Passive radiative cooling below ambient air temperatur

Nature 515, 540-544

DOI: 10.1038/nature13883

Citation Report

#	Article	IF	CITATIONS
3	Enhanced selective thermal emission with a meta-mirror following Generalized Snell's Law. Materials Research Society Symposia Proceedings, 2015, 1728, 42.	0.1	2
4	A Subambient Open Roof Surface under the Midâ€Summer Sun. Advanced Science, 2015, 2, 1500119.	5.6	281
5	Analog of superradiant emission in thermal emitters. Physical Review B, 2015, 92, .	1.1	23
6	Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: Incandescence and luminescence in arbitrary geometries. Physical Review B, 2015, 92, .	1.1	73
7	Midinfrared thermal emission properties of finite arrays of gold dipole nanoantennas. Physical Review B, 2015, 92, .	1.1	19
8	Tailoring diffuse reflectance of inhomogeneous films containing microplatelets. Applied Physics Letters, 2015, 107, .	1.5	7
9	Thermal Emission Control via Bandgap Engineering in Aperiodically Designed Nanophotonic Devices. Nanomaterials, 2015, 5, 814-825.	1.9	7
10	Usage of meta-resonators for improvement of magnetic resonance imaging. , 2015, , .		O
11	Annular wire metamaterial resonators for Magnetic Resonance Imaging. , 2015, , .		0
12	Control of radiative processes for energy conversion and harvesting. Optics Express, 2015, 23, A1533.	1.7	28
12	Control of radiative processes for energy conversion and harvesting. Optics Express, 2015, 23, A1533. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349, 298-301.	6.0	28 473
	Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.		
13	Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349, 298-301.	6.0	473
13	Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349, 298-301. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178, 9-36. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials, 2015, 3,	6.0	473 56
13 14 15	Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349, 298-301. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178, 9-36. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials, 2015, 3, 1047-1051.	6.0	473 56 462
13 14 15	Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349, 298-301. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178, 9-36. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials, 2015, 3, 1047-1051. Perturbation model for the control of the spectral properties of high contrast gratings., 2015,,. Well-ordered nanoporous materials for low-temperature water phase changes and solar evaporative	6.0 1.6 3.6	473 56 462 0
13 14 15 16	Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 2015, 349, 298-301. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178, 9-36. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Advanced Optical Materials, 2015, 3, 1047-1051. Perturbation model for the control of the spectral properties of high contrast gratings., 2015,, Well-ordered nanoporous materials for low-temperature water phase changes and solar evaporative cooling. Solar Energy Materials and Solar Cells, 2015, 139, 34-43. Performance improvement of dry cooled advanced concentrating solar power plants using daytime	6.0 1.6 3.6 3.0	473 56 462 0

#	ARTICLE	IF	CITATIONS
21	Tunneling-enabled spectrally selective thermal emitter based on flat metallic films. Applied Physics Letters, $2015,106,106$	1.5	43
22	Engineering plants to reflect light: strategies for engineering waterâ€efficient plants to adapt to a changing climate. Plant Biotechnology Journal, 2015, 13, 867-874.	4.1	7
23	Directional and Selective Mid-Infrared Thermal Emitters for Sensing Applications. , 2015, , .		1
24	Radiative cooling for solar cells. , 2015, , .		3
25	Efficient Thermal–Light Interconversions Based on Optical Topological Transition in the Metalâ€Dielectric Multilayered Metamaterials . Advanced Materials, 2016, 28, 3017-3023.	11.1	38
26	Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate. Scientific Reports, 2016, 6, 24972.	1.6	25
27	On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters. Applied Physics Letters, 2016 , 108 , .	1.5	24
28	Metal-insulator-metal metamaterial absorbers consisting of proximity-coupled resonators with the control of the fundamental and the second-order frequencies. Journal of Applied Physics, 2016, 119, 063101.	1.1	5
29	Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nature Communications, 2016, 7, 13729.	5.8	574
30	Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook. Applied Physics Reviews, 2016, 3, 011103.	5.5	59
31	Reversibly tunable coupled and decoupled super absorbing structures. Applied Physics Letters, 2016, 108, .	1.5	15
32	Infrared dielectric function of polydimethylsiloxane and selective emission behavior. Applied Physics Letters, 2016, 109, .	1.5	67
33	Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme. ACS Photonics, 2016, 3, 2420-2426.	3.2	71
34	Metasurface Broadband Solar Absorber. Scientific Reports, 2016, 6, 20347.	1.6	220
35	Radiative cooling of a GaAs solar cell to improve power conversion efficiency. , 2016, , .		4
36	A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications. Nano Energy, 2016, 26, 392-397.	8.2	23
37	Angle-selective perfect absorption with two-dimensional materials. Light: Science and Applications, 2016, 5, e16052-e16052.	7.7	94
38	Principles and criteria for assessing urban energy resilience: A literature review. Renewable and Sustainable Energy Reviews, 2016, 60, 1654-1677.	8.2	323

3

#	Article	IF	CITATIONS
39	Temperature dependence of a microstructured SiC coherent thermal source. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 180, 29-38.	1.1	14
40	Radiation Fluxes in a Business District of Shanghai, China. Journal of Applied Meteorology and Climatology, 2016, 55, 2451-2468.	0.6	32
41	Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics, 2016, 5, 55-73.	2.9	35
42	Radiative cooling for thermophotovoltaic systems. , 2016, , .		14
43	Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renewable and Sustainable Energy Reviews, 2016, 65, 1079-1097.	8.2	201
44	Roadmap on optical metamaterials. Journal of Optics (United Kingdom), 2016, 18, 093005.	1.0	118
45	Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Applied Energy, 2016, 179, 899-908.	5.1	110
46	Radiative Cooling: Principles, Progress, and Potentials. Advanced Science, 2016, 3, 1500360.	5.6	471
47	Densely-tiled metal-insulator-metal metamaterial resonators with quasi-monochromatic thermal emission. Optics Express, 2016, 24, 12803.	1.7	11
48	Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353, 1019-1023.	6.0	764
49	Filtering light with nanoparticles: a review of optically selective particles and applications. Advances in Optics and Photonics, 2016, 8, 541.	12.1	57
50	Extremely small wavevector regime in a one-dimensional photonic crystal heterostructure for angular transmission filtering. Optics Letters, 2016, 41, 3829.	1.7	69
51	Hybrid Optical–Thermal Antennas for Enhanced Light Focusing and Local Temperature Control. ACS Photonics, 2016, 3, 1714-1722.	3.2	16
52	Fabrication of radiative cooling devices using Si ₂ N ₂ O nano-particles. Journal of the Ceramic Society of Japan, 2016, 124, 1185-1187.	0.5	18
53	Thermal-to-electrical energy conversion by diodes under negative illumination. Physical Review B, 2016, 93, .	1.1	74
54	Active thermal extraction of near-field thermal radiation. Physical Review B, 2016, 93, .	1.1	8
55	Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Scientific Reports, 2016, 6, 29429.	1.6	76
56	Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2, e1501227.	4.7	1,025

#	Article	IF	CITATIONS
57	Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by in Situ TEM. ACS Applied Materials & Situ TEM. Situ TEM. ACS Applied Materials & Situ TEM. Situ TEM	4.0	54
58	Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation. Scientific Reports, 2016, 6, 32744.	1.6	1
59	Metasurfaces provide a new way for building magnetic resonance imaging scanners. , $2016, \ldots$		1
60	Passive and active metasurface based on metal-insulator-metal structures. , 2016, , .		O
61	Advanced building skin., 2016,, 219-245.		2
62	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004.	1.0	85
63	Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 182, 35-44.	1.1	20
64	A review of metasurfaces: physics and applications. Reports on Progress in Physics, 2016, 79, 076401.	8.1	1,524
65	Achieving cryogenic temperatures in deep space using a coating. Optics Letters, 2016, 41, 1086.	1.7	8
66	Tailoring high-temperature radiation and the resurrection of the incandescent source. Nature Nanotechnology, 2016, 11, 320-324.	15.6	153
67	Broadband Absorption Enhancement of Refractory Plasmonic Material with Random Structure. Plasmonics, 2017, 12, 473-478.	1.8	5
68	Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 197, 76-83.	1.1	116
69	A field investigation of passive radiative cooling under Hong Kong's climate. Renewable Energy, 2017, 106, 52-61.	4.3	119
70	Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy. Nano Energy, 2017, 31, 504-513.	8.2	40
71	Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling. IEEE Journal of Photovoltaics, 2017, 7, 566-574.	1.5	102
72	Anthropogenic Heat Generation and Heat Exhaust to the Ultimate Sink. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	1.4	3
73	Controlling thermal emission of phonon by magnetic metasurfaces. Scientific Reports, 2017, 7, 41858.	1.6	23
74	Metamaterials for perpetual cooling at large scales. Science, 2017, 355, 1023-1024.	6.0	39

#	Article	IF	CITATIONS
75	Optical modulation using strain tunable metalloâ€dielectric films. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600756.	0.8	0
76	Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics, 2017, 4, 626-630.	3.2	485
77	Development of one-dimensional photonic selective emitters for energy harvesting applications. Solar Energy Materials and Solar Cells, 2017, 163, 191-199.	3.0	6
78	Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355, 1062-1066.	6.0	1,432
79	Passive Cooling Enabled by Polymer Composite Coating: Dependence on Filler, Filler Size and Coating Thickness. Journal of Electronic Materials, 2017, 46, 4057-4061.	1.0	1
80	Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays. Physical Review Applied, 2017, 7, .	1.5	35
81	Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science and Applications, 2017, 6, e16194-e16194.	7.7	236
82	Passive cooling doesn't cost the planet. Physics Today, 2017, 70, 16-18.	0.3	4
83	Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy, 2017, 137, 419-430.	4.5	60
84	Universal modal radiation laws for all thermal emitters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4336-4341.	3.3	93
85	Hybrid plasmonic nanoresonators as efficient solar heat shields. Nano Energy, 2017, 37, 118-125.	8.2	30
86	Radiative cooling as low-grade energy source: A literature review. Renewable and Sustainable Energy Reviews, 2017, 77, 803-820.	8.2	145
87	Morphological design of optical cavities for frequency-selective black absorbers. Current Applied Physics, 2017, 17, 1015-1020.	1.1	6
88	Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Solar Energy Materials and Solar Cells, 2017, 168, 78-84.	3.0	356
89	Materials for Radiative Cooling: A Review. Procedia Environmental Sciences, 2017, 38, 752-759.	1.3	56
90	Thermal Behavior of Photovoltaic Devices. , 2017, , .		90
91	Thermal Issues in Photovoltaics and Existing Solutions. , 2017, , 1-28.		3
92	Resonant Thermal Infrared Emitters in Near- and Far-Fields. ACS Photonics, 2017, 4, 1552-1557.	3.2	20

#	Article	IF	CITATIONS
93	Breathing walls: The design of porous materials for heat exchange and decentralized ventilation. Energy and Buildings, 2017, 149, 246-259.	3.1	47
94	Passive radiative cooling design with broadband optical thin-film filters. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198, 179-186.	1.1	153
95	Estimation and projection of institutional building electricity consumption. Energy and Buildings, 2017, 143, 43-52.	3.1	7
96	Plasmonic Thermal Emitters for Dynamically Tunable Infrared Radiation. Advanced Optical Materials, 2017, 5, 1600993.	3.6	31
98	Merging plasmonics and metamaterials by two-dimensional subwavelength structures. Journal of Materials Chemistry C, 2017, 5, 4361-4378.	2.7	75
99	A dynamic experimental study on the evaporative cooling performance of porous building materials. Heat and Mass Transfer, 2017, 53, 2651-2662.	1.2	5
100	A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics, 2017, 4, 774-782.	3.2	262
101	Radiative flux control via graphene-based spectrum tailoring. International Journal of Heat and Mass Transfer, 2017, 107, 729-735.	2.5	4
102	Thermal Design of Photovoltaic/Microwave Conversion Hybrid Panel for Space Solar Power System. IEEE Journal of Photovoltaics, 2017, 7, 374-382.	1.5	13
103	Perfect Thermal Emission by Nanoscale Transmission Line Resonators. Nano Letters, 2017, 17, 666-672.	4.5	66
104	Photovoltaic Devices: Optoâ€Electroâ€Thermal Physics and Modeling. Advanced Materials, 2017, 29, 1603492.	11.1	87
105	Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Materials, 2017, 16, 23-34.	13.3	498
106	The path towards sustainable energy. Nature Materials, 2017, 16, 16-22.	13.3	3,288
107	The impact of evaporation from porous tile on roof thermal performance: A case study of Guangzhou's climatic conditions. Energy and Buildings, 2017, 136, 161-172.	3.1	20
108	Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramersâ€Kronig permittivity profile. Laser and Photonics Reviews, 2017, 11, 1600253.	4.4	45
109	Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation. ACS Nano, 2017, 11, 10568-10574.	7.3	75
110	Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure. Chinese Physics B, 2017, 26, 104201.	0.7	19
111	Metamaterials. Springer Handbooks, 2017, , 1-1.	0.3	11

#	Article	IF	CITATIONS
112	Development of a single-phase thermosiphon for cold collection and storage of radiative cooling. Applied Energy, 2017, 205, 1260-1269.	5.1	47
113	Enhanced Coherent Thermal Emission From SiO2 on a Porous Silicon Photonic Crystal., 2017,,.		0
114	Potential for Passive Radiative Cooling by PDMS Selective Emitters., 2017,,.		10
115	Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers. Advanced Optical Materials, 2017, 5, 1700368.	3.6	141
116	Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phaseâ€Changing Material GST. Laser and Photonics Reviews, 2017, 11, 1700091.	4.4	180
117	Warming up human body by nanoporous metallized polyethylene textile. Nature Communications, 2017, 8, 496.	5.8	280
118	Sub-ambient non-evaporative fluid cooling withÂtheÂsky. Nature Energy, 2017, 2, .	19.8	343
119	Radiative cooling: Energy savings from the sky. Nature Energy, 2017, 2, .	19.8	51
120	A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules. Solar Rrl, 2017, 1, 1700084.	3.1	78
121	Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures. Proceedings of SPIE, 2017, , .	0.8	0
122	Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics, 2017, 6, 997-1015.	2.9	164
123	Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied Energy, 2017, 205, 626-634.	5.1	73
124	Metalâ€Loaded Dielectric Resonator Metasurfaces for Radiative Cooling. Advanced Optical Materials, 2017, 5, 1700460.	3.6	177
125	Thermal Photonics and Energy Applications. Joule, 2017, 1, 264-273.	11.7	147
126	Ultra-broadband large-scale infrared perfect absorber with optical transparency. Applied Physics Express, 2017, 10, 112601.	1.1	39
127	Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array. Nanoscale Research Letters, 2017, 12, 465.	3.1	50
128	An R&D Strategy to Decouple Energy from Water. Joule, 2017, 1, 416-420.	11.7	25
129	A dual-mode textile for human body radiative heating and cooling. Science Advances, 2017, 3, e1700895.	4.7	399

#	Article	IF	CITATIONS
130	Achieving low-emissivity materials with high transmission for broadband radio-frequency signals. Scientific Reports, 2017, 7, 4840.	1.6	12
131	Enhancing the radiative heat dissipation from high-temperature SF6gas plasma by using selective absorbers. Journal Physics D: Applied Physics, 2017, 50, 365601.	1.3	0
132	Effect of Precipitable Water Vapor Amount on Radiative Cooling Performance. IOP Conference Series: Materials Science and Engineering, 2017, 199, 012081.	0.3	0
133	Angle-Selective Reflective Filters for Exclusion of Background Thermal Emission. Physical Review Applied, 2017, 7, .	1.5	17
134	Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures. International Journal of Heat and Mass Transfer, 2017, 106, 1025-1034.	2.5	61
135	Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling. Applied Thermal Engineering, 2017, 113, 112-119.	3.0	9
136	Nanoparticle embedded double-layer coating for daytime radiative cooling. International Journal of Heat and Mass Transfer, 2017, 104, 890-896.	2.5	310
137	Passive cooling of solar cells with a comprehensive photonic approach. , 2017, , .		2
138	Enhancing radiative cooling performance using metal-dielectric-metal metamaterials. Journal of Mechanical Science and Technology, 2017, 31, 5107-5112.	0.7	4
139	Extraordinary infrared emittance property of Mo-, W-incorporated Sm0.5Sr0.5CoO3â^î. Functional Materials Letters, 2017, 10, 1750083.	0.7	0
140	Experimental and theoretical study of the infrared emissivity of crystalline silicon solar cells. , 2017, , .		0
141	The energy conversion processes. , 2017, , 357-567.		1
142	Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Advances in Optics and Photonics, 2017, 9, 775.	12.1	122
143	Nanoparticle-crystal towards an absorbing meta-coating. Optics Express, 2017, 25, A375.	1.7	4
144	Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling. Optics Express, 2017, 25, A612.	1.7	48
145	Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters. Optics Express, 2017, 25, A880.	1.7	23
146	Direct modeling of near field thermal radiation in a metamaterial. Optics Express, 2017, 25, 12999.	1.7	12
147	Thermal homeostasis using microstructured phase-change materials. Optica, 2017, 4, 1390.	4.8	60

#	Article	IF	CITATIONS
148	Perfect infrared absorber and emitter based on a large-area metasurface. Optical Materials Express, 2017, 7, 618.	1.6	52
149	Methods for rejecting daytime waste heat to outer space. National Science Review, 2017, 4, 789-790.	4.6	12
150	Perfectly asymmetric reflection enables unidirectional emission in a phonon-polariton (reststrahlen-band) material platform., 2017,,.		0
151	The index of dispersion as a metric of quanta – unravelling the Fano factor. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 675-695.	0.5	6
152	Morphology-Driven Emissivity of Microscale Tree-like Structures for Radiative Thermal Management. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 124-136.	1.4	19
153	Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2878-2883.	3.3	36
154	Polyesterification synthesis of amorphous aluminum phosphate thermal radiation material with high infrared emissivity. Materials Letters, 2018, 213, 335-337.	1.3	12
155	Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3609-E3615.	3.3	78
156	Zinc monochalcogenide thin films ZnX (X = S, Se, Te) as radiative cooling materials. Optik, 2018, 166, 24-30.	1.4	10
157	Nearly Polarization-Independent Angular Filters Consisting of One-Dimensional Photonic Crystals Realized in the Visible Region. Journal of Lightwave Technology, 2018, 36, 2517-2523.	2.7	28
158	Wavelength-Selective Three-Dimensional Thermal Emitters via Imprint Lithography and Conformal Metallization. ACS Applied Materials & Interfaces, 2018, 10, 8173-8179.	4.0	5
159	Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Progress in Materials Science, 2018, 95, 42-131.	16.0	128
160	Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling. Solar Energy Materials and Solar Cells, 2018, 178, 266-272.	3.0	103
161	Flexible and Accurate Simulation of Radiation Cooling with FETD Method. Scientific Reports, 2018, 8, 2652.	1.6	19
162	Effective Radiative Cooling by Paint-Format Microsphere-Based Photonic Random Media. ACS Photonics, 2018, 5, 1181-1187.	3.2	221
163	Metamaterials for radiative sky cooling. National Science Review, 2018, 5, 132-133.	4.6	60
164	Anderson light localization in biological nanostructures of native silk. Nature Communications, 2018, 9, 452.	5.8	83
165	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability, 2018, 1, 105-112.	11.5	370

#	ARTICLE	IF	CITATIONS
166	A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Solar Energy Materials and Solar Cells, 2018, 178, 115-128.	3.0	256
167	Cryogenic Deep Space Thermal Control Coating. Journal of Spacecraft and Rockets, 2018, 55, 622-631.	1.3	14
168	Enhancement radiative cooling performance of nanoparticle crystal via oxidation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 207, 23-31.	1.1	14
169	A detailed study on loss processes in solar cells. Energy, 2018, 144, 490-500.	4.5	39
170	Cold Vapor Generation beyond the Input Solar Energy Limit. Advanced Science, 2018, 5, 1800222.	5.6	228
171	Compact mid-infrared broadband absorber based on hBN/metal metasurface. International Journal of Thermal Sciences, 2018, 130, 192-199.	2.6	15
172	Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study. Energy, 2018, 155, 360-369.	4.5	34
173	A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale, 2018, 10, 8298-8303.	2.8	137
174	Solar energy materials for thermal applications: A primer. Solar Energy Materials and Solar Cells, 2018, 180, 213-226.	3.0	46
175	Some observations on the greenhouse effect at the Earth's surface. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 127-134.	2.0	32
176	Broadband metamaterial as an "invisible―radiative cooling coat. Optics Communications, 2018, 407, 204-207.	1.0	61
177	Mid-infrared emissivity of crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 607-615.	3.0	68
178	Personalized cooling as an energy efficiency technology for city energy footprint reduction. Journal of Cleaner Production, 2018, 171, 491-505.	4.6	32
179	Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309.	7.8	117
180	Optimization of Multilayer Optical Films with a Memetic Algorithm and Mixed Integer Programming. ACS Photonics, 2018, 5, 684-691.	3.2	103
181	Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft. ACS Photonics, 2018, 5, 495-501.	3.2	114
182	Tuning Transpiration by Interfacial Solar Absorberâ€Leaf Engineering. Advanced Science, 2018, 5, 1700497.	5.6	65
183	Optimized thin film coatings for passive radiative cooling applications. Optics Communications, 2018, 410, 416-423.	1.0	39

#	Article	IF	CITATIONS
184	The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Materials and Design, 2018, 139, 104-111.	3.3	163
185	Performance assessment of a photonic radiative cooling system for office buildings. Renewable Energy, 2018, 118, 265-277.	4.3	83
186	Broadband LWIR and MWIR absorbers by trapezoid multilayered grating and SiO $<$ inf $>$ 2 $<$ /inf $>$ hybrid structures. , 2018, , .		0
187	A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Scientific Reports, 2018, 8, 16891.	1.6	36
188	Passive directional sub-ambient daytime radiative cooling. Nature Communications, 2018, 9, 5001.	5.8	179
189	Broadband LWIR and MWIR absorber by trapezoid multilayered grating and SiO2 hybrid structures. Optical and Quantum Electronics, 2018, 50, 1.	1.5	13
190	Computational Fluid Dynamics-Based Study of a High Emissivity Coil Coating in an Industrial Steam Cracker. Industrial & Engineering Chemistry Research, 2018, 57, 16782-16794.	1.8	10
191	A transient regime for transforming thermal convection: Cloaking, concentrating, and rotating creeping flow and heat flux. Journal of Applied Physics, 2018, 124, .	1.1	57
192	Covert infrared image encoding through imprinted plasmonic cavities. Light: Science and Applications, 2018, 7, 93.	7.7	51
193	Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation. Physical Review Applied, 2018, 10, .	1.5	97
194	Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future?. Buildings, 2018, 8, 168.	1.4	103
195	Near-Field and Far-Field Thermal Emission of an Individual Patch Nanoantenna. Physical Review Letters, 2018, 121, 243901.	2.9	20
196	Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Science Advances, 2018, 4, eaat3163.	4.7	74
197	Integrating absorber with non-planar plasmonic structure for $\langle i \rangle k \langle i \rangle$ -vector matching absorption enhancement. Journal of Applied Physics, 2018, 124, .	1.1	16
198	Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector. Energy, 2018, 165, 811-824.	4.5	31
199	Effective Radiative Properties of Tilted Metallic Nanorod Arrays Considering Polarization Coupling. Scientific Reports, 2018, 8, 13896.	1.6	1
200	Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 2018, 362, 315-319.	6.0	1,120
201	Progress and Expectation of Atmospheric Water Harvesting. Joule, 2018, 2, 1452-1475.	11.7	424

#	Article	IF	Citations
202	Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system. Applied Energy, 2018, 231, 288-300.	5.1	49
203	Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review. Applied Energy, 2018, 232, 157-186.	5.1	150
204	Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials. Chinese Physics B, 2018, 27, 094401.	0.7	4
205	A numerical study of daytime passive radiative coolers for space cooling in buildings. Building Simulation, 2018, 11, 1011-1028.	3.0	43
206	Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221, 155-163.	1.1	66
207	Al/TiO2 bilayer coatings for space applications: Mechanical and thermoradiation properties. Thin Solid Films, 2018, 668, 30-37.	0.8	8
208	Hollow photonic structures of transparent conducting oxide with selective and tunable absorptance. Applied Thermal Engineering, 2018, 145, 416-422.	3.0	4
209	Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems. ACS Photonics, 2018, 5, 4724-4738.	3.2	77
210	Wearable Polyethylene/Polyamide Composite Fabric for Passive Human Body Cooling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41637-41644.	4.0	65
211	Hybrid Solar Absorber–Emitter by Coherenceâ€Enhanced Absorption for Improved Solar Thermophotovoltaic Conversion. Advanced Optical Materials, 2018, 6, 1800813.	3 . 6	33
212	Photonic thermal management of coloured objects. Nature Communications, 2018, 9, 4240.	5.8	139
213	Passive Radiative "Thermostat―Enabled by Phase-Change Photonic Nanostructures. ACS Photonics, 2018, 5, 4554-4560.	3.2	78
214	Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Solar Energy, 2018, 176, 248-255.	2.9	85
215	A Multilayer Film Based Selective Thermal Emitter for Infrared Stealth Technology. Advanced Optical Materials, 2018, 6, 1801006.	3.6	165
216	Optical Tunneling Based Radiative Cooling. , 2018, , .		0
217	Energy Savings Potential of a Novel Radiative Cooling and Solar Thermal Collection Concept in Buildings for Various World Climates. Energy Technology, 2018, 6, 2200-2209.	1.8	25
218	Radiative Heat Transfer. ACS Photonics, 2018, 5, 3896-3915.	3.2	163
219	Numerical study and experimental validation of a combined diurnal solar heating and nocturnal radiative cooling collector. Applied Thermal Engineering, 2018, 145, 1-13.	3.0	45

#	Article	IF	CITATIONS
220	Outfitting Next Generation Displays with Optical Metasurfaces. ACS Photonics, 2018, 5, 3876-3895.	3.2	118
221	Invisible Thinâ€Film Patterns with Strong Infrared Emission as an Optical Security Feature. Advanced Optical Materials, 2018, 6, 1800613.	3.6	26
222	Active daytime radiative cooling using spectrally selective surfaces for air conditioning and refrigeration systems. Solar Energy, 2018, 174, 16-23.	2.9	23
223	Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature, 2018, 561, 216-221.	13.7	81
224	Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system. Applied Energy, 2018, 230, 317-329.	5.1	7
225	Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge ₂ Sb ₂ Te ₅ . Optical Materials Express, 2018, 8, 2312.	1.6	27
226	Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA. Applied Energy, 2018, 224, 371-381.	5.1	112
227	Passive temperature control based on a phase change metasurface. Scientific Reports, 2018, 8, 7684.	1.6	54
228	A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Solar Energy, 2018, 169, 316-324.	2.9	131
229	Performance limit of daytime radiative cooling in warm humid environment. AIP Advances, 2018, 8, .	0.6	63
230	A new crystal Mg11(HPO3)8(OH)6 for daytime radiative cooling. Solar Energy Materials and Solar Cells, 2018, 185, 536-541.	3.0	37
231	Graphene-Based Adaptive Thermal Camouflage. Nano Letters, 2018, 18, 4541-4548.	4.5	252
232	Thermal camouflage based on the phase-changing material GST. Light: Science and Applications, 2018, 7, 26.	7.7	255
233	Li ₄ Ti ₅ O ₁₂ : A Visibleâ€toâ€Infrared Broadband Electrochromic Material for Optical and Thermal Management. Advanced Functional Materials, 2018, 28, 1802180.	7.8	123
234	Nanophotonic Heterostructures for Efficient Propulsion and Radiative Cooling of Relativistic Light Sails. Nano Letters, 2018, 18, 5583-5589.	4.5	50
235	Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks. Optics Express, 2018, 26, 4279.	1.7	28
236	Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes. Optics Express, 2018, 26, 6899.	1.7	34
237	Hybrid metasurfaces for microwave reflection and infrared emission reduction. Optics Express, 2018, 26, 11950.	1.7	64

#	Article	IF	CITATIONS
238	Self-adaptive radiative cooling based on phase change materials. Optics Express, 2018, 26, A777.	1.7	202
239	Nanophotonic control of thermal radiation for energy applications [Invited]. Optics Express, 2018, 26, 15995.	1.7	248
240	The Effect of Radiative Cooling on Reducing the Temperature of Greenhouses. Materials, 2018, 11, 1166.	1.3	14
241	Visible to near-infrared thermal radiation from nanostructured tungsten anntennas. Journal of Optics (United Kingdom), 2018, 20, 09LT01.	1.0	15
242	Porous Nickel as a Selective Emitter for Surface Cooling in Various Environments. , 2018, , .		0
243	Morpho Butterfly-Inspired Spectral Emissivity of Metallic Microstructures for Radiative Cooling. , 2018, , .		0
244	Design of Optical and Radiative Properties of Surfaces. , 2018, , 1023-1068.		3
245	Near-Field Thermal Radiation. , 2018, , 979-1021.		0
246	Thermoplasmonic and Photothermal Metamaterials for Solar Energy Applications. Advanced Optical Materials, 2018, 6, 1800317.	3.6	48
247	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. Advanced Materials, 2018, 30, e1802152.	11.1	362
248	Ultra-broadband asymmetric transmission metallic gratings for subtropical passive daytime radiative cooling. Solar Energy Materials and Solar Cells, 2018, 186, 330-339.	3.0	44
249	Dual-band quasi-coherent radiative thermal source. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 216, 99-104.	1.1	13
250	Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light: Science and Applications, 2018, 7, 37.	7.7	60
251	Realization of near-perfect absorption in the whole reststrahlen band of SiC. Nanoscale, 2018, 10, 9450-9454.	2.8	12
252	Photothermal determination of the angular dependence of emissivity. Applied Optics, 2018, 57, 6561.	0.9	3
253	Passive radiative cooling structure with vivid colors. , 2018, , .		0
254	Silk is a natural metamaterial for self-cooling: An oxymoron?. , 2018, , .		2
255	Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1845.	0.9	13

#	Article	IF	CITATIONS
256	Cylindrical-water-resonator-based ultra-broadband microwave absorber. Optical Materials Express, 2018, 8, 2060.	1.6	57
257	Tungsten–Carbon Nanotube Composite Photonic Crystals as Thermally Stable Spectralâ€Selective Absorbers and Emitters for Thermophotovoltaics. Advanced Energy Materials, 2018, 8, 1801471.	10.2	57
258	Emissivity determination using the photoacoustic effect. Applied Optics, 2018, 57, 2790.	0.9	3
259	Colored, Daytime Radiative Coolers with Thinâ€Film Resonators for Aesthetic Purposes. Advanced Optical Materials, 2018, 6, 1800707.	3.6	116
260	Radiative cooling in polish climatic conditions. E3S Web of Conferences, 2018, 44, 00016.	0.2	0
261	Peculiarities of near-room-temperature thermal-emission measurements using FTIR spectroscopy. , 2018, , .		1
262	Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials. Optics Letters, 2018, 43, 1295.	1.7	32
263	Smart Window Based on Electric Unfolding of Microwrinkled TiO ₂ Nanometric Films. ACS Photonics, 2018, 5, 3255-3262.	3.2	36
264	Tuneable Thermal Emission Using Chalcogenide Metasurface. Advanced Optical Materials, 2018, 6, 1800169.	3.6	93
265	Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling. Journal of Optics (United Kingdom), 2018, 20, 084002.	1.0	20
266	Efficiency enhancement of silicon solar cells using highly porous thermal cooling layer. Energy and Environment, 2018, 29, 1495-1511.	2.7	13
267	A transient model for optimizing a hybrid nocturnal sky radiation cooling system. Renewable Energy, 2019, 132, 370-380.	4.3	6
268	An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy, 2019, 65, 103998.	8.2	103
269	Near-Perfect Selective Photonic Crystal Emitter with Nanoscale Layers for Daytime Radiative Cooling. ACS Applied Nano Materials, 2019, 2, 5512-5519.	2.4	65
270	Passive cooling in an urban setting. Nature Sustainability, 2019, 2, 663-664.	11.5	16
271	Spinning radiation from a topological insulator. Physical Review B, 2019, 100, .	1.1	10
272	Tackling Climate Change through Radiative Cooling. Joule, 2019, 3, 2057-2060.	11.7	70
273	A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nature Sustainability, 2019, 2, 718-724.	11.5	379

#	Article	IF	CITATIONS
274	Ultrathin continuous silver film for efficient infrared emission. Materials Today Communications, 2019, 20, 100592.	0.9	2
275	Facile One-Step Fabrication of Multilayer Nanocomposite Coating for Radiative Heat Dissipation. ACS Applied Electronic Materials, 2019, 1, 1527-1537.	2.0	15
276	Selection of polymers with functional groups for daytime radiative cooling. Materials Today Physics, 2019, 10, 100127.	2.9	113
277	Dynamic Radiative Thermal Management by Crumpled Graphene. , 2019, , .		1
278	Near Field Radiative Emissivity Enhancement with Application in Electronics Cooling. , 2019, , .		0
279	Thermal emissivity of silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110051.	3.0	9
280	Ultrahigh omnidirectional, broadband, and polarization-independent optical absorption over the visible wavelengths by effective dispersion engineering. Scientific Reports, 2019, 9, 9866.	1.6	6
281	Light-emitting metasurfaces. Nanophotonics, 2019, 8, 1151-1198.	2.9	166
282	Approach to fabricating high-performance cooler with near-ideal emissive spectrum for above-ambient air temperature radiative cooling. Solar Energy Materials and Solar Cells, 2019, 200, 110013.	3.0	25
283	Optomechanical heat transfer between molecules in a nanoplasmonic cavity. Physical Review A, 2019, 100, .	1.0	14
284	A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling. Polymers, 2019, 11, 1203.	2.0	24
285	Synthesis of Sb-doped SnO2 (ATO) hollow microspheres and its application in photo-thermal shielding coating. Progress in Organic Coatings, 2019, 136, 105229.	1.9	19
286	Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene. Nano Letters, 2019, 19, 5086-5092.	4.5	48
287	Perfect Light Absorption in Thin and Ultra-Thin Films and Its Applications. Progress in Optical Science and Photonics, 2019, , 3-27.	0.3	0
288	Mapping thermal radiation in plasmonic structures. Chemical Physics, 2019, 526, 110423.	0.9	3
289	Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Climate, 2019, 29, 100495.	2.4	72
290	A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system. Energy, 2019, 183, 892-900.	4.5	34
291	Rapid and Largeâ€Scale Fabrication of Full Color Woodpile Photonic Crystals via Interference from a Conformal Multilevel Phase Mask. Advanced Functional Materials, 2019, 29, 1904971.	7.8	24

#	Article	IF	CITATIONS
292	Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. Energy and Buildings, 2019, 203, 109453.	3.1	67
293	Silver ants-inspired flexible photonic architectures with improved transparency and heat radiation for photovoltaic devices. Solar Energy Materials and Solar Cells, 2019, 203, 110135.	3.0	31
294	Green Production of Regenerated Cellulose/Boron Nitride Nanosheet Textiles for Static and Dynamic Personal Cooling. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40685-40693.	4.0	61
295	Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environment. Energy and Buildings, 2019, 204, 109502.	3.1	81
296	Temporally and Spatially Coherent Emission from Thermal Embedded Eigenstates. ACS Photonics, 2019, 6, 2949-2956.	3.2	21
297	A Selfâ€Assembled 2D Thermofunctional Material for Radiative Cooling. Small, 2019, 15, e1905290.	5.2	83
298	Stability Analysis of Polynomial Fuzzy Control Systems based on Homogeneous Lyapunov Function. , 2019, , .		0
299	High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Science Advances, 2019, 5, eaat9480.	4.7	281
300	Infrared-Radiation-Enhanced Nanofiber Membrane for Sky Radiative Cooling of the Human Body. ACS Applied Materials & Diterfaces, 2019, 11, 44673-44681.	4.0	82
301	An Onâ€Chip Quadâ€Wavelength Pyroelectric Sensor for Spectroscopic Infrared Sensing. Advanced Science, 2019, 6, 1900579.	5.6	31
302	Porous Polymers with Switchable Optical Transmittance for Optical and Thermal Regulation. Joule, 2019, 3, 3088-3099.	11.7	175
303	Smart utilization of solar energy with Optic-Variable Wall (OVW) for thermal comfort. Energy and Buildings, 2019, 202, 109376.	3.1	5
304	Flexible Ferrofluids: Design and Applications. Advanced Materials, 2019, 31, e1903497.	11.1	111
305	Phonon-polaritonics: enabling powerful capabilities for infrared photonics. Nanophotonics, 2019, 8, 2129-2175.	2.9	113
306	Metamaterials for Manipulating Thermal Radiation: Transparency, Cloak, and Expander. Physical Review Applied, 2019, 12, .	1.5	61
307	Radiative cooling of solar cells: opto-electro-thermal physics and modeling. Nanoscale, 2019, 11, 17073-17083.	2.8	66
308	Thermoelectric Generator Using Space Cold Source. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33941-33945.	4.0	45
309	Optical Tunneling Mediated Sub-Skin-Depth High Emissivity Tungsten Radiators. Nano Letters, 2019, 19, 7093-7099.	4.5	12

#	Article	IF	CITATIONS
310	Stretchable Selective Emitters based on Carbon Nanotube Films for Adaptive Thermal Control. , 2019, , .		0
311	Simultaneous single-peak and narrowband thermal emission enabled by hybrid metal-polar dielectric structures. Applied Physics Letters, 2019, 115, .	1.5	11
312	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001.	7.3	138
313	Colored Radiative Cooler under Optical Tamm Resonance. ACS Photonics, 2019, 6, 2545-2552.	3.2	70
314	Generating Light from Darkness. Joule, 2019, 3, 2679-2686.	11.7	158
315	Controlling Thermal Emission by Parity-Symmetric Fano Resonance of Optical Absorbers in Metasurfaces. ACS Photonics, 2019, 6, 2671-2676.	3.2	36
316	Solar heat shielding performance of potassium titanate whisker coated polypropylene fabric based on a bionic method. Composites Part B: Engineering, 2019, 177, 107408.	5.9	14
317	A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses. Journal of Cleaner Production, 2019, 240, 118158.	4.6	59
318	High-Temperature Polaritons in Ceramic Nanotube Antennas. Nano Letters, 2019, 19, 8565-8571.	4.5	7
319	Refractory Brewster metasurfaces control the frequency and angular spectrum of light absorption. Nanomaterials and Nanotechnology, 2019, 9, 184798041882481.	1.2	6
320	Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renewable and Sustainable Energy Reviews, 2019, 104, 151-166.	8.2	137
321	Performance analysis of passive cooling for photovoltaic modules and estimation of energy-saving potential. Solar Energy, 2019, 181, 70-82.	2.9	42
322	On snowpack heating by solar radiation: A computational model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 227, 72-85.	1.1	42
323	Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model. Applied Energy, 2019, 248, 589-599.	5.1	69
324	Performance evaluation of daytime radiative cooling under different clear sky conditions. Applied Thermal Engineering, 2019, 155, 660-666.	3.0	54
325	A thermally stable cooler for efficient passive radiative cooling throughout the day. Optical Materials, 2019, 92, 330-334.	1.7	13
326	Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18, 920-930.	13.3	261
327	Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials. International Journal of Heat and Mass Transfer, 2019, 140, 453-482.	2.5	32

#	Article	IF	Citations
328	Spectral near-field thermal emission extraction by optical waveguides. Physical Review B, 2019, 99, .	1.1	6
329	Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Applied Energy, 2019, 252, 113432.	5.1	44
330	Graphene bandgap induced by ferroelectric <i>Pca</i> 2 ₁ HfO ₂ substrates: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 15001-15006.	1.3	12
331	Infrared cooling properties of cordierite*. Chinese Physics B, 2019, 28, 064401.	0.7	3
332	Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy, 2019, 63, 103808.	8.2	111
333	Radiative cooling resource maps for the contiguous United States. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	31
334	Photonic radiative cooler optimization using Taguchi's method. International Journal of Thermal Sciences, 2019, 144, 21-26.	2.6	13
335	Design parameters and control strategies for a combined passive heating and cooling system in Louisville, KY. International Journal of Sustainable Energy, 2019, 38, 981-1001.	1.3	6
336	Non-tapered metamaterial emitters for radiative cooling to low temperature limit. Optics Communications, 2019, 450, 246-251.	1.0	21
337	Optical coatings of durability based on transition metal nitrides. Thin Solid Films, 2019, 688, 137339.	0.8	27
338	Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 2019, 198, 467-490.	3.1	157
339	A radiative cooling structural material. Science, 2019, 364, 760-763.	6.0	856
340	General strategy of passive sub-ambient daytime radiative cooling. Solar Energy Materials and Solar Cells, 2019, 199, 108-113.	3.0	41
341	Theory and Mechanism of Nocturnal Cooling. SpringerBriefs in Applied Sciences and Technology, 2019, , 7-14.	0.2	0
342	<i>110th Anniversary: </i> The Missing Link Unearthed: Materials and Process Intensification. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 9212-9222.	1.8	29
343	Broadband omnidirectional light reflection and radiative heat dissipation in white beetles <i>Goliathus goliatus</i> . Soft Matter, 2019, 15, 4294-4300.	1.2	48
344	A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight. Materials, 2019, 12, 1208.	1.3	20
345	SrTiO3 as a new solar reflective pigment on the cooling property of PMMA-ceramic composites. Ceramics International, 2019, 45, 16078-16087.	2.3	32

#	Article	IF	CITATIONS
346	The influence of pollution on solar heating and melting of a snowpack. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 233, 42-51.	1.1	10
347	Metamaterial-Selective Emitter for Maximizing Infrared Camouflage Performance with Energy Dissipation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21250-21257.	4.0	88
348	Perfect blackbody sheets from nano-precision microtextured elastomers for light and thermal radiation management. Journal of Materials Chemistry C, 2019, 7, 5418-5425.	2.7	36
349	Highly selective photonic glass filter for saturated blue structural color. APL Photonics, 2019, 4, .	3.0	17
350	Biomimetic photonics. Journal of Optics (United Kingdom), 2019, 21, 030201.	1.0	0
351	Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells. Solar Energy Materials and Solar Cells, 2019, 197, 19-24.	3.0	55
352	Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation. Energies, 2019, 12, 1080.	1.6	83
353	Radiative sky cooling: Fundamental principles, materials, and applications. Applied Physics Reviews, 2019, 6, .	5.5	442
354	Photothermal Clothing for Thermally Preserving Pipeline Transportation of Crude Oil. Advanced Functional Materials, 2019, 29, 1900703.	7.8	46
355	Experimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiode. Applied Physics Letters, 2019, 114, .	1.5	37
356	Flexible Mid-Infrared Radiation Modulator with Multilayer Graphene Thin Film by Ionic Liquid Gating. ACS Applied Materials & (amp; Interfaces, 2019, 11, 13538-13544.	4.0	47
357	Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties. Solar Energy, 2019, 183, 410-418.	2.9	21
358	Thermal control properties of radiative cooling foil based on transparent fluorinated polyimide. Solar Energy Materials and Solar Cells, 2019, 195, 250-257.	3.0	48
359	Effect of embedded polydisperse glass microspheres on radiative cooling of a coating. International Journal of Thermal Sciences, 2019, 140, 358-367.	2.6	62
360	A robust Janus fibrous membrane with switchable infrared radiation properties for potential building thermal management applications. Journal of Materials Chemistry A, 2019, 7, 8344-8352.	5. 2	41
361	Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating. Renewable Energy, 2019, 139, 1217-1226.	4.3	48
362	Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis. Energy, 2019, 175, 677-686.	4.5	27
363	Far-field coherent thermal emission from polaritonic resonance in individual anisotropic nanoribbons. Nature Communications, 2019, 10, 1377.	5.8	31

#	Article	IF	CITATIONS
364	Theoretical optimization of the working properties of spatial thermoradiative cells using the Carnot efficiency. Journal of Applied Physics, 2019, 125, 103101.	1.1	14
365	Effect of atmospheric water vapor on radiative cooling performance of different surfaces. Solar Energy, 2019, 183, 218-225.	2.9	102
366	A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Conversion and Management, 2019, 186, 586-596.	4.4	86
367	Bio-Inspired Stretchable Selective Emitters Based on Corrugated Nickel for Personal Thermal Management. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 173-187.	1.4	21
368	Dual-band <i>in situ</i> molecular spectroscopy using single-sized Al-disk perfect absorbers. Nanoscale, 2019, 11, 9508-9517.	2.8	22
369	Introduction: Overview of Buildings and Passive Cooling Technique. SpringerBriefs in Applied Sciences and Technology, 2019, , 1-6.	0.2	0
370	On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials. International Journal of Heat and Mass Transfer, 2019, 135, 1053-1062.	2.5	26
371	Black body-like radiative cooling for flexible thin-film solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 222-228.	3.0	56
372	Revisiting radiant cooling: condensation-free heat rejection using infrared-transparent enclosures of chilled panels. Architectural Science Review, 2019, 62, 152-159.	1.1	38
373	Dynamic gating of infrared radiation in a textile. Science, 2019, 363, 619-623.	6.0	301
374	Selective spectral optical properties and structure of aluminum phosphate for daytime passive radiative cooling application. Solar Energy Materials and Solar Cells, 2019, 194, 103-110.	3.0	57
376	Theoretical Basis. , 2019, , 49-105.		0
377	Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality. Applied Energy, 2019, 239, 1091-1113.	5.1	36
378	Evaluating the efficiency of utilizing selectively optimized metamaterial nanostructures for passive radiative cooling of satellites and components. PAM Review Energy Science & Technology, 2019, 6, 110-123.	0.2	0
379	The Application of Passive Radiative Cooling in Greenhouses. Sustainability, 2019, 11, 6703.	1.6	8
380	Thermal analysis in daytime radiative cooling. IOP Conference Series: Materials Science and Engineering, 2019, 609, 072064.	0.3	11
381	Design and Analysis of Broadband Reflector for Passive Radiative Cooling., 2019,,.		8
383	Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	2

#	Article	IF	CITATIONS
384	Highly effective photon-to-cooling thermal device. Scientific Reports, 2019, 9, 19317.	1.6	15
385	Advances and challenges in commercializing radiative cooling. Materials Today Physics, 2019, 11, 100161.	2.9	68
386	Cooling Benefits of an Extensive Green Roof and Sensitivity Analysis of Its Parameters in Subtropical Areas. Energies, 2019, 12, 4278.	1.6	7
387	Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied Energy, 2019, 236, 489-513.	5.1	474
388	A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection. International Journal of Heat and Mass Transfer, 2019, 131, 487-494.	2.5	98
389	Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space. Joule, 2019, 3, 101-110.	11.7	117
390	Daytime passive radiative cooler using porous alumina. Solar Energy Materials and Solar Cells, 2019, 191, 50-54.	3.0	111
391	Subwavelength Artificial Structures: Opening a New Era for Engineering Optics. Advanced Materials, 2019, 31, e1804680.	11.1	156
392	The Potential of Sky Radiation for Humidity Control. Journal of Solar Energy Engineering, Transactions of the ASME, 2019, 141, .	1,1	2
393	Nanomaterials for the water-energy nexus. MRS Bulletin, 2019, 44, 59-66.	1.7	39
394	Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling. Energies, 2019, 12, 89.	1.6	85
395	Design and fabrication of the ultrathin metallic film based infrared selective radiator. Solar Energy Materials and Solar Cells, 2019, 193, 7-12.	3.0	15
396	Measuring Thermal Emission Near Room Temperature Using Fourier-Transform Infrared Spectroscopy. Physical Review Applied, 2019, 11, .	1.5	29
397	Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule, 2019, 3, 111-123.	11.7	334
398	A novel self-powering ultrathin TEG device based on micro/nano emitter for radiative cooling. Nano Energy, 2019, 55, 494-500.	8.2	97
399	Radiative transfer analysis of semitransparent medium with particles having non-uniform size distribution by differential-integration method. International Journal of Heat and Mass Transfer, 2019, 130, 342-355.	2.5	17
400	The effects of multiple covers with condensation and optical degradation of a polyethylene windscreen on the performance of a sky cooling system. International Journal of Sustainable Energy, 2019, 38, 469-485.	1.3	7
401	Synergistic effect of (3-Aminopropyl)Trimethoxysilane treated ZnO and corundum nanoparticles under UV-irradiation on UV-cutoff and IR-absorption spectra of acrylic polyurethane based nanocomposite coating. Polymer Degradation and Stability, 2019, 159, 205-216.	2.7	27

#	Article	IF	CITATIONS
402	Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling. Solar Energy Materials and Solar Cells, 2019, 191, 290-296.	3.0	73
405	Investigation of a hybrid solar collector/nocturnal radiator for water heating/cooling in selected Nigerian cities. Renewable Energy, 2020, 145, 2561-2574.	4.3	13
406	Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate. Renewable Energy, 2020, 146, 44-55.	4.3	97
407	Smart Thermal Management Textiles with Anisotropic and Thermoresponsive Electrical Conductivity. Advanced Materials Technologies, 2020, 5, 1900599.	3.0	15
408	Microfluidicsâ€Assisted Assembly of Injectable Photonic Hydrogels toward Reflective Cooling. Small, 2020, 16, e1903939.	5.2	63
409	A radiative cooler with thermal insulation ability. Infrared Physics and Technology, 2020, 105, 103169.	1.3	2
410	Daytime radiative cooling with clear epoxy resin. Solar Energy Materials and Solar Cells, 2020, 207, 110368.	3.0	38
411	Broadband and Wide-Temperature-Range Thermal Emitter with Super-Hydrophobicity Based on Oxidized High-Entropy Film. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4123-4128.	4.0	12
412	Infrared optical and thermal properties of microstructures in butterfly wings. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1566-1572.	3.3	51
413	Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 2020, 69, 104449.	8.2	164
414	Single Nanoporous MgHPO $<$ sub $>4sub>\hat{A}\cdot 1.2H<sub>2sub>0 for Daytime Radiative Cooling. ACS Applied Materials & amp; Interfaces, 2020, 12, 2252-2258.$	4.0	66
415	Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105738.	3.8	62
416	Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature. Energy Conversion and Management, 2020, 205, 112395.	4.4	51
417	Copper plasmonic metamaterial glazing for directional thermal energy management. Materials and Design, 2020, 188, 108407.	3.3	17
418	Multilayer passive radiative selective cooling coating based on Al/SiO2/SiNx/SiO2/TiO2/SiO2 prepared by dc magnetron sputtering. Thin Solid Films, 2020, 694, 137736.	0.8	23
419	The super-cool materials that send heat to space. Nature, 2020, 577, 18-20.	13.7	61
420	Nanoscale radiative thermal switching via multi-body effects. Nature Nanotechnology, 2020, 15, 99-104.	15.6	39
421	Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment. Applied Thermal Engineering, 2020, 165, 114585.	3.0	38

#	Article	IF	CITATIONS
422	Numerical study of infrared broadband multilayer film absorber with tunable structural colors. Optics Communications, 2020, 459, 124950.	1.0	10
423	Preliminary study of passive radiative cooling under Singapore's tropical climate. Solar Energy Materials and Solar Cells, 2020, 206, 110270.	3.0	56
424	Design with Comfort: Expanding the psychrometric chart with radiation and convection dimensions. Energy and Buildings, 2020, 209, 109591.	3.1	24
425	Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling. Applied Energy, 2020, 260, 114167.	5.1	56
426	Spatially Resolved Dynamically Reconfigurable Multilevel Control of Thermal Emission. Laser and Photonics Reviews, 2020, 14, 1900162.	4.4	103
427	Daytime radiative cooling with silica fiber network. Solar Energy Materials and Solar Cells, 2020, 206, 110320.	3.0	28
428	Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling. Advanced Functional Materials, 2020, 30, 1907562.	7.8	215
429	Nanoporous silica microspheres–ploymethylpentene (TPX) hybrid films toward effective daytime radiative cooling. Solar Energy Materials and Solar Cells, 2020, 206, 110301.	3.0	38
430	Bidirectional reflection of semitransparent polytetrafluoroethylene (PTFE) sheets on a silver film. International Journal of Heat and Mass Transfer, 2020, 148, 118992.	2.5	6
431	Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Solar Energy Materials and Solar Cells, 2020, 206, 110296.	3.0	115
432	Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling with Deep Space. ACS Photonics, 2020, 7, 1-9.	3.2	48
433	Ultrafast pyroelectric photodetection with on-chip spectral filters. Nature Materials, 2020, 19, 158-162.	13.3	100
434	Polymer solar filter for enabling direct daytime radiative cooling. Solar Energy Materials and Solar Cells, 2020, 206, 110319.	3.0	32
435	A Hierarchical Mesoporous Insulation Ceramic. Nano Letters, 2020, 20, 1110-1116.	4. 5	38
436	Housing design methodology for passive hygrothermal control and effect verification via field measurements. Building and Environment, 2020, 185, 107241.	3.0	11
437	Waterborne coatings with sub-ambient cooling under direct sunlight–part I: Optical properties and cooling effect measurements. Solar Energy Materials and Solar Cells, 2020, 217, 110672.	3.0	9
438	Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling. Solar Energy Materials and Solar Cells, 2020, 217, 110739.	3.0	65
439	Polymer-Encapsulated TiO ₂ for the Improvement of NIR Reflectance and Total Solar Reflectance of Cool Coatings. Industrial & Engineering Chemistry Research, 2020, 59, 17901-17910.	1.8	26

#	Article	IF	CITATIONS
440	Transparent Polymer Coatings for Energy-Efficient Daytime Window Cooling. Cell Reports Physical Science, 2020, 1, 100231.	2.8	36
441	Thermal Metamaterial: Fundamental, Application, and Outlook. IScience, 2020, 23, 101637.	1.9	71
442	Full Daytime Sub-ambient Radiative Cooling in Commercial-like Paints with High FigureÂof Merit. Cell Reports Physical Science, 2020, 1, 100221.	2.8	121
443	High-performance infrared thermal radiation suppression metamaterials enabling inhibited infrared emittance and decreased temperature simultaneously. International Journal of Heat and Mass Transfer, 2020, 161, 120318.	2.5	25
444	Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities. Renewable and Sustainable Energy Reviews, 2020, 133, 110263.	8.2	84
445	Thermosiphon radiation capacity modelling for the cooling of dwellings. Case Studies in Thermal Engineering, 2020, 21, 100724.	2.8	3
446	Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India. Renewable and Sustainable Energy Reviews, 2020, 134, 110303.	8.2	14
447	All-Day Freshwater Harvesting through Combined Solar-Driven Interfacial Desalination and Passive Radiative Cooling. ACS Applied Materials & Early: Interfaces, 2020, 12, 47612-47622.	4.0	60
448	On the potential of building adaptation measures to counterbalance the impact of climatic change in the tropics. Energy and Buildings, 2020, 229, 110494.	3.1	22
449	Spectrally selective polyvinylidene fluorideÂtextile for passive human body cooling. Materials Today Energy, 2020, 18, 100504.	2.5	19
450	Transparent and Flexible Thermal Insulation Window Material. Cell Reports Physical Science, 2020, 1, 100140.	2.8	12
451	Environmental effect on the performance of passive daytime photonic radiative cooling and building energy-saving potential. Journal of Cleaner Production, 2020, 274, 123119.	4.6	36
452	Dynamically controlling electromagnetic reflection using reconfigurable water-based metasurfaces. Smart Materials and Structures, 2020, 29, 115018.	1.8	7
453	Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. Journal of Materials Chemistry C, 2020, 8, 11687-11694.	2.7	45
454	Efficient Modulation of Photonic Bandgap and Defect Modes in Allâ€Dielectric Photonic Crystals by Energetic Ion Beams. Advanced Optical Materials, 2020, 8, 2000426.	3.6	22
455	Developing thermal regulating and electromagnetic shielding textiles using ultra-thin carbon nanotube films. Composites Communications, 2020, 21, 100409.	3.3	14
456	A materials perspective on radiative cooling structures for buildings. Solar Energy, 2020, 207, 247-269.	2.9	63
457	Bio-inspired cooling technologies and the applications in buildings. Energy and Buildings, 2020, 225, 110313.	3.1	34

#	Article	IF	Citations
458	Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study. Renewable and Sustainable Energy Reviews, 2020, 132, 110055.	8.2	48
459	Universal strategy for all-weather and all-terrain radiative cooling with non-reciprocal mid-infrared windows. Solar Energy, 2020, 207, 471-478.	2.9	18
460	Designing thermal functional materials by coupling thermal transport calculations and machine learning. Journal of Applied Physics, 2020, 128, .	1.1	17
461	Robust Inorganic Daytime Radiative Cooling Coating Based on a Phosphate Geopolymer. ACS Applied Materials & Company (1988) (1988) Materials & Company (1988) (1988) Applied (1988) (1988	4.0	53
462	Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nature Communications, 2020, 11, 6101.	5.8	188
463	Multispectral Thermal Management Designs for Net-Zero Energy Buildings. , 2020, 2, 1624-1643.		50
464	Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management. Physical Chemistry Chemical Physics, 2020, 22, 28012-28020.	1.3	3
465	Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53206-53214.	4.0	18
466	Modeling and optimization of radiative cooling based thermoelectric generators. Applied Physics Letters, 2020, 117, .	1.5	50
467	Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science, 2020, 370, 786-791.	6.0	370
468	Development of radiative cooling and its integration with buildings: A comprehensive review. Solar Energy, 2020, 212, 125-151.	2.9	70
469	Recent development and research priorities on cool and super cool materials to mitigate urban heat island. Renewable Energy, 2020, 161, 792-807.	4.3	106
470	Keep Cool: Polyhedral ZnO@ZIF-8 Polymer Coatings for Daytime Radiative Cooling. Industrial & Engineering Chemistry Research, 2020, 59, 15226-15232.	1.8	26
471	Design and Experimental Study of Radiation Cooling Film Test Device. , 2020, , .		0
472	Light Management with Natural Materials: From Whiteness to Transparency. Advanced Materials, 2021, 33, e2001215.	11.1	91
473	An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module. Applied Energy, 2020, 277, 115625.	5.1	23
474	Switching of heating and cooling modes using thermal radiation films. Current Applied Physics, 2020, 20, 1073-1079.	1.1	6
475	Study on dynamic thermal characteristics of thermoelectric radiant cooling panel system through a hybrid method. Energy, 2020, 208, 118413.	4.5	8

#	Article	IF	CITATIONS
476	Disordered Polymer Antireflective Coating for Improved Perovskite Photovoltaics. ACS Photonics, 2020, 7, 1971-1977.	3.2	14
477	ldeal spectral emissivity for radiative cooling of earthbound objects. Scientific Reports, 2020, 10, 13038.	1.6	15
478	Hydrophilic radiative cooler for direct water condensation in humid weather. Solar Energy Materials and Solar Cells, 2020, 216, 110700.	3.0	30
479	Waterborne coatings with sub-ambient cooling under direct sunlight–Part II: Cooling effect under real working conditions and key physical properties. Solar Energy Materials and Solar Cells, 2020, 215, 110665.	3.0	6
480	On the energy potential of daytime radiative cooling for urban heat island mitigation. Solar Energy, 2020, 208, 430-444.	2.9	33
481	Effect of roof and ceiling configuration on energy performance of a metamaterial-based cool roof for low-rise office building in China. Indoor and Built Environment, 2021, 30, 1739-1750.	1.5	7
482	Hybrid Metamaterial Textiles for Passive Personal Cooling Indoors and Outdoors. ACS Applied Polymer Materials, 2020, 2, 4379-4386.	2.0	35
483	Investigating the infrared spectral radiative properties of self-ordered anodic aluminum oxide for passive radiative heat dissipation. Infrared Physics and Technology, 2020, 109, 103438.	1.3	7
484	A <i>Janus</i> emitter for passive heat release from enclosures. Science Advances, 2020, 6, .	4.7	116
485	Applications of Cellulose Nanomaterials in Stimuli-Responsive Optics. Journal of Agricultural and Food Chemistry, 2020, 68, 12940-12955.	2.4	29
486	Plasmon-Enhanced Infrared Emission Approaching the Theoretical Limit of Radiative Cooling Ability. Nano Letters, 2020, 20, 6974-6980.	4.5	57
487	Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Scientific Reports, 2020, 10, 13964.	1.6	38
488	Modal characterization of thermal emitters using the Method of Moments. , 2020, , .		2
489	Highâ€Performance Daytime Radiative Cooler and Nearâ€Ideal Selective Emitter Enabled by Transparent Sapphire Substrate. Advanced Science, 2020, 7, 2001577.	5.6	42
490	Creating an Ecoâ€Friendly Building Coating with Smart Subambient Radiative Cooling. Advanced Materials, 2020, 32, e1906751.	11.1	196
491	Kirchhoff's Thermal Radiation from Lithography-Free Black Metals. Micromachines, 2020, 11, 824.	1.4	8
492	A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling. Frontiers in Energy, 2020, 14, 882-888.	1.2	6
493	Omnithermal metamaterials switchable between transparency and cloaking. Journal of Applied Physics, 2020, 128, .	1.1	19

#	Article	IF	CITATIONS
494	Broadband microwave absorption based on the configuration resonance of wires. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
495	Selective Emitter with Engineered Anisotropic Radiation to Minimize Dual-Band Thermal Signature for Infrared Stealth Technology. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43090-43097.	4.0	26
496	Scalable On-Chip Radiative Coolers for Concentrated Solar Energy Devices. ACS Photonics, 2020, 7, 2748-2755.	3.2	21
497	Ultrahigh emissivity of grating-patterned PDMS film from 8 to 13 <i>μ</i> m wavelength regime. Applied Physics Letters, 2020, 117, .	1.5	52
498	Membrane-assisted radiant cooling for expanding thermal comfort zones globally without air conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21162-21169.	3.3	45
499	Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43553-43559.	4.0	49
500	Wood nanotechnology: a more promising solution toward energy issues: a mini-review. Cellulose, 2020, 27, 8513-8526.	2.4	14
501	Environmental design solutions for existing concrete flat roofs in low-cost housing to improve passive cooling in western Mexico. Journal of Cleaner Production, 2020, 277, 123992.	4.6	15
502	Continuously variable emission for mechanical deformation induced radiative cooling. Communications Materials, 2020, 1 , .	2.9	30
503	Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57832-57839.	4.0	56
504	Plasmonically Enhanced Thermal Radiation by Means of Surface Phonon Polaritons. Physical Review Applied, 2020, 14, .	1.5	8
505	Flexible Transparent Heat Mirror for Thermal Applications. Nanomaterials, 2020, 10, 2479.	1.9	4
506	Implementation of Passive Radiative Cooling Technology in Buildings: A Review. Buildings, 2020, 10, 215.	1.4	17
507	Interpretable Forward and Inverse Design of Particle Spectral Emissivity Using Common Machine-Learning Models. Cell Reports Physical Science, 2020, 1, 100259.	2.8	18
508	Harvesting energy from sun, outer space, and soil. Scientific Reports, 2020, 10, 20903.	1.6	23
509	Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51409-51417.	4.0	88
510	Lightweight, Passive Radiative Cooling to Enhance Concentrating Photovoltaics. Joule, 2020, 4, 2702-2717.	11.7	62
511	Eco-friendly and scalable radiative cooling for metal substrates with electrophoretically deposited chitosan. Solar Energy Materials and Solar Cells, 2020, 216, 110707.	3.0	7

#	Article	IF	Citations
512	Highly reflective porous films via polymerization-induced phase separation and application on phosphor-converted light-emitting diodes. , 2020, , .		0
513	Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642-666.	23.3	616
514	Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Solar Energy Materials and Solar Cells, 2020, 212, 110584.	3.0	98
515	Broadband Radiative Cooling and Decoration for Passively Dissipated Portable Electronic Devices by Aperiodic Photonic Multilayers. Annalen Der Physik, 2020, 532, 2000001.	0.9	8
516	Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nature Sustainability, 2020, 3, 636-643.	11.5	153
517	Colloidal Photonic Assemblies for Colorful Radiative Cooling. Langmuir, 2020, 36, 6589-6596.	1.6	70
518	Bioinspired "Skin―with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling. ACS Applied Materials & Daytime Radiative Cooling.	4.0	84
519	Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule, 2020, 4, 1350-1356.	11.7	257
520	Model development and performance evaluation of thermoelectric generator with radiative cooling heat sink. Energy Conversion and Management, 2020, 216, 112923.	4.4	49
521	c-Si PV cells emissivity characterization at low operating temperatures for efficiency management. MATEC Web of Conferences, 2020, 307, 01044.	0.1	0
522	Enhanced cooling by applying the radiative sky cooler to both ends of the thermoelectric cooler. Energy Conversion and Management, 2020, 212, 112785.	4.4	12
523	Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an "atmospheric window― Solar Energy Materials and Solar Cells, 2020, 213, 110563.	3.0	59
524	Thermal metamaterials for radiative plus conductive heat flow control. Applied Physics Letters, 2020, 116, .	1.5	10
525	Development of fiber-based active thermal infrared camouflage textile. Applied Materials Today, 2020, 20, 100624.	2.3	14
526	Daytime radiative cooling purposes with selective multilayer design based on Ta2O5. Optik, 2020, 214, 164811.	1.4	23
527	Using multi-layer structure to improve the radiative cooling performance. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251, 107052.	1.1	7
528	Doped semiconductor nanoparticles for possible daytime radiative cooling applications. Semiconductor Science and Technology, 2020, 35, 075018.	1.0	3
529	Transparent heat regulation materials and coatings: present status, challenges, and opportunity. , 2020, , 57-82.		1

#	Article	IF	CITATIONS
530	Novel materials and concepts for regulating infra-red radiation: radiative cooling and cool paint. , $2020, 113-131$.		1
531	Daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces. Energy for Sustainable Development, 2020, 57, 22-31.	2.0	16
532	Performance and feasibility assessment of a hybrid cooling system for office buildings based on heat dissipation panels. Energy, 2020, 205, 117975.	4.5	5
533	Narrowband Polaritonic Thermal Emitters Driven by Waste Heat. ACS Omega, 2020, 5, 10900-10908.	1.6	34
534	Biologically inspired flexible photonic films for efficient passive radiative cooling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14657-14666.	3.3	260
535	Towards low- loss on-chip nanophotonics with coupled graphene and silicon carbide: a review. JPhys Materials, 2020, 3, 032005.	1.8	15
536	Precision Measurements of Temperatureâ€Dependent and Nonequilibrium Thermal Emitters. Laser and Photonics Reviews, 2020, 14, 1900443.	4.4	26
537	Directional and Spectral Control of Thermal Emission and Its Application in Radiative Cooling and Infrared Light Sources. Physical Review Applied, 2020, 13, .	1.5	16
538	Switchable Cavitation in Silicone Coatings for Energyâ€Saving Cooling and Heating. Advanced Materials, 2020, 32, e2000870.	11.1	132
539	Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2020, 130, 109889.	8.2	100
540	Sub-ambient radiative cooling with wind cover. Renewable and Sustainable Energy Reviews, 2020, 130, 109935.	8.2	42
541	Optical and thermal radiative properties of topological insulator semiconductor multilayers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107133.	1.1	2
542	The Preparation and Characterization of SiO2 Films by Spray Coating Technique for Radiative Cooling Glass Application. Materials Today: Proceedings, 2020, 23, 696-702.	0.9	1
543	A Scalable Hybrid Fiber and Its Textile with Pore and Wrinkle Structures for Passive Personal Cooling. Advanced Materials Technologies, 2020, 5, 2000287.	3.0	33
544	Thermal Management by Engineering the Alignment of Nanocellulose. Advanced Materials, 2021, 33, e2001228.	11.1	43
545	Solar radiation and light materials interaction. , 2020, , 1-32.		2
546	Polymer photonic crystal membrane for thermo-regulating textile. Scientific Reports, 2020, 10, 9855.	1.6	14
547	Improving Heat Dissipation and Temperature Uniformity in Radiative Cooling Coating. Energy Technology, 2020, 8, 1901362.	1.8	17

#	ARTICLE	IF	CITATIONS
548	Emerging Materials and Strategies for Personal Thermal Management. Advanced Energy Materials, 2020, 10, 1903921.	10.2	290
549	Smart Textileâ€Based Personal Thermal Comfort Systems: Current Status and Potential Solutions. Advanced Materials Technologies, 2020, 5, 1901155.	3.0	82
550	Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept. Energies, 2020, 13, 893.	1.6	10
551	Transformation Multithermotics: Controlling Radiation and Conduction Simultaneously. Physical Review Applied, 2020, 13, .	1.5	59
552	Omnidirectional optical filtering based on two kinds of photonic band gaps with different angle-dependent properties. Europhysics Letters, 2020, 129, 34004.	0.7	28
553	Dualâ€Functional Metasurface toward Giant Linear and Circular Dichroism. Advanced Optical Materials, 2020, 8, 1902061.	3.6	24
554	Controllable near-infrared reflectivity and infrared emissivity with substitutional iron-doped orthorhombic YMnO3 coatings. Solar Energy, 2020, 206, 778-786.	2.9	18
555	High-Performance Multilayer Radiative Cooling Films Designed with Flexible Hybrid Optimization Strategy. Materials, 2020, 13, 2885.	1.3	21
556	Sub-ambient radiative cooling and its application in buildings. Building Simulation, 2020, 13, 1165-1189.	3.0	33
557	Radiative cooling for continuous thermoelectric power generation in day and night. Applied Physics Letters, 2020, 117, .	1.5	62
558	Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. Journal of Cleaner Production, 2020, 273, 122772.	4.6	74
559	Passive daytime radiative cooling: Principle, application, and economic analysis. MRS Energy & Sustainability, 2020, 7, 1.	1.3	31
560	Enhanced Infrared Emission by Thermally Switching the Excitation of Magnetic Polariton with Scalable Microstructured VO ₂ Metasurfaces. ACS Photonics, 2020, 7, 2219-2227.	3.2	51
561	Maximizing Solar Energy Utilization through Multicriteria Pareto Optimization of Energy Harvesting and Regulating Smart Windows. Cell Reports Physical Science, 2020, 1, 100108.	2.8	9
562	The application of asymmetric transmission in daytime radiative cooling cannot increase the cooling power. Solar Energy Materials and Solar Cells, 2020, 215, 110662.	3.0	5
563	Effect of multilayer selective radiative anti-reflective coating on crystalline silicon photovoltaics for operating temperature reduction. International Journal of Sustainable Energy, 2020, 39, 982-996.	1.3	5
564	Radiative cooling with multilayered periodic grating under sunlight. Optics Communications, 2020, 475, 126231.	1.0	23
565	Reduced Graphene Oxide–Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance. Advanced Science, 2020, 7, 1903125.	5. 6	51

#	Article	IF	CITATIONS
566	Emissive-energy harvesting using near-field heat transfer. Engineering Research Express, 2020, 2, 015040.	0.8	5
567	Dynamic impact of climate on the performance of daytime radiative cooling materials. Solar Energy Materials and Solar Cells, 2020, 208, 110426.	3.0	61
568	A simulation study for comparing the cooling performance of different daytime radiative cooling materials. Solar Energy Materials and Solar Cells, 2020, 209, 110459.	3.0	25
569	Fundamental Limits of the Dew-Harvesting Technology. Nanoscale and Microscale Thermophysical Engineering, 2020, 24, 43-52.	1.4	31
570	Narrowâ€Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability. Advanced Optical Materials, 2020, 8, 1900982.	3.6	34
571	Mechanically Robust, Responsive Composite Membrane for a Thermoregulating Textile. ACS Omega, 2020, 5, 3899-3907.	1.6	12
572	Photonic Refrigeration from Time-Modulated Thermal Emission. Physical Review Letters, 2020, 124, 077402.	2.9	29
573	A Pragmatic Device Based on a Doubleâ€Sided Functional Structure for Efficient Water Harvesting. Global Challenges, 2020, 4, 1900094.	1.8	8
574	Fundamentals, Materials, and Applications for Daytime Radiative Cooling. Advanced Materials Technologies, 2020, 5, .	3.0	103
575	Consideration of cooling loss process of the emitter for radiative cooling. Journal of Renewable and Sustainable Energy, 2020, 12, 014703.	0.8	5
576	Nonreciprocal radiative heat transfer between two planar bodies. Physical Review B, 2020, 101, .	1.1	23
577	Self-adaptive radiative cooling and solar heating based on a compound metasurface. Journal of Materials Chemistry C, 2020, 8, 3192-3199.	2.7	29
578	Radiative Cooling of a Superconducting Resonator. Physical Review Letters, 2020, 124, 033602.	2.9	32
579	Multiple Resonance Metamaterial Emitter for Deception of Infrared Emission with Enhanced Energy Dissipation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8862-8869.	4.0	33
580	Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8073-8081.	4.0	195
581	Feasibility research on a double-covered hybrid photo-thermal and radiative sky cooling module. Solar Energy, 2020, 197, 332-343.	2.9	22
582	Preliminary study of radiative cooling in cooling season of the humid coastal area. Solar Energy Materials and Solar Cells, 2020, 208, 110412.	3.0	40
583	Angle-Resolved Thermal Emission Spectroscopy Characterization of Non-Hermitian Metacrystals. Physical Review Applied, 2020, 13, .	1.5	19

#	Article	IF	CITATIONS
584	Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling. Solar Energy Materials and Solar Cells, 2020, 208, 110393.	3.0	62
585	From sky back to sky: Embedded transparent cellulose membrane to improve the thermal performance of solar module by radiative cooling. Case Studies in Thermal Engineering, 2020, 18, 100596.	2.8	14
586	Acrylic membrane doped with Al2O3 nanoparticle resonators for zero-energy consuming radiative cooling. Solar Energy Materials and Solar Cells, 2020, 213, 110561.	3.0	58
587	4A zeolite based daytime passive radiative cooling material. Infrared Physics and Technology, 2020, 107, 103342.	1.3	10
588	Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light: Science and Applications, 2020, 9, 68.	7.7	70
589	Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Science Advances, 2020, 6, eaaz5413.	4.7	148
590	Multistage and passive cooling process driven by salinity difference. Science Advances, 2020, 6, eaax5015.	4.7	22
591	Advanced Textiles for Personal Thermal Management and Energy. Joule, 2020, 4, 724-742.	11.7	358
592	Single novel Ca0.5Mg10.5(HPO3)8(OH)3F3 coating for efficient passive cooling in the natural environment. Solar Energy, 2020, 202, 164-170.	2.9	21
593	Flexible passive radiative cooling inspired by Saharan silver ants. Solar Energy Materials and Solar Cells, 2020, 210, 110512.	3.0	55
594	An Al2O3-cellulose acetate-coated textile for human body cooling. Solar Energy Materials and Solar Cells, 2020, 211, 110525.	3.0	64
595	Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling. Solar Energy Materials and Solar Cells, 2020, 211, 110548.	3.0	37
596	High-temperature infrared camouflage with efficient thermal management. Light: Science and Applications, 2020, 9, 60.	7.7	187
597	Whitish daytime radiative cooling using diffuse reflection of non-resonant silica nanoshells. Scientific Reports, 2020, 10, 6486.	1.6	11
598	Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications. Chemical Society Reviews, 2020, 49, 3461-3483.	18.7	36
599	Scale Law of Far-Field Thermal Radiation from Plasmonic Metasurfaces. Physical Review Letters, 2020, 124, 137401.	2.9	15
600	Colored Radiative Cooling Coatings with Nanoparticles. ACS Photonics, 2020, 7, 1312-1322.	3.2	91
601	Fabrication of solar-reflective, hydrophobic polymer materials with excellent cooling and anti-icing properties through selective etching. Applied Surface Science, 2020, 518, 146209.	3.1	8

#	Article	IF	CITATIONS
602	Advanced radiative cooler for multi-crystalline silicon solar module. Solar Energy, 2020, 201, 751-759.	2.9	20
603	Cool White Polymer Coatings based on Glass Bubbles for Buildings. Scientific Reports, 2020, 10, 6661.	1.6	35
604	Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside. Renewable Energy, 2020, 155, 90-99.	4.3	33
605	Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles. Science China Technological Sciences, 2021, 64, 1017-1029.	2.0	39
606	Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings. Journal of Building Engineering, 2021, 33, 101631.	1.6	23
607	Theoretical and experimental research towards the actual application of sub-ambient radiative cooling. Solar Energy Materials and Solar Cells, 2021, 220, 110826.	3.0	12
608	Bioinspired Microstructured Materials for Optical and Thermal Regulation. Advanced Materials, 2021, 33, e2000697.	11.1	81
609	Effect of the spectrally selective features of the cover and emitter combination on radiative cooling performance. Energy and Built Environment, 2021, 2, 251-259.	2.9	14
610	Analysis of the impact of a novel cool roof on cooling performance for a low-rise prefabricated building in China. Building Services Engineering Research and Technology, 2021, 42, 26-44.	0.9	26
611	Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy, 2021, 79, 105426.	8.2	113
612	Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy, 2021, 80, 105517.	8.2	78
613	Passive daytime radiative cooling inorganic-polymeric composite artificial lawn for the alternative to the natural lawn. Solar Energy Materials and Solar Cells, 2021, 219, 110783.	3.0	27
614	3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy, 2021, 81, 105600.	8.2	170
615	Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nature Nanotechnology, 2021, 16, 153-158.	15.6	405
616	A multilayered photonic emitter for high-performance daytime radiative cooling. Microsystem Technologies, 2021, 27, 2873-2887.	1.2	3
617	Photothermal-assist enhanced high-performance self-powered photodetector with bioinspired temperature-autoregulation by passive radiative balance. Nano Energy, 2021, 79, 105435.	8.2	24
618	To decarbonize industry, we must decarbonize heat. Joule, 2021, 5, 531-550.	11.7	112
619	Fabry–Perot resonance assisted dual-layer coating with enhanced wavelength-selective refection and emission for daytime radiative cooling. Optics Communications, 2021, 483, 126673.	1.0	8

#	Article	IF	CITATIONS
620	Thermodynamics of monoclinic and tetragonal hafnium dioxide (HfO2) at ambient pressure. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102210.	0.7	14
621	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
622	Application of Graphene in Coating Silk Fibril for Tunable Infrared Absorption. Journal of Electronic Materials, 2021, 50, 592-597.	1.0	2
623	Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. Nano Energy, 2021, 81, 105611.	8.2	36
624	Largeâ€Scale Multifunctional Carbon Nanotube Thin Film as Effective Midâ€Infrared Radiation Modulator with Longâ€Term Stability. Advanced Optical Materials, 2021, 9, 2001216.	3.6	32
625	Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling. Chemical Engineering Journal, 2021, 407, 127104.	6.6	84
626	Transparent window film with embedded nano-shades for thermoregulation. Construction and Building Materials, 2021, 269, 121280.	3.2	11
627	Sb-doped SnO2 (ATO) hollow submicron spheres for solar heat insulation coating. Ceramics International, 2021, 47, 547-555.	2.3	27
628	Liquid-phase plasma assisted electrophoresis and sintering SiC/hBN nanocomposite ceramic coating on aluminum alloy for radiative heat dissipation. Ceramics International, 2021, 47, 9310-9316.	2.3	5
629	Optimization and performance analysis of a multilayer structure for daytime radiative cooling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260, 107475.	1.1	16
630	Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Letters, 2021, 21, 397-404.	4.5	135
631	Nighttime Radiative Cooling for Water Harvesting from Solar Panels. ACS Photonics, 2021, 8, 269-275.	3.2	41
632	Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers. IScience, 2021, 24, 101899.	1.9	7
633	The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops. Sustainable Cities and Society, 2021, 65, 102612.	5.1	23
634	Broadband tunable absorption based on phase change materials. Results in Physics, 2021, 20, 103704.	2.0	12
635	Singleâ€Layered Reflective Metasurface Achieving Simultaneous Spinâ€Selective Perfect Absorption and Efficient Wavefront Manipulation. Advanced Optical Materials, 2021, 9, 2001663.	3.6	25
636	Momentum-space imaging spectroscopy for the study of nanophotonic materials. Science Bulletin, 2021, 66, 824-838.	4.3	18
637	Model development and performance evaluation of thermoelectric and radiative cooling module to achieve all-day power generation. Solar Energy Materials and Solar Cells, 2021, 220, 110855.	3.0	20

#	Article	IF	CITATIONS
638	A fast method to measure the evaporation rate. Journal of Hydrology, 2021, 594, 125642.	2.3	4
639	Spectrally Selective Absorbers/Emitters for Solar Steam Generation and Radiative Coolingâ€Enabled Atmospheric Water Harvesting. Global Challenges, 2021, 5, 2000058.	1.8	34
640	Photonics for Photovoltaics: Advances and Opportunities. ACS Photonics, 2021, 8, 61-70.	3.2	52
641	Thermal Performance of Sustainable Element in Moayedi Icehouse in Iran. International Journal of Architectural Heritage, 2021, 15, 740-756.	1.7	2
642	Simple dual-layer emitter for daytime radiative cooling. OSA Continuum, 2021, 4, 416.	1.8	10
643	Influences of atmospheric water vapor on spectral effective emissivity of a single-layer radiative cooling coating. AIMS Energy, 2021, 9, 96-116.	1.1	13
644	Switchable diurnal radiative cooling by doped VO ₂ . Opto-Electronic Advances, 2021, 4, 200006-200006.	6.4	50
645	Nacre-Inspired Sustainable Coatings with Remarkable Fire-Retardant and Energy-Saving Cooling Performance., 2021, 3, 243-248.		33
646	A structural polymer for highly efficient all-day passive radiative cooling. Nature Communications, 2021, 12, 365.	5.8	287
647	Self-Focused Thermal Emission and Holography Realized by Mesoscopic Thermal Emitters. ACS Photonics, 2021, 8, 497-504.	3.2	18
648	Performance simulation of polymer-based nanoparticle and void dispersed photonic structures for radiative cooling. Scientific Reports, 2021, 11, 893.	1.6	12
649	Performance Assessment of a Promising Radiative Cooler for Cool Roofs via Simulation. IOP Conference Series: Earth and Environmental Science, 0, 631, 012103.	0.2	0
650	Solar Heating of the Cryosphere: Snow and Ice Sheets. Springer Series in Light Scattering, 2021, , 53-109.	1.8	7
651	Broadband absorption of infrared dielectric resonators for passive radiative cooling. Journal of Optics (United Kingdom), 2021, 23, 025102.	1.0	7
652	Progress in dynamic emissivity regulation: control methods, material systems, and applications. Materials Chemistry Frontiers, 2021, 5, 6315-6332.	3.2	20
653	Design of radiative cooler based on porous TiO2 for improving solar cells' performance. Applied Optics, 2021, 60, 445.	0.9	8
654	Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling. Nano Letters, 2021, 21, 1493-1499.	4.5	102
655	Design of Nighttime Power Generation System to Optimally Utilize Outer Space Darkness. , 2021, , .		0

#	Article	IF	CITATIONS
656	Integrated and spectrally selective thermal emitters enabled by layered metamaterials. Nanophotonics, 2021, 10, 1285-1293.	2.9	15
657	Thermal Nanostructure Design by Materials Informatics. Springer Series in Materials Science, 2021, , 153-195.	0.4	0
658	A double-sided radiative cooling architecture with a record local cooling power density of 270 W/m2. , 2021, , .		0
659	Hierarchical Network-Augmented Hydroglasses for Broadband Light Management. Research, 2021, 2021, 4515164.	2.8	11
660	The Effect of Refractory Wall Emissivity on the Energy Efficiency of a Gas-Fired Steam Cracking Pilot Unit. Materials, 2021, 14, 880.	1.3	6
661	Active thermal radiation control with nanoslit graphene metasurface. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260, 107450.	1.1	2
662	Automated multi-layer optical design via deep reinforcement learning. Machine Learning: Science and Technology, 2021, 2, 025013.	2.4	37
663	Fano-resonant ultrathin film optical coatings. Nature Nanotechnology, 2021, 16, 440-446.	15.6	51
664	Photonics Empowered Passive Radiative Cooling. Advanced Photonics Research, 2021, 2, 2000106.	1.7	20
665	Quasi-periodic selective multilayer emitter for sub-ambient daytime radiative cooling. AIP Advances, 2021, 11, .	0.6	7
666	Hybrid modes in a single thermally excited asymmetric dimer antenna. Optics Letters, 2021, 46, 981.	1.7	8
667	Hybrid concentrated radiative cooling and solar heating in a single system. Cell Reports Physical Science, 2021, 2, 100338.	2.8	33
668	Scalable Aqueous Processingâ€Based Passive Daytime Radiative Cooling Coatings. Advanced Functional Materials, 2021, 31, 2010334.	7.8	74
669	Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling. Nano Letters, 2021, 21, 1412-1418.	4.5	106
670	Vapor condensation with daytime radiative cooling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	86
671	Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials, 2021, 6, 488-507.	23.3	270
672	Thin nanoporous anodic alumina film on aluminium for passive radiative cooling. Pramana - Journal of Physics, 2021, 95, 1.	0.9	4
673	Near-unity broadband omnidirectional emissivity via femtosecond laser surface processing. Communications Materials, 2021, 2, .	2.9	12

#	Article	IF	CITATIONS
674	Cooling property and application of Au–Bi2Te3 heterojunction nanowire array based on AAO template. Journal of Materials Science, 2021, 56, 10892-10904.	1.7	O
675	Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterfly <i>Rapala dioetas</i> . APL Photonics, 2021, 6, .	3.0	13
676	Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14132-14140.	4.0	33
677	Outdoorâ€Useable, Wireless/Batteryâ€Free Patchâ€Type Tissue Oximeter with Radiative Cooling. Advanced Science, 2021, 8, 2004885.	5.6	50
678	Investigating the Effect of Radiative Cooling on the Operating Temperature of Photovoltaic Modules. Solar Rrl, 2021, 5, 2000735.	3.1	30
679	Reconfigurable and Renewable Nanoâ€Microâ€Structured Plastics for Radiative Cooling. Advanced Functional Materials, 2021, 31, 2100535.	7.8	58
680	Wrinkled surface microstructure for enhancing the infrared spectral performance of radiative cooling. Optics Express, 2021, 29, 11416.	1.7	24
681	Functional photonic structures for external interaction with flexible/wearable devices. Nano Research, 2021, 14, 2904-2918.	5.8	8
682	Analysis of Irreversible Thermodynamic Losses in Emissive-Energy Harvesters Based on Photon Beams. IEEE Journal of Photovoltaics, 2021, 11, 437-443.	1.5	1
683	A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler. Energy, 2021, 219, 119625.	4.5	23
684	Can urban heat be mitigated in a single urban street? Monitoring, strategies, and performance results from a real scale redevelopment project. Solar Energy, 2021, 216, 564-588.	2.9	35
685	A Simple Method to Reversibly Switch the Reflectance Spectrum of a Layered Structure Consists of an Ultra-Thin Film Phase-Change Material GST. Journal of Physics: Conference Series, 2021, 1838, 012010.	0.3	0
686	Directional radiation for optimal radiative cooling. Optics Express, 2021, 29, 8376.	1.7	17
687	Designing heat transfer pathways for advanced thermoregulatory textiles. Materials Today Physics, 2021, 17, 100342.	2.9	44
688	Performance analysis on system-level integration and operation of daytime radiative cooling technology for air-conditioning in buildings. Energy and Buildings, 2021, 235, 110749.	3.1	19
689	Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications, 2021, 12, 1805.	5.8	184
690	Vanadium-dioxide microstructures with designable temperature-dependent thermal emission. Optics Letters, 2021, 46, 1768.	1.7	3
691	Reconfigurable Continuous Meta-Grating for Broadband Polarization Conversion and Perfect Absorption. Materials, 2021, 14, 2212.	1.3	7

#	Article	IF	CITATIONS
692	Enhanced Heat-Electric Conversion via Photonic-Assisted Radiative Cooling. Nanomaterials, 2021, 11, 983.	1.9	5
693	Flexible Daytime Radiative Cooling Enhanced by Enabling Three-Phase Composites with Scattering Interfaces between Silica Microspheres and Hierarchical Porous Coatings. ACS Applied Materials & Interfaces, 2021, 13, 19282-19290.	4.0	44
694	Broadband directional control of thermal emission. Science, 2021, 372, 393-397.	6.0	94
695	Outdoor Personal Thermal Management with Simultaneous Electricity Generation. Nano Letters, 2021, 21, 3879-3886.	4.5	124
696	A Triple-Mode Midinfrared Modulator for Radiative Heat Management of Objects with Various Emissivity. Nano Letters, 2021, 21, 4106-4114.	4.5	36
697	Transient Simulation of a Building-Integrated Hybrid Solar Collector/Nocturnal Radiator with In-Built Thermal Storage for Space Cooling in Owerri, Nigeria. Journal of Energy Engineering - ASCE, 2021, 147, 04021003.	1.0	2
698	Visibly Transparent Radiative Cooler under Direct Sunlight. Advanced Optical Materials, 2021, 9, 2002226.	3.6	66
699	Investigating the Effect of Cloud Cover on Radiative Cooling Potential With Artificial Neural Network Modeling. Frontiers in Energy Research, 2021, 9, .	1.2	3
700	Transparent passive-cooling composite films for indoor and outdoor spaces. Composites Communications, 2021, 24, 100611.	3.3	4
701	Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling. ACS Applied Materials & Cooling and C	4.0	71
702	Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling. Nano Energy, 2021, 82, 105695.	8.2	64
703	Ultrawhite BaSO ₄ Paints and Films for Remarkable Daytime Subambient Radiative Cooling. ACS Applied Materials & Daytime Subambient Radiative Cooling.	4.0	267
704	Radiative sky cooling potential maps of China based on atmospheric spectral emissivity. Solar Energy, 2021, 218, 195-210.	2.9	39
705	Biologically Inspired Scalable-Manufactured Dual-layer Coating with a Hierarchical Micropattern for Highly Efficient Passive Radiative Cooling and Robust Superhydrophobicity. ACS Applied Materials & Amp; Interfaces, 2021, 13, 21888-21897.	4.0	41
706	Cooling Metals via Gap Plasmon Resonance. Nano Letters, 2021, 21, 3974-3980.	4.5	14
707	Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy and Built Environment, 2021, 2, 214-222.	2.9	50
708	Multifunctional Membrane for Thermal Management Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19301-19311.	4.0	36
709	Impact of Ionic Liquids on Effectiveness of Tuning the Emissivity of Multilayer Graphene. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26256-26263.	4.0	9

#	Article	IF	CITATIONS
710	Far-field radiative thermal rectification with bulk materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 266, 107573.	1.1	4
711	Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24130-24137.	4.0	34
712	Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22521-22530.	4.0	98
713	Extreme Nonreciprocal Near-Field Thermal Radiation via Floquet Photonics. Physical Review Letters, 2021, 126, 204101.	2.9	15
714	Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover. Applied Thermal Engineering, 2021, 190, 116776.	3.0	21
715	Tungsten Suboxide Nanoneedles as an Effective Thermal Shield through Near-Infrared Reflection and Absorption. Journal of Physical Chemistry C, 2021, 125, 11115-11123.	1.5	4
716	Temperature non-uniformity in the radiative cooler and its effect on performance under various humidity conditions. Solar Energy, 2021, 220, 498-508.	2.9	13
717	Electrospinning to Surpass White Natural Silk in Sunlight Rejection for Radiative Cooling. Advanced Photonics Research, 2021, 2, 2100008.	1.7	18
718	Robust Hierarchical Porous PTFE Film Fabricated via Femtosecond Laser for Self-Cleaning Passive Cooling. Nano Letters, 2021, 21, 4209-4216.	4.5	77
719	Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings. ACS Nano, 2021, 15, 10076-10083.	7.3	107
720	Performance analysis of a novel bifacial solar photothermic and radiative cooling module. Energy Conversion and Management, 2021, 236, 114057.	4.4	16
721	Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Materials Today, 2021, 45, 44-53.	8.3	47
722	Radiative cooling potential of cementitious composites: Physical and chemical origins. Cement and Concrete Composites, 2021, 119, 104004.	4.6	7
723	Transparent Bamboo with High Radiative Cooling Targeting Energy Savings. , 2021, 3, 883-888.		30
724	Construction of a ternary channel efficient passive cooling composites with solar-reflective, thermoemissive, and thermoconductive properties. Composites Science and Technology, 2021, 207, 108743.	3.8	20
725	A review of spectral controlling for renewable energy harvesting and conserving. Materials Today Physics, 2021, 18, 100388.	2.9	31
726	Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling. Materials, 2021, 14, 2637.	1.3	3
727	Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling. Optics Express, 2021, 29, 16857.	1.7	11

#	Article	IF	CITATIONS
728	Scalable and paint-format microparticle–polymer composite enabling high-performance daytime radiative cooling. Materials Today Physics, 2021, 18, 100389.	2.9	47
729	Performance evaluation of various strategies to improve sub-ambient radiative sky cooling. Renewable Energy, 2021, 169, 1305-1316.	4.3	19
730	Refractive index and extinction coefficient of hollow microspheres for solar reflection. Applied Physics Letters, 2021, 118, .	1.5	5
731	Photonic materials for interstellar solar sailing. Optica, 2021, 8, 722.	4.8	37
732	Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application. Physics Reports, 2021, 908, 1-65.	10.3	124
733	A new study on passive radiative sky cooling resource maps of China. Energy Conversion and Management, 2021, 237, 114132.	4.4	30
734	Simultaneous harvesting of radiative cooling and solar heating for transverse thermoelectric generation. Science and Technology of Advanced Materials, 2021, 22, 441-448.	2.8	9
735	Coupling spectral-dependent radiative cooling with building energy simulation. Building and Environment, 2021, 197, 107841.	3.0	16
736	Realization of efficient radiative cooling in thermal emitter with inorganic metamaterials. Journal Physics D: Applied Physics, 2021, 54, 345501.	1.3	13
737	Theoretically comparative study of spectrally selective solar absorbers in concentrated solar-thermoelectric generators working at high temperature. Applied Optics, 2021, 60, 5291.	0.9	2
738	Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells. Scientific Reports, 2021, 11, 11552.	1.6	30
739	A flexible film to block solar radiation for daytime radiative cooling. Solar Energy Materials and Solar Cells, 2021, 225, 111029.	3.0	31
740	Non-Planck thermal emission from two-level media. Optics Letters, 2021, 46, 3584-3587.	1.7	1
741	Efficient realization of daytime radiative cooling with hollow zigzag SiO ₂ metamaterials*. Chinese Physics B, 2021, 30, 064214.	0.7	8
742	Highly tunable thermal emitter with vanadium dioxide metamaterials for radiative cooling. Applied Optics, 2021, 60, 5699.	0.9	14
743	Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Optical Materials Express, 2021, 11, 1863.	1.6	22
744	Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler. Renewable Energy, 2021, 171, 1061-1078.	4.3	23
745	Ultra-thin and high selective emission with additional lossless layer. , 2021, , .		0

#	Article	IF	CITATIONS
746	Optical-electrical-thermal optimization of plasmon enhanced solar cell., 2021,,.		0
747	Simulation of dual mode blanket for hypothermia patients. Materials Today: Proceedings, 2021, , .	0.9	0
748	Performance analysis of a hybrid HVAC system consisting of a solar thermal collector and a radiative cooling panel. Energy and Buildings, 2021, 241, 110921.	3.1	12
749	Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29558-29566.	4.0	67
750	Cover shields for sub-ambient radiative cooling: A literature review. Renewable and Sustainable Energy Reviews, 2021, 143, 110959.	8.2	47
751	Characterization of the temperature behavior of optimized SiC gratings emissivity. International Journal of Heat and Mass Transfer, 2021, 172, 121140.	2.5	1
752	Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Science Advances, 2021, 7, .	4.7	100
753	Construction of efficient passive radiative cooling emitter with selective emission in the whole atmospheric window and durable anti-contamination performance. Solar Energy Materials and Solar Cells, 2021, 224, 110998.	3.0	16
754	Highlighting photonics: looking into the next decade. ELight, 2021, 1, .	11.9	218
755	Emerging radiative materials and prospective applications of radiative sky cooling - A review. Renewable and Sustainable Energy Reviews, 2021, 144, 110910.	8.2	42
756	Development of a new spectral selectivity-based passive radiative roof cooling model and its application in hot and humid region. Journal of Cleaner Production, 2021, 307, 127170.	4.6	32
757	Energy saving potential of a fresh air pre-cooling system using radiative sky cooling. Building Simulation, 2022, 15, 167-178.	3.0	14
758	A review of noteworthy/major innovations in wearable clothing for thermal and moisture management from material to fabric structure. Textile Reseach Journal, 2022, 92, 3351-3386.	1.1	21
760	Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengths. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	14
761	Investigating the effective radiative cooling performance of random dielectric microsphere coatings. International Journal of Heat and Mass Transfer, 2021, 173, 121263.	2.5	29
762	Epsilon-near-zero photonics: infinite potentials. Photonics Research, 2021, 9, 1616.	3.4	75
763	Expanding the applicability of daytime radiative cooling: Technological developments and limitations. Energy and Buildings, 2021, 243, 110990.	3.1	25
764	Near-field radiation assisted smart skin for spacecraft thermal control. International Journal of Thermal Sciences, 2021, 165, 106934.	2.6	17

#	Article	IF	Citations
765	Design and Utilization of Infrared Light for Interfacial Solar Water Purification. ACS Energy Letters, 2021, 6, 2645-2657.	8.8	29
766	Tailoring silicon for dew water harvesting panels. IScience, 2021, 24, 102814.	1.9	12
767	Modeling the outdoor cooling impact of highly radiative "super cool―materials applied on roofs. Urban Climate, 2021, 38, 100898.	2.4	21
768	Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 2021, 373, 692-696.	6.0	410
769	Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light: Science and Applications, 2021, 10, 138.	7.7	137
770	Toward the Burgeoning Optical Sensors with Ultraâ€Precision Hierarchical Structures Inspired by Butterflies. Advanced Materials Interfaces, 2021, 8, 2100142.	1.9	8
771	Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. International Journal of Thermal Sciences, 2021, 165, 106899.	2.6	49
772	Advances in atmospheric water generation technologies. Energy Conversion and Management, 2021, 239, 114226.	4.4	55
773	Optical Analysis and Optimization of Micropyramid Texture for Thermal Radiation Control. Nanoscale and Microscale Thermophysical Engineering, 2021, 25, 137-152.	1.4	2
774	4-fold enhancement in energy scavenging from fluctuating thermal resources using a temperature-doubler circuit. Joule, 2021, 5, 2223-2240.	11.7	8
775	Thermal Emissivity Measurement with Two-temperature Method. Journal of Physics: Conference Series, 2021, 2002, 012056.	0.3	0
776	Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques. Frontiers of Physics, 2022, 17, 1.	2.4	5
777	Thermal Homeostasis Enabled by Dynamically Regulating the Passive Radiative Cooling and Solar Heating Based on a Thermochromic Hydrogel. ACS Photonics, 2021, 8, 2781-2790.	3.2	48
778	High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42724-42731.	4.0	3
779	Corrected radiative cooling power measured by equivalent dissipative thermal reservoir method. International Journal of Heat and Mass Transfer, 2021, 174, 121341.	2.5	7
781	Contactless and spatially structured cooling by directing thermal radiation. Scientific Reports, 2021, 11, 16209.	1.6	5
782	Effective radiative cooling with ZrO2/PDMS reflective coating. Solar Energy Materials and Solar Cells, 2021, 229, 111129.	3.0	50
783	Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling. Solar Energy Materials and Solar Cells, 2021, 227, 111101.	3.0	33

#	Article	IF	Citations
784	Configurable Phase Transitions in a Topological Thermal Material. Physical Review Letters, 2021, 127, 105901.	2.9	31
785	Mapping Nighttime and All-Day Radiative Cooling Potential in Europe and the Influence of Solar Reflectivity. Atmosphere, 2021, 12, 1119.	1.0	9
786	Is it possible for a photovoltaic-thermoelectric device to generate electricity at night?. Solar Energy Materials and Solar Cells, 2021, 228, 111136.	3.0	32
787	Highly Efficient Polystyrene/Metal Oxide Fiber Composites for Passive Radiative Cooling. Advanced Engineering Materials, 2022, 24, 2100694.	1.6	6
788	Daytime passive radiative cooler using zeolite. Journal of Porous Materials, 2022, 29, 1-8.	1.3	7
789	Reflective and transparent cellulose-based passive radiative coolers. Cellulose, 2021, 28, 9383-9393.	2.4	42
790	Passive radiative temperature regulator: Principles and absorption-emission manipulation. Solar Energy Materials and Solar Cells, 2021, 229, 111143.	3.0	7
791	<i>Janus</i> Multilayer for Radiative Cooling and Heating in Double-Side Photonic Thermal System. ACS Applied Materials & Double States & Doub	4.0	16
792	Toward a Scalable and Cost-Conscious Structure in Spectrally Selective Absorbers: Using High-Entropy Nitride TiVCrAlZrN. ACS Applied Energy Materials, 2021, 4, 8801-8809.	2.5	5
793	Enhancing the Efficiency of GaSb Photovoltaic Cell Using Thin-Film Multiscale Haze and Radiative Cooling. ACS Applied Energy Materials, 2021, 4, 9304-9314.	2.5	11
794	Accurately Quantifying Clear-Sky Radiative Cooling Potentials: A Temperature Correction to the Transmittance-Based Approximation. Atmosphere, 2021, 12, 1195.	1.0	3
795	Thermostat property of Janus emitter in enclosures. Solar Energy Materials and Solar Cells, 2021, 230, 111173.	3.0	11
796	Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film. Solar Energy, 2021, 225, 245-251.	2.9	45
797	Thermal conductivity of micro/nano-porous polymers: Prediction models and applications. Frontiers of Physics, 2022, 17, 1.	2.4	19
798	Probing mid-infrared surface interface states based on thermal emission. Optics Express, 2021, 29, 35216.	1.7	5
799	Adaptive covers for combined radiative cooling and solar heating. A review of existing technology and materials. Solar Energy Materials and Solar Cells, 2021, 230, 111275.	3.0	21
800	Scalable, fire-retardant, and spectrally robust melamine-formaldehyde photonic bulk for efficient daytime radiative cooling. Applied Materials Today, 2021, 24, 101103.	2.3	10
801	Highâ€Strength Flexible Membrane with Rational Pore Architecture as a Selective Radiator for Highâ€Efficiency Daytime Radiative Cooling. Advanced Materials Technologies, 2022, 7, 2100528.	3.0	27

#	Article	IF	Citations
802	Experimental development and testing of low-cost scalable radiative cooling materials for building applications. Solar Energy Materials and Solar Cells, 2021, 230, 111209.	3.0	29
803	Tunable extreme energy transfer of terahertz waves with graphene in a nested cavity. Optics Express, 2021, 29, 34302-34313.	1.7	3
804	Flexible Thermocamouflage Materials in Supersonic Flowfields with Selective Energy Dissipation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43524-43532.	4.0	18
805	A facile approach to achieve subambient radiative cooling through aluminum foils and polyethylene bubble wrap. Solar Energy Materials and Solar Cells, 2021, 230, 111286.	3.0	10
806	A rigid spectral selective cover for integrated solar heating and radiative sky cooling system. Solar Energy Materials and Solar Cells, 2021, 230, 111270.	3.0	7
807	Metafabric that can cool the human body. National Science Review, 2021, 8, nwab176.	4.6	1
808	Ultra-thin and near-unity selective emitter for efficient cooling. Optics Express, 2021, 29, 31364.	1.7	10
809	Manipulation of thermal radiation by using photonic crystals. International Journal of Modern Physics B, 2021, 35, .	1.0	2
810	Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	59
811	Carbothermal synthesis of micronâ€sized, uniform, spherical silicon carbide (SiC) particles. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2172-2180.	0.6	2
812	Superhydrophobic porous film for daytime radiative cooling. Applied Materials Today, 2021, 24, 101100.	2.3	45
813	In Situ Formation of SiO ₂ Nanospheres on Common Fabrics for Broadband Radiative Cooling. ACS Applied Nano Materials, 2021, 4, 11260-11268.	2.4	14
814	A review on the integration of radiative cooling and solar energy harvesting. Materials Today Energy, 2021, 21, 100776.	2.5	39
815	Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Solar Energy Materials and Solar Cells, 2021, 230, 111233.	3.0	45
816	Multilayer selective passive daytime radiative cooler optimization utilizing memetic algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107774.	1.1	5
817	Bioinspired Radiative Cooling Structure with Randomly Stacked Fibers for Efficient All-Day Passive Cooling. ACS Applied Materials & Diterfaces, 2021, 13, 43387-43395.	4.0	39
818	Biomimetic Photonic Multiform Composite for Highâ€Performance Radiative Cooling. Advanced Optical Materials, 2021, 9, 2101151.	3.6	37
819	Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo-optical activity. Solar Energy Materials and Solar Cells, 2021, 230, 111205.	3.0	31

#	Article	IF	Citations
820	Implementation of Optimal Thermal Radiation Pumps Using Adiabatically Modulated Photonic Cavities. ACS Photonics, 2021, 8, 2973-2979.	3.2	2
821	Cellulose-upgraded polymer films for radiative sky cooling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107824.	1.1	9
822	Making Passive Daytime Radiative Cooling Metafabrics on a Large Scale. Advanced Fiber Materials, 2022, 4, 3-4.	7.9	11
823	Novel application of lignin biopolymer for radiative cooling. Infrared Physics and Technology, 2021, 117, 103840.	1.3	2
824	Simple Double-Layer Coating for Efficient Daytime and Nighttime Radiative Cooling. Atmosphere, 2021, 12, 1198.	1.0	3
825	Cool textile. Joule, 2021, 5, 2258-2260.	11.7	7
826	Ultraâ€Thin Switchable Absorbers Based on Lossy Phaseâ€Change Materials. Advanced Optical Materials, 2021, 9, 2101118.	3.6	19
827	Potential building energy savings by passive strategies combining daytime radiative coolers and thermochromic smart windows. Case Studies in Thermal Engineering, 2021, 28, 101517.	2.8	21
828	Implementation of radiative cooling with an inverse-designed selective emitter. Optics Communications, 2021, 497, 127209.	1.0	3
829	Cellulose-based porous polymer film with auto-deposited TiO2 as spectrally selective materials for passive daytime radiative cooling. Optical Materials, 2021, 120, 111431.	1.7	26
830	Nanometer-optical-coating-based visibly tinted films with 24-hour sub-atmospheric passive cooling. Optics Letters, 2021, 46, 5043.	1.7	6
831	Broadband high-temperature thermal emitter/absorber designed by the adjoint method. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3189.	0.9	4
832	Bibliometric analysis and landscape of actors in passive cooling research. Renewable and Sustainable Energy Reviews, 2021, 149, 111406.	8.2	12
833	A novel selective emissivity spectrum for radiative sky cooling. Solar Energy Materials and Solar Cells, 2021, 232, 111380.	3.0	9
834	Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy, 2021, 88, 106259.	8.2	129
835	Techno-economic and environmental performance assessment of radiative sky cooling-based super-cool roof applications in China. Energy Conversion and Management, 2021, 245, 114621.	4.4	32
836	Hexagonal boron nitride and alumina dual-layer coating for space solar thermal shielding. Chemical Engineering Journal, 2021, 421, 127802.	6.6	12
837	Efficient radiative cooling emitter adopting the wavelength conversion of giant CdSe/ZnS core-shell nanocrystals. Materials Today Physics, 2021, 21, 100496.	2.9	10

#	ARTICLE	IF	CITATIONS
838	Feasibility of realizing daytime solar heating and radiative cooling simultaneously with a novel structure. Sustainable Cities and Society, 2021, 74, 103224.	5.1	13
839	Cryothermal vacuum measurement of thermochromic variable-emittance coatings with heating/cooling hysteresis for spacecraft thermal management. Applied Thermal Engineering, 2021, 199, 117561.	3.0	14
840	Reduction of water consumption in thermal power plants with radiative sky cooling. Applied Energy, 2021, 302, 117515.	5.1	21
841	Colloidal deposition of colored daytime radiative cooling films using nanoparticle-based inks. Materials Today Physics, 2021, 21, 100510.	2.9	22
842	Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy, 2021, 89, 106377.	8.2	170
843	Integration of Radiative-based air temperature regulating system into residential building for energy saving. Applied Energy, 2021, 301, 117426.	5.1	10
844	Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy, 2021, 89, 106440.	8.2	126
845	A visibly transparent radiative cooling film with self-cleaning function produced by solution processing. Journal of Materials Science and Technology, 2021, 90, 76-84.	5.6	42
846	Enhanced thermal performance of photovoltaic panels based on glass surface texturization. Optical Materials, 2021, 121, 111511.	1.7	6
847	Design of selectively multilayered periodic gratings by PSO algorithm for radiative cooling. Optics Communications, 2021, 500, 127323.	1.0	4
848	Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustainable Cities and Society, 2021, 75, 103313.	5.1	30
849	Numerical study on enhanced radiation cooling characteristics of Ti-GE-W microstructure surfaces. Infrared Physics and Technology, 2021, 119, 103919.	1.3	1
850	Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chemical Engineering Journal, 2021, 425, 131466.	6.6	97
851	Colored radiative cooling: How to balance color display and radiative cooling performance. International Journal of Thermal Sciences, 2021, 170, 107172.	2.6	49
852	Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system. Renewable Energy, 2021, 180, 700-711.	4.3	7
853	A flexible and scalable solution for daytime passive radiative cooling using polymer sheets. Energy and Buildings, 2021, 252, 111400.	3.1	22
854	Light and thermal management of the semi-transparent radiative cooling glass for buildings. Energy, 2022, 238, 121761.	4.5	21
855	Achieving excellent thermal transfer in highly light absorbing conical aerogel for simultaneous passive cooling and solar steam generation. Chemical Engineering Journal, 2022, 429, 132089.	6.6	34

#	Article	IF	CITATIONS
856	A membrane reflector, polymer hybrid infrared emitter for better radiative cooling performance. Solar Energy Materials and Solar Cells, 2022, 234, 111417.	3.0	6
857	Optimization of random silica-polymethylpentene (TPX) radiative coolers towards substantial cooling capacity. Solar Energy Materials and Solar Cells, 2022, 234, 111419.	3.0	15
858	Energy consumption modelling of a passive hybrid system for office buildings in different climates. Energy, 2022, 239, 121914.	4.5	14
859	Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband. Optics Communications, 2022, 503, 127442.	1.0	12
860	A Triple-Mode Mid-infrared Modulator for All-Surface Radiative Thermal Management. , 2021, , .		0
861	Conversion and storage of solar energy for cooling. Energy and Environmental Science, 2022, 15, 136-145.	15.6	14
862	A bioinspired switchable selective infrared solar absorber by tunable optical coupling. Journal of Materials Chemistry C, 2021, 9, 4150-4157.	2.7	5
863	Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial. Nanomaterials, 2021, 11, 260.	1.9	46
864	Plasmonic wideband and tunable absorber based on semi etalon nano structure in the visible region. Physica Scripta, 2021, 96, 035805.	1.2	11
865	Nanomaterials and Nanocomposites for Energy-Efficient Building Envelopes. , 2021, , 2621-2648.		0
866	Performance analysis of a thermoelectric system based on radiative cooling and greenhouse effects. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
867	A smart material built upon the photo-thermochromic effect and its use for managing indoor temperature. Chemical Communications, 2021, 57, 8628-8631.	2.2	4
868	A scalable, eco-friendly, and ultrafast solar steam generator fabricated using evolutional 3D printing. Journal of Materials Chemistry A, 2021, 9, 9909-9917.	5.2	36
869	Advances in Solarâ€Driven Hygroscopic Water Harvesting. Global Challenges, 2021, 5, 2000085.	1.8	28
870	A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling. Energy, 2020, 202, 117750.	4.5	14
871	A 24-hour thermoelectric generator simultaneous using solar heat energy and space cold energy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251, 107038.	1.1	11
872	Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27241-27248.	4.0	46
873	Nanophotonic Engineering: A New Paradigm for Spectrally Sensitive Thermal Photodetectors. ACS Photonics, 2021, 8, 71-84.	3.2	17

#	Article	IF	CITATIONS
874	For the mitigation of urban heat island and urban noise island: two simultaneous sides of urban discomfort. Environmental Research Letters, 2020, 15, 103004.	2.2	22
875	Employing vanadium dioxide nanoparticles for flexible metasurfaces with switchable absorption properties at near-infrared frequencies. Journal of Optics (United Kingdom), 2020, 22, 114002.	1.0	26
876	Accelerating the discovery of multilayer nanostructures with analytic differentiation of the transfer matrix equations. Physical Review Research, 2020, 2, .	1.3	3
877	Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2020, 2, .	1.3	73
878	Generating Power at Night Using a Thermoradiative Diode, How is this Possible?., 2020, , .		5
879	Sputtered SiC coatings for radiative cooling and light absorption. Journal of Photonics for Energy, 2018, 9, 1.	0.8	9
880	Radiative cooling by silicone-based coating with randomly distributed microbubble inclusions. Journal of Photonics for Energy, 2019, 9, 1.	0.8	11
881	Structure optimization of metallodielectric multilayer for high-efficiency daytime radiative cooling. , 2017, , .		2
882	Radiative cooling for concentrating photovoltaic systems. , 2017, , .		6
883	3D printable optical structures for sub-ambient sky cooling. , 2017, , .		4
884	Thin films of high reflectivity for efficient radiative cooling. , 2018, , .		1
885	Accelerating vapor condensation with daytime radiative cooling. , 2019, , .		9
886	Improving thermo-optic properties of smart windows via coupling to radiative coolers. Applied Optics, 2020, 59, D210.	0.9	6
887	Fabry–Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling. Applied Optics, 2020, 59, 6861.	0.9	9
888	Daytime radiative cooler using porous TiO2: new approach. Applied Optics, 2020, 59, 9400.	0.9	6
889	Multiband metamaterial selective absorber for infrared stealth. Applied Optics, 2020, 59, 8768.	0.9	14
890	Subwavelength interference of light on structured surfaces. Advances in Optics and Photonics, 2018, 10, 757.	12.1	76
891	Electromagnetic metasurfaces: physics and applications. Advances in Optics and Photonics, 2019, 11, 380.	12.1	324

#	Article	IF	CITATIONS
892	Large Scale Random Metamaterial for Effective Day-time Radiative Cooling., 2017,,.		2
893	All-day radiative cooling using beam-controlled architectures. , 2019, , .		1
894	Radiative Cooling Nano-Photonic Structures Discovered in Saharan Silver Ants and Related Biomimetic Metasurfaces. , 2016, , .		5
895	Radiative cooling of solar absorbers using a transparent photonic crystal thermal blackbody. , 2016, , .		2
896	VO ₂ -based active tunable emittance thermochromic flexible coatings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, C45.	0.8	21
897	Spectrally selective filter design for passive radiative cooling. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1173.	0.9	23
898	Tunable radiative cooling based on a stretchable selective optical filter. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2534.	0.9	6
899	Effective, angle-independent radiative cooler based on one-dimensional photonic crystal. Optics Express, 2018, 26, 27885.	1.7	25
900	Radiative cooling for low-bandgap photovoltaics under concentrated sunlight. Optics Express, 2019, 27, A404.	1.7	31
901	Broadband switching of mid-infrared atmospheric windows by VO ₂ -based thermal emitter. Optics Express, 2019, 27, 11537.	1.7	30
902	Design of VO ₂ -coated silicon microspheres for thermally-regulating paint. Optics Express, 2019, 27, 21787.	1.7	17
903	Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Optics Express, 2019, 27, 30102.	1.7	47
904	Nighttime radiative cooling in hot and humid climates. Optics Express, 2019, 27, 31587.	1.7	58
905	Selectively thermal radiation control in long-wavelength infrared with broadband all-dielectric absorber. Optics Express, 2019, 27, 35088.	1.7	12
906	Direction-independent dual-band perfect absorption induced by fundamental magnetic polaritons. Optics Express, 2019, 27, A1431.	1.7	13
907	Spectral selectivity of multiple nanoparticles doped thin films. Optics Express, 2019, 27, A1591.	1.7	4
908	Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures. Optics Express, 2020, 28, 18548.	1.7	45
909	Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance. Optics Express, 2020, 28, 15472.	1.7	8

#	Article	IF	CITATIONS
910	Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm. Optics Express, 2020, 28, 15347.	1.7	49
911	Maximal nighttime electrical power generation via optimal radiative cooling. Optics Express, 2020, 28, 25460.	1.7	47
912	Microstructured surfaces for colored and non-colored sky radiative cooling. Optics Express, 2020, 28, 29703.	1.7	24
913	Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films. Optics Express, 2020, 28, 31624.	1.7	7
914	Highly transparent all-dielectric metasurface to block the near-infrared region of the solar spectrum. Optics Express, 2020, 28, 30466.	1.7	5
915	Effective optical nihility media realized by one-dimensional photonic crystals containing hyperbolic metamaterials. Optics Express, 2020, 28, 33198.	1.7	7
916	Design of efficient radiative emission and daytime cooling structures with Si ₃ N ₄ and SiO ₂ nanoparticle laminate films. Optics Express, 2020, 28, 35784.	1.7	6
917	Thin-film perfect infrared absorbers over single- and dual-band atmospheric windows. Optics Letters, 2020, 45, 2800.	1.7	12
918	Designing high-performance nighttime thermoradiative systems for harvesting energy from outer space. Optics Letters, 2020, 45, 5929.	1.7	6
919	Efficient, sub-4-cycle, 1-µm-pumped optical parametric amplifier at 10  µm based on BaGa ₄ S ₇ . Optics Letters, 2020, 45, 5692.	1.7	23
920	Design of a highly selective radiative cooling structure accelerated by materials informatics. Optics Letters, 2020, 45, 343.	1.7	15
921	Two broad absorption bands in infrared atmosphere transparent windows by trapezoid multilayered grating. Optical Materials Express, 2020, 10, 682.	1.6	13
922	Flexible radiative cooling material based on amorphous alumina nanotubes. Optical Materials Express, 2020, 10, 1641.	1.6	2
923	Systematical analysis of ideal absorptivity for passive radiative cooling. Optical Materials Express, 2020, 10, 1767.	1.6	10
924	Ultra-thin titanium nitride films for refractory spectral selectivity [Invited]. Optical Materials Express, 2018, 8, 3717.	1.6	26
925	Optical engineering of polymer materials and composites for simultaneous color and thermal management. Optical Materials Express, 2019, 9, 1990.	1.6	33
926	Selective thermal emitters with infrared plasmonic indium tin oxide working in the atmosphere. Optical Materials Express, 2019, 9, 2534.	1.6	20
927	Far-field thermal emission by metamaterials with nano-scale porosities and corrugations. , 2015, , .		1

#	Article	IF	Citations
928	Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics, 2020, 10, 361-369.	2.9	34
929	The road to atomically thin metasurface optics. Nanophotonics, 2020, 10, 643-654.	2.9	30
931	A Pragmatic and High-Performance Radiative Cooling Coating with Near-Ideal Selective Emissive Spectrum for Passive Cooling. Coatings, 2020, 10, 144.	1.2	12
932	All-Day Thermogalvanic Cells for Environmental Thermal Energy Harvesting. Research, 2019, 2019, 2460953.	2.8	18
933	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE – ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109
934	Numerical techniques for electromagnetic simulation of daytime radiative cooling: A review. AIMS Materials Science, 2019, 6, 1049-1064.	0.7	19
935	WPTherml: A Python Package for the Design of Materials for Harnessing Heat. Journal of Open Research Software, 2019, 7, .	2.7	10
936	A Self-Adaptive Integration of Photothermal and Radiative Sky Cooling for Continuously Efficient Harvesting of Energy From the Sun and Outer Space. SSRN Electronic Journal, 0, , .	0.4	0
937	Estimation of the Radiative Sky Cooling Potential through Meteorological Data: A Case Study in Tropical Climate. E3S Web of Conferences, 2021, 312, 02008.	0.2	1
938	Urban Heat Island and Advanced Mitigation Technologies. , 2021, , 742-742.		1
939	Thermal management materials for energy-efficient and sustainable future buildings. Chemical Communications, 2021, 57, 12236-12253.	2.2	19
940	Multi-bioinspired self-cleaning energy-free cooling coatings. Journal of Materials Chemistry A, 2021, 9, 24276-24282.	5 . 2	77
941	Inverse design, fabrication, and tolerance to extreme environments of radiative cooling coating. Optical Materials Express, 2021, 11, 3706.	1.6	9
942	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature Communications, 2021, 12, 6122.	5.8	86
943	Visibly Clear Radiative Cooling Metamaterials for Enhanced Thermal Management in Solar Cells and Windows. Advanced Functional Materials, 2022, 32, 2105882.	7.8	51
944	Self-adaptive control of infrared emissivity in a solution-processed plasmonic structure. Optics Express, 2021, 29, 36048.	1.7	6
945	Thermoâ€Optically Designed Scalable Photonic Films with High Thermal Conductivity for Subambient and Aboveâ€Ambient Radiative Cooling. Advanced Functional Materials, 2022, 32, 2109542.	7.8	91
946	A visible-infrared-compatible camouflage photonic crystal with heat dissipation by radiation in 5–8ÂÎ⅓m. Cell Reports Physical Science, 2021, 2, 100617.	2.8	11

#	ARTICLE	IF	CITATIONS
947	Highly Sunlight Reflective and Infrared Semi-Transparent Nanomesh Textiles. ACS Nano, 2021, 15, 15962-15971.	7.3	44
948	Off-Grid Electrical Cell Lysis Microfluidic Device Utilizing Thermoelectricity and Thermal Radiation. Chemosensors, 2021, 9, 292.	1.8	1
949	Metafabrics for cooling under a scorching sun. Light: Science and Applications, 2021, 10, 218.	7.7	2
950	Preparation of Passive Daytime Cooling Fabric with the Synergistic Effect of Radiative Cooling and Evaporative Cooling. Advanced Materials Technologies, 2022, 7, .	3.0	49
951	Colorful surfaces for radiative cooling. Journal of Photonics for Energy, 2021, 11, .	0.8	21
952	Tuning of Optical Phonons in α-MoO ₃ –VO ₂ Multilayers. ACS Applied Materials & amp; Interfaces, 2021, 13, 48981-48987.	4.0	22
953	Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate. Sustainability, 2021 , 13 , 11446 .	1.6	0
954	Boosting daytime radiative cooling performance with nanoporous polyethylene film. Energy and Built Environment, 2023, 4, 131-139.	2.9	9
955	Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling. Advanced Science, 2021, 8, e2102502.	5.6	68
956	Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand. Atmosphere, 2021, 12, 1379.	1.0	13
957	Ultra-Wideband Transparent Conductive Electrode for Electrochromic Synergistic Solar and Radiative Heat Management. ACS Energy Letters, 2021, 6, 3906-3915.	8.8	56
958	Polymer-Assisted Dispersion of Boron Nitride/Graphene in a Thermoplastic Polyurethane Hybrid for Cooled Smart Clothes. ACS Omega, 2021, 6, 28779-28787.	1.6	13
959	Cooling performance of porous polymer radiative coating under different environmental conditions throughout all-year. Solar Energy, 2021, 228, 474-485.	2.9	25
960	Novel Silica-Based PV Glass Cover Providing Higher Radiative Cooling and Power Production Compared With State-of-the-Art Glass Covers. IEEE Journal of Photovoltaics, 2021, 11, 1485-1492.	1.5	3
961	Modeling impacts of super cool roofs on air temperature at pedestrian level in mesoscale and microscale climate models. Urban Climate, 2021, 40, 101001.	2.4	11
962	Entropy acceleration, Shannon information and socioeconomics: Quantitative examples. International Journal of Design and Nature and Ecodynamics, 2015, 11, 48-63.	0.3	0
963	Two Designs of Thin Film for Cooling Buildings based on Photonic Crystal. , 0, , .		0
964	Characterization and Analysis of Nanowire-based Metamaterial Absorber as Infrared Selective Emitters. , $2016, , .$		0

#	Article	IF	CITATIONS
965	Optoelectronic and Thermodynamic Study of Solar Cells. , 2016, , .		0
967	Meta-antenna: principle, device and application. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 147802.	0.2	2
968	Tailoring Thermal Emission with Epsilon-Near-Zero Media Augmented with Dielectric Rods., 2017,,.		0
969	Subwavelength electromagnetics below the diffraction limit. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 144101.	0.2	12
970	Near-Field Thermal Radiation., 2017,, 1-43.		0
971	Design of Optical and Radiative Properties of Surfaces. , 2017, , 1-46.		0
972	Large-scale Day-time Radiative Cooling Metafilm. , 2017, , .		0
973	Super-cool paints: optimizing composition with a modified four-flux model. , 2017, , .		2
974	Radiation cooling effect of different materials. , 2018, , .		0
975	Cooling effects of infrared radiative inorganic fillers in heat dissipation coatings at temperatures below 400 K. AIMS Materials Science, 2018, 5, 756-769.	0.7	1
976	Polarization-controlled dual-band broadband infrared absorber. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 107801.	0.2	1
977	Ultrathin Metal Based Mid-Infrared Emitters for High-Temperature Radiative Cooling. , 2018, , .		0
978	Effective, angle-independent radiative cooler based on one-dimensional photonic crystal., 2019,,.		0
979	Structured Polymers for High-Performance Passive Daytime Radiative Cooling. , 2019, , .		0
980	Passive sub-ambient daytime radiative cooling. , 2019, , .		0
981	Microscale-patterned colored passive radiative cooler. , 2019, , .		0
982	Perfect selective emitter with far infrared photonic structure. , 2019, , .		0
983	Catenary Optical Fields for Thermal Emission Engineering. , 2019, , 323-354.		0

#	Article	IF	CITATIONS
984	From Catenary Optics to Engineering Optics 2.0., 2019, , 355-376.		1
985	Preparation of silica thin film by hot pressing process for passive radiative cooling. , 2019, , .		0
986	Example of metal-multi-dielectric-metal cooling metamaterial use in engineering thermal radiation. Applied Optics, 2019, 58, 7035.	0.9	5
987	Incorporation of indolinospirooxazine on ethyleneâ€vinyl acetate copolymer to produce a intelligently temperatureâ€regulated nonwhite cool material. Journal of Applied Polymer Science, 2020, 137, 48887.	1.3	1
988	Energy-Saving Analysis of Low-Rise Prefabricated Building Integrating with Metamaterial-Based Cool Roof in China. Environmental Science and Engineering, 2020, , 57-65.	0.1	1
989	Self-Cleaning and Self-Cooling Cellulose-Fiber-Based Hierarchical Composites. SSRN Electronic Journal, 0, , .	0.4	0
990	Hybrid thermal Yagi-Uda nanoantennas for directional and narrow band long-wavelength IR radiation sources. Optics Express, 2020, 28, 19334.	1.7	8
991	Characterization of Energy Vectors, in Solar Water Heaters with PCMs for Social Interest Housing. , 0, , .		0
992	Disordered metamaterial coating for daytime passive radiative cooling. AIP Advances, 2021, 11, .	0.6	14
993	<scp>4D</scp> printing of thermal responsive structure for environmentally adaptive radiative cooling and heating. Journal of Advanced Manufacturing and Processing, 2022, 4, .	1.4	7
994	Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat, 2022, 4, e12153.	6.8	56
995	Core-shell particles for devising high-performance full-day radiative cooling paint. Applied Materials Today, 2021, 25, 101209.	2.3	36
996	Transparent radiative cooling films containing poly(methylmethacrylate), silica, and silver. Optical Materials, 2021, 122, 111651.	1.7	21
997	Cooling the Earth: a polymer-based selective thermal emitter for all-day radiative cooling. Science China Chemistry, 2021, 64, 339-340.	4.2	4
999	Tunable thermal management based on solar heating and radiative cooling. Solar Energy Materials and Solar Cells, 2022, 235, 111457.	3.0	11
1000	Topology optimization of thermophotonic problem for daytime passive radiative cooling. International Journal of Heat and Mass Transfer, 2022, 183, 122097.	2.5	4
1001	Sustainable Air-Conditioning. , 2020, , 201-218.		0
1002	Theory for Thermal Radiation: Transparency, Cloak, and Expander., 2020,, 231-241.		0

#	Article	IF	CITATIONS
1003	HIGH-TEMPERATURE THERMAL PHOTONICS. Annual Review of Heat Transfer, 2020, 23, 355-395.	0.3	6
1004	Radiative heat transfer in nanophotonics: From thermal radiation enhancement theory to radiative cooling applications. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 036501.	0.2	5
1005	Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 154205.	0.2	3
1007	Limits on Thermal Emission from Multiple Coupled Resonators. , 2020, , .		O
1008	Nanomaterials and Nanocomposites for Energy-Efficient Building Envelopes., 2020,, 1-28.		0
1009	Flexible Polymer Photonic Films with Embedded Microvoids for High-Performance Passive Daytime Radiative Cooling. ACS Photonics, 2021, 8, 3301-3307.	3.2	30
1010	Universal Experimental Methods for Evaluating the Performance of Radiative Cooling Materials. Advanced Materials Technologies, 2022, 7, 2101205.	3.0	3
1011	Selective thermal emitters for high-performance all-day radiative cooling. Journal Physics D: Applied Physics, 2022, 55, 085504.	1.3	9
1012	Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology, 2022, 67, 57-67.	2.0	20
1013	Subambient daytime radiative cooling textile based on nanoprocessed silk. Nature Nanotechnology, 2021, 16, 1342-1348.	15.6	178
1014	Systematical analysis of ideal absorptivity for passive radiative cooling. Optical Materials Express, 2020, 10, 1767.	1.6	1
1016	Ultrathin-film optical coating for angle-independent remote hydrogen sensing. Measurement Science and Technology, 2020, 31, 115201.	1.4	6
1017	Narrowband direction-sensitive efficient terahertz emitter. Physica Scripta, 2021, 96, 015504.	1.2	0
1018	Optimal design of a solar cell-driven electroluminescent refrigerator. Journal of Photonics for Energy, 2020, 10, .	0.8	0
1019	Fabrication of radiative cooling coatings and composite films using Si2N2O nano-particles with wide range temperatures. Open Ceramics, 2020, 4, 100039.	1.0	5
1020	Radiative cooling of solar cells with scalable and high-performance nanoporous anodic aluminum oxide. Solar Energy Materials and Solar Cells, 2022, 235, 111498.	3.0	23
1021	A weather-resistant daytime radiative cooler based on fluorocarbon resin. Solar Energy Materials and Solar Cells, 2022, 235, 111486.	3.0	7
1022	Progress in Metafibers for Sustainable Radiative Cooling and Prospects of Achieving Thermally Drawn Metafibers. Advanced Energy and Sustainability Research, 2022, 3, 2100168.	2.8	2

#	Article	IF	CITATIONS
1023	Validation of radiant and convective heat transfer models of photonic membrane using non-invasive imaging of condensation pattern. Journal of Physics: Conference Series, 2021, 2069, 012100.	0.3	2
1024	Experimental study on a low energy radiant-capacitive heating and cooling system. Energy and Buildings, 2022, 255, 111674.	3.1	4
1025	Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics, 2022, 11, 2107-2115.	2.9	29
1026	Homogeneous Polymer Films for Passive Daytime Cooling: Optimized Thickness for Maximized Cooling Performance. Advanced Energy and Sustainability Research, 2022, 3, 2100166.	2.8	6
1027	Radiative cooling-assisted thermoelectric refrigeration and power systems: Coupling properties and parametric optimization. Energy, 2022, 242, 122546.	4.5	13
1028	Daytime passive radiative cooling materials based on disordered media: A review. Solar Energy Materials and Solar Cells, 2022, 236, 111492.	3.0	22
1029	Do-it-yourself radiative cooler as a radiative cooling standard and cooling component for device design. Journal of Photonics for Energy, 2021, 12, .	0.8	5
1030	Predictable building enveloping based on enhanced glass foam insulation with heat reflective properties. Journal of Building Engineering, 2022, 46, 103702.	1.6	1
1031	Numerical calculation of passenger compartment cooling effect under the action of radiative cooling film based on MATLAB. Journal of Physics: Conference Series, 2021, 2125, 012027.	0.3	0
1032	Performance improvement of CO2 air conditioner by integrating photonic radiative cooler as sub-cooler or/and roof envelope. Energy Conversion and Management, 2021, 251, 115019.	4.4	3
1033	Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility. Energy, 2022, 243, 122778.	4.5	3
1034	Scalable Titanium Dioxide-Free Coatings for Self-Adaptive Passive Radiative Cooling and Heating. SSRN Electronic Journal, 0, , .	0.4	0
1035	Evaluate the radiative cooling system efficiency. AIP Conference Proceedings, 2021, , .	0.3	0
1036	All-Day Uninterrupted Power Generator: Harvesting Energy from the Sun and Cold Space. SSRN Electronic Journal, 0, , .	0.4	1
1037	On the winter overcooling penalty of super cool photonic materials in cities. Solar Energy Advances, 2021, 1, 100009.	1.2	9
1038	Multiscale Photonic Emissivity Engineering for Relativistic Lightsail Thermal Regulation. Nano Letters, 2022, 22, 594-601.	4.5	7
1039	Personal thermal management - A review on strategies, progress, and prospects. International Communications in Heat and Mass Transfer, 2022, 130, 105739.	2.9	45
1040	An epsilon-near-zero-based Dallenbach absorber. Optical Materials, 2022, 123, 111899.	1.7	6

#	ARTICLE	IF	CITATIONS
1041	Thermal insulation effect of green façades based on calculation of heat transfer and long wave infrared radiative exchange. Measurement: Journal of the International Measurement Confederation, 2022, 188, 110555.	2.5	7
1042	Enhanced radiative cooling of solar cells by integration with heat pipe. Applied Energy, 2022, 308, 118363.	5.1	35
1043	Passive sub-ambient cooling: radiative cooling versus evaporative cooling. Applied Thermal Engineering, 2022, 202, 117909.	3.0	27
1044	Scalable aqueous processing-based radiative cooling coatings for heat dissipation applications. Applied Materials Today, 2022, 26, 101298.	2.3	13
1045	On daytime radiative cooling using spectrally selective metamaterial based building envelopes. Energy, 2022, 242, 122779.	4.5	21
1046	Effective properties of semitransparent radiative cooling materials with spectrally variable properties. Applied Thermal Engineering, 2022, 205, 118048.	3.0	3
1047	Performance evaluation of radiative cooling for commercial-scale warehouse. Materials Today Energy, 2022, 24, 100927.	2.5	13
1048	Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings. Materials Today Energy, 2022, 24, 100925.	2.5	14
1049	Evaluation of cooling performance of a novel dual-purpose solar thermal collector through numerical simulations. Applied Thermal Engineering, 2022, 204, 117966.	3.0	5
1050	Effects of humidity, aerosol, and cloud on subambient radiative cooling. International Journal of Heat and Mass Transfer, 2022, 186, 122438.	2.5	29
1051	Ultra-broadband thermal radiator for daytime passive radiative cooling based on single dielectric SiO2 on metal Ag. Energy Reports, 2022, 8, 852-859.	2.5	6
1052	Planar Structure with High Spectrally-Selective Emittance for Passive Radiative Cooling., 2020,,.		0
1053	Optically Modulated Passive Broadband Daytime Radiative Cooling Materials Can Cool Cities in Summer and Heat Cities in Winter. Sustainability, 2022, 14, 1110.	1.6	15
1054	Urban overheating mitigation through facades: the role of new and innovative cool coatings. , 2022, , 61-87.		1
1055	Low-Power Laser Sailing for Fast-Transit Space Flight. Nano Letters, 2022, 22, 1108-1114.	4.5	12
1056	Polymer coating with gradientâ€dispersed dielectric nanoparticles for enhanced daytime radiative cooling. EcoMat, 2022, 4, .	6.8	17
1057	Green Route for Fabrication of Water-Treatable Thermoelectric Generators. Energy Material Advances, 2022, 2022, .	4.7	11
1058	Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. ELight, 2022, 2, .	11.9	190

#	Article	IF	CITATIONS
1059	Whiter whites and cooler silk. Joule, 2022, 6, 30-32.	11.7	1
1060	Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators. Small, 2022, 18, e2106875.	5.2	33
1061	Research progress of bio-inspired radiative cooling. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 024401.	0.2	1
1062	Highlyâ€Scattering Celluloseâ€Based Films for Radiative Cooling. Advanced Science, 2022, 9, e2104758.	5.6	63
1063	A Solutionâ€Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates. Advanced Materials, 2022, 34, e2109350.	11.1	62
1064	Absorptivity Control Over the Visible to Mid-Infrared Range Using a Multilayered Film Consisting of Thermochromic Vanadium Dioxide. International Journal of Thermophysics, 2022, 43, 1.	1.0	3
1065	Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling. Nano Letters, 2022, 22, 680-687.	4.5	93
1066	Structural rod-like particles for highly efficient radiative cooling. Materials Today Energy, 2022, 25, 100955.	2.5	13
1067	Fabrication of Hydrophobic Multilayered Fabric for Passive Daytime Radiative Cooling. Macromolecular Materials and Engineering, 2022, 307, .	1.7	13
1068	Controllable fabrication of ZnO nanorods@cellulose membrane with self-cleaning and passive radiative cooling properties for building energy-saving applications. Cellulose, 2022, 29, 1981-1992.	2.4	11
1069	Radiative cooling technologies: a platform for passive heat dissipation. Journal of the Korean Physical Society, 2022, 81, 481-489.	0.3	2
1070	Interfacial Solar Steam/Vapor Generation for Heating and Cooling. Advanced Science, 2022, 9, e2104181.	5.6	42
1071	Surface phonon polaritons for infrared optoelectronics. Journal of Applied Physics, 2022, 131, .	1.1	18
1072	Solar Selective Absorber for Emerging Sustainable Applications. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	34
1073	Laser Ablated Nanocrystalline Diamond Membrane for Infrared Applications. Sensors, 2022, 22, 829.	2.1	3
1074	Dual-Emitter Graphene Glass Fiber Fabric for Radiant Heating. ACS Nano, 2022, 16, 2577-2584.	7.3	29
1075	Flexible composite film with artificial opal photonic crystals for efficient all-day passive radiative cooling. Optics Express, 2022, 30, 6003.	1.7	2
1076	Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis. Energy Conversion and Management, 2022, 254, 115221.	4.4	62

#	Article	IF	CITATIONS
1077	Concentrated radiative cooling. Applied Energy, 2022, 310, 118368.	5.1	18
1078	An all-day cooling system that combines solar absorption chiller and radiative cooling. Renewable Energy, 2022, 186, 831-844.	4.3	19
1079	Fabrication of superhydrophobic P(VDF-HFP)/SiO2 composite film for stable radiative cooling. Composites Science and Technology, 2022, 220, 109279.	3.8	41
1080	Color-preserving daytime passive radiative cooling based on Fe3+-doped Y2Ce2O7. Energy and Buildings, 2022, 259, 111861.	3.1	11
1081	Alternative designs and technological advancements of phase change material integrated photovoltaics: A state-of-the-art review. Journal of Energy Storage, 2022, 48, 104020.	3.9	14
1082	Dynamically control selective photo response in the visible light using phase change material. Optics and Laser Technology, 2022, 149, 107916.	2.2	0
1083	Anti-Greenhouse Effect via Regulation of Surface Emissivity. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	3
1084	Enhancement of Radiative Cooling Effect by Bioinspired Hollow-core Triangular Structures. Journal of Physics: Conference Series, 2022, 2185, 012007.	0.3	0
1085	Framework for Expediting Discovery of Optimal Solutions with Blackbox Algorithms in Non-Topology Photonic Inverse Design. ACS Photonics, 2022, 9, 432-442.	3.2	5
1086	Photonics and thermodynamics concepts in radiative cooling. Nature Photonics, 2022, 16, 182-190.	15.6	187
1087	Midwavelength Infrared Colloidal Nanowire Laser. Journal of Physical Chemistry Letters, 2022, 13, 1431-1437.	2.1	1
1088	Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating. Energy, 2022, 247, 123411.	4.5	6
1089	Design of scene-adaptive infrared camouflage emitter based on Au-VO2-Al2O3-Au metamaterials. Optics Communications, 2022, 512, 128016.	1.0	5
1090	A methodology to promptly evaluate the energy-saving potential of bioclimatic buildings through meteorological variables. Sustainable Cities and Society, 2022, 80, 103750.	5.1	3
1091	Protecting ice from melting under sunlight via radiative cooling. Science Advances, 2022, 8, eabj9756.	4.7	80
1092	Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review. Energy Conversion and Management, 2022, 255, 115278.	4.4	39
1093	Metalâ \in organic framework coated porous structures for enhanced thermoelectric performance. Energy Conversion and Management, 2022, 255, 115289.	4.4	6
1094	Droplet effect on the infrared transmittance of radiative cooler for direct water condensation. Solar Energy Materials and Solar Cells, 2022, 238, 111615.	3.0	12

#	Article	IF	Citations
1095	Deep Learning for the Modeling and Inverse Design of Radiative Heat Transfer. Physical Review Applied, 2021, 16, .	1.5	20
1096	Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 2021, 374, 1504-1509.	6.0	251
1097	Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 2021, 374, 1501-1504.	6.0	339
1098	All-Season Thermal Regulation with Thermochromic Temperature-Adaptive Radiative Cooling Coatings. SSRN Electronic Journal, 0, , .	0.4	0
1099	Hygroscopic photothermal beads from marine polysaccharides: demonstration of efficient atmospheric water production, indoor humidity control and photovoltaic panel cooling. Journal of Materials Chemistry A, 2022, 10, 8556-8567.	5.2	20
1100	All-weather thermal regulation coatings. Joule, 2022, 6, 286-288.	11.7	5
1101	Biomimeticsâ€"Prospects and Developments. Biomimetics, 2022, 7, 29.	1.5	3
1102	Cooling capacity evaluation of passive radiation cooling materials. Journal of Physics: Conference Series, 2022, 2200, 012021.	0.3	0
1103	Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications. Small Methods, 2022, 6, e2101379.	4.6	53
1104	Thermoelectric investigation of low-cost modular night-time electricity generation. Heat and Mass Transfer, 2022, 58, 1381-1391.	1.2	4
1105	Radiative cooling and cold storage for concentrated solar power plants. Energy Storage and Saving, 2022, 1, 93-101.	3.0	4
1106	Improvement of refrigerating machine energy efficiency through radiative removal of condensation heat. Eastern-European Journal of Enterprise Technologies, 2022, 1, 35-45.	0.3	0
1107	Energy-saving and economic analysis of passive radiative sky cooling for telecommunication base station in China. Building Simulation, 2022, 15, 1775-1787.	3.0	12
1108	Narrowband diffuse thermal emitter based on surface phonon polaritons. Nanophotonics, 2022, 11, 4115-4122.	2.9	11
1109	Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Reports Physical Science, 2022, 3, 100782.	2.8	36
1111	Multilayer Polymer Photonic Aegises Against Near-Infrared Solar Irradiation Heating. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14550-14560.	4.0	11
1112	Wavelengthâ€Selective Light Trapping with Nanometerâ€Thick Metallic Coating. Advanced Photonics Research, 0, , 2100338.	1.7	1
1113	Investigation of polyesters as daytime radiative cooling materials. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.4	0

#	Article	IF	Citations
1114	Passive radiative cooling of solar cells by low-cost and scalable metamaterials: physical simulation and efficiency limits. , 2022 , , .		1
1115	All-day effective radiative cooling by optically selective and thermally insulating mesoporous materials. Solar Energy, 2022, 235, 170-179.	2.9	25
1116	Integrating two epsilon-near-zero materials into planar multilayer metamaterial structure for broadband near-perfect mid-IR absorption. Optical Materials Express, 2022, 12, 1374.	1.6	3
1117	Study on Passenger Cabin under Passive Radiative Cooling Film. , 0, , .		O
1118	Spectral emissivity modeling in multi-resonant systems using coupled-mode theory. Optics Express, 2022, 30, 9463.	1.7	7
1119	基于回音å£å¾®è…"çš"éžäº'æ~"å…‰å器件. Chinese Science Bulletin, 2022, , .	0.4	0
1120	Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 14313-14320.	4.0	27
1121	All-Color Sub-ambient Radiative Cooling Based on Photoluminescence. ACS Photonics, 2022, 9, 1196-1205.	3.2	21
1122	Selective broadband absorption by mode splitting for radiative cooling. Optics Express, 2022, 30, 14258.	1.7	2
1123	Submicron Organic–Inorganic Hybrid Radiative Cooling Coatings for Stable, Ultrathin, and Lightweight Solar Cells. ACS Photonics, 2022, 9, 1327-1337.	3.2	22
1124	Photothermal enhancement of highly efficient photocatalysis with bioinspired thermal radiation balance characteristics. Applied Surface Science, 2022, 592, 153304.	3.1	18
1125	Broadband Perfect Absorber in the Visible Range Based on Metasurface Composite Structures. Materials, 2022, 15, 2612.	1.3	9
1126	High-efficiency oil-water separation and passive radiant cooling performance of nano-ZnO- embedded dust-free paper. Materials Chemistry and Physics, 2022, 285, 126069.	2.0	4
1127	Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling. IScience, 2022, 25, 104126.	1.9	12
1128	Systematically incorporating spectrum-selective radiative cooling into building performance simulation: Numerical integration method and experimental validation. Applied Energy, 2022, 312, 118733.	5.1	18
1129	Nighttime electric power generation at a density of 50 mW/m2 via radiative cooling of a photovoltaic cell. Applied Physics Letters, 2022, 120, .	1.5	21
1130	Spatially-Segmented Colored Radiative Cooler With Angle-Robustness. IEEE Photonics Journal, 2022, 14, 1-6.	1.0	7
1131	The Cooling Station: Combining hydronic radiant cooling and daytime radiative cooling for urban shelters. Applied Thermal Engineering, 2022, 211, 118493.	3.0	17

#	Article	IF	CITATIONS
1132	Hollow Core-Shell Particle-Containing Coating for Passive Daytime Radiative Cooling. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106949.	3.8	22
1133	Optical optimization and thermal stability of SiN/Ag/SiN based transparent heat reflecting coatings. Infrared Physics and Technology, 2022, 122, 104089.	1.3	5
1134	Electronic and phononic origins of BaSO4 as an ultra-efficient radiative cooling paint pigment. Materials Today Physics, 2022, 24, 100658.	2.9	21
1135	Sub-ambient radiative cooling under tropical climate using highly reflective polymeric coating. Solar Energy Materials and Solar Cells, 2022, 240, 111723.	3.0	18
1136	Subambient daytime cooling enabled by hierarchically architected all-inorganic metapaper with enhanced thermal dissipation. Nano Energy, 2022, 96, 107085.	8.2	34
1137	Cost effective 24-h radiative cooler with multiphase interface enhanced solar scattering and thermal emission. Materials Today Communications, 2022, 31, 103398.	0.9	7
1138	An improved radiative cooling flat-plate collector: Numerical simulation and experimental study. Applied Thermal Engineering, 2022, 210, 118349.	3.0	2
1139	Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications. Solar Energy Materials and Solar Cells, 2022, 240, 111727.	3.0	14
1140	On the cooling energy conservation potential of super cool roofs. Energy and Buildings, 2022, 264, 112076.	3.1	11
1141	Optimization of a grating structure in hexagonal array with omnidirectional emission for daytime radiative cooling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 284, 108165.	1.1	8
1142	Development of a night-time radiative sky cooling production & Development of a night-time ra	3.0	1
1143	An optimized self-adaptive thermal radiation turn-down coating with vanadium dioxide nanowire array. International Journal of Heat and Mass Transfer, 2022, 191, 122835.	2.5	11
1144	A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chemical Engineering Journal, 2022, 442, 136239.	6.6	60
1145	Unique New Cooling Technology for Refinery Use: Copyright Material IEEE Paper No. PCIC-2021-35., 2021,,.		1
1146	Full-Color Solar-Heat-Resistant Films Based on Nanometer Optical Coatings. Nano Letters, 2022, 22, 380-388.	4.5	29
1147	Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS Photonics, 2022, 9, 90-100.	3.2	18
1148	Air temperature drives the evolution of mid-infrared optical properties of butterfly wings. Scientific Reports, 2021, 11, 24143.	1.6	7
1149	Passive radiative cooling for crystalline silicon solar cells. , 2021, , .		0

#	Article	IF	CITATIONS
1150	Design and Experiment of an Automatic Temperature Control Device of Composite Shape-Stabilized Phase Change Material for Concrete Box Bridges. KSCE Journal of Civil Engineering, 2022, 26, 806-823.	0.9	0
1151	Determining the Effectiveness of Radiative Coolerâ€Integrated Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	19
1152	Coloured low-emissivity films for building envelopes for year-round energy savings. Nature Sustainability, 2022, 5, 339-347.	11.5	80
1153	A self-adaptive film for passive radiative cooling and solar heating regulation. Journal of Materials Chemistry A, 2022, 10, 11092-11100.	5.2	36
1154	Spectral decoupling of cooperative emissivity in silica-polymer metamaterials for radiative cooling. Optics Letters, 2022, 47, 2506.	1.7	4
1155	Radiative cooling of solar cells with micro-grating photonic cooler. Renewable Energy, 2022, 191, 662-668.	4.3	45
1156	3D Porous cellulose/Si-Al inorganic polymer photonic film with precisely structure-enhanced solar reflectivity for daytime radiative cooling. Materials Today Communications, 2022, 31, 103530.	0.9	1
1157	Switchable Radiative Cooling from Temperature-Responsive Thermal Resistance Modulation. ACS Applied Energy Materials, 2022, 5, 6003-6010.	2.5	15
1158	Commercialâ€Like Selfâ€Cleaning Colored ZrO ₂ â€Based Bilayer Coating for Remarkable Daytime Subâ€Ambient Radiative Cooling. Advanced Materials Technologies, 2022, 7, .	3.0	20
1159	Using tunable inter-resonator coupling to reshape the mid-infrared absorption spectrum of graphene-based metamaterials., 2022, 1, 1027.		2
1160	A Superhydrophobic Dual-Mode Film for Energy-Free Radiative Cooling and Solar Heating. ACS Omega, 2022, 7, 15247-15257.	1.6	8
1161	Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. Cell Reports Physical Science, 2022, 3, 100853.	2.8	26
1162	Radiative Cooling and Solar Heating Janus Films for Personal Thermal Management. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18877-18883.	4.0	41
1163	Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120557119.	3.3	52
1164	High reflective polyethylene glycol terephthalate package layer for passive daytime radiative cooling in photovoltaic cells. Solar Energy, 2022, 237, 313-319.	2.9	10
1165	Salisbury screen with lossy nonconducting materials: Way to increase spectral selectivity of absorption. Thin Solid Films, 2022, 751, 139232.	0.8	4
1166	Selectively emissive fluoropolymer film for passive daytime radiative cooling. Optical Materials, 2022, 128, 112273.	1.7	13
1167	Mechanically tunable radiative cooling for adaptive thermal control. Applied Thermal Engineering, 2022, 211, 118527.	3.0	14

#	Article	IF	CITATIONS
1168	Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods. Renewable and Sustainable Energy Reviews, 2022, 162, 112415.	8.2	31
1169	Super-amphiphobic coatings with sub-ambient daytime radiative coolingâ€"Part 2: Cooling effect under real conditions. Solar Energy Materials and Solar Cells, 2022, 241, 111736.	3.0	9
1171	Colored Radiative Cooling Coatings Using Phosphor Dyes. SSRN Electronic Journal, 0, , .	0.4	0
1172	Processing Bulk Wood into a Light-Permeable Passive Radiative Cooling Material for Energy-Efficient Building. SSRN Electronic Journal, 0, , .	0.4	0
1173	Specialty Grand Challenge for Heat Transfer and Thermal Power. , 2022, 2, .		1
1174	Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Reports Physical Science, 2022, 3, 100879.	2.8	20
1175	Water Harvesting from Air: Current Passive Approaches and Outlook. , 2022, 4, 1003-1024.		51
1176	Design of Doubleâ€Network Clickâ€Gels for Selfâ€Contained Underwater Adhesion and Energyâ€Wise Applications in Floating Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	13
1177	Aerogelâ€Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling. Advanced Science, 2022, 9, e2201190.	5 . 6	55
1178	On-Demand Solar and Thermal Radiation Management Based on Switchable Interwoven Surfaces. ACS Energy Letters, 2022, 7, 1758-1763.	8.8	39
1179	An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management. Advanced Fiber Materials, 2022, 4, 1058-1068.	7.9	38
1180	Intelligent regulation of VO2-PDMS-driven radiative cooling. Applied Physics Letters, 2022, 120, .	1.5	25
1181	Microwave and Acoustic Absorption Metamaterials. Physical Review Applied, 2022, 17, .	1.5	36
1182	Simultaneous solar rejection and infrared emission switching using an integrated dielectrics-on-VO2 metasurface. AIP Advances, 2022, 12, .	0.6	4
1183	Evaluating Variable-Emissivity Surfaces for Radiative Thermal Control. Journal of Thermophysics and Heat Transfer, 2022, 36, 1003-1014.	0.9	1
1184	Design and manufacture of a radiative cooler to measure the subambient cooling effect and cooling power. Review of Scientific Instruments, 2022, 93, 054901.	0.6	2
1185	Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building. Nano Letters, 2022, 22, 4106-4114.	4. 5	65
1186	Optically transparent infrared selective emitter for visible-infrared compatible camouflage. Optics Express, 2022, 30, 17259.	1.7	16

#	Article	IF	CITATIONS
1187	A review on emerging developments in thermal and moisture management by membraneâ€based clothing systems towards personal comfort. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
1188	Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light: Science and Applications, 2022, 11 , 122 .	7.7	56
1189	Structural Design of Nanowire Wearable Stretchable Thermoelectric Generator. Nano Letters, 2022, 22, 4131-4136.	4.5	17
1190	Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express, 2022, 30, 18250.	1.7	20
1191	Scalable Superhydrophobic Flexible Nanofiber Film for Passive Daytime Radiative Cooling. ACS Applied Polymer Materials, 2022, 4, 3343-3351.	2.0	20
1192	A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method. Renewable Energy, 2022, 192, 606-616.	4.3	32
1193	Switchable Surface Coating for Bifunctional Passive Radiative Cooling and Solar Heating. Advanced Functional Materials, 2022, 32, .	7.8	47
1194	Radiative Cooling Nanofabric for Personal Thermal Management. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23577-23587.	4.0	44
1195	Diurnal Selective Radiative Cooling Impact in Mitigating Urban Heat Island Effect. Sustainable Cities and Society, 2022, 83, 103932.	5.1	16
1196	Adjoint Kirchhoff's Law and General Symmetry Implications for All Thermal Emitters. Physical Review X, 2022, 12, .	2.8	15
1197	Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating. Renewable Energy, 2022, 193, 634-644.	4.3	7
1198	Fabrication of radiative cooling film with superhydrophobic self-cleaning property. Surface Innovations, 2023, 11, 285-296.	1.4	3
1199	Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range. Small, 2022, 18, e2202400.	5.2	42
1200	Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable Multimodal Thermal Management. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24755-24765.	4.0	10
1201	Effects of Stokes shift and Purcell enhancement on fluorescence-assisted radiative cooling. Journal of Materials Chemistry A, 2022, 10, 19635-19640.	5.2	11
1202	Exploiting the Potential of Nature for Sustainable Building Designs: A Novel Bioinspired Framework Based on a Characterization of Living Envelopes. Environmental Footprints and Eco-design of Products and Processes, 2022, , 289-331.	0.7	1
1203	A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling. Energy, 2022, 254, 124350.	4.5	18
1204	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	2.8	17

#	Article	IF	CITATIONS
1205	Porous Nanostructured Composite Film for Visible-to-Infrared Camouflage with Thermal Management. ACS Applied Materials & Interfaces, 2022, 14, 24690-24696.	4.0	19
1206	Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. Journal of Cleaner Production, 2022, 362, 132339.	4.6	78
1207	Eco-friendly preparation of durable superhydrophobic porous film for daytime radiative cooling. Journal of Materials Science, 2022, 57, 10425-10443.	1.7	9
1208	Enhanced radiative cooling paint with broken glass bubbles. Renewable Energy, 2022, 194, 129-136.	4.3	10
1209	Nanocomposite coatings with plasmonic structural colors for subambient daytime radiative cooling. Solar Energy, 2022, 240, 211-224.	2.9	17
1210	A review of the application of radiative sky cooling in buildings: Challenges and optimization. Energy Conversion and Management, 2022, 265, 115768.	4.4	28
1211	Colored Radiative Cooling Coatings Using Phosphor Dyes. SSRN Electronic Journal, 0, , .	0.4	0
1212	Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials, 2022, 12, .	10.2	27
1213	Fully Organic and Flexible Biodegradable Emitter for Global Energy-Free Cooling Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 7091-7099.	3.2	19
1214	Super-Planckian emission cannot really be â€~thermal'. Nature Photonics, 2022, 16, 397-401.	15.6	11
1215	Lifespan and efficiency gain for outdoor electronic systems from radiative cooling: A case study on distribution transformers. Applied Thermal Engineering, 2022, , 118636.	3.0	0
1216	Polarization Independent Metamaterial Absorber with Anti-Reflection Coating Nanoarchitectonics for Visible and Infrared Window Applications. Materials, 2022, 15, 3733.	1.3	26
1217	Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers. ACS Applied Materials & Interfaces, 2022, 14, 27222-27232.	4.0	11
1218	Dynamic radiation regulations for thermal comfort. Nano Energy, 2022, 100, 107435.	8.2	49
1219	Study on the cooling performance of a radiative cooling-based ventilated roof for its application in buildings. Building Services Engineering Research and Technology, 2022, 43, 685-702.	0.9	1
1220	Development of a device for characterizing radiative cooling performance. Applied Thermal Engineering, 2022, 213, 118744.	3.0	7
1221	Full daytime sub-ambient radiative cooling film with high efficiency and low cost. Renewable Energy, 2022, 194, 850-857.	4.3	23
1222	Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Composites Part B: Engineering, 2022, 240, 109988.	5.9	14

#	Article	IF	CITATIONS
1223	Scalable Colored Sub-Ambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure. SSRN Electronic Journal, $0, , .$	0.4	0
1224	Heat-shedding with photonic structures: radiative cooling and its potential. Journal of Materials Chemistry C, 2022, 10, 9915-9937.	2.7	15
1225	Sustainable water generation: grand challenges in continuous atmospheric water harvesting. Energy and Environmental Science, 2022, 15, 3223-3235.	15.6	37
1226	Deep learning based analysis of microstructured materials for thermal radiation control. Scientific Reports, 2022, 12, .	1.6	8
1227	Structurally Colored Cellulose Nanocrystal Films as Transreflective Radiative Coolers. ACS Nano, 2022, 16, 10156-10162.	7.3	36
1228	Impact of molecular components on performance of multilayer graphene-based infrared emissivity modulator. Applied Physics Letters, 2022, 120, 243504.	1.5	1
1229	Concomitant Thermochromic and Phaseâ€Change Effect in a Switchable Spin Crossover Material for Efficient Passive Control of Day and Night Temperature Fluctuations. Advanced Science, 2022, 9, .	5.6	4
1230	Long-wavelength infrared selective emitter for thermal infrared camouflage under a hot environment. Optics Express, 2022, 30, 24132.	1.7	10
1231	Tunable Thermoresponsive Flexible Films for Adaptive Temperature Management and Visual Temperature Monitoring. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29284-29291.	4.0	11
1232	Power Generation on Chips: Harvesting Energy From the Sun and Cold Space. Advanced Materials Technologies, 2022, 7, .	3.0	13
1233	Colored radiative cooling coatings using phosphor dyes. Materials Today Nano, 2022, 19, 100239.	2.3	15
1234	Photonic-Structure Colored Radiative Coolers for Daytime Subambient Cooling. Nano Letters, 2022, 22, 4925-4932.	4.5	46
1235	Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling. IScience, 2022, 25, 104584.	1.9	16
1236	Radiative cooling gray paint with high solar reflectance for thermal management of electronic equipment. Solar Energy, 2022, 241, 460-466.	2.9	16
1237	The criteria to achieving sub-ambient radiative cooling and its limits in tropical daytime. Building and Environment, 2022, 221, 109281.	3.0	6
1238	A novel radiative sky cooling-assisted ground-coupled heat exchanger system to improve thermal and energy efficiency for buildings in hot and humid regions. Applied Energy, 2022, 322, 119422.	5.1	10
1239	All-day continuous electrical power generator by solar heating and radiative cooling from the sky. Applied Energy, 2022, 322, 119403.	5.1	16
1240	Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling. Applied Energy, 2022, 322, 119457.	5.1	9

#	Article	IF	Citations
1241	All-day radiative cooling using a grating-patterned PDMS film emitter. Applied Thermal Engineering, 2022, 214, 118771.	3.0	13
1242	Scalable and paint-format colored coatings for passive radiative cooling. Solar Energy Materials and Solar Cells, 2022, 245, 111853.	3.0	28
1243	Sub-ambient daytime radiative cooling based on continuous sunlight blocking. Solar Energy Materials and Solar Cells, 2022, 245, 111854.	3.0	11
1244	Tunable Infrared Detection, Radiative Cooling and Infrared-Laser Compatible Camouflage Based on a Multifunctional Nanostructure with Phase-Change Material. Nanomaterials, 2022, 12, 2261.	1.9	4
1245	Passive radiant cooling without sacrificing the aesthetics of objects. Light: Science and Applications, 2022, 11, .	7.7	1
1246	Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2022, 14, 31277-31284.	4.0	28
1247	Toroidal Dipole Excitation in Metamaterial Perfect Absorber Consisting of Dielectric Nanodisks Quadrumer Clusters and Spacer on Metal Substrate. Photonics, 2022, 9, 462.	0.9	1
1248	Optically selective PDMS/AIN coatings as a passive daytime radiative cooling design. Materials Today: Proceedings, 2022, , .	0.9	1
1249	Whole LWIR Directional Thermal Emission Based on ENZ Thin Films. Laser and Photonics Reviews, 2022, 16, .	4.4	21
1250	Structurally Colored Radiative Cooling Cellulosic Films. Advanced Science, 2022, 9, .	5.6	49
1251	Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Advanced Composites and Hybrid Materials, 2022, 5, 1966-1975.	9.9	40
1252	Hierarchical Porous Polymer Coatings Based on UV-Curing for Highly Efficient Passive All-Day Radiative Cooling. ACS Applied Polymer Materials, 2022, 4, 5746-5755.	2.0	7
1253	Nonlinear thermal emission and visible thermometry. Advanced Photonics, 2022, 4, .	6.2	1
1254	CaCO3 micro particle-based radiative cooling device without metal reflector for entire day. Materials Today Communications, 2022, 32, 103990.	0.9	7
1255	Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change. Energy, 2022, 258, 124762.	4.5	13
1256	Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations. IScience, 2022, 25, 104726.	1.9	16
1257	A review of tunable photonics: Optically active materials and applications from visible to terahertz. IScience, 2022, 25, 104727.	1.9	22
1258	Superamphiphobic coatings with subambient daytime radiative coolingâ€"part 1: Optical and self-cleaning features. Solar Energy Materials and Solar Cells, 2022, 245, 111859.	3.0	9

#	Article	IF	CITATIONS
1259	A full-spectrum synergetic management strategy for passive cooling of solar cells. Solar Energy Materials and Solar Cells, 2022, 245, 111860.	3.0	8
1260	Quantifying the effect of ground view factor and ground temperature on outdoor mean radiant temperature. Sustainable Cities and Society, 2022, 84, 104030.	5.1	3
1261	Photonic design for color compatible radiative cooling accelerated by materials informatics. International Journal of Heat and Mass Transfer, 2022, 195, 123193.	2.5	14
1262	Thermal Management of Solar Panels for Overall Efficiency Enhancement Using Different Cooling Techniques. International Journal of Environmental Research, 2022, 16, .	1.1	7
1263	A tailored indoor setup for reproducible passive daytime cooling characterization. Cell Reports Physical Science, 2022, 3, 100986.	2.8	5
1264	Core-shell microspheres hybridized membrane for light emitting and radiative cooling. Journal of Alloys and Compounds, 2022, 924, 166480.	2.8	10
1265	Sky radiation decreases thermal mass requirements to achieve 100% ambient cooling in hot US climates. ASME Journal of Engineering for Sustainable Buildings and Cities, 0, , 1-27.	0.6	1
1266	"Cherimoya-like―polysilsequioxane microspheres with structure-enhanced spectral capability for passive daytime radiative cooling. Materials Today Communications, 2022, 32, 104096.	0.9	1
1267	All-season thermal regulation with thermochromic temperature-adaptive radiative cooling coatings. Solar Energy Materials and Solar Cells, 2022, 246, 111883.	3.0	9
1268	Emissivity prediction of functionalized surfaces using artificial intelligence. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 291, 108325.	1.1	6
1270	Controlling thermal radiation with a phase-change metasurface., 2022,,.		1
1271	Extremely broadband light absorption by bismuth-based metamaterials involving hybrid resonances. Physical Chemistry Chemical Physics, 2022, 24, 21612-21616.	1.3	13
1272	Minimizing solar absorption losses in TiO $<$ sub> $2 sub> particles-based passive daytime radiative cooling coatings. , 2022, , .$		0
1273	Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Science Bulletin, 2022, 67, 1874-1881.	4.3	40
1274	Temperature effect of photovoltaic cells: a review. Advanced Composites and Hybrid Materials, 2022, 5, 2675-2699.	9.9	44
1275	Fiberâ€spinning Asymmetric Assembly for Janusâ€structured Bifunctional Nanofiber Films towards Allâ€Weather Smart Textile. Angewandte Chemie, 2022, 134, .	1.6	4
1276	Optimization study on the performance of a thermosyphon-based radiative cooler. Indoor and Built Environment, 2023, 32, 425-439.	1.5	2
1277	High-Performance Photonic Crystal Films for Thermal Management and Wound Healing. ACS Applied Polymer Materials, 2022, 4, 5404-5412.	2.0	2

#	Article	IF	CITATIONS
1278	Low-energy-consumption temperature swing system for CO2 capture by combining passive radiative cooling and solar heating. Green Energy and Environment, 2024, 9, 507-515.	4.7	3
1279	Fabrication of fibrous nanofiber membranes for passive radiation cooling. Journal of Materials Science, 2022, 57, 16080-16090.	1.7	9
1280	Fiberâ€spinning Asymmetric Assembly for Janusâ€structured Bifunctional Nanofiber Films towards Allâ€Weather Smart Textile. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1281	Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nature Communications, 2022, 13 , .	5.8	49
1282	Microâ€Nano Porous Structure for Efficient Daytime Radiative Sky Cooling. Advanced Functional Materials, 2022, 32, .	7.8	37
1283	Angularly selective thermal emitters for deep subfreezing daytime radiative cooling. Nanophotonics, 2022, 11, 3709-3717.	2.9	12
1284	All-day thermoelectric power generation beyond 1 W m â^' 2 regime via radiative heat exchange with space and water-based heat storage. Applied Physics Letters, 2022, 121, .	1.5	2
1285	A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Science Advances, 2022, 8, .	4.7	62
1286	Experimental and numerical comparative investigation on 24h radiative cooling performance of a simple organic composite film. Energy, 2022, 261, 125140.	4.5	7
1287	Nonreciprocal Thermal Photonics for Energy Conversion and Radiative Heat Transfer. Physical Review Applied, 2022, 18, .	1.5	33
1288	Optically Transparent Bamboo: Preparation, Properties, and Applications. Polymers, 2022, 14, 3234.	2.0	0
1289	VO2-based thin-film radiators with variable thermal emissivity. Thin Solid Films, 2022, 759, 139455.	0.8	7
1290	Research on indirect cooling for photovoltaic panels based on radiative cooling. Renewable Energy, 2022, 198, 947-959.	4.3	8
1291	Radiative-cooling-based nighttime electricity generation with power density exceeding 100 mW/m2. IScience, 2022, 25, 104858.	1.9	15
1292	Vacuum insulation arrays as damage-resilient thermal superinsulation materials for energy saving. Joule, 2022, 6, 2358-2371.	11.7	10
1293	Durable radiative cooling against environmental aging. Nature Communications, 2022, 13 , .	5.8	91
1294	Numerical study of sodalime and PDMS hemisphere photonic structures for radiative cooling of silicon solar cells. Optics Express, 2022, 30, 32965.	1.7	10
1295	Enhanced photovoltaic efficiency through radiative cooling augmented by a thermosyphon effect. Energy Conversion and Management, 2022, 268, 116046.	4.4	3

#	Article	IF	CITATIONS
1296	Thermal radiative switching interface for energy-efficient temperature control. Renewable Energy, 2022, 197, 574-582.	4.3	10
1297	Mechanism and performance evaluation of a thermoelectric-chip-based cloak for active regulation of heat flow. Energy Reports, 2022, 8, 9700-9710.	2.5	0
1298	Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Applied Thermal Engineering, 2022, 216, 119125.	3.0	16
1299	Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling. Chemical Engineering Journal, 2023, 451, 138558.	6.6	18
1300	Performance of passive daytime radiative cooling coating with CaSiO ₃ enhanced solar reflectivity and atmospheric window emissivity. Journal Physics D: Applied Physics, 2022, 55, 445501.	1.3	4
1301	Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces. Physical Review B, 2022, 106, .	1.1	11
1302	Experimentally optimized particle–polymer matrix structure for efficient daytime radiative cooling. Journal of Renewable and Sustainable Energy, 2022, 14, .	0.8	8
1303	Intelligent radiative thermostat induced by near-field radiative thermal diode. Materials Today Physics, 2022, 27, 100828.	2.9	6
1304	Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Solar Energy Materials and Solar Cells, 2022, 247, 111954.	3.0	9
1305	Daytime radiative cooling capacity of nanoparticle on thermoplastic polyurethane (TPU) film. Solar Energy, 2022, 245, 322-331.	2.9	10
1306	Active modulation of a metasurface emitter based on phase-change material GST arrays. Optical Materials, 2022, 133, 112832.	1.7	5
1307	Method for tuning absorptivity of a guided-mode resonance grating through period-doubling index perturbation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 293, 108367.	1.1	1
1308	Thermal camouflage device with efficient thermal management. International Journal of Heat and Mass Transfer, 2022, 198, 123402.	2.5	2
1309	Maxwell-Garnett permittivity optimized micro-porous PVDF/PMMA blend for near unity thermal emission through the atmospheric window. Solar Energy Materials and Solar Cells, 2022, 248, 112003.	3.0	4
1310	Intelligent polyester metafabric for scalable personal hydrothermal self-adaptive adjustment. Chemical Engineering Journal, 2023, 451, 138875.	6.6	8
1311	A Recyclable, Up-Scalable and Eco-Friendly Radiative Cooling Material for All-Day Sub-Ambient Comfort. SSRN Electronic Journal, 0, , .	0.4	0
1312	Sustainable porous Polydimethylsiloxane for efficient radiative cooling. , 2022, , .		0
1313	Broadband Absorption ofÂMicrowaves inÂPeriodic Cylindrical Structures. Springer Proceedings in Physics, 2022, , 39-46.	0.1	0

#	Article	IF	CITATIONS
1314	Study on the cooling energy saving potential of a novel radiative cooling paints in building application. E3S Web of Conferences, 2022, 356, 01074.	0.2	0
1315	Mechanically Tunable Broadband Omnidirectional Infrared Absorption by Dielectric Metasurfaces. , 2022, , .		0
1316	Durable camouflage materials by polyimide nanofilm with thermal management. Applied Surface Science, 2023, 608, 155107.	3.1	6
1318	Development of Solar Energy Systems Based on High Performance Bulk and Film Thermoelectric Modules. Journal of Solar Energy Research Updates, 0, 9, 38-51.	0.0	1
1319	A Perspective on the optical spectral design for passive solar heating and radiative cooling. Applied Physics Letters, 2022, 121, .	1.5	11
1322	Nanophotonic-assisted precision enhancement of weak measurement using spin Hall effect of light. Nanophotonics, 2022, 11, 4591-4600.	2.9	8
1323	Vapor–Liquid Transitionâ€Based Broadband Light Modulation for Selfâ€Adaptive Thermal Management. Advanced Functional Materials, 2022, 32, .	7.8	12
1324	Infraredâ€Reflective Transparent Hyperbolic Metamaterials for Use in Radiative Cooling Windows. Advanced Functional Materials, 2023, 33, .	7.8	21
1325	Factors Influencing the Performance of Indoor Environmental Quality of Pharmaceutical Factory Buildings in Southwest Nigeria. IOP Conference Series: Earth and Environmental Science, 2022, 1054, 012023.	0.2	0
1326	Geopolymerâ€based subâ€ambient daytime radiative cooling coating. EcoMat, 2023, 5, .	6.8	7
1327	Hierarchically Superhydrophobic Stereoâ€Complex Poly (Lactic Acid) Aerogel for Daytime Radiative Cooling. Advanced Functional Materials, 2022, 32, .	7.8	44
1328	Simulation of an energy-efficient cool roof with cellulose-based daytime radiative cooling material. Materials Today: Proceedings, 2022, , .	0.9	2
1329	Scalable and High-Performance Radiative Cooling Fabrics through an Electrospinning Method. ACS Applied Materials & Samp; Interfaces, 2022, 14, 45707-45715.	4.0	8
1330	Environmental impact assessment to support the development of new Photonic Meta-Concrete. IOP Conference Series: Earth and Environmental Science, 2022, 1078, 012072.	0.2	0
1331	Scalable anisotropic cooling aerogels by additive freeze-casting. Nature Communications, 2022, 13, .	5.8	31
1332	Radiative cooling for passive thermal management towards sustainable carbon neutrality. National Science Review, 2023, 10, .	4.6	41
1333	Surface Photonâ€Engineered Infraredâ€Black Metametal Enabled Enhancement of Heat Dissipation. Advanced Functional Materials, 2022, 32, .	7.8	2
1334	Development and potential environmental impact of Photonic Meta-Concrete. IOP Conference Series: Earth and Environmental Science, 2022, 1085, 012053.	0.2	0

#	Article	IF	CITATIONS
1335	Multimodeâ€Assisted Broadband Impedanceâ€Cradient Thin Metamaterial Absorber. Advanced Photonics Research, 2022, 3, .	1.7	11
1336	Optical emissivity dataset of multi-material heterogeneous designs generated with automated figure extraction. Scientific Data, 2022, 9, .	2.4	3
1337	Radiative cooling for energy sustainability: Materials, systems, and applications. Physical Review Materials, 2022, 6, .	0.9	10
1338	An Ultrathin Transparent Radiative Cooling Photonic Structure with a High NIR Reflection. Advanced Materials Interfaces, 2022, 9, .	1.9	13
1339	A review of the development of colored radiative cooling surfaces. Carbon Capture Science & Technology, 2022, 4, 100066.	4.9	9
1340	Significantly enhanced sub-ambient passive cooling enabled by evaporation, radiation, and insulation. Cell Reports Physical Science, 2022, 3, 101068.	2.8	7
1341	All-Ceramic, compressible and scalable nanofibrous aerogels for subambient daytime radiative cooling. Chemical Engineering Journal, 2023, 452, 139518.	6.6	22
1342	Janus Helical Ribbon Structure of Ordered Nanowire Films for Flexible Solar Thermoelectric Devices. Advanced Materials, 2022, 34, .	11.1	27
1343	Refractory Plasmonic Hafnium Nitride and Zirconium Nitride Thin Films as Alternatives to Silver for Solar Mirror Applications. ACS Applied Materials & Solar Mirror Applications. ACS Applied Materials & Solar Mirror Applications. ACS Applied Materials & Solar Mirror Applications.	4.0	14
1344	Bioinspired Multilayer Structures for Energy-Free Passive Heating and Thermal Regulation in Cold Environments. ACS Applied Materials & Environments.	4.0	12
1345	Thickness-scaling phonon resonance: A systematic study of hexagonal boron nitride from monolayers to bulk crystals. Journal of Applied Physics, 2022, 132, .	1.1	0
1346	Thin layer lightweight and ultrawhite hexagonal boron nitride nanoporous paints for daytime radiative cooling. Cell Reports Physical Science, 2022, 3, 101058.	2.8	16
1347	Correcting thermal-emission-induced detector saturation in infrared spectroscopy. Optics Express, 2022, 30, 38458.	1.7	1
1348	Summary andÂOutlook. , 2023, , 317-320.		0
1349	The role of electrochemical potentials of solid-state energy emissive harvesters. Heliyon, 2022, 8, e10853.	1.4	2
1350	Facile and environmentally-friendly fabrication of robust composite film with superhydrophobicity and radiative cooling property. Composites Science and Technology, 2022, 230, 109750.	3.8	24
1351	Parametric study of a novel combination of solar chimney and radiative cooling cavity for natural ventilation enhancement in residential buildings. Building and Environment, 2022, 225, 109648.	3.0	7
1352	Nanoparticle-polymer hybrid dual-layer coating with broadband solar reflection for high-performance daytime passive radiative cooling. Energy and Buildings, 2022, 276, 112507.	3.1	11

#	Article	IF	CITATIONS
1354	RESULTADOS PRELIMINARES DO DESEMPENHO TÃ%RMICO DE UM SISTEMA DE RESFRIAMENTO RADIANTE CAPACITIVO. , 0, , .		0
1355	Control of thermal emission for thermophotovoltaic systems. EPJ Web of Conferences, 2022, 266, 03016.	0.1	0
1356	Black Silicon Revisited as an Ultrabroadband Perfect Infrared Absorber over 20 μm Wavelength Range. Advanced Photonics Research, 2023, 4, .	1.7	7
1357	Tunable Thermal Emission of Subwavelength Silica Ribbons. ACS Photonics, 2022, 9, 3679-3684.	3.2	4
1358	α-MoO3–SiC metasurface for mid-IR directional propagation of phonon polaritons and passive daytime radiative cooling. Applied Physics Letters, 2022, 121, .	1.5	9
1359	Switchable radiative cooling technologies for smart thermal management. Cell Reports Physical Science, 2022, 3, 101098.	2.8	14
1360	Electrochromism-induced adaptive fresh air pre-handling system for building energy saving. Energy and Built Environment, 2024, 5, 300-308.	2.9	2
1361	Efficient Daytime Radiative Cooling Cover Sheet with Dualâ€Modal Optical Properties. Advanced Optical Materials, 2022, 10, .	3.6	8
1362	A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chemical Engineering Journal, 2023, 455, 139786.	6.6	17
1363	Lowâ€Cost and Largeâ€Scale Producible Biomimetic Radiative Cooling Glass with Multiband Radiative Regulation Performance. Advanced Optical Materials, 2022, 10, .	3.6	14
1364	Nanoengineered Textiles for Outdoor Personal Cooling and Drying. Advanced Functional Materials, 2022, 32, .	7.8	21
1365	Biomimetic Robust Allâ€Polymer Porous Coatings for Passive Daytime Radiative Cooling. Macromolecular Rapid Communications, 2023, 44, .	2.0	4
1366	Metasurfaces as Energy Valves for Sustainable Energy Management. Micromachines, 2022, 13, 1769.	1.4	4
1367	Strainâ€Driven Thermal and Optical Instability in Silver/Amorphousâ€Silicon Hyperbolic Metamaterials. Advanced Optical Materials, 0, , 2201749.	3.6	3
1369	Emerging Engineered Wood for Building Applications. Chemical Reviews, 2023, 123, 1843-1888.	23.0	57
1370	Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. ChemSusChem, 2022, 15, .	3.6	12
1371	Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2022, 14, 46972-46979.	4.0	14
1372	Experimental Study on the Performance of a Space Radiation Cooling System under Different Environmental Factors. Energies, 2022, 15, 7404.	1.6	3

#	Article	IF	CITATIONS
1373	Superâ€Largeâ€Scale Hierarchically Porous Films Based on Selfâ€Assembled Eyeâ€Like Air Pores for Highâ€Performance Daytime Radiative Cooling. Small, 2022, 18, .	5.2	15
1374	High-Performance Transparent Radiative Cooler Designed by Quantum Computing. ACS Energy Letters, 2022, 7, 4134-4141.	8.8	24
1375	High-index-contrast photonic structures: a versatile platform for photon manipulation. Light: Science and Applications, 2022, 11 , .	7.7	8
1376	Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2022, 14, 51307-51317.	4.0	21
1377	Potential passive cooling methods based on radiation controls in buildings. Energy Conversion and Management, 2022, 272, 116342.	4.4	17
1378	Uncovering the non-radiative thermal characteristics of a passive radiative cooler under real operating conditions. Journal Physics D: Applied Physics, O, , .	1.3	0
1379	Large-scale industry-compatible sub-ambient radiative cooling pulp. Cell Reports Physical Science, 2022, 3, 101125.	2.8	5
1380	Cementitious materials as promising radiative coolers for solar cells. IScience, 2022, 25, 105320.	1.9	3
1381	A self-cleaning nanoparticle polymer hybrid cooling film in humid environment. Energy and Buildings, 2022, 277, 112579.	3.1	0
1382	Potential energy savings benefits and limitations of radiative cooling coatings for U.S. residential buildings. Journal of Cleaner Production, 2022, 379, 134763.	4.6	9
1383	Impact of cloud and total column water vapor on annual performance of passive daytime radiative cooler. Energy Conversion and Management, 2022, 273, 116420.	4.4	3
1384	Solar heating of ice-covered lake and ice melting. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 294, 108391.	1.1	7
1385	Emerging materials and engineering strategies for performance advance of radiative sky cooling technology. Chemical Engineering Journal, 2023, 453, 139739.	6.6	17
1386	Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects. Energy, 2023, 263, 125735.	4.5	6
1387	Weatherable, solvent-soluble, paintable and transparent fluoropolymers for daytime radiative cooling. International Journal of Thermal Sciences, 2023, 184, 107959.	2.6	1
1388	Microfluidic-Blow-Spinning fabricated sandwiched structural fabrics for All-Season personal thermal management. Chemical Engineering Journal, 2023, 453, 139763.	6.6	6
1389	A simple, accurate, and universal method for characterizing and comparing radiative cooling materials and devices. International Journal of Heat and Mass Transfer, 2023, 200, 123494.	2.5	6
1390	Fundamental of Radiative Cooling. Energy and Environment Research in China, 2022, , 33-74.	2.3	0

#	Article	IF	CITATIONS
1392	Radiative Cooling Materials and Devices. Energy and Environment Research in China, 2022, , 75-92.	2.3	0
1393	Application of Radiative Cooling. Energy and Environment Research in China, 2022, , 93-141.	2.3	O
1394	Mathematical model for calculating passive radiative cooling systems using multi-layer coatings. AIP Conference Proceedings, 2022, , .	0.3	0
1395	Comprehensive evaluation and analysis of a porous polymer coating for highly efficient passive radiative cooling. Solar Energy Materials and Solar Cells, 2023, 250, 112081.	3.0	7
1396	Salt-template-assisted melt-processed porous poly (vinylidene fluoride) nanocomposites for highly efficient all-day passive radiative cooling. Composites Part A: Applied Science and Manufacturing, 2023, 164, 107311.	3.8	9
1397	Ultra long infrared metamaterial absorber with high absorption and broad band based on nano cross surrounding. Optics and Laser Technology, 2023, 158, 108789.	2.2	73
1398	Tunable, Homoepitaxial Hyperbolic Metamaterials Enabled by High Mobility CdO. Advanced Optical Materials, 2023, 11 , .	3.6	2
1399	Radiation-enhanced thermal diode tank (RTDT) for refrigeration and air-conditioning (RAC) systems. International Journal of Refrigeration, 2023, 146, 237-247.	1.8	3
1400	Passive Radiative Cooling of Silicon Solar Modules with Photonic Silica Microcylinders. ACS Photonics, 2022, 9, 3831-3840.	3.2	9
1401	A flexibly hierarchical porous polydimethylsiloxane film for Passive daytime radiative cooling. Materials Letters, 2023, 331, 133512.	1.3	5
1402	Enhancing radiative cooling performance for bifacial photovoltaic module using two kinds of polycarbonate films. Journal of Photonics for Energy, 2022, 12, .	0.8	3
1403	Feasibility study of integration of radiative cooling and hydronic radiant system for free cooling of single-family houses. Applied Thermal Engineering, 2023, 220, 119629.	3.0	4
1404	Temperatureâ€sensitive Colored Radiative Cooling Materials with Efficient Cooling Performance. Advanced Engineering Materials, 0, , .	1.6	3
1405	Directional control of absorptivity with quasi-localized guided modes. Applied Physics Letters, 2022, 121, 201701.	1.5	0
1406	Robust passive daytime radiative coolers based on thermally insulating and spectrally selective composite aerogels with designed fiber-reinforced porous architecture. Solar Energy, 2022, 247, 564-573.	2.9	6
1407	TiO2 particle agglomeration impacts on radiative cooling films with a thickness of 50 <i>μ</i> m. Applied Physics Letters, 2022, 121, .	1.5	12
1408	Daytime Radiative Cooling Coating Based on the Y ₂ O ₃ /TiO ₂ Microparticle-Embedded PDMS Polymer on Energy-Saving Buildings. ACS Applied Materials & Samp; Interfaces, 2022, 14, 51351-51360.	4.0	22
1409	Radiative cooling performance and life-cycle assessment of a scalable MgO paint for building applications. Journal of Cleaner Production, 2022, 380, 135035.	4.6	11

#	Article	IF	CITATIONS
1410	Effect of vacuum scheme on radiative sky cooling performance. Applied Thermal Engineering, 2023, 219, 119657.	3.0	5
1411	Passive freezing desalination driven by radiative cooling. Joule, 2022, 6, 2762-2775.	11.7	12
1412	Fighting urban climate changeâ€"state of the art of mitigation technologies. , 2023, , 227-296.		4
1413	Impact of aging, precipitation, and orientation on performance of radiative cooling for building envelope: A field investigation. Energy and Buildings, 2023, 279, 112716.	3.1	5
1414	Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings. Renewable Energy, 2023, 202, 255-269.	4.3	1
1415	Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building. Composites Part B: Engineering, 2023, 250, 110426.	5.9	7
1416	Radiative sky cooling in low-medium concentration photovoltaic systems. Applied Thermal Engineering, 2023, 221, 119860.	3.0	2
1417	Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today, 2023, 48, 101723.	6.2	46
1418	Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation. Applied Energy, 2023, 331, 120425.	5.1	17
1419	Radiative cooling layer boosting hydrophilic-hydrophobic patterned surface for efficient water harvesting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130584.	2.3	6
1420	Free-standing, colored, polymer film with composite opal photonic crystal structure for efficient passive daytime radiative cooling. Solar Energy Materials and Solar Cells, 2023, 251, 112136.	3.0	11
1421	Development of spectrally self-switchable cover with phase change material for dynamic radiative cooling. Solar Energy Materials and Solar Cells, 2023, 251, 112125.	3.0	5
1422	Efficient Design Paradigm for Harvesting Solar Energy: Dynamic Tunability of Heating/Cooling Mode Using Advanced Nanotechnology. ACS Symposium Series, 0, , 233-261.	0.5	2
1423	Recent Advances in Material Engineering and Applications for Passive Daytime Radiative Cooling. Advanced Optical Materials, 2023, 11 , .	3.6	19
1425	Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance. Nanomaterials, 2022, 12, 4223.	1.9	4
1426	Embracing Modern Software Development Best Practices in an Undergraduate Research Setting: A Case Study with the WPTherml Software Package. ACS Symposium Series, 0, , 39-52.	0.5	0
1427	Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities. ACS Applied Materials & Samp; Interfaces, 2022, 14, 54676-54687.	4.0	15
1428	Infrared camouflage based on the crystalline and amorphous GST multilayer films. Applied Physics Letters, 2022, 121, .	1.5	5

#	ARTICLE	IF	Citations
1429	Materials, structures, and devices for dynamic radiative cooling. Cell Reports Physical Science, 2022, 3, 101198.	2.8	15
1430	Thermal analysis of radiative cooling coating on the rear surface of photovoltaic tile. Solar Energy, 2022, 248, 210-220.	2.9	5
1431	Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photonics Research, 2023, 11, 290.	3.4	17
1432	Hierarchical Superhydrophobic Poly(vinylidene fluoride- <i>co</i> hexafluoropropylene) Membrane with a Bead (SiO ₂ Nanoparticles)-on-String (Nanofibers) Structure for All-Day Passive Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2256-2266.	4.0	14
1433	Dual-Encapsulated Nanocomposite for Efficient Thermal Buffering in Heat-Generating Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2022, 14, 57215-57224.	4.0	17
1434	Sub-ambient cooling effect and net energy efficiency of a super-amphiphobic self-cleaning passive sub-ambient daytime radiative cooling coating applied to various buildings. Energy and Buildings, 2023, 284, 112702.	3.1	3
1435	Transparent Glass Surfaces with Silica Nanopillars for Radiative Cooling. ACS Applied Nano Materials, 2022, 5, 17606-17612.	2.4	6
1436	Integration of daytime radiative cooling and solar heating. IScience, 2023, 26, 105894.	1.9	3
1437	Thermal photonics with broken symmetries. ELight, 2022, 2, .	11.9	35
1438	Structure Design of Polymer-Based Films for Passive Daytime Radiative Cooling. Micromachines, 2022, 13, 2137.	1.4	4
1439	Daylong Subâ€Ambient Radiative Cooling with Fullâ€Color Exterior Based on Thermal Radiation and Solar Decoupling. Advanced Optical Materials, 2023, 11, .	3.6	4
1440	Celluloseâ€Based Radiative Cooling and Solar Heating Powers Ionic Thermoelectrics. Advanced Science, 2023, 10, .	5. 6	16
1441	Boosting Evaporative Cooling Performance with Microporous Aerogel. Micromachines, 2023, 14, 219.	1.4	5
1442	Suppressed-scattering spectral windows for radiative cooling applications. Optics Express, 2023, 31, 6314.	1.7	3
1443	Nanoporous Mg-doped SiO2 nanoparticles with tunable infrared emissivity toward effective radiative cooling coatings. Journal of Alloys and Compounds, 2023, 940, 168905.	2.8	3
1444	Emerging Materials and Strategies for Passive Daytime Radiative Cooling. Small, 2023, 19, .	5.2	23
1445	Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation. ACS Nano, 2023, 17, 1693-1700.	7.3	21
1446	Experimental and numerical investigation on a radiative cooling driving thermoelectric generator system. Energy, 2023, 268, 126734.	4.5	7

#	Article	IF	CITATIONS
1447	Designing of passive cooling silicon oxynitride composite cement. International Journal of Applied Ceramic Technology, 0 , , .	1.1	0
1448	Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving. ACS Applied Materials & Cooling for Energy Saving. ACS	4.0	4
1449	Advanced Material Design and Engineering for Waterâ€Based Evaporative Cooling. Advanced Materials, 2024, 36, .	11.1	10
1450	Superhydrophobic SiO ₂ –Glass Bubbles Composite Coating for Stable and Highly Efficient Daytime Radiative Cooling. ACS Applied Materials & Interfaces, 2023, 15, 4799-4813.	4.0	9
1451	Broadband Nonreciprocal Thermal Emission. Physical Review Applied, 2023, 19, .	1.5	25
1453	Polymer composites with hierarchical architecture and dielectric particles for efficient daytime subambient radiative cooling. Journal of Materials Chemistry A, 2023, 11, 3126-3135.	5.2	20
1454	Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today, 2023, 48, 101745.	6.2	13
1455	Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chemical Engineering Journal, 2023, 457, 141231.	6.6	25
1456	Impact of environmental factors on night-time electricity generation using thermoelectric generator. Sustainable Energy Technologies and Assessments, 2023, 56, 103000.	1.7	0
1457	From nature back to nature: Spectrally modified poplar and its all-day passive radiative cooling. Industrial Crops and Products, 2023, 193, 116242.	2.5	2
1458	Economic Evaluation of Applying Fan Cooling System for Photovoltaic Modules in Tropical Regions of Iran., 2022,,.		0
1459	A Scalable Heat Pump Film with Zero Energy Consumption. Polymers, 2023, 15, 159.	2.0	0
1460	Scalable and flexible porous hybrid film as a thermal insulating subambient radiative cooler for energy-saving buildings., 2023, 2, 20220063.		3
1461	Scalable Fabrication of Dualâ€Function Fabric for Zeroâ€Energy Thermal Environmental Management through Multiband, Synergistic, and Asymmetric Optical Modulations. Advanced Materials, 2023, 35, .	11.1	11
1462	Optical properties of freeze-dried partial delignified balsa wood. Journal of Physics: Conference Series, 2023, 2431, 012001.	0.3	1
1463	Optical Reflectance of Composites with Aligned Engineered Microplatelets. Advanced Optical Materials, 2023, 11 , .	3.6	0
1464	Passive Daytime Radiative Cooling of Silica Aerogels. Nanomaterials, 2023, 13, 467.	1.9	7
1465	Dynamic electrochromism for all-season radiative thermoregulation. Nature Sustainability, 2023, 6, 428-437.	11.5	37

#	Article	IF	CITATIONS
1466	MOF-Integrated Hierarchical Composite Fiber for Efficient Daytime Radiative Cooling and Antibacterial Protective Textiles. ACS Applied Materials & Samp; Interfaces, 2023, 15, 8537-8545.	4.0	17
1467	Thermally Responsive Hydrogels for Passive Temperature Regulation under Direct Sunlight. Advanced Photonics Research, 2023, 4, .	1.7	2
1468	Biodegradable, scalable and flexible fiber membrane for green passive radiative cooling. Solar Energy Materials and Solar Cells, 2023, 253, 112209.	3.0	9
1469	Two-step thermal treatment of electrochemical graphene oxide films for high-performance electrical heating and electromagnetic interference shielding. Applied Surface Science, 2023, 618, 156669.	3.1	4
1470	Enhanced behaviour of a passive thermoelectric generator with phase change heat exchangers and radiative cooling. Applied Thermal Engineering, 2023, 225, 120162.	3.0	7
1471	Oil-paper-umbrella-inspired passive radiative cooling using recycled packaging foam. Journal of Materials Chemistry A, 2023, 11, 9152-9159.	5.2	4
1472	Hierarchical Fabric Emitter for Highly Efficient Passive Radiative Heat Release. Advanced Fiber Materials, 2023, 5, 1367-1377.	7.9	1
1473	Majorization Theory for Unitary Control of Optical Absorption and Emission. Physical Review Letters, 2023, 130, .	2.9	6
1474	A flexible PDMS@ZrO2 film for highly efficient passive radiative cooling. Inorganic Chemistry Communication, 2023, 151, 110586.	1.8	6
1475	Hydrophobicity-enhanced daytime radiative cooling films based on polyvinylidene fluoride-co-hexafluoropropylene and hydrophobic fumed silica. Materials Letters, 2023, 338, 134059.	1.3	3
1476	Colorization of passive radiative cooling coatings using plasmonic effects. Solar Energy Materials and Solar Cells, 2023, 253, 112225.	3.0	7
1477	Scalable fabrication of super-elastic TPU membrane with hierarchical pores for subambient daytime radiative cooling. Solar Energy, 2023, 256, 151-157.	2.9	6
1478	First-principles theory-based design of highly reflective metals for radiative cooling. Current Applied Physics, 2023, 49, 1-5.	1.1	1
1479	Long-term cooling effects and cooling energy conservation of a subambient daytime radiative cooling coating relative to a cool-white coating over distributed telecommunication base stations. Solar Energy, 2023, 256, 127-139.	2.9	3
1480	A novel aqueous scalable eco-friendly paint for passive daytime radiative cooling in sub-tropical climates. Solar Energy, 2023, 255, 236-242.	2.9	12
1481	Transparent, anti-corrosion and high broadband emission coating for zero energy consumption cooling technology. Materials Today Physics, 2023, 34, 101070.	2.9	1
1482	Superhydrophobic nanoparticle mixture coating for highly efficient all-day radiative cooling. Applied Thermal Engineering, 2023, 228, 120490.	3.0	3
1483	Scalable Bio-Skin-Inspired Radiative Cooling Metafabric for Breaking Trade-Off between Optical Properties and Application Requirements. ACS Photonics, 2023, 10, 1624-1632.	3.2	13

#	Article	IF	CITATIONS
1484	Thermal management of photovoltaic-thermoelectric generator hybrid system using radiative cooling and heat pipe. Applied Thermal Engineering, 2023, 227, 120420.	3.0	10
1485	Regulating thermal radiation for energy and sustainability. , 2023, 1, 100019.		0
1486	Electrospinning-assisted radiative cooling composite films. Solar Energy Materials and Solar Cells, 2023, 255, 112316.	3.0	2
1487	Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107522.	3.8	5
1488	Comprehensive research on a high performance solar and radiative cooling driving thermoelectric generator system with concentration for passive power generation. Energy, 2023, 275, 127390.	4.5	35
1489	Metal-free radiative cooling polymer films containing high bandgap materials employing a tandem approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 298, 108495.	1.1	1
1490	Quadruple-layer film for daytime radiative cooling in high humidity environments. Optical Materials, 2023, 136, 113473.	1.7	0
1491	Superâ€Stretchable Hybrid Aerogels by Selfâ€Templating Strategy for Crossâ€Media Thermal Management. Macromolecular Rapid Communications, 2023, 44, .	2.0	4
1492	Electrical tuning of radiative cooling at ambient conditions. Cell Reports Physical Science, 2023, 4, 101274.	2.8	6
1493	Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling. Renewable Energy, 2023, 205, 763-771.	4.3	5
1494	Hybrid emitters with raspberry-like hollow SiO2 spheres for passive daytime radiative cooling. Chemical Engineering Journal, 2023, 459, 141652.	6.6	12
1495	Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Science Advances, 2023, 9, .	4.7	19
1496	Recent Advances in Thermoregulatory Clothing: Materials, Mechanisms, and Perspectives. ACS Nano, 2023, 17, 1803-1830.	7.3	46
1497	Polyethylene terephthalate-based colored emitters for efficient daytime radiative cooling. Results in Physics, 2023, 46, 106254.	2.0	2
1498	Unique New Cooling Technology for Energy Savings in Refineries and Data Centers: Technology and Two Case Studies. IEEE Industry Applications Magazine, 2023, 29, 39-44.	0.3	0
1499	Emerging passive thermoregulatory textiles through tailoring different heat transfer routes. Textile Reseach Journal, 2023, 93, 3414-3439.	1.1	2
1500	Broadband Mie scattering effects by structural features of setae from the Saharan silver ant Cataglyphis bombycina. Journal of the Optical Society of America B: Optical Physics, 2023, 40, B49.	0.9	0
1501	Maximizing Electric Power through Spectralâ€Splitting Photovoltaicâ€Thermoelectric Hybrid System Integrated with Radiative Cooling. Advanced Science, 2023, 10, .	5.6	5

#	Article	IF	CITATIONS
1502	Arrested Phase Separation Enables Optimal Light Management toward High-Performance Passive Radiative Cooling Film. Industrial & Engineering Chemistry Research, 2023, 62, 3176-3182.	1.8	1
1503	Holistic System Modelling and Analysis for Energy-Aware Production: An Integrated Framework. Systems, 2023, 11, 100.	1.2	1
1504	Self-protecting concave microstructures on glass surface for daytime radiative cooling in bifacial solar cells. International Communications in Heat and Mass Transfer, 2023, 142, 106666.	2.9	4
1505	A Zeroâ€Energy, Zeroâ€Emission Air Conditioning Fabric. Advanced Science, 2023, 10, .	5.6	7
1506	A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights. Energies, 2023, 16, 1975.	1.6	4
1507	From Chitosan to Chitin: Bioâ€Inspired Thin Films for Passive Daytime Radiative Cooling. Advanced Science, 2023, 10, .	5.6	8
1508	Semi-analytical technique for the design of disordered coatings with tailored optical properties. Optics Express, 2023, 31, 10201.	1.7	4
1509	Radiative cooling, what's next?. , 2023, 1, 100003.		1
1510	A Janus Textile Capable of Radiative Subambient Cooling and Warming for Multiâ€Scenario Personal Thermal Management. Small, 2023, 19, .	5.2	10
1511	Polarization-mediated multi-state infrared system for fine temperature regulation. APL Photonics, 2023, 8, .	3.0	4
1512	Self-adaptive IR emitter with a solution-processed VO ₂ active layer for tunable radiative cooling. Optical Materials Express, 2023, 13, 771.	1.6	1
1513	Passive radiative cooling design with novel selectively grating structure under direct sunlight. Optik, 2023, 277, 170711.	1.4	0
1514	Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In ₃ SbTe ₂ . Nanoscale, 2023, 15, 6306-6312.	2.8	5
1515	Manipulating Coherence of Near-Field Thermal Radiation in Time-Modulated Systems. Physical Review Letters, 2023, 130, .	2.9	2
1516	Integrated radiative and evaporative cooling beyond daytime passive cooling power limit., 2023, 2, e9120060.		8
1517	Evaluation of passive envelope systems with radiative sky cooling and thermally insulated glazing materials for cooling. Journal of Cleaner Production, 2023, 398, 136607.	4.6	17
1518	Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization. Chinese Physics B, 2023, 32, 057802.	0.7	2
1519	Machine Learning-Enabled Inverse Design of Radiative Cooling Film with On-Demand Transmissive Color. ACS Photonics, 2023, 10, 715-726.	3.2	10

#	Article	IF	CITATIONS
1520	Multiband camouflage design with thermal management. Photonics Research, 2023, 11, 839.	3.4	4
1521	Broadband Solar Metamaterial Absorbers Empowered by Transformerâ€Based Deep Learning. Advanced Science, 2023, 10, .	5.6	18
1522	Translucent-Colored radiative coolers based on localized surface plasmon resonances for Energy-Efficient windows. Solar Energy, 2023, 253, 472-479.	2.9	1
1523	High Solar Energy Absorption and Human Body Radiation Reflection Janus Textile for Personal Thermal Management. Advanced Fiber Materials, 2023, 5, 955-967.	7.9	7
1524	Temporal Coupled-Mode Theory for Thermal Emission from Multiple Arbitrarily Coupled Resonators. Physical Review Applied, 2023, 19, .	1.5	1
1525	Perspective on near-field radiative heat transfer. Applied Physics Letters, 2023, 122, .	1.5	10
1526	Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management. Nanomaterials, 2023, 13, 1030.	1.9	4
1527	Radiative-Cooling Composites with Enhanced Infrared Emissivity by Structural Infrared Scattering through Indium Tin Oxide Nanoparticles in a Polymer Matrix. ACS Applied Materials & Samp; Interfaces, 2023, 15, 16026-16033.	4.0	10
1528	Structural Engineering of Hierarchical Aerogels Hybrid Networks for Efficient Thermal Comfort Management and Versatile Protection. Small, 2023, 19, .	5.2	9
1529	All-Polymer Superhydrophobic Radiative Cooling Coating Based on Polytetrafluoroethylene/Polydimethylsiloxane Composites. Industrial & Engineering Chemistry Research, 2023, 62, 5024-5034.	1.8	4
1530	Scalable Colored Subambient Radiative Coolers Based on a Polymer–Tamm Photonic Structure. ACS Applied Materials & Diterfaces, 2023, 15, 16277-16287.	4.0	9
1531	Superhydrophobic poly-4-methyl-1-pentene/polyvinylidene fluoride coating with excellent passive daytime radiation cooling performance. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	3
1532	Real-time junction temperature estimation model of photovoltaic modules for determining application scenarios. Solar Energy, 2023, 254, 223-234.	2.9	0
1533	A Shish-Kebab Superstructure Film for Personal Radiative Cooling. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17188-17194.	4.0	6
1534	Engineering PEDOT:PSS/PEG Fibers with a Textured Surface toward Comprehensive Personal Thermal Management. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17175-17187.	4.0	9
1535	Diffusion metamaterials. Nature Reviews Physics, 2023, 5, 218-235.	11.9	37
1536	Low-cost and scalable sub-ambient radiative cooling porous films. Journal of Photonics for Energy, 2023, 13, .	0.8	4
1537	Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. National Science Review, 2023, 10, .	4.6	6

#	ARTICLE	IF	CITATIONS
1538	Wide-angle deep ultraviolet antireflective multilayers via discrete-to-continuous optimization. Nanophotonics, 2023, 12, 1913-1921.	2.9	2
1539	Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures. Heliyon, 2023, 9, e14599.	1.4	O
1540	Experimental Implementation of Metasurfaces for Secure Multiâ€Channel Image Encryption in the Infrared. Advanced Optical Materials, 2023, 11, .	3.6	3
1541	Electrically-induced symmetry breaking in coupled-resonator metamaterials for switchable narrowband infrared absorption. Optics Letters, 0, , .	1.7	O
1542	Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling. Materials Horizons, 2023, 10, 2487-2495.	6.4	16
1543	Frequency selective surface on low emissivity windows as a means of improving telecommunication signal transmission: A review. Journal of Building Engineering, 2023, 70, 106416.	1.6	3
1544	Comprehensive analysis of radiative cooling enabled thermoelectric energy harvesting. JPhys Photonics, 2023, 5, 025002.	2.2	2
1545	Colored Daytime Radiative Cooling Textiles Supported by Semiconductor Quantum Dots. ACS Applied Materials & Dots. ACS	4.0	5
1546	Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Science Advances, 2023, 9, .	4.7	21
1547	Engineering Structural Janus MXeneâ€nanofibrils Aerogels for Seasonâ€Adaptive Radiative Thermal Regulation. Small, 2023, 19, .	5.2	13
1548	Outdoor Thermal Performance of Photovoltaic Devices with Enhanced Daytime Radiative Cooling Glass. Energy Technology, 2023, 11, .	1.8	1
1549	Asymmetrical Emissivity and Wettability in Stitching Treble Weave Metafabric for Synchronous Personal Thermalâ€Moisture Management. Small, 2023, 19, .	5.2	4
1550	Infrared Electrochromic Devices Based on Thin Metal Films. Advanced Materials Interfaces, 2023, 10, .	1.9	1
1551	Colored radiative cooling: progress and prospects. Materials Today Energy, 2023, 34, 101302.	2.5	5
1552	Recent Progress in Lightâ€Scattering Porous Polymers and Their Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
1553	Thermal gradients integrated on-chip by passive radiative cooling of silicon nitride nanomechanical resonators. Applied Thermal Engineering, 2023, 229, 120561.	3.0	3
1554	Lowâ€Grade Waste Heat Enables Over 80ÂLÂm ^{â^'} ² Âh ^{â^'1} Interfacial Steam Generation Based on 3D Superhydrophilic Foam. Advanced Materials, 2023, 35, .	m 11.1	4
1555	Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics, 2023, 12, 1891-1902.	2.9	12

#	Article	IF	CITATIONS
1556	Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. Nano Convergence, 2023, 10 , .	6.3	3
1558	Bright-white hydrogels for on-demand passive cooling. Science China Chemistry, 2023, 66, 1511-1519.	4.2	3
1559	Hierarchically Patterned Self-Cleaning Polymer Composites for Daytime Radiative Cooling. Nano Letters, 2023, 23, 3669-3677.	4.5	7
1560	Enhancement of Intrinsic Temperature Reduction for Plasma Surface-Modified Nanoparticle-Doped Low-Density Polyethylene Films. Crystals, 2023, 13, 707.	1.0	0
1570	A shrimp solves a scattering problem. Nature Photonics, 2023, 17, 461-462.	15.6	0
1589	Radiative cooling paints., 2023,, 393-419.		1
1590	Spectrally selective filters and their applications. , 2023, , 557-579.		0
1600	Thermally Conductive Radiative Cooling Polymer Composite for Outdoor Thermal Management. , 2023,		0
1639	Photonic structures in radiative cooling. Light: Science and Applications, 2023, 12, .	7.7	28
1649	Best practices for radiative cooling. Nature Sustainability, 2023, 6, 1030-1032.	11.5	7
1681	A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures. Materials Horizons, 2023, 10, 4243-4250.	6.4	7
1690	Laser Sintering of Porous Aluminum Nitride for Environmental Applications. , 2023, , .		0
1706	PASSIVE NIGHTTIME RADIATIVE COOLING USING BLACK SILICON., 2023,,.		0
1711	Controllable-morphology polymer blend photonic metafoam for radiative cooling. Materials Horizons, 2023, 10, 5060-5070.	6.4	6
1714	Promising thermal photonic management materials for sustainable human habitat. Nano Research, 2024, 17, 112-131.	5.8	1
1719	Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	18.7	9
1724	CONTROLLING THE ENZ PROFILE FOR BROADBAND NONRECIPROCAL THERMAL EMITTERS WITH HIGH CONTRAST BETWEEN EMISSIVITY AND ABSORPTIVITY., 2023,,.		0
1730	IDToolkit: A Toolkit for Benchmarking and Developing Inverse Design Algorithms in Nanophotonics. , 2023, , .		0

#	Article	IF	Citations
1732	Adjoint Kirchhoff's law for all thermal emitters., 2023,,.		0
1735	All-day passive radiative cooling using common salts. Materials Horizons, 2023, 10, 5694-5703.	6.4	1
1755	Ultra-Thin, Soft, Radiative Cooling Interfaces for Advanced Thermal Management in Skin Electronics. , 2023, , .		0
1756	Developing a Coupled Spectral-Dependent Radiative Cooling and Building Energy Model. Environmental Science and Engineering, 2023, , 23-31.	0.1	0
1791	Engineering Light with Mid-Infrared Metasurfaces for Sensing and Imaging Applications. , 2023, , .		0
1808	Recent advances in dynamic dual mode systems for daytime radiative cooling and solar heating. RSC Advances, 2023, 13, 31738-31755.	1.7	1
1829	Dielectric thin film fabrication, recent developments and their applications. , 2023, , .		0
1857	An Assessment of the Profit Gained Based on the Use of Roof Cooling Devices in Chengdu. , 2023, , 127-138.		0
1859	Roll-to-roll printing trench-like metasurface film for radiative cooling. Light: Science and Applications, 2023, 12, .	7.7	0
1878	Self-assembled Ti3C2Tx MXene/PVDF-HFP Janus Film with Reversible Solar Heating and Radiative Cooling for Multifunctional Thermal Management. , 2023, , .		0
1882	ANGLE-TOLERANT COLORED SUB-AMBIENT RADIATIVE COOLING COATING DESIGNED BY MIXED-INTEGER MEMETIC ALGORITHM. , 2023, , .		0
1883	Broadband Efficient Radiative Cooling Film Based on Rod-like Dielectric Particles. , 2023, , .		O
1900	Smart building block with colored radiative cooling devices and quantum dot light emitting diodes. Nanoscale, 2024, 16, 1664-1672.	2.8	0
1930	Plastics in Buildings and Construction. , 2024, , 683-703.		0
1957	Review of the cavity effect: Modeling and impact of cavity shape on apparent radiative surface properties. Advances in Heat Transfer, 2024, , .	0.4	0
1978	Introductory Chapter: Photonic Crystal Technology – Introduction, Advantage, and Applications. , 0, ,		0
1988	Emerging Water Recovery Processes from Dew and Light Rain. Advances in Science, Technology and Innovation, 2024, , 1-24.	0.2	0
1993	Radiative Metamaterials Based onÂEffective-Medium Theory. , 2024, , 203-216.		0

#	Article	IF	CITATIONS
1995	Fundamental Methods andÂDesign Paradigm forÂOmnithermotics. , 2024, , 235-252.		0
1998	Diffusion Approximation and Metamaterial Design of Thermal Radiation. , 2024, , 217-231.		O