Quantifying the Deep Tendon Reflex Using Varying Ten to Spasticity

IEEE Transactions on Neural Systems and Rehabilitation Engin 22, 280-289

DOI: 10.1109/tnsre.2014.2299753

Citation Report

#	Article	IF	CITATIONS
1	Clinical availability of the deep tendon reflex test using a novel apparatus in healthy subjects. Journal of Physical Therapy Science, 2015, 27, 317-320.	0.2	2
2	Assessment of Hyperactive Reflexes in Patients with Spinal Cord Injury. BioMed Research International, 2015, 2015, 1-8.	0.9	4
3	Contributions of motoneuron hyperexcitability to clinical spasticity in hemispheric stroke survivors. Clinical Neurophysiology, 2015, 126, 1599-1606.	0.7	12
4	Estimation of musculotendon kinematics under controlled tendon indentation. Journal of Biomechanics, 2015, 48, 3568-3576.	0.9	6
5	Angular rate measurement in the assessment of patellar reflex. , 2016, , .		1
6	Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions. Neuromodulation, 2017, 20, 307-321.	0.4	57
7	Tendon Tapping Location Detection Through Impact Modeling. , 2019, , .		0
8	A Tendon Indentation Method to Quantify Velocity-Dependent Reflex Responses after Hemispheric Stroke. , 2019, 2019, 5221-5224.		0
9	Stretch reflex excitability in contralateral limbs of stroke survivors is higher than in matched controls. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 154.	2.4	7
10	In-Vivo Study of Passive Musculotendon Mechanics in Chronic Hemispheric Stroke Survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1022-1031.	2.7	1
11	A Smart Tendon Hammer System for Remote Neurological Examination. Frontiers in Robotics and AI, 2021, 8, 618656.	2.0	4
12	Characterization of the patellar tendon reflex response using an indigenously developed system and implementation of a strategic protocol to assess its clinical usefulness. Clinical Epidemiology and Global Health, 2021, 12, 100881.	0.9	0
13	Design of microcontroller-based electrical stimulator as a replacement of reflex hammer. AIP Conference Proceedings, 2023, , .	0.3	0