Consensus and Contention in the Food-Versus-Fuel Deb

Annual Review of Environment and Resources 39, 271-294 DOI: 10.1146/annurev-environ-031813-132233

Citation Report

#	Article	IF	CITATIONS
1	Tackling biomass scarcity—from vicious to virtuous cycles in sub-Saharan Africa. Current Opinion in Environmental Sustainability, 2015, 15, 1-8.	6.3	14
2	Connectedness and its dynamics in the Swedish biofuels for transport industry. Progress in Industrial Ecology, 2015, 9, 269.	0.2	6
3	Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture. Current Opinion in Biotechnology, 2015, 32, 104-112.	6.6	54
4	Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels. International Journal of Life Cycle Assessment, 2015, 20, 1399-1414.	4.7	35
5	Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chemistry - A European Journal, 2016, 22, 32-57.	3.3	303
6	Biofuel policies and the impact of developing countries' policy responses to the 2007–2008 food price boom. Global Food Security, 2016, 11, 64-71.	8.1	9
7	The water-land-food nexus of first-generation biofuels. Scientific Reports, 2016, 6, 22521.	3.3	226
8	Sweet Sorghum Juice and Bagasse as Feedstocks for the Production of Optically Pure Lactic Acid by Native and Engineered Bacillus coagulans Strains. Bioenergy Research, 2016, 9, 123-131.	3.9	33
9	Regulating a global value chain with the European Union's sustainability criteria – experiences from the Swedish liquid transport biofuel sector. Journal of Cleaner Production, 2017, 153, 580-591.	9.3	21
10	Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine. Environmental Science and Pollution Research, 2017, 24, 5381-5390.	5.3	55
11	A sustainable and eco-friendly fueling approach for direct-injection diesel engines using restaurant yellow grease and n-pentanol in blends with diesel fuel. Fuel, 2017, 193, 419-431.	6.4	79
12	The potential role of waste biomass in the future urban electricity system. Biomass and Bioenergy, 2017, 107, 182-190.	5.7	28
13	Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Industrial Crops and Products, 2017, 106, 105-123.	5.2	130
14	The Renewable Fuel Standard in Competitive Equilibrium: Market and Welfare Effects. American Journal of Agricultural Economics, 2017, 99, 1117-1142.	4.3	20
15	Hydrothermal Carbonization (HTC) of Green Waste: An Environmental and Economic Assessment of HTC Coal in the Metropolitan Region of Berlin, Germany. SSRN Electronic Journal, 2017, , .	0.4	10
16	Using an ecosystem services perspective to assess biofuel sustainability. Biomass and Bioenergy, 2018, 114, 1-7.	5.7	4
17	Mechanisms and indicators for assessing the impact of biofuel feedstock production on ecosystem services. Biomass and Bioenergy, 2018, 114, 157-173.	5.7	35
18	Setting the design space of biorefineries through sustainability values, a practical approach. Biofuels, Bioproducts and Biorefining, 2018, 12, 29-44.	3.7	19

#	Article	IF	CITATIONS
19	The US biofuel mandate as a substitute for carbon cap-and-trade. Energy Policy, 2018, 113, 368-375.	8.8	17
20	Energy use efficiency and economic feasibility of Jerusalem artichoke production on arid and coastal saline lands. Industrial Crops and Products, 2018, 117, 131-139.	5.2	23
21	The rise in global biodiesel production: Implications for food security. Global Food Security, 2018, 16, 75-84.	8.1	63
22	Hydrothermal carbonization (HTC) of green waste: Mitigation potentials, costs, and policy implications of HTC coal in the metropolitan region of Berlin, Germany. Energy Policy, 2018, 123, 503-513.	8.8	12
23	Enrichment of syngas-converting mixed microbial consortia for ethanol production and thermodynamics-based design of enrichment strategies. Biotechnology for Biofuels, 2018, 11, 198.	6.2	32
24	Perennial biomass production from marginal land in the Upper Mississippi River Basin. Land Degradation and Development, 2018, 29, 1748-1755.	3.9	21
25	1.21 Food and Energy. , 2018, , 850-874.		3
26	Sweet Sorghum for Biofuel Industry. , 2019, , 255-270.		14
27	Food and agricultural innovation pathways for prosperity. Agricultural Systems, 2019, 172, 1-15.	6.1	65
28	Designing sustainability in blues: the limits of technospatial growth imaginaries. Sustainability Science, 2020, 15, 145-160.	4.9	8
29	Land-water-food nexus of biofuels: Discourse and policy debates in Brazil. Environmental Development, 2020, 33, 100491.	4.1	52
30	The distribution of food security impacts of biofuels, a Ghana case study. Biomass and Bioenergy, 2020, 141, 105695.	5.7	31
31	Elucidating Anthracnose Resistance Mechanisms in Sorghum—A Review. Phytopathology, 2020, 110, 1863-1876.	2.2	16
32	Thermal unimolecular decomposition of ethyl 2â€furoate and its reactivity toward OH radicals: A theoretical study. International Journal of Chemical Kinetics, 2020, 52, 580-588.	1.6	1
33	Non-catalytic transesterification of dry microalgae to fatty acid ethyl esters using supercritical ethanol and ethyl acetate. Fuel, 2020, 275, 117998.	6.4	18
34	Role of Comparative Advantage in Biofuel Policy Adoption in Latin America. Sustainability, 2020, 12, 1411.	3.2	13
35	Integrating Value Considerations in the Decision Making for the Design of Biorefineries. Science and Engineering Ethics, 2020, 26, 2927-2955.	2.9	10
36	Urban bio-waste as a flexible source of electricity in a fully renewable energy system. Biomass and Bioenergy, 2021, 145, 105931.	5.7	12

ATION R

#	Article	IF	Citations
37	<scp>OSiD</scp> : opening the conceptual design of biobased processes to a contextâ€sensitive sustainability analysis. Biofuels, Bioproducts and Biorefining, 2021, 15, 961-972.	3.7	4
38	Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. Biotechnology for Biofuels, 2021, 14, 86.	6.2	14
39	Regional foundations of energy transitions. Cambridge Journal of Regions, Economy and Society, 2021, 14, 219-233.	3.0	33
40	Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material. Ecological Economics, 2021, 188, 107129.	5.7	16
41	Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland. Energy, 2021, 236, 121545.	8.8	10
42	Bioclusters and Sustainable Regional Development. Sustainable Development Goals Series, 2021, , 81-91.	0.4	2
43	Indicators of Consumers' Preferences for Bio-Based Apparel: A German Case Study with a Functional Rain Jacket Made of Bioplastic. Sustainability, 2020, 12, 675.	3.2	27
44	High-Biomass Sorghums as a Feedstock for Renewable Fuels and Chemicals. , 2020, , 723-754.		1
45	Assessing the feasibility of archetypal transition pathways towards carbon neutrality – A comparative analysis of European industries. Resources, Conservation and Recycling, 2022, 177, 106015.	10.8	18
46	The Promised Land: Contrasting frames of marginal land in the European Union. Land Use Policy, 2022, 112, 105860.	5.6	10
47	The effect of harvest strategy on the energy potential of Jerusalem artichoke. Industrial Crops and Products, 2022, 177, 114473.	5.2	5
48	Meeting global challenges with regenerative agriculture producing food and energy. Nature Sustainability, 2022, 5, 384-388.	23.7	53
49	Land use for bioenergy: Synergies and trade-offs between sustainable development goals. Renewable and Sustainable Energy Reviews, 2022, 161, 112409.	16.4	38
50	Cg10062 Catalysis Forges a Link between Acetylenecarboxylic Acid and Bacterial Metabolism. Biochemistry, 2021, 60, 3879-3886.	2.5	0
52	Sustainability tensions and opportunities for aviation biofuel production in Brazil. , 2022, , 237-262.		1
53	Is biofuel expansion in developing countries reasonable? A review of empirical evidence of food and land use impacts. Journal of Cleaner Production, 2022, 372, 133501.	9.3	18
54	Food-Energy Integration in Primary Production and Food Processing Results in a More Equal Distribution of Economic Value Across Regional Food Systems: Nordic Case Study from Circular Perspective. Circular Economy and Sustainability, 2023, 3, 1385-1403.	5.5	2
55	Challenges and opportunities for zeolites in biomass upgrading: Impediments and future directions. Catalysis Today, 2023, 419, 114159.	4.4	3

CITATION REPORT

#	Article	IF	CITATIONS
56	Assessment of global sorghum production, tolerance, and climate risk. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	4
57	Sustainable irrigation and climate feedbacks. Nature Food, 2023, 4, 654-663.	14.0	2
58	Potentials and prospects of solid biowaste resources for biofuel production in Ethiopia: a systematic review of the evidence. Biomass Conversion and Biorefinery, 0, , .	4.6	0
59	More unequal food distribution in low-income countries exacerbates global hunger risk. Sustainable Production and Consumption, 2024, 46, 108-118.	11.0	0

CITATION REPORT