Single-shot compressed ultrafast photography at one h

Nature 516, 74-77 DOI: 10.1038/nature14005

Citation Report

#	Article	IF	Citations
1	Evolution of Ultra-High-Speed CCD Imagers. Plasma and Fusion Research, 2007, 2, S1021-S1021.	0.3	50
2	Ultrafast imaging takes on a new design. Nature, 2014, 516, 46-47.	13.7	2
3	Compressed streak imaging beam diagnostic. , 2015, , .		0
4	Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Optics Express, 2015, 23, 30512.	1.7	63
5	Tailoring light with a digital micromirror device. Annalen Der Physik, 2015, 527, 447-470.	0.9	145
6	High spatio-temporal resolution video with compressed sensing. Optics Express, 2015, 23, 15992.	1.7	68
7	Efficient under-sampled high resolution Radon transform. , 2015, , .		0
8	An ultrafast camera films light at light speed. Physics Today, 2015, 68, 12-14.	0.3	0
9	Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Scientific Reports, 2015, 5, 15504.	1.6	52
12	Classical Definitions of Gravitation, Electricity and Magnetism. Applied Physics Research, 2015, 7, 85.	0.2	4
13	LiSens- A Scalable Architecture for Video Compressive Sensing. , 2015, , .		21
14	Video compressive sensing with on-chip programmable subsampling. , 2015, , .		7
15	Solving trigonometric moment problems for fast transient imaging. ACM Transactions on Graphics, 2015, 34, 1-11.	4.9	35
16	Sampling optimization for on-chip compressive video. , 2015, , .		4
17	Ultrafast Three-Dimensional Serial Time-Encoded Imaging With High Vertical Resolution. Journal of Lightwave Technology, 2015, 33, 4622-4626.	2.7	2
18	High-speed flow microscopy using compressed sensing with ultrafast laser pulses. Optics Express, 2015, 23, 10521.	1.7	66
19	Analog optical computing. Nature Photonics, 2015, 9, 704-706.	15.6	212
20	Structured illumination microscopy. Advances in Optics and Photonics, 2015, 7, 241.	12.1	133

TATION REPO

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
21	A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity. Sensors, 2016, 16, 999.	2.1	4
22	Glare suppression by coherence gated negation. Optica, 2016, 3, 1107.	4.8	8
23	Angular light modulator using optical blinds. Optics Express, 2016, 24, 28467.	1.7	0
24	Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 2016, 3, 694.	4.8	57
25	Hurdles in the implementation of compressive sensing for imaging and ways to overcome them. , 2016, , .		0
26	Optical tracking of nanoscale particles in microscale environments. Applied Physics Reviews, 2016, 3, .	5.5	27
27	Special Aspects of the Application of Compressive Sensing in Optical Imaging and Sensing. , 2016, , 71-86.		0
28	Multidimensional Optical Compressive Sensing. , 2016, , 137-153.		0
29	Spectral Camera based on Ghost Imaging via Sparsity Constraints. Scientific Reports, 2016, 6, 25718.	1.6	57
30	Spatio-temporal visualization of light transport in complex photonic structures. Light: Science and Applications, 2016, 5, e16090-e16090.	7.7	17
31	Optical time-stretch imaging: Principles and applications. Applied Physics Reviews, 2016, 3, 011102.	5.5	93
32	Observation of image pair creation and annihilation from superluminal scattering sources. Science Advances, 2016, 2, e1501691.	4.7	17
33	Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. , 2016, , .		16
34	Spatial Phase-Sweep: Increasing temporal resolution of transient imaging using a light source array. , 2016, , .		7
35	Advances in ultrafast optics and imaging applications. Proceedings of SPIE, 2016, , .	0.8	3
36	Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Optics Express, 2016, 24, 4155.	1.7	37
37	Optofluidic time-stretch imaging – an emerging tool for high-throughput imaging flow cytometry. Lab on A Chip, 2016, 16, 1743-1756.	3.1	83
38	Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 2016, 5, 497-509.	2.9	49

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
39	A single-frame full spatiotemporal field distribution measurement method. Optik, 2016, 127, 11636-11643.	1.4	0
40	Computational temporal ghost imaging. Optica, 2016, 3, 698.	4.8	93
41	Kinematics of illumination patterns and light echoes from flashes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1814.	0.8	1
42	Optical compressive imaging and sensing: A decade retrospective. , 2016, , .		1
43	Compact and robust hyperspectral camera based on compressed sensing. , 2016, , .		2
44	The Psychophysiology Primer: A Guide to Methods and a Broad Review with a Focus on Human–Computer Interaction. Foundations and Trends in Human-Computer Interaction, 2016, 9, 151-308.	1.8	76
45	Super Temporal-Resolved Microscopy (STReM). Journal of Physical Chemistry Letters, 2016, 7, 4524-4529.	2.1	33
46	All Photons Imaging Through Volumetric Scattering. Scientific Reports, 2016, 6, 33946.	1.6	73
47	Picosecond time-resolved imaging using SPAD cameras. Proceedings of SPIE, 2016, , .	0.8	0
48	Optical brush: Imaging through permuted probes. Scientific Reports, 2016, 6, 20217.	1.6	6
49	Ultrafast Imaging using Spectral Resonance Modulation. Scientific Reports, 2016, 6, 25240.	1.6	12
50	Compressed ultrafast photography: Redefining the limit of passive ultrafast imaging. , 2016, , .		0
51	A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel. Physics Reports, 2016, 616, 1-37.	10.3	113
52	Detection and tracking of moving objects hidden from view. Nature Photonics, 2016, 10, 23-26.	15.6	198
53	Lighting up microscopy with random Raman lasing. , 2016, , .		0
54	Time-of-flight compressed-sensing ultrafast photography for encrypted three-dimensional dynamic imaging. , 2016, , .		0
55	A narrow-band speckle-free light source via random Raman lasing. Journal of Modern Optics, 2016, 63, 46-49.	0.6	22
56	Improving image quality in compressed ultrafast photography with a space- and intensity-constrained reconstruction algorithm. , 2016, , .		1

#	Article	IF	Citations
57	Optical Time Stretch for High-Speed and High-Throughput Imaging—From Single-Cell to Tissue-Wide Scales. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 89-103.	1.9	14
58	Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. Nanoscale, 2016, 8, 3181-3206.	2.8	40
59	Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Science Advances, 2017, 3, e1601814.	4.7	101
60	Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light: Science and Applications, 2017, 6, e16196-e16196.	7.7	125
61	Compressive Sensing for the Photonic Mixer Device. , 2017, , .		26
62	Observation of laser pulse propagation in optical fibers with a SPAD camera. Scientific Reports, 2017, 7, 43302.	1.6	14
63	All-optical framing photography based on hyperspectral imaging method. , 2017, , .		0
64	Multispectral computational ghost imaging with multiplexed illumination. Journal of Optics (United) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
65	Double-shot MeV electron diffraction and microscopy. Structural Dynamics, 2017, 4, 044025.	0.9	4
66	Single-pixel imaging based on compressive sensing with spectral-domain optical mixing. Optics Communications, 2017, 402, 119-122.	1.0	15
67	Lensless Imaging With Compressive Ultrafast Sensing. IEEE Transactions on Computational Imaging, 2017, 3, 398-407.	2.6	43
68	Ultrafast imaging of light scattering dynamics using second-generation compressed ultrafast photography. , 2017, , .		3
69	Enabling time resolved microscopy with random Raman lasing. Scientific Reports, 2017, 7, 44572.	1.6	10
70	Recent advances in transient imaging: A computer graphics and vision perspective. Visual Informatics, 2017, 1, 65-79.	2.5	65
71	FRAME: femtosecond videography for atomic and molecular dynamics. Light: Science and Applications, 2017, 6, e17045-e17045.	7.7	103
72	Simultaneous fusion, imaging and encryption of multiple objects using a single-pixel detector. Scientific Reports, 2017, 7, 13172.	1.6	20
73	Ultrafast all-optical imaging technique using low-temperature grown GaAs/Al Ga1â^'As multiple-quantum-well semiconductor. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3594-3598.	0.9	7
74	Single-shot 25-frame burst imaging of ultrafast phase transition of Ge ₂ Sb ₂ Te ₅ with a sub-picosecond resolution. Applied Physics Express, 2017, 10, 092502.	1.1	47

#	ARTICLE How the Toughest Inorganic Fullerene Cages Absorb Shockwave Pressures in a Protective	IF	CITATIONS
75	GHz Optical Time-Stretch Microscopy by Compressive Sensing. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	12
77	High speed fluorescence imaging with compressed ultrafast photography. Proceedings of SPIE, 2017, , .	0.8	5
78	Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner. , 2017, , .		35
79	An Efficient Undersampled High-Resolution Radon Transform for Exploration Seismic Data Processing. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1010-1024.	2.7	36
80	Multidimensional optical compressive imaging. , 2017, , .		1
81	Single-shot chemical detection and identification with compressed hyperspectral Raman imaging. Optics Letters, 2017, 42, 2169.	1.7	35
82	Subsampled phase retrieval for temporal resolution enhancement in lensless on-chip holographic video. Biomedical Optics Express, 2017, 8, 1981.	1.5	18
83	High dynamic spectroscopy using a digital micromirror device and periodic shadowing. Optics Express, 2017, 25, 212.	1.7	16
84	Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Optics Express, 2017, 25, 8721.	1.7	34
85	Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme. Optics Express, 2017, 25, 13668.	1.7	18
86	Efficient block-wise algorithm for compressive holography. Optics Express, 2017, 25, 24991.	1.7	11
87	Tracking hidden objects using stochastic probing. Optica, 2017, 4, 447.	4.8	29
88	Compressive video sensing with side information. Applied Optics, 2017, 56, 2697.	2.1	20
89	Ptychographic ultrahigh-speed imaging. Optics Express, 2017, 25, 10997.	1.7	33
90	The Theoretical Highest Frame Rate of Silicon Image Sensors. Sensors, 2017, 17, 483.	2.1	38
91	Adaptive reconstruction for coded aperture temporal compressive imaging. Applied Optics, 2017, 56, 4940.	2.1	5
92	Ultra-High Speed Microscopy of Complex (Amplitude and Phase) Samples Using a Single Camera Snapshot. , 2017, , .		0

#	Article	IF	CITATIONS
93	Lossless encoding compressed ultrafast photography: Capturing light-speed scattering dynamics in a snapshot. , 2017, , .		0
94	Single-shot burst imaging of ultrafast phenomena with sub-picosecond resolution and sub-nanosecond time window. , 2017, , .		0
95	All-optical coaxial framing photography using parallel coherence shutters. Optics Letters, 2017, 42, 415.	1.7	17
96	Sequentially Timed All-optical Mapping Photography. Journal of the Visualization Society of Japan, 2017, 37, 26-31.	0.0	0
97	Real-time tracking of single shockwaves via amplified time-stretch imaging. Applied Physics Letters, 2018, 112, .	1.5	13
98	Streak camera imaging of single photons at telecom wavelength. Applied Physics Letters, 2018, 112, 031110.	1.5	6
99	Adaptive temporal compressive sensing for video with motion estimation. Optical Review, 2018, 25, 215-226.	1.2	6
101	A highâ€throughput allâ€optical laserâ€scanning imaging flow cytometer with biomolecular specificity and subcellular resolution. Journal of Biophotonics, 2018, 11, e201700178.	1.1	14
102	Computational Spectral and Ultrafast Imaging via Convex Optimization. , 2018, , 105-127.		5
103	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18.		154
103 104	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91.	2.0	154 186
103 104 105	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91. Polarization-multiplexing ghost imaging. Optics and Lasers in Engineering, 2018, 102, 100-105.	2.0 2.0	154 186 26
103 104 105 106	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91. Polarization-multiplexing ghost imaging. Optics and Lasers in Engineering, 2018, 102, 100-105. Anisotropic Spatiotemporal Regularization in Compressive Video Recovery by Adaptively Modeling the Residual Errors as Correlated Noise. , 2018, ,.	2.0 2.0	154 186 26 5
103 104 105 106	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91. Polarization-multiplexing ghost imaging. Optics and Lasers in Engineering, 2018, 102, 100-105. Anisotropic Spatiotemporal Regularization in Compressive Video Recovery by Adaptively Modeling the Residual Errors as Correlated Noise. , 2018, ,. Single-shot ultrafast optical imaging. Optica, 2018, 5, 1113.	2.0 2.0 4.8	154 186 26 5 136
103 104 105 106 107	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91. Polarization-multiplexing ghost imaging. Optics and Lasers in Engineering, 2018, 102, 100-105. Anisotropic Spatiotemporal Regularization in Compressive Video Recovery by Adaptively Modeling the Residual Errors as Correlated Noise. , 2018, , . Single-shot ultrafast optical imaging. Optica, 2018, 5, 1113. Compressed ultrafast photography by multi-encoding imaging. Laser Physics Letters, 2018, 15, 116202.	2.0 2.0 4.8 0.6	 154 186 26 5 136 23
103 104 105 106 107 108	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91. Polarization-multiplexing ghost imaging. Optics and Lasers in Engineering, 2018, 102, 100-105. Anisotropic Spatiotemporal Regularization in Compressive Video Recovery by Adaptively Modeling the Residual Errors as Correlated Noise. , 2018, , . Single-shot ultrafast optical imaging. Optica, 2018, 5, 1113. Compressed ultrafast photography by multi-encoding imaging. Laser Physics Letters, 2018, 15, 116202. A Review of Chost Imaging via Sparsity Constraints. Applied Sciences (Switzerland), 2018, 8, 1379.	2.0 2.0 4.8 0.6	 154 186 26 5 136 23 41
 103 104 105 106 107 108 109 110 	Deep fully-connected networks for video compressive sensing. , 2018, 72, 9-18. Micro Fourier Transform Profilometry (Î ¹ /4FTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91. Polarization-multiplexing ghost imaging. Optics and Lasers in Engineering, 2018, 102, 100-105. Anisotropic Spatiotemporal Regularization in Compressive Video Recovery by Adaptively Modeling the Residual Errors as Correlated Noise. , 2018, , . Single-shot ultrafast optical imaging. Optica, 2018, 5, 1113. Compressed ultrafast photography by multi-encoding imaging. Laser Physics Letters, 2018, 15, 116202. A Review of Chost Imaging via Sparsity Constraints. Applied Sciences (Switzerland), 2018, 8, 1379. Application of M Sequence Family Measurement Matrix in Streak Camera Imaging. Advances in OptoElectronics, 2018, 2018, 1-7.	2.0 2.0 4.8 0.6 1.3	 154 186 26 5 136 23 41 0

#	Article	IF	CITATIONS
112	A novel super-resolution imaging method based on TDI CCD charge transfer and random exposure. Optics Communications, 2018, 426, 170-181.	1.0	2
113	Compressive hyperspectral imaging recovery by spatial-spectral non-local means regularization. Optics Express, 2018, 26, 7043.	1.7	17
114	Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging. Optics Express, 2018, 26, 9945.	1.7	56
115	Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica, 2018, 5, 147.	4.8	30
116	Hyperspectral ghost imaging camera based on a flat-field grating. Optics Express, 2018, 26, 17705.	1.7	7
117	MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging. Applied Sciences (Switzerland), 2018, 8, 338.	1.3	1
118	Photography optics in the time dimension. Nature Photonics, 2018, 12, 560-566.	15.6	8
119	Compressed 3D Image Information and Communication Security. Advanced Quantum Technologies, 2018, 1, 1800034.	1.8	4
120	Single-shot real-time femtosecond imaging of temporal focusing. Light: Science and Applications, 2018, 7, 42.	7.7	100
121	Towards transient imaging at interactive rates with single-photon detectors. , 2018, , .		15
121 122	Towards transient imaging at interactive rates with single-photon detectors. , 2018, , . Ghost cytometry. Science, 2018, 360, 1246-1251.	6.0	15 165
121 122 123	Towards transient imaging at interactive rates with single-photon detectors., 2018, , . Ghost cytometry. Science, 2018, 360, 1246-1251. A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901.	6.0	15 165 35
121 122 123 124	Towards transient imaging at interactive rates with single-photon detectors., 2018, ,. Ghost cytometry. Science, 2018, 360, 1246-1251. A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901. Multimode Random Fiber Laser for Speckle-Free Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	6.0 8.1 1.9	15 165 35 94
121 122 123 124 125	Towards transient imaging at interactive rates with single-photon detectors., 2018,,.Chost cytometry. Science, 2018, 360, 1246-1251.A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901.Multimode Random Fiber Laser for Speckle-Free Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.Computational Cosmetic Quality Assessment of Human Hair in Low Magnifications. IEEE Access, 2019, 7, 91809-91818.	6.0 8.1 1.9 2.6	15 165 35 94 1
121 122 123 124 125 126	Towards transient imaging at interactive rates with single-photon detectors. , 2018, , .Chost cytometry. Science, 2018, 360, 1246-1251.A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901.Multimode Random Fiber Laser for Speckle-Free Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.Computational Cosmetic Quality Assessment of Human Hair in Low Magnifications. IEEE Access, 2019, 7, 91809-91818.On the Uniqueness and Stability of Dictionaries for Sparse Representation of Noisy Signals. IEEE Transactions on Signal Processing, 2019, 67, 5884-5892.	6.0 8.1 1.9 2.6 3.2	 15 165 35 94 1 3
121 122 123 124 125 126	Towards transient imaging at interactive rates with single-photon detectors., 2018,,.Ghost cytometry. Science, 2018, 360, 1246-1251.A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901.Multimode Random Fiber Laser for Speckle-Free Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.Computational Cosmetic Quality Assessment of Human Hair in Low Magnifications. IEEE Access, 2019, 7, 91809-91818.On the Uniqueness and Stability of Dictionaries for Sparse Representation of Noisy Signals. IEEE Transactions on Signal Processing, 2019, 67, 5884-5892.Enhancing laser beam performance by interfering intense laser beamlets. Nature Communications, 2019, 10, 2995.	6.0 8.1 1.9 2.6 3.2 5.8	 15 165 35 94 1 3 16
 121 122 123 124 125 126 127 128 	Towards transient imaging at interactive rates with single-photon detectors., 2018, , .Ghost cytometry. Science, 2018, 360, 1246-1251.A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901.Multimode Random Fiber Laser for Speckle-Free Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.Computational Cosmetic Quality Assessment of Human Hair in Low Magnifications. IEEE Access, 2019, 7, 91809-91818.On the Uniqueness and Stability of Dictionaries for Sparse Representation of Noisy Signals. IEEE Transactions on Signal Processing, 2019, 67, 5884-5892.Enhancing laser beam performance by interfering intense laser beamlets. Nature Communications, 2019, 10, 2995.Video from Stills: Lensless Imaging with Rolling Shutter., 2019, ,.	6.0 8.1 1.9 2.6 3.2 5.8	 15 165 35 94 1 3 16 24

	CITATION	INLPORT	
# 130	ARTICLE Recent Advances in Computational Photography. Chinese Journal of Electronics, 2019, 28, 1-5.	IF 0.7	Citations
131	Improving the image reconstruction quality of compressed ultrafast photography via an augmented Lagrangian algorithm. Journal of Optics (United Kingdom), 2019, 21, 035703.	1.0	26
132	Direct instantaneous 2-D imaging for photoacoustic waves by ultrashort single pulse interferometry. Optics and Lasers in Engineering, 2019, 121, 340-345.	2.0	6
133	Micro deep learning profilometry for high-speed 3D surface imaging. Optics and Lasers in Engineering, 2019, 121, 416-427.	2.0	71
134	Light-In-Flight Imaging by a Silicon Image Sensor: Toward the Theoretical Highest Frame Rate. Sensors, 2019, 19, 2247.	2.1	22
135	Optics based biomedical imaging: Principles and applications. Journal of Applied Physics, 2019, 125, .	1.1	12
136	Compressed Ultrafast Spectral-Temporal Photography. Physical Review Letters, 2019, 122, 193904.	2.9	54
137	Microscopy and Cell Biology: New Methods and New Questions. Annual Review of Physical Chemistry, 2019, 70, 199-218.	4.8	15
138	lambda-Net: Reconstruct Hyperspectral Images From a Snapshot Measurement. , 2019, , .		106
139	Restoration of Minute Light Emissions Observed by Streak Camera Based on N-CUP Method. , 2019, , .		0
140	Spectral Reconstruction From Dispersive Blur: A Novel Light Efficient Spectral Imager. , 2019, , .		2
141	Generation of Broadband Quasi-Bessel Beams in Sub-THz Regime and Applications in Imaging. , 2019, , .		0
142	Snapshot Compressed Sensing: Performance Bounds and Algorithms. IEEE Transactions on Information Theory, 2019, 65, 8005-8024.	1.5	67
143	Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: Analytical modeling and simulation. Micron, 2019, 117, 47-54.	1.1	27
144	Single-shot spatiotemporal intensity measurement of picosecond laser pulses with compressed ultrafast photography. Optics and Lasers in Engineering, 2019, 116, 89-93.	2.0	14
145	Single-Exposure Field-of-View Extension Using Multiplexed Structured Image Capture. , 2019, , .		0
146	Rank Minimization for Snapshot Compressive Imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41, 2990-3006.	9.7	207
147	Temporal and spatial resolutions of optical time stretch imaging with dispersive grating pair. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126083.	0.9	2

#	Article	IF	Citations
148	DeepBinaryMask: Learning a binary mask for video compressive sensing. , 2020, 96, 102591.		45
149	Coding Mask Design for Single Sensor Ultrasound Imaging. IEEE Transactions on Computational Imaging, 2020, 6, 358-373.	2.6	8
150	A diagnostic system toward high-resolution measurement of wavefront profile. Optics Communications, 2020, 456, 124554.	1.0	8
151	Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nature Communications, 2020, 11, 5252.	5.8	49
152	Reconstruction of compressed video via non-convex minimization. AIP Advances, 2020, 10, 115207.	0.6	2
153	Toward the Super Temporal Resolution Image Sensor with a Germanium Photodiode for Visible Light. Sensors, 2020, 20, 6895.	2.1	4
154	Snapshot multidimensional photography through active optical mapping. Nature Communications, 2020, 11, 5602.	5.8	11
155	Towards an Intelligent Microscope: Adaptively Learned Illumination for Optimal Sample Classification. , 2020, , .		1
156	Construction of multi-directional high-speed imaging system using a streak camera and image compression method. High Energy Density Physics, 2020, 37, 100902.	0.4	1
157	Singleâ€5hot Ultraviolet Compressed Ultrafast Photography. Laser and Photonics Reviews, 2020, 14, 2000122.	4.4	26
158	Long sequence single-exposure videography using spatially modulated illumination. Scientific Reports, 2020, 10, 18920.	1.6	10
159	Motion-picture recording of ultrafast behavior of polarized light incident at Brewster's angle. Scientific Reports, 2020, 10, 7638.	1.6	9
160	Multi-frame interferometric imaging with a femtosecond stroboscopic pulse train for observing irreversible phenomena. Review of Scientific Instruments, 2020, 91, 033711.	0.6	5
161	Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region. High Power Laser Science and Engineering, 2020, 8, .	2.0	9
162	Non-line-of-sight imaging. Nature Reviews Physics, 2020, 2, 318-327.	11.9	113
163	Design of a novel high-performance ultrafast optical framing camera. Journal of Instrumentation, 2020, 15, P03007-P03007.	0.5	0
164	Spectral ghost imaging camera with super-Rayleigh modulator. Optics Communications, 2020, 472, 126017.	1.0	7
165	Local and nonlocal constraints for compressed sensing video and multi-view image recovery. Neurocomputing, 2020, 406, 34-48.	3.5	28

#	Article	IF	CITATIONS
166	A compact, highly stable spectral shearing interferometer to accurately reconstruct ultrafast laser fields. Optics and Lasers in Engineering, 2020, 130, 106081.	2.0	3
167	Calculation and experimental verification of spatial resolution consistency on Petzval image plane of streak tube. Optik, 2020, 208, 164443.	1.4	2
168	Model Study of Transient Imaging With Multi-Frequency Time-of-Flight Sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3523-3539.	9.7	2
169	Multichannel-coupled compressed ultrafast photography. Journal of Optics (United Kingdom), 2020, 22, 085701.	1.0	12
170	Application of digital micromirror devices (DMD) in biomedical instruments. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	13
171	Scale distortion correction of a digital micromirror device using diffraction caustics. Optics and Lasers in Engineering, 2020, 134, 106122.	2.0	2
172	Lensless compressive sensing with annulus-sector-shaped pixel geometry in the photon-starved environment. Optics and Lasers in Engineering, 2020, 134, 106232.	2.0	1
173	Single-Shot Receive-Only Ultrafast Electro-Optical Deflection Imaging. Physical Review Applied, 2020, 13, .	1.5	16
174	Quadrature Multiplexed Structured Illumination Imaging. IEEE Photonics Journal, 2020, 12, 1-8.	1.0	3
175	Hyperspectrally Compressed Ultrafast Photography. Physical Review Letters, 2020, 124, 023902.	2.9	28
176	Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption. Nature Photonics, 2020, 14, 164-170.	15.6	70
177	Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Science Advances, 2020, 6, eaay6200.	4.7	29
178	Single-shot ultrafast imaging attaining 70 trillion frames per second. Nature Communications, 2020, 11, 2091.	5.8	80
179	Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics. Nature Communications, 2020, 11, 2059.	5.8	29
180	Computational optical imaging goes viral. APL Photonics, 2020, 5, 030401.	3.0	0
181	Nanosecond illumination source for speckle-free liquid crystalmicroscopy. Liquid Crystals, 2021, 48, 491-510.	0.9	1
182	Total variation and block-matching 3D filtering-based image reconstruction for single-shot compressed ultrafast photography. Optics and Lasers in Engineering, 2021, 139, 106475.	2.0	11
183	Sinusoidal Sampling Enhanced Compressive Camera for High Speed Imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 1380-1393.	9.7	13

#	ARTICLE	IF	Citations
184	augmented-Lagrangian and deep-learning hybrid algorithm. Photonics Research, 2021, 9, B30.	3.4	21
185	Compressive Coded Rotating Mirror Camera for High-Speed Imaging. Photonics, 2021, 8, 34.	0.9	9
186	Real-time observation and control of optical chaos. Science Advances, 2021, 7, .	4.7	20
187	Snapshot Coherence Tomographic Imaging. IEEE Transactions on Computational Imaging, 2021, 7, 624-637.	2.6	9
188	Theoretical investigations of a modified compressed ultrafast photography method suitable for single-shot fluorescence lifetime imaging. Applied Optics, 2021, 60, 1476.	0.9	2
189	100-Trillion-Frame-per-Second Single-Shot Compressed Ultrafast Photography via Molecular Alignment. Physical Review Applied, 2021, 15, .	1.5	6
190	Megahertz-rate digital holography system. Applied Optics, 2021, 60, 2672.	0.9	10
191	Machine learning estimation of tissue optical properties. Scientific Reports, 2021, 11, 6561.	1.6	12
192	A novel algorithm to improve image reconstruction quality for 2D streak camera. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991, 165023.	0.7	3
193	Review of surface transient charge measurement on solid insulating materials via the Pockels technique. High Voltage, 2021, 6, 608-624.	2.7	16
194	Deep compressed imaging via optimized pattern scanning. Photonics Research, 2021, 9, B57.	3.4	12
195	Snapshot Compressive Imaging: Theory, Algorithms, and Applications. IEEE Signal Processing Magazine, 2021, 38, 65-88.	4.6	159
196	Compressed ultrafast tomographic imaging by passive spatiotemporal projections. Optics Letters, 2021, 46, 1788.	1.7	10
197	Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging. Nature Communications, 2021, 12, 2179.	5.8	29
198	A Pixel Design of a Branching Ultra-Highspeed Image Sensor. Sensors, 2021, 21, 2506.	2.1	3
199	Optimized multi-exposure optical path with a single laser pulse for the measurement of ultra-high speed. AIP Advances, 2021, 11, 045101.	0.6	2
200	Video object detection from one single image through opto-electronic neural network. APL Photonics, 2021, 6, 046104.	3.0	14
201	Two-step training deep learning framework for computational imaging without physics priors. Optics Express, 2021, 29, 15239.	1.7	26

# 202	ARTICLE Stray light characterization with ultrafast time-of-flight imaging. Scientific Reports, 2021, 11, 10081.	IF 1.6	Citations
203	Time resolved characterization of stray light. , 2021, , .		1
204	Single-shot spectral-volumetric compressed ultrafast photography. Advanced Photonics, 2021, 3, .	6.2	14
205	In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging. Light: Science and Applications, 2021, 10, 126.	7.7	10
206	Probing short distance gravity using temporal lensing. International Journal of Modern Physics A, 2021, 36, 2150115.	0.5	3
207	Compressed sensing in fluorescence microscopy. Progress in Biophysics and Molecular Biology, 2022, 168, 66-80.	1.4	32
208	Untrained networks for compressive lensless photography. Optics Express, 2021, 29, 20913.	1.7	34
209	All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second. Optics Express, 2021, 29, 27298.	1.7	10
210	Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture. Photonics Research, 2021, 9, 2277.	3.4	13
211	Noise Measurement and Reduction in Mode-Locked Lasers: Fundamentals for Low-Noise Optical Frequency Combs. Applied Sciences (Switzerland), 2021, 11, 7650.	1.3	15
212	Study on the length of diagnostic time window of CUP-VISAR. Measurement Science and Technology, 2021, 32, 125208.	1.4	5
213	Optical information processing: A historical overview. , 2021, , 103248.		4
214	Two-dimensional time- and space-resolved diagnostic method for an integrated implosion process. Optics Express, 2021, 29, 33424.	1.7	4
215	Emission spectroscopy with coded apertures for enhanced dimensionality. Journal of Applied Physics, 2021, 130, insight into the temporal response of Yb <mml:math< td=""><td>1.1</td><td>3</td></mml:math<>	1.1	3
216	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1535" altimg="si77.svg"> <mml:msup><mml:mrow /><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup> /Tm <mm xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1545"</mm 	l:math	5
217	altimg="si77.svg"> <mml:msup><mml:mrow /><mml:mrow><mml:mros3< mml:mro="">+< High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .</mml:mros3<></mml:mrow></mml:mrow </mml:msup>	3.3	28
218	Hologram generation of light-in-flight recording by holography applying the 2D-FDTD method to simulate the behavior of ultrashort pulsed light. OSA Continuum, 2021, 4, 437.	1.8	5
219	Super-resolution time-resolved imaging using computational sensor fusion. Scientific Reports, 2021, 11, 1689.	1.6	15

#	Article	IF	CITATIONS
220	Toward unlimited temporal resolution: femtosecond videography for atomic and molecular dynamics. Light: Science and Applications, 2017, 6, e17123-e17123.	7.7	5
222	Punching holes in light: recent progress in single-shot coded-aperture optical imaging. Reports on Progress in Physics, 2020, 83, 116101.	8.1	41
223	Single-shot compressed ultrafast photography: a review. Advanced Photonics, 2020, 2, 1.	6.2	47
224	Performance comparison of state-of-the-art high-speed video cameras for scientific applications. Optical Engineering, 2018, 57, 1.	0.5	29
225	Deep learning for camera data acquisition, control, and image estimation. Advances in Optics and Photonics, 2020, 12, 787.	12.1	19
226	Spatially modulated illumination allows for light sheet fluorescence microscopy with an incoherent source and compressive sensing. Biomedical Optics Express, 2019, 10, 5776.	1.5	15
227	Single-shot Multispectral Imaging and Ultrafast 2D-imaging by Sequentially Timed All-optical Mapping Photography utilizing Spectral Filtering (SF-STAMP) system. , 2016, , .		1
228	Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2822.	0.9	18
229	Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture. Optics Express, 2018, 26, 28441.	1.7	20
230	Multicolor fluorescent imaging by space-constrained computational spectral imaging. Optics Express, 2019, 27, 5393.	1.7	8
231	A light-in-flight single-pixel camera for use in the visible and short-wave infrared. Optics Express, 2019, 27, 9829.	1.7	13
232	Imaging high-speed moving targets with a single-pixel detector. Optics Express, 2020, 28, 7889.	1.7	50
233	Single-shot compressed ultrafast photography based on U-net network. Optics Express, 2020, 28, 39299.	1.7	14
234	100,000 frames-per-second compressive imaging with a conventional rolling-shutter camera by random point-spread-function engineering. Optics Express, 2020, 28, 30616.	1.7	15
235	Single-pixel imaging 12 years on: a review. Optics Express, 2020, 28, 28190.	1.7	263
236	Deep-learning-based image reconstruction for compressed ultrafast photography. Optics Letters, 2020, 45, 4400.	1.7	18
237	Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events. Optics Letters, 2017, 42, 2082.	1.7	12
238	Extending recordable time of light-in-flight recording by holography with double reference light pulses. Optics Letters, 2018, 43, 5146.	1.7	12

#	Article	IF	CITATIONS
239	Multiplexed single-shot ptychography. Optics Letters, 2018, 43, 5379.	1.7	22
240	Single-shot compressed optical-streaking ultra-high-speed photography. Optics Letters, 2019, 44, 1387.	1.7	48
241	Spatiotemporal observations of light propagation in multiple polarization states. Optics Letters, 2019, 44, 2069.	1.7	15
242	Interferometry-free noncontact photoacoustic detection method based on speckle correlation change. Optics Letters, 2019, 44, 5481.	1.7	13
243	Multiplexed structured image capture to increase the field of view for a single exposure. OSA Continuum, 2019, 2, 225.	1.8	11
244	MUTE-SIM: multiphoton up-conversion time-encoded structured illumination microscopy. OSA Continuum, 2020, 3, 594.	1.8	6
245	High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light. Photonics Research, 2020, 8, 819.	3.4	94
246	Computational 4D imaging of light-in-flight with relativistic effects. Photonics Research, 2020, 8, 1072.	3.4	11
247	Single-shot Ultrafast 2D-burst Imaging by STAMP utilizing Spectral Filtering (SF-STAMP). , 2016, , .		4
248	Time-of-Flight Imaging at 10 ps Resolution with an ICCD Camera. Sensors, 2019, 19, 180.	2.1	19
249	Noise Suppression in Compressive Single-Pixel Imaging. Sensors, 2020, 20, 5341.	2.1	6
250	Optical estimation of absolute membrane potential using fluorescence lifetime imaging. ELife, 2019, 8, .	2.8	46
252	Sparsity-Based Recovery of Three-Dimensional Photoacoustic Images from Compressed Single-Shot Optical Detection. Journal of Imaging, 2021, 7, 201.	1.7	2
253	Single-shot real-time compressed ultrahigh-speed imaging enabled by a snapshot-to-video autoencoder. Photonics Research, 2021, 9, 2464.	3.4	17
254	FFT-based simulation of the hologram-recording process for light-in-flight recording by holography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, A7.	0.8	2
255	STAMP (Sequentially Timed All-optical Mapping Photography) for Observation of Ultrafast Non-Repetitive Phenomena. The Review of Laser Engineering, 2015, 43, 199.	0.0	0
256	Evolution of High-Speed Image Sensors. , 2018, , 81-101.		2
257	DMD-based quantitative phase microscopy and optical diffraction tomography. , 2018, , .		0

#	Article	IF	CITATIONS
258	Hyperspectral imaging in infrared region using compressed sensing methods. ACC Journal, 2018, 24, 24-32.	0.1	0
259	Research on the streak tube three-dimensional imaging method based on compressive sensing. Optical Engineering, 2018, 57, 1.	0.5	0
261	Development of a GPU-accelerated constrained reconstruction algorithm for compressed fluorescence lifetime imaging microscopy. , 2019, , .		0
262	Flying Light Captured with a Multi-framing Image Sensor Operating at 10 ns. Transactions of Visualization Soc of Japan, 2019, 39, 35-40.	0.2	1
264	Single-shot Compressed Ultrafast Holography. , 2019, , .		1
265	Compressed ultrafast transmission electron microscopy: a simulation study. , 2019, , .		0
266	High-speed 3D measurements at 20,000Hz with deep convolutional neural networks. , 2019, , .		1
267	Applications for compressed ultrafast photography to biological imaging and sensing. , 2019, , .		1
268	Compressed Ultrafast Photography: Imaging Light-Speed Events in a Snapshot. , 2020, , .		0
269	Extension of time window into nanoseconds in single-shot ultrafast burst imaging by spectrally sweeping pulses. Applied Optics, 2020, 59, 5210.	0.9	4
270	Extending recordable time of motion picture of magnified image of a propagating light pulse by digital light-in-flight holography. , 2021, , .		0
271	Compressed Single-Shot Photoacoustic Image Reconstruction of a 3D Pressure Distribution. , 2021, , .		1
272	Deep-learning-based image reconstruction for compressed ultrafast photography. , 2021, , .		0
273	Single-shot Imaging of Microscopic Dynamic Scenes at 5 THz Frame Rates by Time and Spatial Frequency Multiplexing. , 2020, , .		0
274	Transient Imaging. , 2020, , 1-5.		0
275	Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing. Optics Express, 2020, 28, 4463.	1.7	20
276	Single-shot 5D imaging at 100 billion frames per second using stereo-polarimetric compressed ultrafast photography. , 2021, , .		0
277	Spatiotemporal observation of light propagation in a three-dimensional scattering medium. Scientific Reports, 2021, 11, 21890.	1.6	5

#	Article	IF	CITATIONS
278	Continuously streaming compressed high-speed photography using time delay integration. Optica, 2021, 8, 1620.	4.8	8
279	Single-pixel imaging: An overview of different methods to be used for 3D space reconstruction in harsh environments. Review of Scientific Instruments, 2021, 92, 111501.	0.6	19
280	Ultrashort Laser Pulse Spatiotemporal Profile Manipulation using a Single-Mode-Few-Mode Optical Fiber Device. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	1
282	Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror. Optics Express, 2020, 28, 31914.	1.7	10
283	Three-dimensional reconstruction of integrated implosion targets from simulated small-angle pinhole images. Optics Express, 2020, 28, 34848.	1.7	4
284	Analysis of signal detection configurations in optical time-stretch imaging. Optics Express, 2020, 28, 29272.	1.7	3
285	Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array. Optics Letters, 2020, 45, 5004.	1.7	13
286	Photonic compressive sensing of sparse radio frequency signals with a single dual-electrode Mach–Zehnder modulator. Optics Letters, 2020, 45, 5708.	1.7	13
287	Video encryption/compression using compressive coded rotating mirror camera. Scientific Reports, 2021, 11, 23191.	1.6	5
288	Single-shot real-time imaging of ultrafast light springs. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	5
290	Single-shot Cell Tomography for 3D Image Cytometry Applications. , 2021, , .		0
291	Imaging at Frame Rates Exceeding 1 GHz with Multiplexed Structured Image Capture. , 2022, , .		1
292	Composite fringe projection deep learning profilometry for single-shot absolute 3D shape measurement. Optics Express, 2022, 30, 3424.	1.7	38
293	Flatfield ultrafast imaging with single-shot non-synchronous array photography. Optics Letters, 2022, 47, 577.	1.7	10
294	Total variation regularized nonlocal low-rank tensor train for spectral compressive imaging. Signal Processing, 2022, 195, 108464.	2.1	12
295	High-Speed Large-Scale Imaging Using Frame Decomposition From Intrinsic Multiplexing of Motion. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 700-712.	7.3	0
296	A 30-fps 192 × 192 CMOS Image Sensor With Per-Frame Spatial-Temporal Coded Exposure for Compressive Focal-Stack Depth Sensing. IEEE Journal of Solid-State Circuits, 2022, 57, 1661-1672.	3.5	3
297	Simultaneously Tracking and Imaging a Moving Object under Photon Crisis. Physical Review Applied, 2022, 17, .	1.5	8

щ		IE	CITATIONS
#	ARTICLE	IF	CHATIONS
298	128, 1.	1.1	27
299	Ultrafast imaging for uncovering laser–material interaction dynamics. International Journal of Mechanical System Dynamics, 2022, 2, 65-81.	1.3	6
300	Imaging approaches for monitoring <scp>threeâ€dimensional</scp> cell and tissue culture systems. Journal of Biophotonics, 2022, 15, e202100380.	1.1	6
301	Compressed ultrafast tomographic imaging using standard streak cameras. , 2022, , .		1
302	End-to-end snapshot compressed super-resolution imaging with deep optics. Optica, 2022, 9, 451.	4.8	15
303	A Dual-Mode 303-Megaframes-per-Second Charge-Domain Time-Compressive Computational CMOS Image Sensor. Sensors, 2022, 22, 1953.	2.1	11
304	Snapshot-to-video autoencoder for compressed ultrahigh-speed imaging. , 2022, , .		0
305	Single-shot imaging with multiple frames through delaying optical images. Optics Express, 2022, 30, 14645-14650.	1.7	0
306	High speed surface defects detection of mirrors based on ultrafast single-pixel imaging. Optics Express, 2022, 30, 15037.	1.7	4
307	Two-frequency phase-shifting method vs. Gray-coded-based method in dynamic fringe projection profilometry: A comparative review. Optics and Lasers in Engineering, 2022, 153, 106995.	2.0	51
308	Lensless ultrafast optical imaging. Light: Science and Applications, 2022, 11, 97.	7.7	1
309	Acousto-optically driven lensless single-shot ultrafast optical imaging. Light: Science and Applications, 2022, 11, 66.	7.7	15
311	Deep-Learning Supervised Snapshot Compressive Imaging Enabled by an End-to-End Adaptive Neural Network. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 688-699.	7.3	12
312	Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront. Scientific Reports, 2022, 12, 7754.	1.6	4
313	Wavefront coded image restoration algorithm based on compressed sensing for off-axis mirror system. , 2022, , .		0
314	Single-shot compressed ultrafast photography using a novel reconstruction algorithm based on plug-and-play frame. Journal of Optics (India), 2023, 52, 332-338.	0.8	2
315	Single-shot ultrafast multiplexed coherent diffraction imaging. Photonics Research, 2022, 10, 1937.	3.4	9
316	Numerical Displacement of Target Wavefront Formation Plane with DMD-Based Modulation and Geometric Phase Holographic Registration System. Atmospheric and Oceanic Optics, 2022, 35, 258-265.	0.6	4

#	Article	IF	CITATIONS
317	FISI: frequency domain integration sequential imaging at 1.26×10 ¹³ frames per second and 108 lines per millimeter. Optics Express, 2022, 30, 27429.	1.7	7
318	Righ speed structured illumination microscopy based on compressed sensing: numerical simulation. , 2022, , .		Ο
319	Computational ultrafast CMOS image sensors. , 2022, , .		1
320	2,000,000  fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photonics Research, 2022, 10, 2157.	3.4	20
321	Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy. Photonics Research, 2022, 10, 2147.	3.4	1
322	Spatial tomography of light resolved in time, spectrum, and polarisation. Nature Communications, 2022, 13, .	5.8	2
323	Single-shot compressed optical field topography. Light: Science and Applications, 2022, 11, .	7.7	17
324	Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angewandte Chemie, 2022, 134, .	1.6	2
325	Dynamic proximal unrolling network for compressive imaging. Neurocomputing, 2022, 510, 203-217.	3.5	2
326	Weighted multi-scale denoising via adaptive multi-channel fusion for compressed ultrafast photography. Optics Express, 2022, 30, 31157.	1.7	5
327	Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
328	CoCoCs: co-optimized compressive imaging driven by high-level vision. Optics Express, 2022, 30, 30894.	1.7	1
329	JR2net: a joint non-linear representation and recovery network for compressive spectral imaging. Applied Optics, 2022, 61, 7757.	0.9	8
330	Flatfield Ultrafast Imaging with Single-Shot Non-Synchronous Array Photography. , 2022, , .		0
331	Ultrafast two-dimensional imaging for surface defects measurement of mirrors based on a virtually imaged phased-array. Optics Express, 2022, 30, 37235.	1.7	1
332	From compressive sampling to compressive tasking: retrieving semantics in compressed domain with low bandwidth. PhotoniX, 2022, 3, .	5.5	10
333	Hybrid-plane spectrum slicing for sequentially timed all-optical mapping photography. Optics Letters, 2022, 47, 4822.	1.7	4
334	A Novel Reconstruction Algorithm with High Performance for Compressed Ultrafast Imaging. Sensors, 2022, 22, 7372.	2.1	4

#	Article	IF	Citations
335	Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics. Nature Communications, 2022, 13, .	5.8	9
336	Key frames assisted hybrid encoding for high-quality compressive video sensing. Optics Express, 2022, 30, 39111.	1.7	4
337	Compressed sensing in photonics: tutorial. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 28.	0.9	4
338	Compressed Ultrafast Tomographic Imaging. , 2022, , .		0
339	Experimental measurement of the meridian Petzval image plane of a streak tube. Applied Optics, 0, , .	0.9	0
340	Simple system for realizing single-shot ultrafast sequential imaging based on spatial multiplexing in-line holography. Optics Express, 2022, 30, 41613.	1.7	3
341	High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm. Optical Materials Express, 2022, 12, 4435.	1.6	7
342	A large-format streak tube for compressed ultrafast photography. Review of Scientific Instruments, 2022, 93, .	0.6	1
343	Analysis of the impacts of imaging resolution of relay lens on image reconstruction quality in pixel-wise coded exposure imaging technology. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.2	0
344	The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2022, 39, 383-389.	0.1	0
345	Capturing the Motion of Laser Pulse in Photoresist Mixture with Compressed Ultrafast Photography. Photonics, 2022, 9, 903.	0.9	1
346	Augmented light field tomography through parallel spectral encoding. Optica, 0, , .	4.8	1
347	Multiple motion picture recording in light-in-flight recording by holography with an angular multiplexing technique. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2023, 40, 370.	0.8	3
348	A Compact and Highly Efficient Compressive Sensing Imaging System Using In-Fiber Grating. IEEE Photonics Technology Letters, 2023, 35, 195-198.	1.3	3
349	Deep learning-based single-shot absolute phase retrieval using a triangular-wave embedded fringe coding strategy. , 2023, , .		0
350	Investigation of single-shot high-speed photography based on spatial frequency multiplexing. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2023, 40, 521.	0.8	2
351	TDI-based continuous window compressed spatio-temporal imaging capable of flexible voxels post-interpretation. Optics Express, 2023, 31, 7303.	1.7	1
352	Tailored Frequency Conversion Makes Infrared Light Visible for Streak Cameras. Physical Review Applied, 2023, 19, .	1.5	0

#	Article	IF	CITATIONS
353	Compressive imaging beyond the sensor's physical resolution via coded exposure combined with time-delay integration. Optics and Lasers in Engineering, 2023, 164, 107491.	2.0	2
354	åڠ≷§†åœºå®¼2时域仿生æžé«~速æ^å∫• Guangzi Xuebao/Acta Photonica Sinica, 2023, 52, 0111001.	0.1	1
355	An end-to-end adaptive neural network for process-aware snapshot compressive temporal imaging. , 2023, , .		0
356	è"‰å†²å°"çº¿æ¥æ^å∫å³é"®æŠ€æœ⁻. Scientia Sinica: Physica, Mechanica Et Astronomica, 2023, , .	0.2	Ο
357	Single-pulse real-time billion-frames-per-second planar imaging of ultrafast nanoparticle-laser dynamics and temperature in flames. Light: Science and Applications, 2023, 12, .	7.7	6
358	Single-shot polarization-resolved ultrafast mapping photography. Science Bulletin, 2023, 68, 473-476.	4.3	3
359	Frequency-domain compression imaging for extending the field of view of infrared thermometers. Optics Express, 2023, 31, 13291.	1.7	0
360	Single‧hot Reconfigurable Femtosecond Imaging of Ultrafast Optical Dynamics. Advanced Science, 2023, 10, .	5.6	6
361	Dual-channel compressed ultrafast photography for Z-pinch dynamic imaging. Review of Scientific Instruments, 2023, 94, 035106.	0.6	0
362	Experimental Study on Measuring Petzval Image Plane of Streak Tube with Single Image. Photonics, 2023, 10, 297.	0.9	Ο
363	Ultrafast phase imaging of propagating current flows in myelinated axons and electromagnetic pulses in dielectrics. , 2023, , .		0
364	Single-shot ultrafast terahertz photography. Nature Communications, 2023, 14, .	5.8	4
365	Review and Prospect of Single-Shot Ultrafast Optical Imaging by Active Detection. Ultrafast Science, 2023, 3, .	5.8	8
366	Real-time observation of optical rogue waves in spatiotemporally mode-locked fiber lasers. Communications Physics, 2023, 6, .	2.0	7
367	Probing Matter by Light. Springer Series in Optical Sciences, 2023, , 277-319.	0.5	0
368	Snapshot dual-view 3D imaging. AIP Advances, 2023, 13, 045213.	0.6	0
369	éžè§†åŸŸæ^åƒæŠ€æœ⁻å^†æžä,Žå±•望ï¼^特é,€ï¼‰. Hongwai Yu Jiguang Gongcheng/Infrared and Laser En	gin e ering,	2022, 51, 202

370	Unveiling the complexity of spatiotemporal soliton molecules in real time. Nature Communications, 2023, 14, .	5.8	7
-----	---	-----	---

#	Article	IF	CITATIONS
371	Single-shot time-folded fluorescence lifetime imaging. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
372	Single-Shot Multi-Frame Imaging of Femtosecond Laser-Induced Plasma Propagation. Materials, 2023, 16, 3264.	1.3	2
383	Light-sheets and smart microscopy, an exciting future is dawning. Communications Biology, 2023, 6, .	2.0	13
384	Verification of straylight rejection of optical science payloads using a pulsed laser source. , 2023, , .		1
386	150 GHz single shot ultrafast imaging spectroscopy based on femtosecond laser. , 2022, , .		0
389	Single-shot ultrafast imaging with terahertz radiation. , 2023, , .		0
391	PDAVIS: Bio-inspired Polarization Event Camera. , 2023, , .		0
400	Transient Imaging. , 2023, , 1517-1522.		0
402	Single-shot ultrafast terahertz imaging. , 2023, , .		0
403	Three-Dimensional Image Reconstruction Using Compressed Interferometric Detection of Photoacoustic Waves. , 2023, , .		0
406	A high spatial resolution reconstruction method for compressed ultrafast holographic imaging. , 2023, , .		0
410	High-speed CMOS imaging with fiber bundle optical reassignment. , 2023, , .		0
424	Unfolding Framework with Prior of Convolution-Transformer Mixture and Uncertainty Estimation for Video Snapshot Compressive Imaging. , 2023, , .		0
425	Passive Ultra-Wideband Single-Photon Imaging. , 2023, , .		0
426	SpinCam: High-Speed Imaging via a Rotating Point-Spread Function. , 2023, , .		0
435	150 GHz Single Shot Ultrafast Imaging Spectroscopy Based on Femtosecond Laser. , 2022, , .		0
438	Compressed High-Speed Imaging. , 2024, , 481-498.		0
439	Compressed Ultrafast Photography. , 2024, , 453-480.		Ο

		CITATION REPORT	
#	Article	IF	CITATIONS
440	Introduction to Coded Optical Imaging. , 2024, , 3-13.		0
441	Compact Snapshot Phase-Shifting Digital Holographic Imaging Systems Using Pixelate Camera. , 2024, , 683-704.	d Polarization	Ο
442	Encoders for Optical Imaging. , 2024, , 15-36.		0
443	Machine Learning in Coded Optical Imaging. , 2024, , 55-70.		0
447	MUltiplexed Structured Image Capture (MUSIC). , 2024, , 421-436.		0
448	Continuous High-Rate Photonically Enabled Compressed Sensing (CHiRP-CS). , 2024, ,	405-420.	0
449	Spatial Frequency Multiplexing in Spectroscopy. , 2024, , 565-579.		0
450	Chirped Spectral Mapping Photography Using a Hyperspectral Camera. , 2024, , 607-6.	27.	0