Predictive a priori pressure-dependent kinetics

Science 346, 1212-1215 DOI: 10.1126/science.1260856

Citation Report

#	Article	IF	CITATIONS
2	Calculating the pressure dependence of chemical reactions. Science, 2014, 346, 1183-1184.	12.6	7
3	Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system. Journal of Chemical Physics, 2015, 143, 214304.	3.0	23
4	Temperature and Pressure-Dependent Rate Coefficients for the Reaction of Vinyl Radical with Molecular Oxygen. Journal of Physical Chemistry A, 2015, 119, 7766-7779.	2.5	88
5	Reanalysis of Rate Data for the Reaction CH ₃ + CH ₃ → C ₂ H ₆ Using Revised Cross Sections and a Linearized Second-Order Master Equation. Journal of Physical Chemistry A, 2015, 119, 7668-7682.	2.5	28
6	A Model For Energy Transfer in Collisions of Atoms with Highly Excited Molecules. Journal of Physical Chemistry A, 2015, 119, 4695-4710.	2.5	11
7	Dissociation of 1,1,1-Trifluoroethane Is an Intrinsic RRKM Process: Classical Trajectories and Successful Master Equation Modeling. Journal of Physical Chemistry A, 2015, 119, 1846-1858.	2.5	14
8	Determination of the collisional energy transfer distribution responsible for the collision-induced dissociation of NO2 with Ar. Chemical Physics Letters, 2015, 636, 1-14.	2.6	7
9	A Combined Experimental and Theoretical Study of the Reaction OH + 2-Butene in the 400–800 K Temperature Range. Journal of Physical Chemistry A, 2015, 119, 7742-7752.	2.5	21
10	Collisional energy transfer in polyatomic molecules at high temperatures: Master equation analysis of vibrational relaxation of shock-heated alkanes. Chemical Physics Letters, 2015, 635, 295-300.	2.6	6
11	Global uncertainty analysis for RRKM/master equation based kinetic predictions: A case study of ethanol decomposition. Combustion and Flame, 2015, 162, 3427-3436.	5.2	32
12	Kinetics of Propargyl Radical Dissociation. Journal of Physical Chemistry A, 2015, 119, 7780-7791.	2.5	35
13	Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chemical Reviews, 2015, 115, 4063-4114.	47.7	164
14	Trajectory and Model Studies of Collisions of Highly Excited Methane with Water Using an ab Initio Potential. Journal of Physical Chemistry A, 2015, 119, 12304-12317.	2.5	17
15	Understanding low-temperature first-stage ignition delay: Propane. Combustion and Flame, 2015, 162, 3658-3673.	5.2	122
16	Pressure effects on thermal decomposition reactions: a thermo-kinetic investigation. RSC Advances, 2015, 5, 78598-78605.	3.6	12
17	Harnessing the Combined Power of Theoretical and Experimental Data through Multiscale Informatics. International Journal of Chemical Kinetics, 2016, 48, 212-235.	1.6	32
18	Master Equation Analysis of Thermal and Nonthermal Microwave Effects. Journal of Physical Chemistry A, 2016, 120, 7989-7997.	2.5	22
19	Low Temperature Kinetics of the First Steps of Water Cluster Formation. Physical Review Letters, 2016, 116, 113401.	7.8	26

TATION REDC

#	Article	IF	CITATIONS
20	Combustion Chemistry Diagnostics for Cleaner Processes. Chemistry - A European Journal, 2016, 22, 13390-13401.	3.3	17
21	Direct frequency comb measurement of OD + CO → DOCO kinetics. Science, 2016, 354, 444-448.	12.6	86
22	Pressure-dependent rate constants for PAH growth: formation of indene and its conversion to naphthalene. Faraday Discussions, 2016, 195, 637-670.	3.2	76
23	Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation. Physical Chemistry Chemical Physics, 2016, 18, 16659-16670.	2.8	44
24	Reactive symbol sequences for a model of hydrogen combustion. Physical Chemistry Chemical Physics, 2016, 18, 2810-2817.	2.8	12
25	Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory. Journal of the American Chemical Society, 2016, 138, 2690-2704.	13.7	72
26	Influence of Coadsorbed Water and Alcohol Molecules on Isopropyl Alcohol Dehydration on γ-Alumina: Multiscale Modeling of Experimental Kinetic Profiles. ACS Catalysis, 2016, 6, 1905-1920.	11.2	43
27	Silane-initiated nucleation in chemically active plasmas: validation of density functionals, mechanisms, and pressure-dependent variational transition state calculations. Physical Chemistry Chemical Physics, 2016, 18, 10097-10108.	2.8	28
28	A quantum chemical study on ˙Cl-initiated atmospheric degradation of acrylonitrile. RSC Advances, 2017, 7, 20574-20581.	3.6	3
29	Reaction and relaxation at surface hotspots: using molecular dynamics and the energy-grained master equation to describe diamond etching. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160206.	3.4	17
30	Reaction mechanism, rate constants, and product yields for unimolecular and H-assisted decomposition of 2,4-cyclopentadienone and oxidation of cyclopentadienyl with atomic oxygen. Combustion and Flame, 2017, 183, 181-193.	5.2	32
31	OD + CO → D + CO2 branching kinetics probed with time-resolved frequency comb spectroscopy. Chemical Physics Letters, 2017, 683, 91-95.	2.6	8
32	Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry. Annual Review of Physical Chemistry, 2017, 68, 233-260.	10.8	55
33	Failure and Redemption of Statistical and Nonstatistical Rate Theories in the Hydroboration of Alkenes. Journal of the American Chemical Society, 2017, 139, 15710-15723.	13.7	32
34	Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry. Nature Chemistry, 2017, 9, 1078-1082.	13.6	85
35	Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate. Journal of Physical Chemistry A, 2017, 121, 6304-6313.	2.5	22
36	Variational transition state theory: theoretical framework and recent developments. Chemical Society Reviews, 2017, 46, 7548-7596.	38.1	281
37	Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory, Journal of Physical Chemistry A, 2017, 121, 9033-9044.	2.5	15

.

#	Article	IF	CITATIONS
38	From theoretical reaction dynamics to chemical modeling of combustion. Proceedings of the Combustion Institute, 2017, 36, 77-111.	3.9	199
39	Evaluating Mixture Rules for Multi-Component Pressure Dependence: H + O2 (+M) = HO2 (+M). Proceedings of the Combustion Institute, 2017, 36, 245-253.	3.9	34
40	Temperature- and pressure-dependent rate coefficients for the HACA pathways from benzene to naphthalene. Proceedings of the Combustion Institute, 2017, 36, 919-926.	3.9	115
41	Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes. Accounts of Chemical Research, 2018, 51, 978-985.	15.6	101
42	Collision Frequency for Energy Transfer in Unimolecular Reactions. Journal of Physical Chemistry A, 2018, 122, 1972-1985.	2.5	21
43	Oxidation of cyclopentadienyl radical with molecular oxygen: A theoretical study. Combustion and Flame, 2018, 191, 309-319.	5.2	22
44	Mechanism and Rate Constants of the CH ₃ + CH ₂ CO Reaction: A Theoretical Study. International Journal of Chemical Kinetics, 2018, 50, 273-284.	1.6	23
45	Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation. Journal of Chemical Physics, 2018, 148, 174306.	3.0	36
46	Reaction mechanism, rate constants, and product yields for the oxidation of Cyclopentadienyl and embedded five-member ring radicals with hydroxyl. Combustion and Flame, 2018, 187, 147-164.	5.2	24
47	Kinetics of C10H7Br Pyrolysis. Bulletin of the Lebedev Physics Institute, 2018, 45, 314-317.	0.6	1
48	Multiscale Approach to the Dissociative Adsorption of Oxygen on a Highly Dispersed Platinum Supported on γ-Al ₂ 0 ₃ . Journal of Physical Chemistry C, 2018, 122, 26974-26986.	3.1	14
49	Probing the Migration of Free Radicals in Solid and Liquid Media via Cr(VI) Reduction by High-Energy Electron Beam Irradiation. Scientific Reports, 2018, 8, 15196.	3.3	3
50	Functional Relationships between Kinetic, Flow, and Geometrical Parameters in a High-Temperature Chemical Microreactor. Journal of Physical Chemistry A, 2018, 122, 8819-8827.	2.5	27
51	Three-Dimensional Master Equation (3DME) Approach. Journal of Physical Chemistry A, 2018, 122, 7757-7767.	2.5	12
52	Dissociation channels, collisional energy transfer, and multichannel coupling effects in the thermal decomposition of CH ₃ F. Physical Chemistry Chemical Physics, 2018, 20, 15128-15138.	2.8	9
53	Potential Energy Surface for Large Barrierless Reaction Systems: Application to the Kinetic Calculations of the Dissociation of Alkanes and the Reverse Recombination Reactions. Journal of Physical Chemistry A, 2018, 122, 4869-4881.	2.5	6
54	Pressure-Dependent Rate Constant Predictions Utilizing the Inverse Laplace Transform: A Victim of Deficient Input Data. ACS Omega, 2018, 3, 8212-8219.	3.5	8
55	Chemical Kinetics Approves the Occurrence of C (³ P _{<i>j</i>}) Reaction with H ₂ O. Journal of Physical Chemistry A, 2019, 123, 5877-5892.	2.5	1

#	Article	IF	CITATIONS
56	Anharmonic Rovibrational Partition Functions at High Temperatures: Tests of Reduced-Dimensional Models for Systems with up to Three Fluxional Modes. Journal of Physical Chemistry A, 2019, 123, 6210-6228.	2.5	16
57	Breakdown of energy transfer gap laws revealed by full-dimensional quantum scattering between HF molecules. Nature Communications, 2019, 10, 4658.	12.8	17
58	Numerical investigation of strained extinction at engine-relevant pressures: Pressure dependence and sensitivity to chemical and physical parameters for methane-based flames. Combustion and Flame, 2019, 202, 318-333.	5.2	15
59	Ab initio kinetics for pyrolysis and combustion systems. Computer Aided Chemical Engineering, 2019, , 115-167.	0.5	27
60	Classical trajectory studies of collisional energy transfer. Comprehensive Chemical Kinetics, 2019, , 109-272.	2.3	7
61	Parametric models. Comprehensive Chemical Kinetics, 2019, , 273-295.	2.3	4
62	Monte Carlo stochastic simulation of the master equation for unimolecular reaction systems. Comprehensive Chemical Kinetics, 2019, , 409-463.	2.3	5
63	Scission of the Five-Membered Ring in 1- <i>H</i> -Inden-1-one C ₉ H ₆ O and Indenyl C ₉ H ₇ in the Reactions with H and O Atoms. Journal of Physical Chemistry A, 2019, 123, 5741-5752.	2.5	13
64	Large Intermediates in Hydrazine Decomposition: A Theoretical Study of the N ₃ H ₅ and N ₄ H ₆ Potential Energy Surfaces. Journal of Physical Chemistry A, 2019, 123, 4679-4692.	2.5	14
65	Nonthermal rate constants for CH4* + X → CH3 + HX, X = H, O, OH, and O2. Journal of Chemical Physics, 2019, 150, 114112.	3.0	21
66	Development of a potential energy surface for the O ₃ –Ar system: rovibrational states of the complex. Physical Chemistry Chemical Physics, 2019, 21, 9168-9180.	2.8	10
67	Pressure effects on the vibrational and rotational relaxation of vibrationally excited OH (ν, <i>J</i>) in an argon bath. Journal of Chemical Physics, 2019, 150, 114303.	3.0	4
68	Kinetic study of the OH + ethylene reaction using frequencyâ€modulated laser absorption spectroscopy. International Journal of Chemical Kinetics, 2019, 51, 412-421.	1.6	8
69	The mechanism and rate constants for oxidation of indenyl radical C9H7 with molecular oxygen O2: a theoretical study. Physical Chemistry Chemical Physics, 2019, 21, 8915-8924.	2.8	15
70	Parameterization Strategies for Intermolecular Potentials for Predicting Trajectory-Based Collision Parameters. Journal of Physical Chemistry A, 2019, 123, 3464-3480.	2.5	19
71	A master equation simulation for the •OH + CH3OH reaction. Journal of Chemical Physics, 2019, 150, 084105.	3.0	42
72	Theoretical Study of the Reaction Mechanism and Kinetics of the Phenyl + Allyl and Related Benzyl + Vinyl Associations. Journal of Physical Chemistry A, 2019, 123, 1720-1729.	2.5	14
73	EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants—A Code for Automatically Predicting the Thermal Kinetics of Reactions. Journal of Chemical Theory and Computation, 2019, 15, 1122-1145.	5.3	80

#	ARTICLE	IF	CITATIONS
74	Bath Gas Mixture Effects on Multichannel Reactions: Insights and Representations for Systems beyond Single-Channel Reactions. Journal of Physical Chemistry A, 2019, 123, 631-649.	2.5	14
75	Mechanism and rate constants of the CH 2 + CH 2 CO reactions in triplet and singlet states: A theoretical study. Journal of Computational Chemistry, 2019, 40, 387-399.	3.3	12
76	Rotationally inelastic scattering of O ₃ –Ar: state-to-state rates with the multiconfigurational time dependent Hartree method. Physical Chemistry Chemical Physics, 2020, 22, 1869-1880.	2.8	11
77	Collision Efficiency Parameter Influence on Pressure-Dependent Rate Constant Calculations Using the SS-QRRK Theory. Journal of Physical Chemistry A, 2020, 124, 6277-6286.	2.5	7
78	Modeling Collisional Transitions in Thermal Unimolecular Reactions: Successive Trajectories and Two-Dimensional Master Equation for Trifluoromethane Decomposition in an Argon Bath. Journal of Physical Chemistry A, 2020, 124, 6645-6659.	2.5	5
79	Semiclassical transition state theory/master equation kinetics of HO + CO: Performance evaluation. International Journal of Chemical Kinetics, 2020, 52, 1022-1045.	1.6	9
80	Understanding and Representing the Distinct Kinetics Induced by Reactive Collisions of Rovibrationally Excited Ephemeral Complexes across Reactive Collider Mole Fractions and Pressures. Journal of Physical Chemistry A, 2020, 124, 10937-10953.	2.5	4
81	Pragmatic Solution for a Fully <i>E</i> , <i>J</i> -Resolved Master Equation. Journal of Physical Chemistry A, 2020, 124, 2907-2918.	2.5	17
82	Theoretical study of the reaction mechanism and kinetics of the phenyl + propargyl association. Physical Chemistry Chemical Physics, 2020, 22, 6868-6880.	2.8	22
83	Global uncertainty analysis for the RRKM/master equation modeling of a typical multi-well and multi-channel reaction system. Combustion and Flame, 2020, 216, 62-71.	5.2	13
84	Revisiting diacetyl and acetic acid flames: The role of the keteneÂ+ÂOH reaction. Combustion and Flame, 2020, 218, 28-41.	5.2	13
85	Mixture rules and falloff are now major uncertainties in experimentally derived rate parameters for H + O2 (+M) ↔ HO2 (+M). Combustion and Flame, 2020, 213, 467-474.	5.2	21
86	Microcanonical Rate Constants for Unimolecular Reactions in the Low-Pressure Limit. Journal of Physical Chemistry A, 2020, 124, 1205-1226.	2.5	29
87	Pressure-Dependent Rate Constant Caused by Tunneling Effects: OH + HNO ₃ as an Example. Journal of Physical Chemistry Letters, 2020, 11, 3712-3717.	4.6	11
88	"Thirdâ€body―collision parameters for hydrocarbons, alcohols, and hydroperoxides and an effective internal rotor approach for estimating them. International Journal of Chemical Kinetics, 2020, 52, 387-402.	1.6	23
89	Termolecular chemistry facilitated by radical-radical recombinations and its impact on flame speed predictions. Proceedings of the Combustion Institute, 2021, 38, 515-522.	3.9	15
90	Boosting the thermal stability and catalytic performance by confining Ag single atom sites over antimony-doped tin oxide via atom trapping. Applied Catalysis B: Environmental, 2021, 283, 119625.	20.2	36
91	Modeling third-body effects in the thermal decomposition of H2O2. Combustion and Flame, 2021, 225, 444-452.	5.2	10

ARTICLE IF CITATIONS # Identifying chemical kinetics contributions to unstable behaviors of a methane-burnt combustion 92 7.1 9 system. International Journal of Hydrogen Energy, 2021, 46, 5812-5823. Towards predictive combustion kinetic models: Progress in model analysis and informative 39 experiments. Proceedings of the Combustion Institute, 2021, 38, 199-222. The CH(X2Î) + H2O reaction: two transition state kinetics. Physical Chemistry Chemical Physics, 2021, 23, 94 2.8 3 16142-16149. On the Rate Constant for NH₂+HO₂ and Third-Body Collision Efficiencies for NH₂+H(+M) and NH₂+NH₂(+M). Journal of Physical Chemistry A, 2021, 125, 1505-1516. 95 Two-Dimensional Master Equation Modeling of Some Multichannel Unimolecular Reactions. Journal 96 2.5 6 of Physical Chemistry A, 2021, 125, 2532-2545. Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models. Progress in Energy and Combustion Science, 2021, 83, 100886. 31.2 89 Theoretical Study of the Phenoxy Radical Recombination with the O(³P) Atom, Phenyl plus 98 2.511 Molecular Oxygen Revisited. Journal of Physical Chemistry A, 2021, 125, 3965-3977. Parametric Sensitivity in a Generalized Model for Atmospheric Pressure Chemical Ionization 90 2.8 Reactions. Journal of the American Society for Mass Spectrometry, 2021, 32, 2218-2226. Energy Dependence of Ensemble-Averaged Energy Transfer Moments and Its Effect on Competing 100 2.5 3 Decomposition Reactions. Journal of Physical Chemistry A, 2021, 125, 6303-6313. Theoretical Study of the Mechanism and Kinetics of the Oxidation of Cyclopenta[<i>a</i>]Naphthalenyl Radical C₁₃H₉ with Molecular Oxygen. 2.5 Journal of Physical Chemistry A, 2021, 125, 6796-6804. Watching a hydroperoxyalkyl radical (•QOOH) dissociate. Science, 2021, 373, 679-682. 102 12.6 31 New light on acetone: a master equation model for gas phase photophysics and photochemistry. Molecular Physics, 2021, 119, . Thermal Decomposition of CH3O: A Curious Case of Pressure-Dependent Tunneling Effects. Journal of 104 2.5 0 Physical Chemistry A, 2021, 125, 6761-6771. Permutationally Invariant Polynomial Expansions with Unrestricted Complexity. Journal of Chemical Theory and Computation, 2021, 17, 5440-5455. 5.3 14 TUMME: Tsinghua University Minnesota Master Equation program. Computer Physics Communications, 106 7.5 8 2022, 270, 108140. Combustion in the future: The importance of chemistry. Proceedings of the Combustion Institute, 2021, 38, 1-56. Solving the chemical master equation for monomolecular reaction systems and beyond: a Doi-Peliti 108 1.9 7 path integral view. Journal of Mathematical Biology, 2021, 83, 48. Non-Boltzmann Effects in Chain Branching and Pathway Branching for Diethyl Ether Oxidation. 5.1 Energy & amp; Fuels, 2021, 35, 17890-17908.

CITATION REPORT

		ORT	
#	Article	IF	CITATIONS
110	Theoretical kinetics predictions for NH2Â+ÂHO2. Combustion and Flame, 2022, 236, 111787.	5.2	41
111	Theoretical study of propargyl bromide association/dissociation kinetics. AIP Conference Proceedings, 2020, , .	0.4	Ο
112	Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (˙QOOH). Faraday Discussions, 0, 238, 575-588.	3.2	2
113	Phenomena relevant to accidents. , 2022, , 117-194.		0
114	Predicting third-body collision efficiencies for water and other polyatomic baths. Faraday Discussions, 0, 238, 68-86.	3.2	7
115	Mechanism, thermochemistry, and kinetics of the reversible reactions: C ₂ H ₃ Â+ H ₂ ⇌ C ₂ H ₄ + H ⇌ C ₂ H ₅ . Faraday Discussion, 238, 405-430.	D1 385 2	1
116	Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides. Atmospheric Measurement Techniques, 2022, 15, 1811-1827.	3.1	14
117	Reaction of Methylidyne with Ethane: The C–C Insertion Is Unimportant. Journal of Physical Chemistry A, 2022, 126, 1966-1972.	2.5	1
118	A reaction mechanism for ozone dissociation and reaction with hydrogen at elevated temperature. Fuel, 2022, 322, 124138.	6.4	19
119	Wave Packet Approach to Adiabatic and Nonadiabatic Dynamics of Cold Inelastic Scatterings. Molecules, 2022, 27, 2912.	3.8	4
120	Correlation in quantum chemical calculation and its effect on the uncertainty of theoretically predicted rate coefficients and branching ratios. Combustion and Flame, 2022, 242, 112189.	5.2	3
121	Dissociation-Induced Depletion of High-Energy Reactant Molecules as a Mechanism for Pressure-Dependent Rate Constants for Bimolecular Reactions. Faraday Discussions, 0, , .	3.2	1
122	Spiers Memorial Lecture: Theory of unimolecular reactions. Faraday Discussions, 0, 238, 11-67.	3.2	6
123	Potential Nonstatistical Effects on the Unimolecular Decomposition of H ₂ O ₂ . Journal of Physical Chemistry A, 2022, 126, 4482-4496.	2.5	2
124	Automation of chemical kinetics: Status and challenges. Proceedings of the Combustion Institute, 2023, 39, 11-28.	3.9	8
125	Chemical kinetics of cyclic ethers in combustion. Progress in Energy and Combustion Science, 2022, 92, 101019.	31.2	15
126	Concluding remarks: <i>Faraday Discussion</i> on unimolecular reactions. Faraday Discussions, 0, 238, 741-766.	3.2	3
127	The Reaction of HO2 and CH3O2: CH3OOH Formed from the Singlet Electronic State Surface. Atmosphere, 2022, 13, 1397.	2.3	0

#	Article	IF	CITATIONS
128	Theoretical study on the mechanism and kinetics of the oxidation of allyl radical with atomic and molecular oxygen. Combustion and Flame, 2022, , 112388.	5.2	2
129	The role of collisional energy transfer in the thermal and prompt dissociation of 1-methyl allyl. Proceedings of the Combustion Institute, 2022, , .	3.9	2
130	High-accuracy first-principles-based rate coefficients for the reaction of OH and CH ₃ OOH. Physical Chemistry Chemical Physics, 2022, 24, 26684-26691.	2.8	2
131	Exploring the kinetics and mechanism of C2F5C(O)CF(CF3)2 reaction with hydrogen radical. Chemical Physics Letters, 2022, 808, 140130.	2.6	1
132	The role of energy transfer and competing bimolecular reactions in characterizing the unimolecular dissociations of allylic radicals. Combustion and Flame, 2023, 257, 112502.	5.2	1
133	Investigation of Methylcyclopentadiene Reactivity: Abstraction Reactions and Methylcyclopentadienyl Radical Unimolecular Decomposition. Journal of Physical Chemistry A, 2023, 127, 1314-1328.	2.5	4
134	Introduction of self-sustained thermoacoustic instability. , 2023, , 1-112.		0
135	Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems. Progress in Energy and Combustion Science, 2023, 97, 101084.	31.2	19
136	Investigating the Association Reactions of HOCH ₂ CO and HOCHCHO with O ₂ : A Quantum Computational and Master Equation Study. Journal of Physical Chemistry A, 2023, 127, 4302-4316.	2.5	1
137	A Hybrid Quantum-Classical Algorithm for Multichannel Quantum Scattering of Atoms and Molecules. Journal of Physical Chemistry Letters, 2023, 14, 6224-6233.	4.6	0
138	Data Quality, Data Sampling and Data Fitting: A Tutorial Guide for Constructing Full-Dimensional Accurate Potential Energy Surfaces (PESs) of Molecules and Reactions. Challenges and Advances in Computational Chemistry and Physics, 2023, , 161-201.	0.6	0
139	Methanediol from cloud-processed formaldehyde is only a minor source of atmospheric formic acid. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
140	Molecular dynamics simulation of the inhibition effects of inert gases (Ar/He/N ₂) on hydrogen oxidation. International Journal of Green Energy, 0, , 1-11.	3.8	0
141	An experimental, theoretical, and kinetic modeling study of post-flame oxidation of ammonia. Combustion and Flame, 2024, 261, 113325.	5.2	0
142	Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere. Nature Geoscience, 2024, 17, 219-226.	12.9	0