Fluctuations in concentration of dissolved solids of som

Transactions, American Geophysical Union 29, 80 DOI: 10.1029/tr029i001p00080

Citation Report

#	Article	IF	CITATIONS
1	Relationship of the mineral constituents in solution to stream flow, Saline River near Russell, Kansas. Transactions, American Geophysical Union, 1953, 34, 435-442.	0.1	42
2	Runoff analysis by electrical conductance of water. Journal of Hydrology, 1971, 14, 197-212.	5.4	71
3	Solute Variations in Small Catchment Streams: Some Comments. Transactions of the Institute of British Geographers, 1975, , 141.	2.9	27
4	A multivariate model of storm-period solute behaviour. Journal of Hydrology, 1978, 39, 339-353.	5.4	21
5	Computation of major solute concentrations and loads in german rivers using regression analysis. Catena, 1980, 7, 111-124.	5.0	2
6	The spatial dimension in the interpretation of stream solute behaviour. Journal of Hydrology, 1980, 47, 129-149.	5.4	47
7	Computation of major solute concentrations and loads in German rivers using regression analysis. Catena, 1980, 7, 111-124.	5.0	4
8	The application of a water-quality model to the River Wye, Wales. Journal of Hydrology, 1981, 52, 59-70.	5.4	6
9	Prediction in water quality. Water Research, 1984, 18, 1603.	11.3	0
10	Modélisation des solides dissous en rivière à l'aide des composantes de l'écoulement. Canadian Journal of Civil Engineering, 1986, 13, 196-202.	1.3	4
11	The impact of urbanization on major ion flux through catchments: A case study in Southern England. Water, Air, and Soil Pollution, 1987, 32, 277.	2.4	22
12	Associations between Benthic Flora and Diel Changes in Dissolved Arsenic, Phosphorus, and Related Physico-Chemical Parameters. Journal of the North American Benthological Society, 1992, 11, 218-228.	3.1	15
13	Modelling episodic acidification of surface waters: The state of science. Environmental Pollution, 1992, 77, 287-295.	7.5	15
14	Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 2004, 295, 47-63.	5.4	83
15	Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Science of the Total Environment, 2005, 344, 201-210.	8.0	88
16	Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. Journal of Hydrology, 2008, 351, 87-97.	5.4	55
17	Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes, 2009, 23, 1844-1864.	2.6	600
18	Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chemical Geology, 2011, 283, 3-17.	3.3	238

CITATION REPORT

#	Article	IF	CITATIONS
19	Diel patterns of algae and water quality constituents in the San Joaquin River, California, USA. Chemical Geology, 2011, 283, 56-67.	3.3	19
20	Identifying streamflow sources during spring snowmelt using water chemistry and isotopic composition in semi-arid mountain streams. Journal of Hydrology, 2012, 470-471, 289-301.	5.4	36
21	Seasonal controls on stream chemical export across diverse coastal watersheds in the USA. Hydrological Processes, 2013, 27, 1440-1453.	2.6	7
22	Seasonal variation in major ion chemistry of a tropical mountain river, the southern Western Ghats, Kerala, India. Environmental Earth Sciences, 2014, 71, 2333-2351.	2.7	37
23	Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India. Applied Geochemistry, 2015, 63, 456-471.	3.0	38
24	Hydrogeochemical Drivers and Processes Controlling Solute Chemistry of Two Mountain River Basins of Contrasting Climates in the Southern Western Ghats, India. Springer Earth System Sciences, 2015, , 355-396.	0.2	3
25	Elemental properties, hydrology, and biology interact to shape concentrationâ€discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research, 2017, 53, 1270-1287.	4.2	258
26	Mixing as a driver of temporal variations in river hydrochemistry: 2. Major and trace element concentration dynamics in the Andesâ€Amazon transition. Water Resources Research, 2017, 53, 3120-3145.	4.2	33
27	Primary weathering rates, water transit times, and concentrationâ€discharge relations: A theoretical analysis for the critical zone. Water Resources Research, 2017, 53, 942-960.	4.2	73
28	Monitoring the riverine pulse: Applying highâ€frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1348.	6.5	78
29	A combined mixing model for high-frequency concentration–discharge relationships. Journal of Hydrology, 2020, 591, 125559.	5.4	13
30	Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship. Hydrology and Earth System Sciences, 2020, 24, 1823-1830.	4.9	11
31	A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality – a case study in the Great Barrier Reef catchments. Hydrology and Earth System Sciences, 2021, 25, 2663-2683.	4.9	15
32	Dryland Rivers: Processes and Forms. , 2009, , 333-373.		19
33	Diurnal Variations in Electrical Conductivity of Water in a Small Stream. Hydrology Research, 1982, 13, 157-164.	2.7	8