Accurate and Efficient Model Energies for Exploring Int Molecular Crystals

Journal of Physical Chemistry Letters 5, 4249-4255 DOI: 10.1021/jz502271c

Citation Report

#	Article	IF	CITATIONS
1	Predicting Energetics of Supramolecular Systems Using the XDM Dispersion Model. Journal of Chemical Theory and Computation, 2015, 11, 4033-4040.	2.3	39
2	How Reliable Are Intermolecular Interaction Energies Estimated from Topological Analysis of Experimental Electron Densities?. Crystal Growth and Design, 2015, 15, 5624-5628.	1.4	105
3	Organic alloys of room temperature liquids thiophenol and selenophenol. Chemical Communications, 2015, 51, 14255-14258.	2.2	46
4	Sâ√O chalcogen bonding in sulfa drugs: insights from multipole charge density and X-ray wavefunction of acetazolamide. Physical Chemistry Chemical Physics, 2015, 17, 25411-25420.	1.3	74
5	Supramolecular Recognition and Energy Frameworks in Host–Guest Complexes of 18-Crown-6 and Sulfonamides. Crystal Growth and Design, 2015, 15, 5892-5900.	1.4	34
6	Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chemical Communications, 2015, 51, 3735-3738.	2.2	515
7	Molecular Electrostatic Potentials from Invariom Point Charges. ChemPhysChem, 2016, 17, 2238-2246.	1.0	5
8	Structural Collapse of the Hydroquinone–Formic Acid Clathrate: Aâ€Pressureâ€Mediumâ€Dependent Phase Transition. Chemistry - A European Journal, 2016, 22, 4061-4069.	1.7	18
9	lsostructural polymorphs: qualitative insights from energy frameworks. CrystEngComm, 2016, 18, 8497-8505.	1.3	35
10	Effects of the crystal structure and thermodynamic stability on solubility of bioactive compounds: DFT study of isoniazid cocrystals. Computational and Theoretical Chemistry, 2016, 1092, 1-11.	1.1	19
11	Geometries, interaction energies and complexation free energies of 18-crown-6 with neutral molecules. CrystEngComm, 2016, 18, 8653-8663.	1.3	1
12	Quantifying Host–Guest Interaction Energies in Clathrates of Dianin's Compound. Crystal Growth and Design, 2016, 16, 6858-6866.	1.4	12
13	Energy frameworks and a topological analysis of the supramolecular features in in situ cryocrystallized liquids: tuning the weak interaction landscape via fluorination. Physical Chemistry Chemical Physics, 2016, 18, 31811-31820.	1.3	48
14	q-GRID: A New Method To Calculate Lattice and Interaction Energies for Molecular Crystals from Electron Densities. Crystal Growth and Design, 2016, 16, 662-671.	1.4	6
15	â€~Quasi-isostructural polymorphism' in molecular crystals: inputs from interaction hierarchy and energy frameworks. Chemical Communications, 2016, 52, 2141-2144.	2.2	44
16	The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory. Physical Chemistry Chemical Physics, 2016, 18, 20905-20925.	1.3	182
17	Silver(i), gold(i) and palladium(ii) complexes of a NHC-pincer ligand with an aminotriazine core: a comparison with pyridyl analogues. Dalton Transactions, 2016, 45, 1484-1495.	1.6	15
18	Approaching an experimental electron density model of the biologically active trans â€epoxysuccinyl amide group—Substituent effects vs. crystal packing. Journal of Physical Organic Chemistry, 2017, 30, e3683.	0.9	4

	Сітаті	on Report	
#	Article	IF	Citations
19	Supramolecular Chemistry of BrettPhos and BrettPhos Oxide: Breakup of Isostructurality via Order–Disorder Phase Transitions. Crystal Growth and Design, 2017, 17, 1982-1990.	1.4	7
20	The Elusive Structural Origin of Plastic Bending in Dimethyl Sulfone Crystals with Quasiâ€isotropic Crystal Packing. Angewandte Chemie, 2017, 129, 8588-8592.	1.6	29
21	The Elusive Structural Origin of Plastic Bending in Dimethyl Sulfone Crystals with Quasiâ€isotropic Crystal Packing. Angewandte Chemie - International Edition, 2017, 56, 8468-8472.	7.2	104
22	Intermolecular Interaction Energies in Hydroquinone Clathrates at High Pressure. Crystal Growth and Design, 2017, 17, 3834-3846.	1.4	21
23	Intermolecular interactions in molecular crystals: what's in a name?. Faraday Discussions, 2017, 203, 93-112.	1.6	121
24	New Chargeâ€Transfer Complexes with 1,2,5â€Thiadiazoles as Both Electron Acceptors and Donors Featuring an Unprecedented Addition Reaction. Chemistry - A European Journal, 2017, 23, 852-864.	1.7	25
25	Relationships among Crystal Structures, Mechanical Properties, and Tableting Performance Probed Using Four Salts of Diphenhydramine. Crystal Growth and Design, 2017, 17, 6030-6040.	1.4	56
26	Way to Highly Emissive Materials: Increase of Rigidity by Introduction of a Furan Moiety in Co-Oligomers. Journal of Physical Chemistry C, 2017, 121, 23359-23369.	1.5	32
27	Benchmark Databases of Intermolecular Interaction Energies: Design, Construction, and Significance. Annual Reports in Computational Chemistry, 2017, 13, 3-91.	0.9	8
28	Molecular Level Understanding of the Reversible Phase Transformation between Forms III and II of Dapsone. Crystal Growth and Design, 2017, 17, 5054-5060.	1.4	19
29	Liquid Nicotine Tamed in Solid Forms by Cocrystallization. Crystal Growth and Design, 2017, 17, 4958-4964.	1.4	35
30	Quantitative investigation of C–Hâ<ï€ and other intermolecular interactions in a series of crystalline N-(substituted phenyl)-2-naphthamide derivatives. CrystEngComm, 2017, 19, 5473-5491.	1.3	13
31	New insights about the hydrogen bonds formed between acetylene and hydrogen fluoride: Ï€ â⊂ H, C â⊂ H and F â⊂ H. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 160-169.	2.0	10
32	Structural characterization, gelation ability, and energy-framework analysis of two bis(long-chain) Tj ETQq 2017, 73, 791-796.	1 1 0.784314 rgB 0.2	T /Overloc 5
33	Exploring the rare S—HS hydrogen bond using charge density analysis in isomers of mercaptobenzoic acid. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 626-633.	0.5	13
34	<i>CrystalExplorer</i> model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4, 575-587.	1.0	848
35	New Insights into Solid Form Stability and Hydrate Formation: o-Phenanthroline HCl and Neocuproine HCl. Molecules, 2017, 22, 2238.	1.7	8
36	Interplay of point multipole moments and charge penetration for intermolecular electrostatic interaction energies from the University at Buffalo pseudoatom databank model of electron density. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73,	0.5	9

CIT	TION	DEDODT	
V.II A		KEPURI	
U /			

#	Article	IF	CITATIONS
37	Linear MgCp* ₂ vs Bent CaCp* ₂ : London Dispersion, Ligand-Induced Charge Localizations, and Pseudo-Pregostic C–H··Ca Interactions. Inorganic Chemistry, 2018, 57, 4906-4920.	1.9	17
38	Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. Journal of Chemical Theory and Computation, 2018, 14, 1614-1623.	2.3	164
39	Identifying Slip Planes in Organic Polymorphs by Combined Energy Framework Calculations and Topology Analysis. Crystal Growth and Design, 2018, 18, 1909-1916.	1.4	63
40	Concomitance, Reversibility, and Switching Ability of Centrosymmetric and Non-Centrosymmetric Crystal Forms: Polymorphism in an Organic Nonlinear Optical Material. Crystal Growth and Design, 2018, 18, 1126-1135.	1.4	18
41	Crystal packing analysis of 1-(3,4-dimethoxyphenyl)-3-(4-bromophenyl)prop-2-en-1-one exhibiting a putative halogen bond C Br⋯O. Journal of Molecular Structure, 2018, 1156, 216-223.	1.8	17
42	Tetraiodoallene, I2C=C=CI2 – the missing link between I2C=CI2 and I2C=C=CI2 – and the oxidation product, 2,2-diiodoacrylicacid, I2C=CH(CO2H). Australian Journal of Chemistry, 2018, 71, 70.	0.5	5
43	An exploration of O—HO and C—Hï€ interactions in a long-chain-ester-substituted phenylphenol: methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 594-599.	0.2	2
44	Observation of 3D isostructurality in halogen substituted N -benzoyl- N -phenylbenzamides. Journal of Molecular Structure, 2018, 1164, 280-288.	1.8	1
45	Computational and analytical approaches for investigating hydrates: the neat and hydrated solid-state forms of 3-(3-methylimidazolium-1-yl)propanoate. CrystEngComm, 2018, 20, 7826-7837.	1.3	6
46	Shape-selective crystallisation of fluxional carbon cages. Chemical Science, 2018, 9, 8631-8636.	3.7	22
47	Synthesis of chiral nopinane annelated 3-methyl-1-aryl-1H-pyrazolo[3,4-b]pyridines by condensation of pinocarvone oxime with 1-aryl-1H-pyrazol-5-amines. Mendeleev Communications, 2018, 28, 584-586.	0.6	12
48	Hydrogen dynamics in solid formic acid: insights from simulations with quantum colored-noise thermostats. Journal of Physics: Conference Series, 2018, 1055, 012003.	0.3	8
49	Exploring the Solubility of the Carbamazepine–Saccharin Cocrystal: A Charge Density Study. Crystal Growth and Design, 2021, 21, 4259-4275.	1.4	8
50	Diversity in Mechanical Response in Donor–Acceptor Coupled Cocrystal Stoichiomorphs Based on Pyrene and 1,8-Dinitroanthraquinone Systems. Crystal Growth and Design, 2018, 18, 6670-6680.	1.4	28
51	Non-Steroidal Biphenyl Gelators: Correlation of Xerogel Structure with Solid-State Structure and Circular Dichroism Spectroscopy. Gels, 2018, 4, 34.	2.1	1
52	Conformational trimorphism of bis(2,6-dimesitylphenyl)ditelluride. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 707-721.	0.4	1
53	Quantifying intermolecular interactions for isoindole derivatives: substituent effect vs. crystal packing. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 675-687.	0.4	7
54	Rationalizing Distinct Mechanical Properties of Three Polymorphs of a Drug Adduct by Nanoindentation and Energy Frameworks Analysis: Role of Slip Layer Topology and Weak Interactions. Crystal Growth and Design, 2018, 18, 3927-3937.	1.4	59

#	Article	IF	CITATIONS
55	3D energy frameworks of a potential nutraceutical. Journal of Molecular Structure, 2018, 1173, 300-306.	1.8	19
56	Crystal structure, Hirshfeld surface analysis and energy framework calculation of the first oxoanion salt containing 1,3-cyclohexanebis(methylammonium): [3-(azaniumylmethyl)cyclohexyl]methanaminium dinitrate. Acta Crystallographica Section E: Crystallographic Communications. 2018. 74. 949-954.	0.2	10
57	Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone. Frontiers in Chemistry, 2018, 6, 31.	1.8	23
58	Intermolecular interactions in crystals of small unsubstituted cyclic ethers and substituted epoxides. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 641-648.	0.4	2
59	The Polymorphs of ROY: A Computational Study of Lattice Energies and Conformational Energy Differences. Australian Journal of Chemistry, 2018, 71, 279.	0.5	36
60	Unsubstituted Oxacalix[<i>n</i>]arenes (<i>n</i> =4 and 8): A Conformational Study in Solution and Solid State and Interaction Studies with Aromatic Guests. ChemistrySelect, 2018, 3, 9091-9095.	0.7	2
61	Towards the use of experimental electron densities to estimate reliable lattice energies. CrystEngComm, 2018, 20, 5340-5347.	1.3	13
62	On the kinetics of solvate formation through mechanochemistry. CrystEngComm, 2019, 21, 2097-2104.	1.3	14
64	Understanding the Tabletability Differences between Indomethacin Polymorphs Using Powder Brillouin Light Scattering. Pharmaceutical Research, 2019, 36, 150.	1.7	8
65	Experimental and computational approaches to produce and characterise isostructural solvates. CrystEngComm, 2019, 21, 5533-5545.	1.3	18
66	Charge Transfer Versus Arene–Perfluoroarene Interactions in Modulation of Optical and Conductivity Properties in Cocrystals of 2,7-Di- <i>tert</i> butylpyrene. Journal of Physical Chemistry C, 2019, 123, 18198-18206.	1.5	29
67	Effect of high pressure on the typical 2D hydrogen-bonded crystal azodicarbonamide. Journal of Physics and Chemistry of Solids, 2019, 135, 109096.	1.9	1
68	Experimental and computational approaches to rationalise multicomponent supramolecular assemblies: dapsone monosolvates. Physical Chemistry Chemical Physics, 2019, 21, 17288-17305.	1.3	13
69	Crystal structures and supramolecular architectures of ONO donor hydrazone and solvent exchangeable dioxidomolybdenum(VI) complexes derived from 3,5-diiodosalicyaldehyde-4-methoxybenzoylhydrazone: Hirshfeld surface analysis and interaction energy calculations, Polyhedron, 2019, 170, 749-761.	1.0	16
70	Structure Property Correlation of a Series of Halogenated Schiff Base Crystals and Understanding of the Molecular Basis Through Nanoindentation. Crystal Growth and Design, 2019, 19, 6698-6707.	1.4	19
71	Impact of Crystal Structure and Molecular Conformation on the Hydration Kinetics of Fluconazole. Crystal Growth and Design, 2019, 19, 7193-7205.	1.4	17
72	Fast and Accurate Quantum Crystallography: From Small to Large, from Light to Heavy. Journal of Physical Chemistry Letters, 2019, 10, 6973-6982.	2.1	48
73	Experimental Insights into the Electronic Nature, Spectral Features, and Role of Entropy in Short CH ₃ À·À·À·CH ₃ Hydrophobic Interactions. Journal of Physical Chemistry Letters, 2019, 10, 7224-7229.	2.1	7

#	Article	IF	Citations
74	Enhancing the solubility of natural compound xanthotoxin by modulating stability via cocrystallization engineering. International Journal of Pharmaceutics, 2019, 572, 118776.	2.6	12
75	Synthesis and structural study of 2-(haloalkyl)-3-methylchromones. Monatshefte Für Chemie, 2019, 150, 1929-1940.	0.9	5
76	Mesogens with Aggregation-Induced Emission Formed by Hydrogen Bonding. , 2019, 1, 589-593.		19
77	Surface Induced Phenytoin Polymorph. 1. Full Structure Solution by Combining Grazing Incidence X-ray Diffraction and Crystal Structure Prediction. Crystal Growth and Design, 2019, 19, 6058-6066.	1.4	5
78	Remarkably Distinct Mechanical Flexibility in Three Structurally Similar Semiconducting Organic Crystals Studied by Nanoindentation and Molecular Dynamics. Chemistry of Materials, 2019, 31, 1391-1402.	3.2	84
79	Relationship between hydrate stability and accuracy of true density measured by helium pycnometry. International Journal of Pharmaceutics, 2019, 567, 118444.	2.6	17
80	X-ray crystal structure, Hirshfeld surface analysis and DFT study on symmetrical trans-1,2-diformyldiimide: An unusual One-pot condensation of formic acid and hydrazine hydrate mediated by metal(II) nitrate hexahydrates. Chemical Data Collections, 2019, 22, 100239.	1.1	4
81	Orientation-dependent conformational polymorphs in two similar pyridine/pyrazine phenolic esters. CrystEngComm, 2019, 21, 3721-3730.	1.3	8
82	Seeking the best model for non-covalent interactions within the crystal structure of meloxicam. Computational and Theoretical Chemistry, 2019, 1157, 47-53.	1.1	10
83	Structure–property relationships in aromatic thioethers featuring aggregation-induced emission: solid-state structures and theoretical analysis. CrystEngComm, 2019, 21, 3097-3105.	1.3	8
84	Computational Techniques for Predicting Mechanical Properties of Organic Crystals: A Systematic Evaluation. Molecular Pharmaceutics, 2019, 16, 1732-1741.	2.3	62
85	Structure–Property Relationship in an Organic Semiconductor: Insights from Energy Frameworks, Charge Density Analysis, and Diode Devices. Crystal Growth and Design, 2019, 19, 3019-3029.	1.4	6
86	3D energy frameworks of dimethylbenzophenone tetramorphs. Heliyon, 2019, 5, e01209.	1.4	13
87	Measurement of Electric Fields Experienced by Urea Guest Molecules in the 18-Crown-6/Urea (1:5) Host–Guest Complex: An Experimental Reference Point for Electric-Field-Assisted Catalysis. Journal of the American Chemical Society, 2019, 141, 3965-3976.	6.6	35
88	First-Principles-Based Force Field for 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105). ACS Omega, 2019, 4, 21054-21062.	1.6	4
89	Polymorphs of 2,4,6-tris(4-pyridyl)-1,3,5-triazine and their mechanical properties. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 987-993.	0.5	2
90	Crystallographic and Energetic Insights into Reduced Dissolution and Physical Stability of a Drug–Surfactant Salt: The Case of Norfloxacin Lauryl Sulfate. Molecular Pharmaceutics, 2019, 17, 579-587.	2.3	3
91	Symmetric Fluoroborate and its Boron Modification: Crystal and Electronic Structures. Crystals, 2019, 9, 662.	1.0	6

#	Article	IF	CITATIONS
92	Non lassical Synthons: Supramolecular Recognition by Sâ‹â‹ô‹O Chalcogen Bonding in Molecular Complexes of Riluzole. Chemistry - A European Journal, 2019, 25, 3591-3597.	1.7	28
93	The conformation of chloramphenicol in the ordered and disordered phases. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 383-392.	2.0	2
94	Synthesis, Elucidation, Hirshfeld surface analysis, and DFT calculations of 4-chloro-N-[2-(2-1H-indol-3-yl-acetylamino)-phenyl]-benzamide. Journal of Molecular Structure, 2019, 1178, 384-393.	1.8	25
95	Exploring the Relationship between Intermolecular Interactions and Solid-State Photophysical Properties of Organic Co-Crystals. Journal of Physical Chemistry C, 2019, 123, 9311-9322.	1.5	31
96	A Practical Guide to the Design of Molecular Crystals. Crystal Growth and Design, 2019, 19, 1426-1453.	1.4	222
97	Role of Side Chains in the Solid State Assembly of Cyclic Peptoids. Crystal Growth and Design, 2019, 19, 125-133.	1.4	13
98	3D energy framework of a benzophenone acidic dimer. Chemical Data Collections, 2019, 19, 100168.	1.1	4
99	Assessing the impact on aqueous solubility of berberine chloride via co-crystallization with different stoichiometric ratios of pyromellitic dianhydride. Journal of Molecular Structure, 2020, 1200, 127086.	1.8	13
100	Design-based synthesis, molecular docking analysis of an anti-inflammatory drug, and geometrical optimization and interaction energy studies of an indole acetamide derivative. Journal of Molecular Structure, 2020, 1202, 127244.	1.8	27
101	Hexaiododiplatinate(<scp>ii</scp>) as a useful supramolecular synthon for halogen bond involving crystal engineering. Dalton Transactions, 2020, 49, 356-367.	1.6	49
102	Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol. Chemical Communications, 2020, 56, 1105-1108.	2.2	12
103	Structural and Nonâ€Covalent Interactions Study of 2â€Pyridone Based Flexible Unsymmetrical Dimer. Crystal Research and Technology, 2020, 55, 1900136.	0.6	9
104	Boron–Nitrogen Double Tweezers Comprising Arylboronic Esters and Diamines: Selfâ€Assembly in Solution and Adaptability as Hosts for Aromatic Guests in the Solid State. ChemPlusChem, 2020, 85, 548-560.	1.3	10
105	Mononuclear and binuclear dioxidomolybdenum(VI) complexes of ONO appended aroylhydrazone: Crystal structures, interaction energy calculation and cytotoxicity. Journal of Molecular Structure, 2020, 1204, 127467.	1.8	9
106	Applications of charge-density analysis to the rational design of molecular materials: A mini review on how to engineer optical or magnetic crystals. Journal of Molecular Structure, 2020, 1203, 127431.	1.8	4
107	Quantitative investigation on the intermolecular interactions present in 8-(4-ethoxyphenyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione with insight from interaction energies, energy framework, electrostatic potential map and fingerprint analysis. Journal of Chemical Sciences, 2020, 132, 1	0.7	5
108	COMPARISON OF DIFFERENT COMPUTATIONAL APPROACHES FOR UNVEILING THE HIGH-PRESSURE BEHAVIOR OF ORGANIC CRYSTALS AT A MOLECULAR LEVEL. CASE STUDY OF TOLAZAMIDE POLYMORPHS. Journal of Structural Chemistry, 2020, 61, 1356-1366.	0.3	8
109	Development of piroxicam mini-tablets enabled by spherical cocrystallization. International Journal of Pharmaceutics, 2020, 590, 119953.	2.6	22

#	Article	IF	CITATIONS
110	Nanoindentation of Molecular Crystals: Lessons Learned from Aspirin. Crystal Growth and Design, 2020, 20, 5956-5966.	1.4	31
111	Chiral mesophases of hydrogen-bonded liquid crystals. Molecular Systems Design and Engineering, 2020, 5, 1299-1306.	1.7	10
112	Accurate Modelling of Group Electrostatic Potential and Distributed Polarizability in Dipeptides. ChemPhysChem, 2020, 21, 2155-2165.	1.0	8
113	Novel Quasi-Emulsion Solvent Diffusion-Based Spherical Cocrystallization Strategy for Simultaneously Improving the Manufacturability and Dissolution of Indomethacin. Crystal Growth and Design, 2020, 20, 6752-6762.	1.4	23
114	The Impact of the Next-Nearest Neighbor Dispersion Interactions on Spin Crossover Transition Enthalpy Evidenced by Experimental and Computational Analyses of Neutral π-Extended Heteroleptic Fe(III) Complexes. Inorganic Chemistry, 2020, 59, 12295-12303.	1.9	6
115	2-Mercaptoimidazolium halides: structural diversity, stability and spontaneous racemisation. CrystEngComm, 2020, 22, 6034-6046.	1.3	2
116	4 <i>H</i> -[1,2,3]Triazolo[4,5- <i>c</i>][1,2,5]oxadiazole 5-oxide and Its Salts: Promising Multipurpose Energetic Materials. ACS Applied Energy Materials, 2020, 3, 9401-9407.	2.5	22
117	Tuning of Molecular Electrostatic Potential Enables Efficient Charge Transport in Crystalline Azaacenes: A Computational Study. International Journal of Molecular Sciences, 2020, 21, 5654.	1.8	6
118	Design, Synthesis, In Silico Analysis, and Structural Study of 4,6â€Dimethylâ€2â€(3â€(<i>p</i> â€ŧolyloxy)propoxy)nicotinonitrile Fleximer. Crystal Research and Technology, 2020, 55, 2000100.	0.6	7
119	Sila-Ibuprofen. Journal of Medicinal Chemistry, 2020, 63, 12614-12622.	2.9	14
120	Cyclic hexapeptoids with N-alkyl side chains: solid-state assembly and thermal behaviour. CrystEngComm, 2020, 22, 6371-6384.	1.3	6
121	The Advent of Quantum Crystallography: Form and Structure Factors from Quantum Mechanics for Advanced Structure Refinement and Wavefunction Fitting. Structure and Bonding, 2020, , 65-144.	1.0	17
122	Experimental charge density of ferrocenyl derivative of β-lactam. Journal of Molecular Structure, 2020, 1217, 128274.	1.8	3
123	Engineering Crystals Using sp 3 Centred Tetrel Bonding Interactions. Chemistry - A European Journal, 2020, 26, 10126-10132.	1.7	28
124	Solid-State Landscape of 4,4′-Azobis(3,5-dimethyl-1 <i>H</i> -pyrazole) with the Isolation of Conformer-Dependent Polymorphs. Crystal Growth and Design, 2020, 20, 2721-2733.	1.4	4
125	Exploring Ambipolar Semiconductor Nature of Binary and Ternary Charge-Transfer Cocrystals of Triphenylene, Pyrene, and TCNQ. Journal of Physical Chemistry C, 2020, 124, 6544-6553.	1.5	23
126	Effect of the substituent position on the electrochemical, optical and structural properties of donor–acceptor type acridone derivatives. Physical Chemistry Chemical Physics, 2020, 22, 8522-8534.	1.3	10
127	Melting point–solubility–structure correlations in chiral and racemic model cocrystals. CrystEngComm, 2020, 22, 2766-2771.	1.3	11

#	Article	IF	CITATIONS
128	syn and anti polymorphs of 2,6-dimethoxy benzoic acid and its molecular and ionic cocrystals: Structural analysis and energetic perspective. Journal of Molecular Structure, 2020, 1221, 128721.	1.8	7
129	Molecular Origin of the Distinct Tabletability of Loratadine and Desloratadine: Role of the Bonding Area – Bonding Strength Interplay. Pharmaceutical Research, 2020, 37, 133.	1.7	7
130	Improving solubility and intrinsic dissolution rate of ofloxacin API through salt formation via mechanochemical synthesis with diphenic acid. Journal of Molecular Structure, 2020, 1221, 128806.	1.8	19
131	Synthesis, crystal structure and electron density analysis of a sulfanyl 2-pyridone analogue: Tautomeric preference and conformation locking by S···O chalcogen bonding. Journal of Molecular Structure, 2020, 1222, 128798.	1.8	3
132	Synthesis, physicochemical, and thermal characterization of coordination compounds of Cu(II) with a pyrazole-type ligand. Journal of Thermal Analysis and Calorimetry, 2020, 142, 451-460.	2.0	5
133	Metalâ€like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angewandte Chemie - International Edition, 2020, 59, 10971-10980.	7.2	65
134	Metalâ€like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angewandte Chemie, 2020, 132, 11064-11073.	1.6	24
135	Structural chemistry and anti-inflammatory activity of flexible/restricted phenyl dimers. Journal of the Iranian Chemical Society, 2020, 17, 1289-1303.	1.2	7
136	Structural elucidation, theoretical insights and thermal properties of three novel multicomponent molecular forms of gallic acid with hydroxypyridines. Journal of Molecular Structure, 2020, 1207, 127828.	1.8	18
137	Supramolecular frameworks formed via hydrogen bonding and non-covalent interactions and interaction energy calculations of solvent coordinated cis-dioxomolybdenum(VI) complexes derived from ONO donor aroylhydrazone: Cytotoxicity studies. Inorganica Chimica Acta, 2020, 505, 119472.	1.2	4
138	Supramolecular organisation of sulphate salt hydrates exemplified with brucine sulphate. CrystEngComm, 2020, 22, 7204-7216.	1.3	4
139	Polymorph induced diversity of photomechanical motions of molecular crystals. CrystEngComm, 2020, 22, 3279-3286.	1.3	17
140	Alkylâ€Alkyl Interactions in the Periphery of Supramolecular Entities: From the Evaluation of Weak Forces to Applications. ChemPlusChem, 2020, 85, 715-724.	1.3	14
141	Photophysical and crystallographic study of three integrated pyrazolo[1,5-a]pyrimidine–triphenylamine systems. Dyes and Pigments, 2021, 184, 108730.	2.0	26
142	Investigation of intermolecular interactions in fluoro/trifluoromethyl derivatives of benzoylferrocene. Journal of Molecular Structure, 2021, 1224, 129045.	1.8	1
143	Synthesis of 1-aroyl-3-methylsulfanyl-5-amino-1,2,4-triazoles and their analysis by spectroscopy, X-ray crystallography and theoretical calculations. Journal of Molecular Structure, 2021, 1226, 129317.	1.8	14
144	Analysis of supramolecular self-assembly of two chromene derivatives: Synthesis, crystal structure, Hirshfeld surface, quantum computational and molecular docking studies. Journal of Molecular Structure, 2021, 1225, 129104.	1.8	9
145	Design, synthesis, in silico analysis with PPAR â€Î³ receptor and study of nonâ€covalent interactions in unsymmetrical heterocyclic/phenyl fleximer. Journal of the Chinese Chemical Society, 2021, 68, 150-158.	0.8	6

#	Article	IF	CITATIONS
146	DFT and IsoStar Analyses to Assess the Utility of σ―and Ï€â€Hole Interactions for Crystal Engineering. ChemPhysChem, 2021, 22, 141-153.	1.0	9
147	Spectral studies and crystal structures of molybdenum(VI) complexes containing pyridine or picoline as auxiliary ligands: interaction energy calculations and free radical scavenging studies. Transition Metal Chemistry, 2021, 46, 241-253.	0.7	1
148	<i>CrystalGrower</i> : a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science, 2021, 12, 1126-1146.	3.7	18
149	Experimental and computational evidence for a stabilising C–Cl(lone-pair)â‹-Ï€(chelate-ring) interaction. CrystEngComm, 2021, 23, 119-130.	1.3	4
150	Sublimation thermodynamics of pyrazinoic, dipicolinic and quinolinic acids: Experiment and theoretical prediction. Journal of Chemical Thermodynamics, 2021, 155, 106369.	1.0	6
151	Accurate crystal structures and chemical properties from NoSpherA2. Chemical Science, 2021, 12, 1675-1692.	3.7	147
152	Reversible order-disorder phase transition and interaction topology in 4-carboxyanilinium nitrate. Journal of Molecular Structure, 2021, 1227, 129542.	1.8	5
153	Interplay of weak noncovalent interactions in alkoxybenzylidene derivatives of benzohydrazide and acetohydrazide: a combined experimental and theoretical investigation and lipoxygenase inhibition (LOX) studies. CrystEngComm, 2021, 23, 955-971.	1.3	9
154	Synthesis and X-ray crystallographic analysis of free base and hexafluorophosphate salts of 3,4-dihydroisoquinolines from the Bischler–Napieralski reaction. New Journal of Chemistry, 2021, 45, 1565-1572.	1.4	2
155	Predicting molecular isomerism of symmetrical and unsymmetrical <i>N</i> , <i>N</i> ,i>N	1.3	3
156	Solid-State Conformational Flexibility at Work: Energetic Landscape of a Single Crystal-to-Single Crystal Transformation in a Cyclic Hexapeptoid. Crystal Growth and Design, 2021, 21, 897-907.	1.4	13
157	Sweet Sulfamethazine Acesulfamate Crystals with Improved Compaction Property. Crystal Growth and Design, 2021, 21, 1077-1085.	1.4	5
158	Dissecting the packing forces in mixed perfluorocarbon/aromatic co-crystals. CrystEngComm, 0, , .	1.3	2
159	Self-organization of 1,6-dialkyl-3a,6a-diphenylglycolurils in the crystalline state. CrystEngComm, 2021, 23, 4312-4319.	1.3	4
160	Naturally occurring polyphenols as building blocks for supramolecular liquid crystals – substitution pattern dominates mesomorphism. Molecular Systems Design and Engineering, 2021, 6, 390-397.	1.7	5
161	Modulation of the powder properties of lamotrigine by crystal forms. International Journal of Pharmaceutics, 2021, 595, 120274.	2.6	16
162	Crystal Structures of New Ivermectin Pseudopolymorphs. Crystals, 2021, 11, 172.	1.0	6
163		1.7	2

#	Article	IF	CITATIONS
164	Synthesis, structural characterization, and DFT studies of anti-cancer drug N-(2-Aminophenyl)-2-(4-bromophenoxy)acetamide. Heliyon, 2021, 7, e06464.	1.4	8
165	Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions. Journal of Physical Chemistry Letters, 2021, 12, 3059-3065.	2.1	12
166	Weak yet Decisive: Molecular Halogen Bond and Competing Weak Interactions of Iodobenzene and Quinuclidine. Journal of the American Chemical Society, 2021, 143, 4133-4137.	6.6	25
167	Influence of the haloaryl moiety over the molecular packing in N-phenacylbenzimidazoles crystallizing in the same space group. Journal of Molecular Structure, 2021, 1230, 129869.	1.8	5
168	Crystallographic investigation, Hirshfeld surface analysis, NLO characterization and experimental spectral (UV and NMR) studies with DFT probe on(R)-9-(2-hydroxy propyl)adenine. Heliyon, 2021, 7, e06593.	1.4	4
169	<i>CrystalExplorer</i> : a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 2021, 54, 1006-1011.	1.9	1,744
170	Crystal structure, Hirshfeld surface analysis and interaction energy calculation of 1-decyl-2,3-dihydro-1 <i>H</i> -benzimidazol-2-one. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 559-563.	0.2	2
171	Drug–Drug Cocrystallization Simultaneously Improves Pharmaceutical Properties of Genistein and Ligustrazine. Crystal Growth and Design, 2021, 21, 3461-3468.	1.4	15
172	Polymorphism of coumarin thione-triazole - 4-methyl-7-[(4-phenyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)methoxy]-2H-chromen-2-one. Journal of Molecular Structure, 2021, 1231, 129957.	1.8	3
173	Qualitative and Quantitative Study of Intermolecular Interactions in Imidazo[2,1â€b] [1,3,4] Thiadiazoles. ChemistrySelect, 2021, 6, 4265-4272.	0.7	3
174	Functional substituted Cu(II) Schiff base complexes, syntheses, X-ray and theoretical characterizations, and investigations of their polyphenol oxidase- and peroxidase-like activities. Journal of Molecular Structure, 2021, 1232, 129975.	1.8	5
175	Synthesis, crystal structure, DFT calculations, Hirshfeld surface analysis, energy frameworks, molecular dynamics and docking studies of novel isoxazolequinoxaline derivative (IZQ) as anti-cancer drug. Journal of Molecular Structure, 2021, 1232, 130004.	1.8	40
176	Crystal structure, Hirshfeld surface analysis, interaction energy, and DFT studies of cholesteryl heptanoate. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 686-691.	0.2	0
177	Structural investigations into a new polymorph of F ₄ TCNQ: towards enhanced semiconductor properties. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 426-434.	0.2	2
178	Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease. Molecules, 2021, 26, 3872.	1.7	6
179	Crystallography, Molecular Modeling, and COX-2 Inhibition Studies on Indolizine Derivatives. Molecules, 2021, 26, 3550.	1.7	10
180	Insights into Intermolecular Interactions of Spironolactone Solvates. Crystal Growth and Design, 2021, 21, 3677-3688.	1.4	14
181	Synthesis, structural characterisation and theoretical studies of a novel pyridazine derivative: Investigations of anti-inflammatory activity and inhibition of α-glucosidase. Journal of Molecular	1.8	11

#	Article	IF	CITATIONS
182	Crystal structure, Hirshfeld surface analysis and interaction energy calculation of 4-(furan-2-yl)-2-(6-methyl-2,4-dioxopyran-3-ylidene)-2,3,4,5-tetrahydro-1 <i>H</i> -1,5-benzodiazepine. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 834-838.	0.2	0
183	Experimental and in silico studies of dichloro-tetrakis(1H-pyrazole)-cobalt(II): Structural description, photoluminescent behavior and molecular docking. Journal of Molecular Structure, 2021, 1235, 130266.	1.8	5
184	Estudio estructural y supramolecular del ácido 2-E-((4-hidroxifenil) diazenil) benzoico. Revista Colombiana De Quimica, 2021, 50, 40-48.	0.2	0
185	Interplay of Halogen and Hydrogen Bonding through Co–Crystallization in Pharmacologically Active Dihydropyrimidines: Insights from Crystal Structure and Energy Framework. ChemPlusChem, 2021, 86, 1167-1176.	1.3	10
186	Easy preparation of novel 3,3-dimethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide: Molecular structure, Hirshfeld surface, NCI analyses and molecular docking on AMPA receptors. Journal of Molecular Structure, 2021, 1238, 130435.	1.8	9
187	Synthesis, structure analysis, DFT calculations, Hirshfeld surface studies, and energy frameworks of 6-Chloro-3-[(4-chloro-3-methylphenoxy)methyl][1,2,4]triazolo[4,3-b]pyridazine. Journal of Molecular Structure, 2021, 1237, 130282.	1.8	9
188	Study of the structure-bioactivity of fleximers: synthesis, crystal structure, Hirshfeld surface analysis, and anti-inflammatory assays. Journal of Molecular Structure, 2021, 1239, 130513.	1.8	8
189	Synthesis, conformation and Hirshfeld surface analysis of benzoxazole methyl ester as a versatile building block for heterocycles. Heliyon, 2021, 7, e08042.	1.4	4
190	Structural Insights and Docking Analysis of Adamantane-Linked 1,2,4-Triazole Derivatives as Potential 11β-HSD1 Inhibitors. Molecules, 2021, 26, 5335.	1.7	4
191	Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid. European Journal of Chemistry, 2021, 12, 304-313.	0.3	1
192	Synthesis, structural determination, Hirshfeld surface analysis, 3D energy frameworks, electronic and (static, dynamic) NLO properties of o-Nitroacetanilide (o-NAA): A combined experimental and quantum chemical study. Inorganic Chemistry Communication, 2021, 133, 108884.	1.8	5
193	Crystal structures and photoluminescence properties of chromium(III) complexes with 2-thenoyltrifluoroacetone ligand. Journal of Molecular Structure, 2021, 1245, 131023.	1.8	1
194	Hirshfeld surface analysis, enrichment ratio, energy frameworks and third-order nonlinear optical studies of a hydrazone derivative for optical limiting applications. Journal of Molecular Structure, 2021, 1245, 131019.	1.8	3
195	Isomeric nitro substituted symmetrical benzamides: Crystal Structures, Hirshfeld surface analysis, 3D energy frameworks, DNA binding and cell line studies. Journal of Molecular Structure, 2022, 1247, 131396.	1.8	4
196	Non-covalent interactions involving remote substituents influence the topologies of supramolecular chains featuring hydroxyl-O–H⋠O(hydroxyl) hydrogen bonding in crystals of (HOCH2CH2)2NC()N(H)(C6H4Y-4) for Y = H, Me, Cl and NO2. CrystEngComm, 2021, 23, 1723-1743.	1.3	6
197	The trimorphism of 3-hydroxybenzoic acid: an experimental and computational study. CrystEngComm, 2021, 23, 2513-2519.	1.3	3
198	Conformational aspects of polymorphs and phases of 2-propyl-1 <i>H</i> -benzimidazole. IUCrJ, 2018, 5, 706-715.	1.0	7
199	Insight from electron density and energy framework analysis on the structural features of F _{ <i>x</i>} -TCNQ (<i>x</i> = 0, 2, 4) family of molecules. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 71-78	0.5	7

#	ARTICLE	IF	CITATIONS
200	Interplay between packing, dimer interaction energy and morphology in a series of tricyclic imide crystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020. 76, 157-165.	0.5	2
201	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 3-{(2 <i>Z</i>)-2-[(2,4-dichlorophenyl)methylidene]-3-oxo-3,4-dihydro-2 <i>H</i> -1,4-benzothiazin-4-yl}propanenitr Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 721-727.	il e. 2	12
202	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 5,5-diphenyl-1,3-bis(prop-2-yn-1-yl)imidazolidine-2,4-dione. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 951-956.	0.2	2
203	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1411-1417.	0.2	2
204	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 370-376.	0.2	1
205	Crystal structure, Hirshfeld surface analysis, interaction energy and DFT studies of 4-[(4-allyl-2-methoxyphenoxy)methyl]-1-(4-methoxyphenyl)-1 <i>H</i> >-1,2,3-triazole. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 962-966.	0.2	6
206	Crystal structure, Hirshfeld surfaces, topology, energy frameworks and dielectric studies of 1-(2-chlorophenyl)- 3,3-bis(methylthio)prop-2-en-1-one. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 85-93.	0.4	6
207	Theoretical and experimental solid state studies of Ethyl 1-benzyl-2-(thiophen-3-yl)-1H-benzo[d]imidazole-5-carboxylate. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 569-579.	0.4	2
208	A combined structural and computational investigation of aminobenzylnaphthol compounds derived from the Betti reaction using valine methyl ester. New Journal of Chemistry, 2021, 45, 20735-20742.	1.4	5
209	Maximizing completeness in single-crystal high-pressure diffraction experiments: phase transitions in 2°AP. IUCrJ, 2021, 8, 1006-1017.	1.0	4
210	Charge-assisted hydrogen bonding in three diaminobenzene salts. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1725-1731.	0.2	2
211	A 1:2 co-crystal of 2,2′-thiodibenzoic acid and triphenylphosphane oxide: crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1764-1771.	0.2	9
212	Intermolecular interactions in a phenol-substituted benzimidazole. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 272-276.	0.2	0
213	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 4-[(prop-2-en-1-yloxy)methyl]-3,6-bis(pyridin-2-yl)pyridazine. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1321-1326.	0.2	1
214	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1672-1678.	0.2	0
215	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (2 <i>Z</i>)-4-benzyl-2-(2,4-dichlorobenzylidene)-2 <i>H</i> -1,4-benzothiazin-3(4 <i>H</i>)-one. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1650-1656.	0.2	3
216	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1 <i>H</i> -1,3-benzodiazol-2-one. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1940-1946.	0.2	0
217	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1 <i>H</i> -perimidin-2-yl)-6-methoxyphenol. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 605-610.	0.2	0

#	Article	IF	CITATIONS
218	Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of (<i>Z</i>)-4-hexyl-2-(4-methylbenzylidene)-2 <i>H</i> -benzo[<i>b</i>][1,4]thiazin-3(4 <i>H</i>)-one. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 889-895.	0.2	0
219	Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds. European Journal of Chemistry, 2020, 11, 261-275.	0.3	1
220	Crystal structure and Hirshfeld surface analysis of dl-methionine polymorphs ($\hat{l}\pm$ and \hat{l}^2). Journal of Molecular Structure, 2022, 1250, 131721.	1.8	9
221	Crystal structure, Hirshfeld surface analysis, interaction energy and DFT studies of (2 <i>Z</i>)-2-(2,4-dichlorobenzylidene)-4-nonyl-3,4-dihydro-2 <i>H</i> -1,4-benzothiazin-3-one. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 281-287.	0.2	1
222	Interactions in flavanone and chalcone derivatives: Hirshfeld surface analysis, energy frameworks and global reactivity descriptors. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 212-224.	0.2	2
223	Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (<i>S</i>)-10-propargylpyrrolo[2,1- <i>c</i>][1,4]benzodiazepine-5,11-dione. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 467-472.	0.2	2
224	Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of ethyl 2-[(2 <i>Z</i>)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2 <i>H</i> -1,4-benzothiazin-4-yl]acetate. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 629-636.	0.2	1
225	Expanding the Solid Form Landscape of Bipyridines. Crystal Growth and Design, 2021, 21, 7201-7217.	1.4	5
226	Pseudopolymorphism Driven by Stoichiometry and Hydrated/Anhydrous Reagents: The Riveting Case of Methyl GallateA· <scp>l</scp> -Proline. Crystal Growth and Design, 2021, 21, 6776-6785.	1.4	4
227	Four Directional Twinning Deformation of an Anisotropic Molecular Single Crystal Based on Three Different Modes of Mechanical Twinning. Crystal Growth and Design, 2022, 22, 174-179.	1.4	3
228	1-Hydroxynaphthalene-4-trifluoromethylphenyl chalcone and 3‑hydroxy-4-trifluoromethylphenyl flavone: A combined experimental, structural, in vitro AChE, BChE and in silico studies. Journal of Molecular Structure, 2022, 1253, 132253.	1.8	1
229	COMPUTATIONAL INVESTIGATIONS, HIRSHFELD SURFACE ANALYSIS, INTERACTION ENERGY CALCULATIONS, AND ENERGY FRAMEWORK CRYSTAL STRUCTURE OF METHYL 2-AMINO-5-HYDROXYBENZOATE. Journal of Structural Chemistry, 2021, 62, 1745-1758.	0.3	1
230	Synthesis, elucidation, DFT computations, Hirshfeld surface analysis and docking study of 6-chloro-3-[(4-fluoro-phenoxy)methyl][1, 2, 4]triazolo[4,3-b]pyridazine against fungi pathogen. Molecular Crystals and Liquid Crystals, 2022, 738, 76-90.	0.4	1
231	Bendable and Twistable Crystals of Flufenamic Acid Form III with Bending Mechanofluorochromism Behavior. Crystal Growth and Design, 2022, 22, 1312-1318.	1.4	17
232	Shedding Light on the Synthesis, Crystal Structure, Characterization, and Computational Study of Optoelectronic Properties and Bioactivity of Imine derivatives. ACS Omega, 2022, 7, 5217-5230.	1.6	18
233	Inclusion of CO2, NH3, SO2, Cl2 and H2S in porous N4O4-donor macrocyclic Schiff base. Microporous and Mesoporous Materials, 2022, 332, 111708.	2.2	3
234	Crystal structure, Hirshfeld, computational biomolecular investigations, and MTT assay studies of amino pyrimidine derivative as EGFR kinase domain inhibitor. Journal of Molecular Structure, 2022, 1254, 132416.	1.8	9
235	Crystal structures of <i>N</i> -[4-(trifluoromethyl)phenyl]benzamide and <i>N</i> -(4-methoxyphenyl)benzamide at 173â€K: a study of the energetics of conformational changes due to crystal packing. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 297-305.	0.2	1

#	Article	IF	CITATIONS
236	Unique sandwich structure of the pyrazinamide–methylmalonic acid cocrystal: ternary phase diagrams, characterization and property evaluation. CrystEngComm, 2022, 24, 2650-2659.	1.3	2
237	Dielectric response of 1,1-difluorosumanene caused by an in-plane motion. Materials Chemistry Frontiers, 2022, 6, 1752-1758.	3.2	10
238	BN-Substitution in Dithienylpyrenes Prevents Excimer Formation in Solution and in the Solid State. Journal of Physical Chemistry C, 2022, 126, 4563-4576.	1.5	5
239	Quantum, Hirshfeld surface, crystal voids, energy framework and molecular docking analysis of two halogen-containing benzimidazole-2-thione structures. Molecular Crystals and Liquid Crystals, 0, , 1-15.	0.4	2
240	Understanding Poor Milling Behavior of Voriconazole from Crystal Structure and Intermolecular Interactions. Molecular Pharmaceutics, 2022, 19, 985-997.	2.3	6
241	Ï€-Hole bonding in a new co-crystal hydrate of gallic acid and pyrazine: static and dynamic charge density analysis. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 231-246.	0.5	4
242	Crystal structure, Hirshfeld surface analysis, interaction energy and DFT calculations and energy frameworks of methyl 6-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-4-carboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 425-432.	0.2	2
243	Investigation of crystal structures, energetics and isostructurality in halogen-substituted phosphoramidates. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 179-194.	0.5	1
244	Mechanisms of Crystal Plasticization by Lattice Water. Pharmaceutical Research, 2022, 39, 3113-3122.	1.7	3
245	Diverse Mechanical Properties of 1,3-Bis(4-nitrophenyl) thiourea–DMSO Dimorphic Solvates. Crystal Growth and Design, 2022, 22, 2058-2065.	1.4	9
246	Tunable Solid‧tate Thermochromism: Alkyl Chain Lengthâ€Dependent Conformational Isomerization of Bianthrones. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
247	Azide–Alkyne Interactions: A Crucial Attractive Force for Their Preorganization for Topochemical Cycloaddition Reaction. Chemistry - A European Journal, 2022, 28, .	1.7	11
248	Crystal structure, Hirshfeld surface, and DFT studies of 4-((pyrrolidin-1-ylsulfonyl)methyl)aniline. European Journal of Chemistry, 2021, 12, 419-431.	0.3	1
249	Energetic Co-Crystal of a Primary Metal-Free Explosive with BTF. Ideal Pair for Co-Crystallization. Molecules, 2021, 26, 7452.	1.7	10
250	Structural, Computational and 3D Interaction Energy Calculations of the Compound 2-chloro-3-(1-napthyl)-5,5-dimethyl-2-cyclohexenone. Crystallography Reports, 2022, 67, 201-208.	0.1	7
252	Thorough investigation on the high-temperature polymorphism of dipentyl-perylenediimide: thermal expansion <i>vs.</i> polymorphic transition. Journal of Materials Chemistry C, 2022, 10, 8089-8100.	2.7	6
253	Synthesis, X-ray, characterization and HSA and energy framework analysis of novel pyridine-hydrazone based ligand and its Co(II) complex biological activity prediction and experimental antibacterial properties. Molecular Crystals and Liquid Crystals, 0, , 1-20.	0.4	2
254	Multiple Mechanical Behaviors in One Crystal of 2,4-Dichlorophenoxyacetic Acid Form II: Thermomechanical Effect and Elastic Deformation. Crystal Growth and Design, 2022, 22, 3680-3687.	1.4	4

#	ARTICLE	IF	CITATIONS
255	Cocrystal design of vanillin with amide drugs: Crystal structure determination, solubility enhancement, DFT calculation. Chemical Engineering Research and Design, 2022, 183, 170-180.	2.7	7
256	Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Interaction Energy and Energy Framework Studies of Novel Hydrazone Derivative Containing Barbituric Acid Moiety. Journal of Chemical Crystallography, 2023, 53, 81-92.	0.5	2
257	A comparison of three crystalline forms of miconazole: solvent-free, ethanol monosolvate and hemihydrate. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 343-350.	0.2	2
258	Optimized Structure, in Silico interaction and Molecular Docking Analysis of Two Benzimidazole-2-Thione Derivatives. Material Science Research India, 2022, 19, 01-16.	0.9	0
259	Experimental and theoretical investigation of hydrogen bonded supramolecular assemblies through water molecules in a copper(II)-EGTA complex. Journal of Molecular Structure, 2022, , 133400.	1.8	7
260	Theoretical Prediction of Structures and Properties of 2,4,6-Trinitro-1,3,5-Triazine (TNTA) Green Energetic Materials from DFT and ReaxFF Molecular Modeling. Materials, 2022, 15, 3873.	1.3	3
261	Classical Intermolecular Hydrogen Bonding Motifs of Heterocyclic <i>rac</i> -2-Amino-3-carbonitrile Derivatives: Linking Hirshfeld Surface Analysis, CT-DNA Binding Affinity, and Molecular Docking. Crystal Growth and Design, 2022, 22, 5814-5834.	1.4	5
262	Solid-state landscape and biopharmaceutical implications of novel metformin-based salts. New Journal of Chemistry, 0, , .	1.4	4
263	Crystal Engineering of Ionic Cocrystals Sustained by the Phenol–Phenolate Supramolecular Heterosynthon. Crystal Growth and Design, 2022, 22, 4582-4591.	1.4	8
264	Synchrotron Xâ€ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine. Chemistry - A European Journal, 2022, 28, .	1.7	5
265	Synthesis, characterization and self assembly of dinuclear zinc Schiff base complexes: A combined experimental and theoretical study. Polyhedron, 2022, 225, 116044.	1.0	5
266	N-Fluoroalkylpyrazolyl-substituted Nitronyl Nitroxides. Journal of Molecular Structure, 2022, 1269, 133739.	1.8	5
267	Structural, vibrational and thermal study of Bis(4-Carboxyanilinium) sulphate a new organo-sulphate adduct of 4-amino benzoic acid. Journal of Molecular Structure, 2022, 1267, 133631.	1.8	2
268	X-ray structure analysis of the cholesterol 25- and 20-hydroperoxides, the elusive primary sidechain autoxidation products of cholesterol. Steroids, 2022, 187, 109092.	0.8	1
269	Fast photoactuation of elastic crystals based on 3-(naphthalen-1-yl)-2-phenylacrylonitriles triggered by subtle photoisomerization. Journal of Materials Chemistry C, 2022, 10, 14273-14281.	2.7	16
270	Exploring Highly Functionalized Tetrahydropyridine as a Dual Inhibitor of Monoamine Oxidase A and B: Synthesis, Structural Analysis, Single Crystal XRD, Supramolecular Assembly Exploration by Hirshfeld Surface Analysis, and Computational Studies. ACS Omega, 2022, 7, 29452-29464.	1.6	12
271	On the influence of pnictogen bonding on acidity. Polyhedron, 2022, 227, 116145.	1.0	2
272	Unravelling the semiconductor properties of mixed stack donor acceptor cocrystals of pyrene derivatives and TCNQ: effect of crystal packing <i>versus</i> super-exchange mechanism. CrystEngComm, 2022, 24, 6579-6586.	1.3	1

#	Article	IF	CITATIONS
273	Profoundly improved photostability of dimetronidazole by cocrystallization. CrystEngComm, 2022, 24, 6165-6171.	1.3	4
274	Conformational preferences in a series of α-hydroxy ketone derivatives: interplay of conformational energies and lattice cohesive energies. CrystEngComm, 2022, 24, 7306-7314.	1.3	1
275	Unravelling supramolecular features and opto-electronic properties of a binary charge transfer cocrystal of a blue fluorescent di-carbazole and TFT. CrystEngComm, 2022, 24, 6669-6676.	1.3	1
276	Structural systematics in isomorphous binary co-crystal solvates comprising 2,2â€ ² -dithiodibenzoic acid, 4-halobenzoic acid and dimethylformamide (1 : 1 : 1), for halide = chloride, bromide and iodide. CrystEngComm, 2022, 24, 5907-5921.	1.3	1
277	Crystal structure determination, Hirshfeld surface, crystal void, intermolecular interaction energy analyses, as well as DFT and energy framework calculations of 2-(4-oxo-4,5-dihydro-1 <i>H</i> -pyrazolo[3,4- <i>d</i>)pyrimidin-1-yl)acetic acid. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 953-960.	0.2	5
278	A structural and computational comparison of close contacts and related intermolecular energies of interaction in the structures of 1,3-diiodo-5-nitrobenzene, 1,3-dibromo-5-nitrobenzene, and 1,3-dichloro-5-nitrobenzene. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 552-558.	0.2	0
279	ANALYSIS OF THE CRYSTAL STRUCTURE AND ENERGY FRAMEWORKS OF 5-ACETIL-1,3-DIMETHYL BARBITURIC ACID. MuÄŸla Journal of Science and Technology, 0, , .	0.1	0
280	Antispasmodic activity of novel 2,4-dichloroanilinium perchlorate hybrid material: X-ray crystallography, DFT studies and molecular docking approach. Journal of Molecular Structure, 2023, 1274, 134440.	1.8	5
281	Synthesis, Structural, and Intriguing Electronic Properties of Symmetrical Bis-Aryl-α,β-Unsaturated Ketone Derivatives. ACS Omega, 2022, 7, 39294-39309.	1.6	22
282	Weak Noncovalent Interactions in Three Closely Related Adamantane-Linked 1,2,4-Triazole N-Mannich Bases: Insights from Energy Frameworks, Hirshfeld Surface Analysis, In Silico 11î ² -HSD1 Molecular Docking and ADMET Prediction. Molecules, 2022, 27, 7403.	1.7	0
283	Green synthesis, X-ray crystallography, DFT and Hirshfeld analysis of C-2 symmetric 1,3-bis(4-ethylphenyl)triaz-1-ene. Journal of Molecular Structure, 2023, 1274, 134523.	1.8	0
284	Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, optical and nonlinear optical properties of Schiff bases derived from o-aminophenol. Journal of Molecular Structure, 2023, 1274, 134427.	1.8	18
285	Multivariate Analysis of a Highly Effective Drug Combination Tablet Containing the Antiepileptic Drug Gabapentin to Enhance Pharmaceutical Properties with a Multicomponent Crystal Strategy. Crystal Growth and Design, 2022, 22, 7234-7247.	1.4	3
286	Synthesis, Characterization, Crystal Structure and Computational Study of Thirdâ€Order NLO Properties of Schiff bases. ChemistrySelect, 2022, 7, .	0.7	7
287	The discovery of new cocrystals of 5-fluorocytosine using amine–carboxylate supramolecular synthon. Journal of Drug Delivery Science and Technology, 2022, 78, 103934.	1.4	2
288	Zwitterionic <i>versus</i> neutral molecules of fluoroquinolones: crystal structure of danofloxacin dihydrate. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 722-729.	0.2	1
289	Three for the Price of One: Concomitant lâ<¯N, lâ<¯O, and lâ<¯i€ Halogen Bonds in the Same Crystal Structure. Molecules, 2022, 27, 7550.	1.7	3
290	DFT Investigation, Hirshfield Analysis and Molecular Docking of Cu(II) Complex of Oâ€Vanillin Based Ligand. ChemistrySelect, 2022, 7, .	0.7	1

#	Article	IF	CITATIONS
291	Assessment of solid–liquid equilibrium behavior and thermodynamic analysis of natural plant extracts artemisinin (Form I) in twelve mono-solvents. Journal of Molecular Liquids, 2023, 369, 120975.	2.3	0
292	Polymorphism in carboxamide compounds with high- <i>Z</i> $\hat{a}\in^2$ crystal structures. CrystEngComm, 0, , .	1.3	4
293	New charge-transfer complexes of 1,2,5-chalcogenadiazoles with tetrathiafulvalenes. CrystEngComm, 2023, 25, 391-402.	1.3	3
294	Hydrogen-Bonded Chain of Rings Motif in N-(4-Methoxyphenyl)piperazin-1-ium Salts with Benzoate Anions: Supramolecular Assemblies and Their Energy Frameworks. Crystals, 2022, 12, 1807.	1.0	2
295	The investigation of modification in structural flexibility and coordination modes in a solvent free β-diketone Cu(II) complex by crystal structure and DFT studies. Polyhedron, 2023, , 116293.	1.0	0
296	Structure, Optical and Magnetic Properties of Two Isomeric 2-Bromomethylpyridine Cu(II) Complexes [Cu(C6H9NBr)2(NO3)2] with Very Different Binding Motives. Molecules, 2023, 28, 731.	1.7	0
297	Charge Transport in Organic Semiconducting Crystals Exhibiting TADF: Insight from Quantum Chemical Calculations. Crystals, 2023, 13, 55.	1.0	1
298	Acid catalyzed one-pot approach towards the synthesis of curcuminoid systems: unsymmetrical diarylidene cycloalkanones, exploration of their single crystals, optical and nonlinear optical properties. RSC Advances, 2023, 13, 4476-4494.	1.7	19
299	Aryl Boronic Acids in Columnar Stacked Coâ€crystalline Materials: Keyâ€Factors Governing the Assembly with Quinones. ChemPhysChem, 0, , .	1.0	0
300	Assessing Solvate Prediction Approaches: A Case of Spironolactone. Crystal Growth and Design, 2023, 23, 832-841.	1.4	4
301	Synthesis, single crystal structure determinations, Hirshfeld surface analysis, crystal voids, interaction energies, and density functional theory studies of functionalized 1,3-thiazoles. Journal of Molecular Structure, 2023, 1281, 135108.	1.8	3
302	Arsenic-Involving Intermolecular Interactions in Crystal Structures: The Dualistic Behavior of As(III) as Electron-Pair Donor and Acceptor. Crystal Growth and Design, 2023, 23, 1033-1048.	1.4	0
303	Searching for Suitable Kojic Acid Coformers: From Cocrystals and Salt to Eutectics. Crystal Growth and Design, 2023, 23, 1874-1887.	1.4	1
304	Elastic and bright assembly-induced luminescent crystals of platinum(<scp>ii</scp>) complexes with near-unity emission quantum yield. Dalton Transactions, 0, , .	1.6	0
305	Stability and Mechanical Properties of Darunavir Isostructural Solvates: An Experimental and Computational Study. Crystal Growth and Design, 2023, 23, 2905-2915.	1.4	4
306	SYNTHESIS, CRYSTAL STRUCTURE, SUPRAMOLECULAR ASSEMBLY EXPLORATION BY HIRSHFELD SURFACE ANALYSIS AND COMPUTATIONAL STUDY OF 6-BROMO-2-OXO- 2H-CHROMENE-3-CARBONITRILE (BOCC). Journal of Structural Chemistry, 2023, 64, 302-313.	0.3	12
307	Experimental and Computational Study on the Effects of High Pressure on the Crystal Structure of Boron Nitrilotriacetate. Crystal Growth and Design, 2023, 23, 2745-2754.	1.4	1
308	Polymorphism of Butyl Ester of Oleanolic Acid—The Dominance of Dispersive Interactions over Electrostatic. International Journal of Molecular Sciences, 2023, 24, 6572.	1.8	0

#	Article	IF	CITATIONS
309	Competing and directing interactions in new phosphoramide/thiophosphoramide structures: energy considerations and evidence for CHâ< HC contacts and aliphatic–aromatic stacking. CrystEngComm, 0, , .	1.3	0
310	Synthesis, Crystal Structure, Supramolecular Assembly Inspection by Hirshfeld Surface Analysis and Computational Exploration of 4-Phenyl-6-(p-Tolyl)Pyrimidin-2 (1H)-One (PPTP). Journal of Structural Chemistry, 2023, 64, 437-449.	0.3	15
311	An investigation into the BrÃ,nsted acidity of the perfluorinated alkoxy silanes {(F ₃ C) ₃ CO} ₃ SiH and {(F ₆ C ₅) ₃ CO} ₂ Si(Cl)H. Dalton Transactions, 2023, 52, 5918-5925.	1.6	2
312	Preparation and Characterization of N-benzyl-2-methyl-4-nitroaniline (BNA) Single Crystals by Physical Vapour Transport (PVT) Technique. Journal of Molecular Structure, 2023, , 135593.	1.8	0
313	Mechanical properties and peculiarities of molecular crystals. Chemical Society Reviews, 2023, 52, 3098-3169.	18.7	48
314	Synthesis, X-ray, DFT, Hirshfeld surface analysis, molecular docking, urease inhibition, antioxidant, cytotoxicity, DNA protection, and DNA binding properties of 5-(tert-butyl)-N-(2,4-dichlorophenyl)-1H-1,2,4-triazol-3-amine. Structural Chemistry, 2024, 35, 7-23.	1.0	1
315	Synthesis, spectroscopic, crystallographic, quantum and molecular docking investigations of cis-4,5-diphenylimidazolidine-2-thione. Journal of Molecular Structure, 2023, 1286, 135633.	1.8	16