti3C2Tx MXene cross-linking with sodium alginate. International Journal of Biological Macromolecules, 2023, 236, 123939.	3.6	2
3386	A review on battery technology for space application. Journal of Energy Storage, 2023, 61, 106792.	3.9	10
3387	MXenes: from past to future perspectives. Chemical Engineering Journal, 2023, 463, 142351.	6.6	14
3388	Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact. Renewable and Sustainable Energy Reviews, 2023, 178, 113238.	8.2	16
3389	All-MXenes zinc ion hybrid micro-supercapacitor with wide voltage window based on V2CTx cathode and Ti3C2Tx anode. Nano Energy, 2023, 111, 108383.	8.2	22
3390	MXene by regulating etching conditions enhanced UV resistance of SBS modified asphalt: Evaluating asphalt photo-oxidation and SBS degradation. Construction and Building Materials, 2023, 377, 131006.	3.2	4
3391	Effects of Ti3C2Tx MXene on structure, morphology, fluorescence and temperature sensitive properties of Eu3+ doped 8YSZ powder. Journal of Luminescence, 2023, 258, 119815.	1.5	2
3392	Composite nanoarchitectonics with TiO2 nanocrystals and superior thin Ti3C2Tx nanosheets towards efficient NO removal. Environmental Research, 2023, 227, 115793.	3.7	5
3393	MXenes for perovskite solar cells: Progress and prospects. Journal of Energy Chemistry, 2023, 81, 443-461.	7.1	3
3394	Graphite-ring-stacked carbon nanotubes synthesized during the rescue of Ti3C2Tx MXene for dual-peak electromagnetic wave absorption. Journal of Alloys and Compounds, 2023, 945, 169342.	2.8	5
3395	Sunlight propelled two-dimensional nanorobots with enhanced mechanical damage of bacterial membrane. Water Research, 2023, 235, 119900.	5.3	3
3396	Advances in MXenes synthesis and MXenes derived electrocatalysts for oxygen electrode in metal-air batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116400.	1.7	5
3397	Ion transport phenomena in electrode materials. Chemical Physics Reviews, 2023, 4, 021302.	2.6	0

#	Article	IF	CITATIONS
3398	Recent advances and key opportunities on in-plane micro-supercapacitors: From functional microdevices to smart integrated microsystems. Journal of Energy Chemistry, 2023, 81, 410-431.	7.1	6
3399	Room-temperature prepared MXene foam via chemical foaming methods for high-capacity supercapacitors. Journal of Alloys and Compounds, 2023, 945, 169279.	2.8	4
3400	Fabrication of a SAPNI/I-Ti3C2Tx 3D structure hybrid for the enhancement of higher barrier and self-passivation coatings. Journal of Alloys and Compounds, 2023, 946, 169371.	2.8	3
3401	Oxygen vacancy-rich C/Ti3C2/(001)TiO2 hollow microspheres and the photocatalytic degradation of organic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131258.	2.3	2
3402	Rational design of tubular-like NiMoO4•xH2O microspheres and ZIF-67 derived Bi2S3/C for asymmetric supercapacitor. Journal of Energy Storage, 2023, 62, 106869.	3.9	6
3403	Two-dimensional transition metal carbide (Ti0.5V0.5)3C2Tx MXene as high performance electrode for flexible supercapacitor. Journal of Colloid and Interface Science, 2023, 639, 233-240.	5.0	11
3404	Two-dimensional MXene with multidimensional carbonaceous matrix: A platform for general-purpose functional materials. Progress in Materials Science, 2023, 135, 101105.	16.0	43
3405	In-situ growth of Cs2AgBiBr6 perovskite nanocrystals on Ti3C2Tx MXene nanosheets for enhanced photocatalytic activity. Applied Surface Science, 2023, 621, 156877.	3.1	6
3406	A novel strategy for high energy density supercapacitors: Formation of cyanuric acid between Ti3C2Tx (MXene) interlayer hybrid electrodes. Chemical Engineering Journal, 2023, 465, 142935.	6.6	5
3407	Constructing oxygen vacancy-rich MXene @Ce-MOF composites for enhanced energy storage and conversion. Journal of Colloid and Interface Science, 2023, 642, 235-245.	5.0	26
3408	Supercapacitive performance of a novel binary nanocomposite of metal chalcogenides for advanced hybrid supercapacitor. Journal of Energy Storage, 2023, 65, 107268.	3.9	6
3409	All-solid-state Ti3C2Tx neutral symmetric fiber supercapacitors with high energy density and wide temperature range. Journal of Colloid and Interface Science, 2023, 643, 92-101.	5.0	6
3410	Bifunctional electrocatalytic water splitting augmented by cobalt-nickel-ferrite NPs-supported fluoride-free MXene as a novel electrocatalyst. Fuel, 2023, 346, 128305.	3.4	20
3411	Advances in the synthesis and applications of 2D MXene-metal nanomaterials. Surfaces and Interfaces, 2023, 38, 102873.	1.5	3
3412	A state-of-art review on 2D material-boosted metal oxide nanoparticle electrodes: Supercapacitor applications. Journal of Energy Storage, 2023, 65, 107335.	3.9	27
3413	Insights into the impact of interlayer spacing on MXene-based electrodes for supercapacitors: A review. Journal of Energy Storage, 2023, 65, 107341.	3.9	11
3414	Recent advances of flexible MXene physical sensor to wearable electronics. Materials Today Communications, 2023, 35, 106014.	0.9	3
3415	Synergistic effect from Ni2+ ions with SnS for all solid-state type symmetric supercapacitor. Journal of Energy Storage, 2023, 63, 107040.	3.9	12

#	Article	IF	CITATIONS
3416	Bamboo-derived flake-layer hierarchically porous carbon coupling nano-Si@porous carbon for advanced high-performance Li-ion capacitor. Journal of Energy Storage, 2023, 63, 107044.	3.9	5
3417	Improved dielectric and mechanical properties in Ti3C2Tx MXene-MoS2/Methyl vinyl silicone rubber composites as flexible dielectric materials. Journal of Alloys and Compounds, 2023, 948, 169733.	2.8	4
3418	Electrochemical sensing platform constructed from cobalt(II) tetra-aminophthalocyanine and MXene (Ti3C2TX) composites for the detection of Pseudomonas aeruginosa biomarkers-Pyocyanin. Applied Surface Science, 2023, 622, 156889.	3.1	0
3419	Advancements in MXene-polymer composites for high-performance supercapacitor applications. Journal of Energy Storage, 2023, 63, 106942.	3.9	16
3420	Ultra-stable sandwich shaped flexible MXene/CNT@Ni films for high performance supercapacitor. Journal of Alloys and Compounds, 2023, 941, 168963.	2.8	14
3421	A novel nonvolatile memory device based on oxidized Ti3C2Tx MXene for neurocomputing application. Carbon, 2023, 205, 365-372.	5.4	6
3422	Patterned MXene-enabled switchable health monitoring and electromagnetic protection for architecture. Materials Today Physics, 2023, 31, 100988.	2.9	32
3423	Stretchable MXene based films towards achieving balanced electrical, mechanical and energy storage properties. Chemical Engineering Journal, 2023, 459, 141527.	6.6	7
3424	Vertical porous Ti3CNTx/rGO hybrid aerogels with enhanced capacitive performance. Chemical Engineering Journal, 2023, 459, 141528.	6.6	5
3425	Boosting Hydrogen Evolution in Neutral Medium by Accelerating Water Dissociation with Ru Clusters Loaded on Mo ₂ CTx MXene. Advanced Functional Materials, 2023, 33, .	7.8	20
3426	Elastic-plastic deformation and organization analysis for Al 7075 friction stir welding joints based on MXene/SWCNT sensor. Sensors and Actuators A: Physical, 2023, 352, 114203.	2.0	2
3427	2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects. Laser and Photonics Reviews, 2023, 17, .	4.4	10
3428	Ambient-stable polyethyleneimine functionalized Ti3C2T nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Materials Letters, 2023, 337, 133979.	1.3	74
3429	Mo ₂ CF ₂ /WS ₂ : Two-Dimensional Van Der Waals Heterostructure for Overall Water Splitting Photocatalyst from Five-Step Screening. Journal of Physical Chemistry Letters, 2023, 14, 1363-1370.	2.1	3
3430	MXene-based nanocomposite for electrocatalytic reduction of CO2: Experimental and theoretical results. FlatChem, 2023, 38, 100481.	2.8	4
3431	MXene polymeric nanoarchitectures mechanical, deformation, and failure mechanism: A review. Polymer-Plastics Technology and Materials, 2023, 62, 443-466.	0.6	4
3432	Grafting Behavior of Amine Ligands for Surface Modification of MXene. Langmuir, 2023, 39, 2358-2367.	1.6	4
3433	Surface and Interface Regulation of MXenes: Methods and Properties. Small Methods, 2023, 7, .	4.6	8

#	Article	IF	CITATIONS
3434	MXene: fundamentals to applications in electrochemical energy storage. , 2023, 18, .		15
3435	In Situ Growth of Ni-MOF Nanorods Array on Ti3C2Tx Nanosheets for Supercapacitive Electrodes. Nanomaterials, 2023, 13, 610.	1.9	7
3436	CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy Storage Materials, 2023, 57, 136-170.	9.5	24
3437	Core–shell mechanism of etching V2AlC MAX phase to V2CTz MXenes. Journal of Materials Research, 2023, 38, 1527-1542.	1.2	4
3438	Dielectric-electrolyte supercapacitors. Cell Reports Physical Science, 2023, 4, 101284.	2.8	2
3439	Electrochemical characterization of Ti3C2T MXene prepared via a molten salt etching route in an acetonitrile-based electrolyte. Electrochemistry Communications, 2023, 148, 107453.	2.3	4
3440	Ti3C2T MXene supported ZnO nanocomposites with highly efficient photocatalytic performance for degradation of VOCs. Diamond and Related Materials, 2023, 133, 109763.	1.8	6
3441	In-situ-foaming synthesis of cheese-like Fe3S4/Ti3C2T electrode material with both high energy and power density for Al/Zn-ion supercapacitors. Journal of Materials Research and Technology, 2023, 23, 3547-3556.	2.6	4
3442	Freeing Fluoride Termination of Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching for High-Performance Capacitive Deionization. ACS Applied Materials & Interfaces, 2023, 15, 9203-9211.	4.0	8
3443	Emerging trends towards MXene-based electrolytes for electrochemical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116355.	1.7	4
3444	Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness. Chemical Engineering Journal, 2023, 461, 141856.	6.6	5
3445	Assessing the Surface Chemistry of 2D Transition Metal Carbides (MXenes): A Combined Experimental/Theoretical ¹³ C Solid State NMR Approach. Journal of the American Chemical Society, 2023, 145, 4003-4014.	6.6	6
3446	Fabrication of MXene transparent conductive films via transfer process. Applied Physics Express, 2023, 16, 037001.	1.1	2
3447	Progress in 2D materials based Nanolubricants: A review. FlatChem, 2023, 38, 100485.	2.8	16
3448	A Critical Review of Two-Dimensional Nanomaterial MXenes and their Applications in Water Treatment. Recent Patents on Engineering, 2024, 18, .	0.3	1
3449	Discontinuous cooperative imprinting idea based on MXene-nanocomposite membrane for high structurally stable recognition and separation of shikimic acid. Chemical Engineering Journal, 2023, 460, 141891.	6.6	19
3450	Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials. Progress in Solid State Chemistry, 2023, 70, 100392.	3.9	5
3451	Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications. Energies, 2023, 16, 1977.	1.6	5

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
3452	Constructing KCu7S4/titanium carbide MXene hybrid structure via electrostatic assembly for high-performance supercapacitors. Journal of Materials Research, 2023, 38, 1683-1693.	1	1.2	0
3453	Etching Exfoliated Ti2CTx Nanosheets for Photoelectrochemical Photodetectors with Enhanced Performance and Alkaline Stability. Journal of Electronic Materials, 2023, 52, 3029-3037.		L.O	5
3454	Deintercalation of Al from MoAlB by molten salt etching to achieve a Mo ₂ AlB ₂ compound and 2D MoB nanosheets. Journal of Advanced Ceramics, 2023, 12, 943	3-953. ⁸	8.9	7
3455	Recent advances in MXenes-based glucose biosensors. Chinese Chemical Letters, 2023, 34, 1082	.41. 4	4.8	5
3456	Enhancing the Chemical Stability of MXene Through Synergy of Hydrogen Bond and Coordination Bond in Aqueous Solution. Small Methods, 2023, 7, .	ء ۱	4.6	12
3457	Building porphyrin-based MOFs on MXenes for ppb-level NO sensing. Journal of Materials Chemis 2023, 11, 6966-6977.	try A, e	5.2	17
3458	MXene-Decorated Smart Textiles with the Desired Mid-Infrared Emissivity for Passive Personal The Management. ACS Applied Materials & amp; Interfaces, 2023, 15, 12032-12040.	ermal _	4.0	14
3459	Enhanced electromagnetic interference shielding performance of patterned AgNWs doped MXen films in X-band. Physica Scripta, 2023, 98, 045001.	e I	1.2	5
3460	Magnetic enhanced high-efficiency electromagnetic wave absorbing MXene/Fe ₃ O ₄ composite absorbers at 2–40 GHz. Journal of Materia Chemistry C, 2023, 11, 4171-4181.	ls 2	2.7	15
3461	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Poly 2023, 24, 1167-1182.	/mers,	l.1	4
3462	Bis(2-hydroxyethyl) Terephthalate-Modified Ti ₃ C ₂ T _{<i>x</i>} /Graphene Nanohybrids as Three-Dimensio Functional Chain Extenders for Polyurethane Composite Films with Strain-Sensing and Conductiv Properties. ACS Applied Materials & amp; Interfaces, 2023, 15, 12403-12413.	nal 'e	4.0	5
3463	Fabrication and properties of the 6-aminocaproic acid-modified MXene-based PA6 nanocomposit Composite Interfaces, 2023, 30, 529-541.	2S. 1	L . 3	0
3464	NiO@MXene Nanocomposite as an Anode with Enhanced Energy Density for Asymmetric Supercapacitors. Energy & Fuels, 2023, 37, 4658-4670.	2	2.5	8
3465	Two-dimensional Ti3C2 MXene-derived Ti3C2-Ti2C-TiO2 materials for improved diclofenac sodiun adsorption performance. Environmental Science and Pollution Research, 2023, 30, 52157-52168	n 2	2.7	5
3466	Oneâ€Dimensional <i>ï€</i> â€d Conjugated Coordination Polymer Intercalated MXene Compou Highâ€Performance Supercapacitor Electrode. Small Methods, 2023, 7, .	nd for	4.6	7
3467	Bubble Up Induced Graphene Microspheres for Engineering Capacitive Energy Storage. Advanced Energy Materials, 2023, 13, .		10.2	6
3468	Machine learning assisted screening of MXenes pseudocapacitive materials. Journal of Power Sou 2023, 564, 232834.	irces,	4.0	5
3469	Effect of terminations on the hydrogen evolution reaction mechanism on Ti ₃ C ₂ MXene. Journal of Materials Chemistry A, 2023, 11, 6886-6900.		5.2	15

		CITATION R	EPORT	
#	Article		IF	Citations
3470	Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. Nanomaterials	, 2023, 13, 850.	1.9	14
3471	Post-Ammonia-Treated V ₂ CT <i>_x</i> MXene at Different Pre Morphology, Electronic, and Optical Properties. Journal of Physical Chemistry C, 2023,	ssures: Effects on 127, 4609-4617.	1.5	4
3472	Improvement in <scp>alkaliâ€resistance</scp> of basalt <scp>fiberâ€reinforced</scp> <scp>Ti₃C₂T_X</scp> (MXene) modified matrix Composites, 2023, 44, 2581-2591.	polymer by . Polymer	2.3	3
3473	Synthesis of Ti ₃ C ₂ T _{<i>x</i>} /MnO _{2synergistic catalytic/photothermal-based bacterial inhibition. Nanoscale Advances, 202}	> composites for 3, 5, 2216-2225.	2.2	0
3474	Molten-salt assisted synthesis of two-dimensional materials and energy storage applica Today Chemistry, 2023, 29, 101419.	ition. Materials	1.7	3
3475	Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continu Detection in Sweat. ACS Applied Materials & amp; Interfaces, 2023, 15, 13290-13298.	ous Glucose	4.0	36
3476	Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technologic Powering Embedded Electronics?. ACS Omega, 2023, 8, 8977-8990.	al Dreams for	1.6	6
3477	Study on the electromagnetic wave absorption performance of Ti3C2 MXene with different states. Journal of Materials Science, 2023, 58, 4824-4839.	erent etching	1.7	3
3478	Roles of MXenes in biomedical applications: recent developments and prospects. Journ Nanobiotechnology, 2023, 21, .	al of	4.2	34
3479	Vertically Aligned Bismuthene Nanosheets on MXene for High-Performance Capacitive ACS Nano, 2023, 17, 4843-4853.	Deionization.	7.3	53
3480	Retrospective insights into recent MXene-based catalysts for CO ₂ electro/photoreduction: how far have we gone?. Nanoscale, 2023, 15	i, 6536-6562.	2.8	16
3481	Swellingâ€Induced Structural Transformation Strategy: Controllable Synthesis of 2D Po Polypyrrole/MXene Heterostructures with Tunable Pore Structures. Advanced Materials 2023, 10, .	prous Interfaces,	1.9	2
3482	Progress of high performance Ti ₃ C ₂ T _{<i>x</i>} M nanocomposite films for electromagnetic interference shielding. Nanoscale, 2023, 15,	Xene 5579-5597.	2.8	11
3483	Two-dimensional transition metal MXene-based gas sensors: A review. Chinese Chemic 35, 108286.	al Letters, 2024,	4.8	9
3484	Facile preparation of PANI/MoOx nanowires decorated MXene film electrodes for electr supercapacitors. Electrochimica Acta, 2023, 448, 142173.	ochemical	2.6	11
3485	The synthesis of MXenes. MRS Bulletin, 2023, 48, 245-252.		1.7	5
3486	MXene-Based Nanomaterials and Their Applications in Supercapacitors. , 2023, , 1-25.			0
3487	Flexible and Wearable Strain/Pressure Sensors. , 2023, , 180-198.			0

#	Article	IF	CITATIONS
3488	The enhanced photocatalytic and photothermal effects of Ti3C2 Mxene quantum dot/macroscopic porous graphitic carbon nitride heterojunction for Hydrogen Production. Journal of Colloid and Interface Science, 2023, 641, 309-318.	5.0	11
3489	Photocatalytic Activity of the Oxidation Stabilized Ti ₃ C ₂ T <i>_x</i> MXene in Decomposing Methylene Blue, Bromocresol Green and Commercial Textile Dye. Small Methods, 2023, 7, .	4.6	11
3490	MXeneâ€Based Aptameric Fluorosensor for Sensitive and Rapid Detection of COVIDâ€19. Small, 2023, 19, .	5.2	6
3491	A micro/nano-multiscale hierarchical structure strategy to fabricate highly conducting films for electromagnetic interference shielding and energy storage. Journal of Materials Chemistry A, 2023, 11, 8656-8669.	5.2	18
3492	Hierarchical V ₄ C ₃ T _{<i>X</i>} @NiO-reduced graphene oxide heterostructure hydrogels and defective reduced graphene oxide hydrogels as free-standing anodes and cathodes for high-performance asymmetric supercapacitors. Physical Chemistry Chemical Physics, 2023, 25, 9140-9151.	1.3	5
3493	Two-dimensional MXenes. MRS Bulletin, 2023, 48, 238-244.	1.7	21
3494	Recent trends in bone defect repair and bone tissue regeneration of the two-dimensional material MXene. Ceramics International, 2023, 49, 19578-19594.	2.3	3
3495	2D-Material-Based Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. , 2023, 5, 1109-1135.		9
3496	2D Layered Nanomaterials as Fillers in Polymer Composite Electrolytes for Lithium Batteries. Advanced Energy Materials, 2023, 13, .	10.2	21
3497	The Rise of MXene: A Wonder 2D Material, from Its Synthesis and Properties to Its Versatile Applications—A Comprehensive Review. Topics in Current Chemistry, 2023, 381, .	3.0	9
3498	Applications of MXene and its modified materials in skin wound repair. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	4
3499	Computational studies of MXenes. MRS Bulletin, 2023, 48, 253-260.	1.7	6
3500	Multiscale Dotâ€Wireâ€Sheet Heterostructured Nitrogenâ€Doped Carbon Dotsâ€Ti ₃ C ₂ T _{<i>x</i>} /Silk Nanofibers for Highâ€Performance Fiberâ€Shaped Supercapacitors. Angewandte Chemie, 0, , .	1.6	1
3501	Multiscale Dotâ€Wireâ€Sheet Heterostructured Nitrogenâ€Doped Carbon Dotsâ€Ti ₃ C ₂ T _{<i>x</i>} /Silk Nanofibers for Highâ€Performance Fiberâ€Shaped Supercapacitors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	29
3502	Ultrafast dynamics of photoexcitations in 2D Ti3C2Tz, Mo2Ti2C3Tz, and Nb2CTz MXenes. , 2023, , .		0
3503	Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters, 2023, 15, .	14.4	24
3504	Facile Tailoring of Surface Terminations of MXenes by Doping Nb Element: Toward Extraordinary Pseudocapacitance Performance. ACS Applied Materials & Interfaces, 2023, 15, 15367-15376.	4.0	6
3505	Exploring the sensitivity of Hf ₂ CO ₂ towards H ₂ S: a DFT study. Molecular Physics, 2023, 121, .	0.8	1

ARTICLE IF CITATIONS # Chemical scissor–mediated structural editing of layered transition metal carbides. Science, 2023, 379, 3506 6.0 111 1130-1135. Vanadium MXenes materials for next-generation energy storage devices. Nanotechnology, 2023, 34, 1.3 252001. Nonâ€van der Waals 2D Materials for Electrochemical Energy Storage. Advanced Functional Materials, 3508 7.8 9 2023, 33, . Potassium Poly(heptazine imide) Coupled with Ti₃C₂ MXene-Derived TiO₂ as a Composite Photocatalyst for Efficient Pollutant Degradation. ACS Omega, 2023, 3509 8, 11397-11405. Micro/Nano Soft Film Sensors for Intelligent Plant Systems: Materials, Fabrications, and Applications. 3510 1.8 0 Chemosensors, 2023, 11, 197. MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries, 2023, 9, 174. 2.1 Recent advances in two-dimensional MXenes for zinc-ion batteries. Materials Chemistry Frontiers, 3512 3.2 5 2023, 7, 2373-2404. Synthesis of Ti3C2Tx/ZnO composites decorated with PEDOT:PSS for NO2 gas sensors. International 1.5 Journal of Advanced Manufacturing Technology, 2023, 126, 2269-2281. MXene-based nanocomposite for the photocatalytic CO2 reduction: Comprehensive review. Molecular 3514 1.0 1 Catalysis, 2023, 541, 113085. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 2023, 379, 6.0 133 1242-1247. Reproducible 2D Ti₃C₂T<sub><i>x</i>/sub> for perovskite-based 3516 1.7 1 photovoltaic device. RSC Advances, 2023, 13, 9555-9562. Emerging 2D Materials for Supercapacitors: MXenes. Springer Series in Materials Science, 2023, , 65-88. 0.4 A direct and clean route to MXenes. Science, 2023, 379, 1189-1190. 3518 6.0 10 In-situ synergistic W18O49/Ti3C2Tx heterostructure as negative electrode for high energy density 5.4 14 supercapacitors. Carbon, 2023, 208, 92-101. Recent Advances in MXene-Based Nanocomposites for Wastewater Purification and Water Treatment: A 3520 1.2 5 Review. Water (Switzerland), 2023, 15, 1267. Emerging MXeneâ€Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. Small, 2023, 19, . Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels 3522 3.56 for promoting lithium-ion storage in hybrid capacitors. Science China Materials, 2023, 66, 944-954. Two-Dimensional Mesoporous Materials for Energy Storage and Conversion: Current Status, 13.1 Chemical Synthesis and Challenging Perspectives. Electrochemical Energy Reviews, 2023, 6, .

		CITATION REPORT	
#	Article	IF	Citations
3524	Synthesis and applications of MXene-based composites: a review. Nanotechnology, 2023, 34, 262001.	1.3	14
3525	Influence of bistacked polyvinylidene fluoride-2D Ti3C2Tx MXene nanocomposite concentration for solution-processed piezoelectric nanogenerators. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
3526	Structural Engineering Enabled Bimetallic (Ti _{1â€} <i>_y</i> Nb <i>_y</i>) ₂ AlC Solid Solution Structure for Efficient Electromagnetic Wave Absorption in Gigahertz. Small, 2023, 19, .	5.2	10
3527	MXene/CNTs/Aramid Aerogels for Electromagnetic Interference Shielding and Joule Heating. ACS Applied Nano Materials, 2023, 6, 6141-6150.	2.4	14
3528	Sizeâ€Dependent Electrochemistry of Oxygenated Ti ₃ C ₂ T _x MXenes. Small Methods, 2023, 7, .	4.6	4
3530	A Hierarchical Hybrid MXenes Interlayer with Triple Function for Roomâ€Temperature Sodiumâ€Sulfur Batteries. Advanced Materials Technologies, 2023, 8, .	3.0	4
3531	Facile fabrication of PANI/g-C ₃ N ₄ /MXene composites as electrode materials for supercapacitors. New Journal of Chemistry, 2023, 47, 8670-8678.	1.4	4
3532	Improving the Photocatalytic Activity of Ti3C2 MXene by Surface Modification of N Doped. Materials, 2023, 16, 2836.	1.3	5
3533	Rational design of hierarchical Ni(OH)2–MnO2 nanoflowers @Ti3C2Tx nanosheets heterostructure as advanced symmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	5
3534	Molten-salt etching synthesis of delaminatable MXenes. Chemical Communications, 2023, 59, 5063-5066.	2.2	8
3535	Facile and Controllable Ultrasonic Nebulization Method for Fabricating Ti ₃ C ₂ T <i>_x</i> &Based Strain Sensor and Monitoring of Human Motion and Sound Wave. Advanced Materials Interfaces, 2023, 10, .	1.9	1
3536	In Situ Selenization of Ti ₃ C ₂ T _{<i>x</i>} Assisted by Cu ²⁺ with Superior Performance for Aluminum Ion Batteries. Energy & Fuels, 2023, 37, 6220-6229.	2.5	1
3537	<i>In situ</i> generation of a Ti ₃ C ₂ T _{<i>x</i>} (T _{<i>x</i>} = F, O and OH) MXene decorated CuO nanocomposite with extraordinary catalytic activity for TKX-50 thermal decomposition. Materials Chemistry Frontiers, 2023, 7, 2851-2859.	3.2	2
3538	Status and Prospects of MXeneâ€Based Lithium–Oxygen Batteries: Theoretical Prediction and Experimental Modulation. Advanced Energy Materials, 2023, 13, .	10.2	11
3539	An efficient Pt@MXene platform for the analysis of small-molecule natural products. IScience, 2023, 26, 106622.	1.9	2
3540	MXeneâ€Based Flexible Sensors: Materials, Preparation, and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	7
3541	Asymmetrically Coordinated Cu–N ₁ C ₂ Singleâ€Atom Catalyst Immobilized on Ti ₃ C ₂ T <i>_x</i> MXene as Separator Coating for Lithium–Sulfur Batteries. Advanced Energy Materials, 2023, 13, .	10.2	19
3542	Hydroiodicâ€Acidâ€Initiated Dense yet Porous Ti ₃ C ₂ T <i>_x</i> MXene Monoliths toward Superhigh Areal Energy Storage. Advanced Materials, 2023, 35, .	11.1	11

#	Article	IF	CITATIONS
3543	Selfâ€Powered Integrated Sensing System with Inâ€Plane Microâ€Supercapacitors for Wearable Electronics. Small, 2023, 19, .	5.2	8
3544	Comparative study on boundary lubrication of Ti3C2Tx MXene and graphene oxide in water. Friction, 2023, 11, 1641-1659.	3.4	5
3545	Promising M2CO2/MoX2 (M = Hf, Zr; X = S, Se, Te) Heterostructures for Multifunctional Solar Energy Applications. Molecules, 2023, 28, 3525.	1.7	3
3546	HKUST-1 loaded few-layer Ti ₃ C ₂ T _{<i>x</i>} for synergistic chemo-photothermal effects to enhance antibacterial activity. Journal of Materials Chemistry B, 2023, 11, 3929-3940.	2.9	4
3547	Recent advances in the development of MXenes/cellulose based composites: A review. International Journal of Biological Macromolecules, 2023, 240, 124477.	3.6	6
3548	Recent progress in MXenes incorporated into electrospun nanofibers for biomedical application: Study focusing from 2017 to 2022. Chinese Chemical Letters, 2023, 34, 108463.	4.8	11
3549	Porous carbon derived from cherry blossom leaves treatment with Fe3O4 enhanced the electrochemical performance of a lithium storage anode. Electrochimica Acta, 2023, 455, 142426.	2.6	3
3550	Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chemical Society Reviews, 2023, 52, 3215-3264.	18.7	36
3551	Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nature Photonics, 2023, 17, 622-628.	15.6	20
3552	Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. Journal of Energy Chemistry, 2023, 83, 287-303.	7.1	36
3553	MXene/NiO Composites for Chemiresistive-Type Room Temperature Formaldehyde Sensor. Chemosensors, 2023, 11, 258.	1.8	12
3554	Fabrication of hierarchical NiCo2S4@GO nano-sponge electrode: as advanced electrode for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
3558	Wetting of MXenes and Beyond. Nano-Micro Letters, 2023, 15, .	14.4	5
3566	Three-Dimensional MXene-Based Functional Materials for Water Treatment: Preparation, Functional Tailoring, and Applications. Industrial & Engineering Chemistry Research, 2023, 62, 7297-7335.	1.8	3
3575	Bioconjugated 2D-nanomaterials for environmental monitoring. Comprehensive Analytical Chemistry, 2023, , 163-201.	0.7	0
3581	Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. Nanoscale Advances, 2023, 5, 3146-3176.	2.2	14
3590	A Review on Interface Engineering of MXenes for Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	16
3620	MXene and Their Composites for Oxygen Evolution Reactions. , 2022, , 1-33.		0

#	Article	IF	CITATIONS
3621	Preparation and pulsed fiber laser applications of emerging nanostructured materials. Journal of Materials Chemistry C, 2023, 11, 7538-7569.	2.7	1
3623	MXene for solar cells. , 2023, , 171-200.		0
3627	Different types of materials for energy storage device and its development process: A review. AIP Conference Proceedings, 2023, , .	0.3	0
3634	Recent advances and perspectives of emerging two-dimensional transition metal carbide/nitride-based materials for organic pollutant photocatalysis. Materials Chemistry Frontiers, 2023, 7, 4658-4682.	3.2	10
3636	Recent Advances in MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices Applications. ACS Applied Electronic Materials, 2023, 5, 4704-4725.	2.0	3
3643	Nacre-Inspired Strong MXene/Cellulose Fiber with Superior Supercapacitive Performance via Synergizing the Interfacial Bonding and Interlayer Spacing. Nano Letters, 2023, 23, 5663-5672.	4.5	9
3659	Structural design and preparation of Ti ₃ C ₂ T _{<i>x</i>} MXene/polymer composites for absorption-dominated electromagnetic interference shielding. Nanoscale Advances, 2023, 5, 3549-3574.	2.2	8
3660	Research progress of MXenes and layered double hydroxides for supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 4358-4392.	3.0	52
3661	Potential of MXenes as a novel material for spintronic devices: a review. Physical Chemistry Chemical Physics, 2023, 25, 18584-18608.	1.3	9
3672	MXenes: An Emerging Class of Materials for Environmental Remediation. Springer Series in Materials Science, 2023, , 1-15.	0.4	0
3674	Fabrication of Advanced 2D Nanomaterials Membranes for Desalination and Wastewater Treatment. Springer Series in Materials Science, 2023, , 245-268.	0.4	0
3690	Fluorine- and Acid-Free Strategy toward Scalable Fabrication of Two-Dimensional MXenes for Sodium-Ion Batteries. Nano Letters, 2023, 23, 5217-5226.	4.5	29
3704	Advanced Approach of MXene-Based Materials in Removal of Radionuclides. , 2023, , 249-266.		0
3705	Efficacy of MXene-Based Materials in the Removal of Gases. , 2023, , 207-228.		0
3706	Structural Design, Properties, and Synthesis of Original MXenes. , 2023, , 15-28.		0
3707	Design and Applications of MXene-Based Li–S Batteries. , 2023, , 137-154.		0
3708	Functionalized MXene-Based Polymer Composites. , 2023, , 47-60.		0
3710	Emerging Trends of MXenes in Supercapacitors. , 2023, , 83-95.		1

	Сіт	ATION REPORT	
# 3711	ARTICLE Toxicology, Stability, and Environmental Impacts of MXenes and Its Composites. , 2023, , 357-375.	IF	CITATIONS 0
3712	Nanostructured MXenes for Hydrogen Storage and Energy Applications. , 2023, , 155-171.		0
3714	Tribological Investigation of 2D Ti3C2 MXene Via Microwave-Assisted Hydrothermal Synthesis as Additives for Different Lubrications. Springer Proceedings in Physics, 2023, , 775-782.	0.1	0
3726	A Review of Advanced Electrode Materials for Supercapacitors: Challenges and Opportunities. Journal of Electronic Materials, 2023, 52, 5775-5794.	1.0	7
3733	MXene based materials for electrochemical sensing. , 2023, , 225-252.		0
3745	A new class of pseudocapacitive electrode materials for electrochemical energy storage in rechargeable batteries. , 2023, , 181-224.		0
3747	MXenes based 2D nanostructures for supercapacitors. , 2023, , 261-303.		0
3768	Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World?. ACS Omega, 2023, 8, 29859-29909.	1.6	5
3789	Heavy metals adsorption performance of Ti-MXenes synthesized via fluorinated etchants and their regeneration. Chemical Papers, 2023, 77, 5601-5621.	1.0	2
3804	Recent advances in MXenes: a future of nanotechnologies. Journal of Materials Chemistry A, 2023, 11, 19764-19811.	5.2	5
3810	Specific applications of the lanthanides. , 2023, , 649-741.		0
3811	MXene and their integrated composite-based acetone sensors for monitoring of diabetes. Materials Advances, 2023, 4, 3989-4010.	2.6	8
3812	Two-dimensional MXenes for flexible energy storage devices. Energy and Environmental Science, 2023 16, 4191-4250.	, 15.6	12
3815	Two-Dimensional Nanomaterials as Technology Marvels. , 2023, , 279-291.		0
3820	MXene-based wearable supercapacitors and their transformative impact on healthcare. Materials Advances, 2023, 4, 4317-4332.	2.6	4
3821	Heterostructured 2D material-based electro-/photo-catalysts for water splitting. Materials Chemistry Frontiers, 2023, 7, 6154-6187.	3.2	3
3823	MXene based flexible photodetectors: progress, challenges, and opportunities. Materials Horizons, 2023, 10, 5457-5473.	6.4	6
3831	Solar-to-Fuel Conversion: Application of Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene as Cocatalyst. ACS Symposium Series, 0, , 83-103.	0.5	0

#	Article	IF	Citations
3840	Environmental Remediation: A MXenes Perspective. ACS Symposium Series, 0, , 147-167.	0.5	0
3841	Emerging Trends in Advanced Synthesis and Properties: Mxenes as Super Materials. ACS Symposium Series, 0, , 71-100.	0.5	1
3842	Progresses and Challenges in 2D MXenes: Synthesis, Intercalation/Delamination, and Storage. ACS Symposium Series, 0, , 101-141.	0.5	1
3847	MXenesâ€Based Highâ€Performance Polymer Composites as Next-Generation Flame Retardants. ACS Symposium Series, 0, , 125-146.	0.5	0
3848	MXene: Chemistry, Attributes, and Applications for Electrochemical Energy Storage. ACS Symposium Series, 0, , 27-50.	0.5	0
3851	2D-Transition Metal Carbides and Nitrides: Prospects and Challenges. ACS Symposium Series, 0, , 1-42.	0.5	0
3857	Robust dual-cross-linked networks enable stable silicon anodes. Chemical Communications, 0, , .	2.2	0
3866	2D MXenes: A Promising Functionality as an Electrocatalyst. ACS Symposium Series, 0, , 43-58.	0.5	0
3868	An Extensive Review on MXenes as Emergent Photovoltaic Materials. ACS Symposium Series, 0, , 59-82.	0.5	0
3869	Amalgamation of MXenes and Polymers for Multifunctional Nanocomposites. ACS Symposium Series, 0, , 27-54.	0.5	0
3870	Emerging Nanoengineered 2D MXene-Based Architectures for Supercapacitor Application. ACS Symposium Series, 0, , 97-139.	0.5	0
3871	MXenes in Membrane-Based Water Treatment Applications. ACS Symposium Series, 0, , 121-139.	0.5	0
3872	The Flourishing Application of MXenes for Dielectric-Based Microwave Absorption. ACS Symposium Series, 0, , 141-176.	0.5	0
3878	Gas Separation Technologies: MXenesâ€Based Membrane Systems. ACS Symposium Series, 0, , 107-123.	0.5	0
3882	Hybrid Capacitive Deionization. , 2023, , 249-273.		0
3888	From non-carbon host toward carbon-free lithium-sulfur batteries. Nano Research, 2024, 17, 1337-1365.	5.8	0
3899	Modeling and Simulation of Electrochemical, Thermoelectric, and Magnetic Properties of MXenes. ACS Symposium Series, 0, , 143-168.	0.5	0
3927	Role of MXene as a Catalyst for Hydrogen Synthesis. ACS Symposium Series, 0, , 105-119.	0.5	0

#	Article	IF	CITATIONS
3931	Metal Carbides and Metal Nitrides Composites for Supercapacitor Applications. ACS Symposium Series, 0, , 81-96.	0.5	0
3932	Two-Dimensional Inorganic Materials for Energy Storage Applications. ACS Symposium Series, 0, , 1-25.	0.5	1
3957	Performance Analysis of Ti ₃ C ₂ T _X MXene Based Multi Band Transparent Antenna for Wireless Communication. , 2023, , .		0
3958	Unveiling the Potential of Ti3C2Tx MXene for Gas Sensing: Recent Developments and Future Perspectives. Materials Advances, 0, , .	2.6	1
3972	Recent Progress in Optical Sensors Based on MXenes Quantum Dots and MXenes Nanosheets. Journal of Analysis and Testing, 2024, 8, 95-113.	2.5	2
3979	MXenes <i>vs.</i> clays: emerging and traditional 2D layered nanoarchitectonics. Nanoscale, 2023, 15, 18959-18979.	2.8	1
3987	Ti ₃ C ₂ T _{<i>x</i>/sub> MXene-embedded MnO₂-based hydrophilic electrospun carbon nanofibers as a freestanding electrode for supercapacitors. Chemical Communications, 2023, 59, 14309-14312.}	2.2	1
3997	2D Planner MXene Nanocomposite Sensors. , 2024, , 1-37.		0
4010	Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications. Emergent Materials, 2024, 7, 35-62.	3.2	1
4078	MXene-Based Functional Materials as Antibacterial and Antiviral Agents. ACS Symposium Series, 0, , 363-394.	0.5	0
4079	New Developments in Low-carbon Supercapacitors for Emerging Applications: A Critical Review. , 2023, , 426-461.		0
4134	Recent progress of MXene as an energy storage material. Nanoscale Horizons, 2024, 9, 215-232.	4.1	2
4151	MXene-Based Two-Dimensional (2D) Hybrid Materials and Their Applications Towards an Environment. Engineering Materials, 2024, , 87-140.	0.3	0
4176	Scope, evaluation and current perspectives of MXene synthesis strategies for state of the art applications. Journal of Materials Chemistry A, 2024, 12, 7351-7395.	5.2	2
4179	Screen printing-enabled nanomanufacturing of sensors and electronics. , 2024, , 3-31.		0
4188	MXenes and their applications in sensors. , 2024, , 281-353.		0
4189	Recent development in metal-organic frameworks and their derivatives for supercapacitors. , 2024, , 303-329.		0
4200	MXene-based nanomaterials to remove toxic heavy metals. , 2024, , 113-127.		0

#	Article	IF	CITATIONS
4203	Mxenes-based hybrid electrochemical sensors. , 2024, , 417-450.		0
4204	MXenes for sensors. , 2024, , 249-285.		0
4205	MXene-based hybrid nanomaterials for gas sensing applications. , 2024, , 305-326.		0
4206	Flame-retardant properties of MXene-based polymer nanocomposites. , 2024, , 287-320.		0
4207	MXene-based hybrid nanostructures for strain sensors. , 2024, , 377-415.		0
4218	Anti-corrosion applications of 2D transition metal based layered materials. Materials Advances, 2024, 5, 2655-2667.	2.6	0
4239	Hybrid MXene foams for electromagnetic interference shielding. , 2024, , 457-491.		0
4240	MXene-based aerogels for electromagnetic interference shielding. , 2024, , 427-456.		0