Addressing failures in exascale computing

International Journal of High Performance Computing Applicat 28, 129-173

DOI: 10.1177/1094342014522573

Citation Report

#	Article	IF	CITATIONS
1	Checksumming Strategies for Data in Volatile Memories. , 2014, , .		0
2	Fault Injection Experiments with the CLAMR Hydrodynamics Mini-App. , 2014, , .		7
3	Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing. Parallel Computing, 2015, 49, 117-135.	1.3	18
4	Silent error detection in numerical time-stepping schemes. International Journal of High Performance Computing Applications, 2015, 29, 403-421.	2.4	31
5	Programmer-Guided Reliability for Extreme-Scale Applications. , 2015, , .		0
6	Towards Building Resilient Scientific Applications: Resilience Analysis on the Impact of Soft Error and Transient Error Tolerance with the CLAMR Hydrodynamics Mini-App. , 2015, , .		12
7	Building a Fault Tolerant Application Using the GASPI Communication Layer. , 2015, , .		5
8	A Fault-Tolerance Protocol for Parallel Applications with Communication Imbalance. , 2015, , .		O
9	Scalable and Fault Tolerant Failure Detection and Consensus. , 2015, , .		17
10	Versioning Architectures for Local and Global Memory. , 2015, , .		O
11	Differentiated Failure Remediation with Action Selection for Resilient Computing. , 2015, , .		2
12	Field, experimental, and analytical data on large-scale HPC systems and evaluation of the implications for exascale system design. , 2015, , .		3
13	Using Benchmarks for Radiation Testing of Microprocessors and FPGAs. IEEE Transactions on Nuclear Science, 2015, 62, 2547-2554.	1.2	82
14	Understanding GPU errors on large-scale HPC systems and the implications for system design and operation. , $2015, , .$		115
15	Efficient Process Replication for MPI Applications: Sharing Work between Replicas. , 2015, , .		3
16	Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults. SIAM Journal of Scientific Computing, 2015, 37, C532-C553.	1.3	13
17	DualVisor: Redundant Hypervisor Execution for Achieving Hardware Error Resilience in Datacenters. , 2015, , .		5
18	Adding Storage Simulation Capacities to the SimGrid Toolkit: Concepts, Models, and API., 2015, , .		11

#	Article	IF	CITATIONS
19	Fault-Tolerant Protocol for Hybrid Task-Parallel Message-Passing Applications. , 2015, , .		11
20	Silicon Photonics for Exascale Systems. Journal of Lightwave Technology, 2015, 33, 547-562.	2.7	105
21	A Runtime Heuristic to Selectively Replicate Tasks for Application-Specific Reliability Targets. , 2016, , .		8
22	A Robust Fault Tolerance Scheme for Lifeline-Based Taskpools. , 2016, , .		5
23	Input Size Effects on the Radiation-Sensitivity of Modern Parallel Processors. , 2016, , .		1
24	Compiler-Directed Lightweight Checkpointing for Fine-Grained Guaranteed Soft Error Recovery. , 2016, , .		21
25	Unprotected Computing: A Large-Scale Study of DRAM Raw Error Rate on a Supercomputer. , 2016, , .		45
26	Towards Practical Algorithm Based Fault Tolerance in Dense Linear Algebra. , 2016, , .		25
27	System-Level Scalable Checkpoint-Restart for Petascale Computing. , 2016, , .		17
28	Running Resilient MPI Applications on a Dynamic Group of Recommended Processes. , 2016, , .		O
29	A Robust Technique to Make a 2D Advection Solver Tolerant to Soft Faults. Procedia Computer Science, 2016, 80, 1917-1926.	1.2	2
30	SIERRAâ€"Simulation environment for memory redundancy algorithms. Simulation Modelling Practice and Theory, 2016, 69, 14-30.	2.2	2
31	Handling Silent Data Corruption with the Sparse Grid Combination Technique. Lecture Notes in Computational Science and Engineering, 2016, , 187-208.	0.1	5
32	Extreme scale and bleeding edge technology lead to a need for resilient high performance computing systems. , 2016, , .		1
33	Never Say Never Probabilistic and Temporal Failure Detectors. , 2016, , .		8
34	Machine learning based job status prediction in scientific clusters. , 2016, , .		10
35	Exploring Partial Replication to Improve Lightweight Silent Data Corruption Detection for HPC Applications. Lecture Notes in Computer Science, 2016, , 419-430.	1.0	9
36	Fault Tolerance in the Parareal Method. , 2016, , .		2

#	Article	IF	Citations
37	SIMD-based soft error detection., 2016,,.		10
38	A Self-Correcting Connected Components Algorithm. , 2016, , .		6
39	Complex scientific applications made fault-tolerant with the sparse grid combination technique. International Journal of High Performance Computing Applications, 2016, 30, 335-359.	2.4	16
40	Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Transactions on Parallel and Distributed Systems, 2016, 27, 2809-2823.	4.0	41
41	A Survey of Techniques for Modeling and Improving Reliability of Computing Systems. IEEE Transactions on Parallel and Distributed Systems, 2016, 27, 1226-1238.	4.0	59
42	Toward fault-tolerant parallel-in-time integration with PFASST. Parallel Computing, 2017, 62, 20-37.	1.3	6
43	Discrete A Priori Bounds for the Detection of Corrupted PDE Solutions in Exascale Computations. SIAM Journal of Scientific Computing, 2017, 39, C1-C28.	1.3	4
44	Silent Data Corruption Resilient Two-sided Matrix Factorizations. , 2017, , .		16
45	Is the Multigrid Method Fault Tolerant? The Two-Grid Case. SIAM Journal of Scientific Computing, 2017, 39, C116-C143.	1.3	4
46	Radiation-Induced Error Criticality in Modern HPC Parallel Accelerators. , 2017, , .		26
47	Fault tolerant communication-optimal 2.5D matrix multiplication. Journal of Parallel and Distributed Computing, 2017, 104, 179-190.	2.7	3
48	Towards New Metrics for High-Performance Computing Resilience., 2017,,.		2
49	Towards a More Complete Understanding of SDC Propagation. , 2017, , .		18
50	Experimental and Analytical Analysis of Sorting Algorithms Error Criticality for HPC and Large Servers Applications. IEEE Transactions on Nuclear Science, 2017, , 1-1.	1.2	3
51	Designing and Modelling Selective Replication for Fault-Tolerant HPC Applications. , 2017, , .		23
52	Toward General Software Level Silent Data Corruption Detection for Parallel Applications. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 3642-3655.	4.0	11
53	Is the Multigrid Method Fault Tolerant? The Multilevel Case. SIAM Journal of Scientific Computing, 2017, 39, C393-C416.	1.3	3
54	When is the Right Time to Start the Fault Tolerance Protection?. , 2017, , .		0

#	Article	IF	Citations
55	Numerical algorithms and fault tolerance of hyperexascale computer systems. Doklady Mathematics, 2017, 95, 7-11.	0.1	4
56	Exploring versioned distributed arrays for resilience in scientific applications. International Journal of High Performance Computing Applications, 2017, 31, 564-590.	2.4	10
57	Failures in large scale systems. , 2017, , .		89
58	Soft-error resiliency of power flow calculations. , 2017, , .		1
59	Toward a General Theory of Optimal Checkpoint Placement. , 2017, , .		11
60	Parastack., 2017, , .		6
61	LOGAIDER: A Tool for Mining Potential Correlations of HPC Log Events., 2017,,.		37
62	Detection of Silent Data Corruption in Adaptive Numerical Integration Solvers. , 2017, , .		2
63	Experimental and analytical study of Xeon Phi reliability. , 2017, , .		46
64	Analyzing the criticality of transient faults-induced SDCS on GPU applications. , 2017, , .		7
65	Resilience for Stencil Computations with Latent Errors. , 2017, , .		7
66	A highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma simulations. , 2017, , .		5
67	Silent Data Corruption Resilient Two-sided Matrix Factorizations. ACM SIGPLAN Notices, 2017, 52, 415-427.	0.2	2
68	Identifying the Right Replication Level to Detect and Correct Silent Errors at Scale., 2017,,.		7
69	Massive Parallel Computational Model for Heterogeneous Exascale Computing System., 2017,,.		0
70	Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms. , 2017, , .		3
71	Emerging resilience techniques for embedded devices. , 2017, , 57-121.		2
72	EXAHD: An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond., 2018,, 513-529.		3

#	Article	IF	CITATIONS
73	Building and utilizing fault tolerance support tools for the GASPI applications. International Journal of High Performance Computing Applications, 2018, 32, 613-626.	2.4	2
74	Self-stabilizing fine-grained parallel incomplete LU factorization. Sustainable Computing: Informatics and Systems, 2018, 19, 291-304.	1.6	5
75	Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis. Lecture Notes in Computer Science, 2018, , 158-178.	1.0	0
76	Designing and Evaluating Redundancy-Based Soft-Error Masking on a Continuum of Energy versus Robustness. IEEE Transactions on Sustainable Computing, 2018, 3, 139-152.	2.2	7
77	Unified fault-tolerance framework for hybrid task-parallel message-passing applications. International Journal of High Performance Computing Applications, 2018, 32, 641-657.	2.4	11
78	Programmer-guided reliability for extreme-scale applications. International Journal of High Performance Computing Applications, 2018, 32, 598-612.	2.4	0
79	Epidemic failure detection and consensus for extreme parallelism. International Journal of High Performance Computing Applications, 2018, 32, 729-743.	2.4	7
80	Soft fault detection and correction for multigrid. International Journal of High Performance Computing Applications, 2018, 32, 897-912.	2.4	9
81	Using virtualization to quantify power conservation via near-threshold voltage reduction for inherently resilient applications. Parallel Computing, 2018, 73, 3-15.	1.3	3
82	ABFR., 2018,,.		2
83	Leto: verifying application-specific hardware fault tolerance with programmable execution models., 2018, 2, 1-30.		7
84	Towards Ad Hoc Recovery for Soft Errors. , 2018, , .		0
85	Towards a Mini-App for Smoothed Particle Hydrodynamics at Exascale. , 2018, , .		0
86	Characterizing Deep-Learning I/O Workloads in TensorFlow. , 2018, , .		32
87	Extensive Evaluation of Programming Models and ISAs Impact on Multicore So Error Reliability. , 2018, , .		2
88	Predicting the Reliability Behavior of HPC Applications. , 2018, , .		5
89	Influence of A-Posteriori Subcell Limiting on Fault Frequency in Higher-Order DG Schemes. , 2018, , .		3
90	Improving Application Resilience by Extending Error Correction with Contextual Information. , 2018, , .		7

#	Article	IF	Citations
91	FlipTracker: Understanding Natural Error Resilience in HPC Applications. , 2018, , .		17
92	Evaluating and Accelerating High-Fidelity Error Injection for HPC. , 2018, , .		18
93	Optimizing Software-Directed Instruction Replication for GPU Error Detection. , 2018, , .		42
94	Energy Analysis and Optimization for Resilient Scalable Linear Systems. , 2018, , .		4
95	Neural Network Based Silent Error Detector. , 2018, , .		10
96	CPU Overheating Characterization in HPC Systems: A Case Study. , 2018, , .		6
97	SwapCodes: Error Codes for Hardware-Software Cooperative GPU Pipeline Error Detection. , 2018, , .		12
98	Extending and Evaluating Fault-Tolerant Preconditioned Conjugate Gradient Methods., 2018,,.		7
99	Extensive evaluation of programming models and ISAs impact on multicore soft error reliability. , 2018, , .		9
100	Non-intrusively Avoiding Scaling Problems in and out of MPI Collectives. , 2018, , .		1
101	A High-Level C++ Approach to Manage Local Errors, Asynchrony and Faults in an MPI Application. , 2018, , .		4
102	Parallel Error Detection Using Heterogeneous Cores. , 2018, , .		9
103	Running resilient MPI applications on a Dynamic Group of Recommended Processes. Journal of the Brazilian Computer Society, 2018, 24, .	0.8	4
104	Modeling Input-Dependent Error Propagation in Programs. , 2018, , .		24
105	Cognified Distributed Computing. , 2018, , .		1
106	Coping with silent and fail-stop errors at scale by combining replication and checkpointing. Journal of Parallel and Distributed Computing, 2018, 122, 209-225.	2.7	9
107	Exploring Properties and Correlations of Fatal Events in a Large-Scale HPC System. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 361-374.	4.0	13
108	A Minimally Intrusive Low-Memory Approach to Resilience for Existing Transient Solvers. Journal of Scientific Computing, 2019, 78, 565-581.	1.1	6

#	Article	IF	CITATIONS
109	Numerical Algorithms for HPC Systems and Fault Tolerance. Communications in Computer and Information Science, 2019, , $34-44$.	0.4	2
110	Identifying the Most Reliable Collaborative Workload Distribution in Heterogeneous Devices. , 2019, , .		2
111	Detection of Silent Data Corruptions in Smoothed Particle Hydrodynamics Simulations. , 2019, , .		1
112	Robust Molecular Dynamics Simulations Using Coded FFT Algorithm. , 2019, , .		O
113	Demystifying Soft Error Assessment Strategies on ARM CPUs: Microarchitectural Fault Injection vs. Neutron Beam Experiments. , 2019, , .		34
114	Characterizing and Understanding HPC Job Failures Over The 2K-Day Life of IBM BlueGene/Q System. , 2019, , .		14
115	How to Make the Preconditioned Conjugate Gradient Method Resilient Against Multiple Node Failures. , 2019, , .		7
116	Measuring Vulnerability and Deferring Responsibility: Quantifying the Anthropocene. Theory, Culture and Society, 2019, 36, 73-93.	1.3	8
117	Minotaur., 2019,,.		13
118	Using Machine Learning Techniques to Evaluate Multicore Soft Error Reliability. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2151-2164.	3.5	32
119	Impact of Workload Distribution on Energy Consumption, Performance, and Reliability of Heterogeneous Devices. , 2019, , .		0
120	Corrected trees for reliable group communication. , 2019, , .		1
121	The Resiliency of Multilevel Methods on Next-Generation Computing Platforms: Probabilistic Model and Its Analysis. Advances in Mechanics and Mathematics, 2019, , 283-294.	0.2	0
122	Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, 2019, , .	0.2	2
123	Analyzing the Performance and Accuracy of Lossy Checkpointing on Sub-Iteration of NWChem. , 2019, , .		2
124	rDLB: A Novel Approach for Robust Dynamic Load Balancing of Scientific Applications with Independent Tasks. , 2019, , .		1
125	FaultSight: A Fault Analysis Tool for HPC Researchers. , 2019, , .		0
126	Algorithm-Based Fault Tolerance for Parallel Stencil Computations. , 2019, , .		5

#	Article	IF	Citations
127	${\it Node-Failure-Resistant\ Preconditioned\ Conjugate\ Gradient\ Method\ without\ Replacement\ Nodes.\ ,\ 2019,}$		4
128	A Tale of Two Injectors: End-to-End Comparison of IR-Level and Assembly-Level Fault Injection. , 2019, , .		13
129	Analyzing a Five-Year Failure Record of a Leadership-Class Supercomputer. , 2019, , .		9
130	Evaluating the Soft Error Resilience of Instructions for GPU Applications. , 2019, , .		3
131	Analyzing the Impact of Lossy Compressor Variability on Checkpointing Scientific Simulations. , 2019, , .		1
132	Evaluating Compiler IR-Level Selective Instruction Duplication with Realistic Hardware Errors. , 2019, , .		5
133	Quantifying the Impact of Memory Errors in Deep Learning. , 2019, , .		4
134	Non-intrusive Fault Injection Techniques for Efficient Soft Error Vulnerability Analysis., 2019,,.		12
135	CRAFT: A Library for Easier Application-Level Checkpoint/Restart and Automatic Fault Tolerance. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 501-514.	4.0	30
136	Resilient computational applications using Coarray Fortran. Parallel Computing, 2019, 81, 58-67.	1.3	8
137	Towards Exascale Lattice Boltzmann computing. Computers and Fluids, 2019, 181, 107-115.	1.3	40
138	Online Diagnosis of Performance Variation in HPC Systems Using Machine Learning. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 883-896.	4.0	37
139	SAGE: Percipient Storage for Exascale Data Centric Computing. Parallel Computing, 2019, 83, 22-33.	1.3	14
140	Towards ultra-scale Branch-and-Bound using a high-productivity language. Future Generation Computer Systems, 2020, 105, 196-209.	4.9	2
141	A machine learning approach to online fault classification in HPC systems. Future Generation Computer Systems, 2020, 110, 1009-1022.	4.9	15
142	Chaser: An Enhanced Fault Injection Tool for Tracing Soft Errors in MPI Applications. , 2020, , .		4
143	Toward exascale design of soft mesoscale materials. Journal of Computational Science, 2020, 46, 101175.	1,5	6
144	<i>A posteriori</i> error estimation for the non-self-consistent Kohn–Sham equations. Faraday Discussions, 2020, 224, 227-246.	1.6	8

#	Article	IF	CITATIONS
145	A passenger model for simulating boarding and alighting in spatially confined transportation scenarios. Journal of Computational Science, 2020, 45, 101173.	1.5	8
146	Thermal Neutrons: a Possible Threat for Supercomputers and Safety Critical Applications. , 2020, , .		3
147	Characterizing Accuracy-Aware Resilience of GPGPU Applications. , 2020, , .		7
148	An Overview of the Risk Posed by Thermal Neutrons to the Reliability of Computing Devices. , 2020, , .		1
149	Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs. , 2020, , .		4
150	Improving GPU register file reliability with a comprehensive ISA extension. Microelectronics Reliability, 2020, 114, 113768.	0.9	7
151	Towards Communication Profile, Topology and Node Failure Aware Process Placement., 2020,,.		2
152	SpotSDC: Revealing the Silent Data Corruption Propagation in High-Performance Computing Systems. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 3938-3952.	2.9	8
153	Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Generation Computer Systems, 2020, 106, 467-481.	4.9	33
154	Improving the Accuracy of IR-Level Fault Injection. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 243-258.	3.7	2
155	Thermal neutrons: a possible threat for supercomputer reliability. Journal of Supercomputing, 2021, 77, 1612-1634.	2.4	5
156	waLBerla: A block-structured high-performance framework for multiphysics simulations. Computers and Mathematics With Applications, 2021, 81, 478-501.	1.4	47
158	Proctor: A Semi-Supervised Performance Anomaly Diagnosis Framework for Production HPC Systems. Lecture Notes in Computer Science, 2021, , 195-214.	1.0	5
159	A Fault Aware Broad Learning System for Concurrent Network Failure Situations. IEEE Access, 2021, 9, 46129-46142.	2.6	4
160	Towards Local-Failure Local-Recovery inÂPDE Frameworks: The Case of Linear Solvers. Lecture Notes in Computer Science, 2021, , 17-38.	1.0	1
161	Algorithm-Based Fault Tolerance for Convolutional Neural Networks. IEEE Transactions on Parallel and Distributed Systems, 2021, , 1 -1.	4.0	33
162	RAT: A Lightweight Architecture Independent System-Level Soft Error Mitigation Technique. IFIP Advances in Information and Communication Technology, 2021, , 235-253.	0.5	2
163	Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. International Journal of High Performance Computing Applications, 2021, 35, 285-311.	2.4	7

#	Article	IF	Citations
164	Forseti: An Efficient Basic-block-level Sensitivity Analysis Framework Towards Multi-bit Faults. , 2021, , .		0
165	CHITIN: A Comprehensive In-thread Instruction Replication Technique Against Transient Faults. , 2021, , .		2
166	CPU overheating prediction in HPC systems. Concurrency Computation Practice and Experience, 2021, 33, e6231.	1.4	2
167	Predicting the Soft Error Vulnerability of Parallel Applications Using Machine Learning. International Journal of Parallel Programming, 2021, 49, 410-439.	1.1	3
168	Exploring parallel MPI fault tolerance mechanisms for phylogenetic inference with RAxML-NG. Bioinformatics, 2021, 37, 4056-4063.	1.8	4
169	Efficient selective replication of critical code regions for SDC mitigation leveraging redundant multithreading. Journal of Supercomputing, 2021, 77, 14130.	2.4	3
170	Legio: fault resiliency for embarrassingly parallel MPI applications. Journal of Supercomputing, 2022, 78, 2175-2195.	2.4	3
171	FT-BLAS., 2021,,.		4
172	FPGA Checkpointing for Scientific Computing., 2021,,.		1
173	Checkpointing vs. Supervision Resilience Approaches for Dynamic Independent Tasks. , 2021, , .		2
174	A Low-cost Fault Corrector for Deep Neural Networks through Range Restriction., 2021,,.		32
175	Parallel and Distributed Task-Based Kirchhoff Seismic Pre-Stack Depth Migration Application. , 2021, , .		0
176	Anomaly Detection in Scientific Workflows using End-to-End Execution Gantt Charts and Convolutional Neural Networks., 2021,,.		4
177	Sensitivity of computational fluid dynamics simulations against soft errors. Computing (Vienna/New) Tj ETQq1 1	0.784314	4 rg _g BT /Overlo
178	Machine-learning for physics simulation anomaly detection. , 2021, , .		0
179	Understanding failures through the lifetime of a top-level supercomputer. Journal of Parallel and Distributed Computing, 2021, 154, 27-41.	2.7	1
180	Posits and the state of numerical representations in the age of exascale and edge computing. Software - Practice and Experience, 2022, 52, 619-635.	2.5	4
181	Resilient Scheduling Heuristics for Rigid Parallel Jobs. International Journal of Networking and Computing, 2021, 11, 2-26.	0.3	1

#	Article	IF	CITATIONS
182	Resilient Scheduling of Moldable Parallel Jobs to Cope With Silent Errors. IEEE Transactions on Computers, 2022, 71, 1696-1710.	2.4	4
183	Online Fault Classification in HPC Systems Through Machine Learning. Lecture Notes in Computer Science, 2019, , 3-16.	1.0	3
184	Towards a Fault-Tolerant, Scalable Implementation of GENE. Lecture Notes in Computational Science and Engineering, 2015, , 47-65.	0.1	7
186	An Approach for Ensuring Reliable Functioning of a Supercomputer Based on a Formal Model. Lecture Notes in Computer Science, 2016, , 12-22.	1.0	10
188	Lightweight and Accurate Silent Data Corruption Detection in Ordinary Differential Equation Solvers. Lecture Notes in Computer Science, 2016, , 644-656.	1.0	7
189	Self-awareness of Cloud Applications. , 2017, , 575-610.		4
190	Diagnosing Performance Variations in HPC Applications Using Machine Learning. Lecture Notes in Computer Science, 2017, , 355-373.	1.0	57
191	On the Resilience of Conjugate Gradient andÂMultigrid Methods to Node Failures. Lecture Notes in Computer Science, 2018, , 569-580.	1.0	4
192	The allscale framework architecture. Parallel Computing, 2020, 99, 102648.	1.3	1
193	Impact of Contextual Error Correction Techniques in CLAMR., 2020,,.		1
194	RAT: A Lightweight System-level Soft Error Mitigation Technique. , 2020, , .		6
195	<i>BinFI</i> ., 2019, , .		55
196	Detecting and reproducing error-code propagation bugs in MPI implementations. , 2020, , .		7
197	The Landscape of Exascale Research. ACM Computing Surveys, 2021, 53, 1-43.	16.1	36
198	A Methodology for Comparing the Reliability of GPU-Based and CPU-Based HPCs. ACM Computing Surveys, 2020, 53, 1-33.	16.1	3
199	Toward Exascale Resilience: 2014 update. Supercomputing Frontiers and Innovations, 2014, 1, .	0.5	86
202	F_Radish: Enhancing Silent Data Corruption Detection for Aerospace-Based Computing. Electronics (Switzerland), 2021, 10, 61.	1.8	3
203	Fault Tolerance for Lifeline-Based Global Load Balancing. Journal of Software Engineering and Applications, 2017, 10, 925-958.	0.8	6

#	Article	IF	CITATIONS
206	Understanding Soft Error Sensitivity of Deep Learning Models and Frameworks through Checkpoint Alteration. , 2021 , , .		3
207	CharacterizingÂandÂMitigatingÂSoftÂErrors in GPU DRAM. , 2021, , .		13
209	Analyzing the Robustness of HPC Applications Using a Fine-Grained Soft Error Fault Injection Tool. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2016, , 277-305.	0.5	0
210	Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs. Lecture Notes in Computational Science and Engineering, 2018, , 93-115.	0.1	O
212	FailAmp. Transactions on Architecture and Code Optimization, 2020, 16, 1-21.	1.6	0
213	Selective Protection for Sparse Iterative Solvers to Reduce the Resilience Overhead., 2020,,.		1
214	Towards a Model to Estimate the Reliability of Large-Scale Hybrid Supercomputers. Lecture Notes in Computer Science, 2020, , 37-51.	1.0	0
215	PLEXUS: A Pattern-Oriented Runtime System Architecture for Resilient Extreme-Scale High-Performance Computing Systems. , 2020, , .		O
216	Machine Learning Applied to Soft Error Assessment in Multicore Systems. , 2020, , 89-125.		0
217	Evaluation of a Failure Prediction Model for Large Scale Cloud Applications. Lecture Notes in Computer Science, 2020, , 321-327.	1.0	6
218	Efficient Soft Error Vulnerability Analysis Using Non-intrusive Fault Injection Techniques. IFIP Advances in Information and Communication Technology, 2020, , 115-137.	0.5	0
219	A Current Task-Based Programming Paradigms Analysis. Lecture Notes in Computer Science, 2020, , 203-216.	1.0	3
220	Insights into Multi-Layered Fault Propagation and Analysis in a Cloud Stack. , 2021, , .		1
221	PEPPA-X., 2021,,.		5
222	Soft Error Effects on Arm Microprocessors: Early Estimations versus Chip Measurements. IEEE Transactions on Computers, 2022, 71, 2358-2369.	2.4	19
223	Resilient Scheduling of Moldable Jobs on Failure-Prone Platforms. , 2020, , .		2
224	Models for Resilience Design Patterns. , 2020, , .		1
225	Doubt and Redundancy Kill Soft Errorsâ€"Towards Detection and Correction of Silent Data Corruption in Task-based Numerical Software. , 2021, , .		2

#	Article	IF	CITATIONS
226	Task-Level Resilience: Checkpointing vs. Supervision. International Journal of Networking and Computing, 2022, 12, 47-72.	0.3	2
227	FT-GCR: A fault-tolerant generalized conjugate residual elliptic solver. Journal of Computational Physics, 2022, 455, 110997.	1.9	1
229	Analysis of Job Failure and Prediction Model for Cloud Computing Using Machine Learning. Sensors, 2022, 22, 2035.	2.1	8
230	On Comparative Analysis of Advanced Omega Network and Irregular Advance Omega Network. , 2021, , .		0
231	Assessing the Use Cases of Persistent Memory in High-Performance Scientific Computing. , 2021, , .		2
232	Relaxed Replication for Energy Efficient and Resilient GPU Computing. , 2021, , .		1
233	Revisiting Symptom-Based Fault Tolerant Techniques against Soft Errors. Electronics (Switzerland), 2021, 10, 3028.	1.8	2
234	Al-Enabling Workloads on Large-Scale GPU-Accelerated System: Characterization, Opportunities, and Implications., 2022,,.		11
235	Assesment of soft error sensitivity of power flow analysis. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	0.3	0
237	A new fuzzy MLE-clustering approach based on object-to-group probabilistic distance measure: from anomaly detection to multi-fault classification in datacenter computational nodes. Journal of Ambient Intelligence and Humanized Computing, 0, , .	3.3	0
238	EXSCALATE: An Extreme-Scale Virtual Screening Platform for Drug Discovery Targeting Polypharmacology to Fight SARS-CoV-2. IEEE Transactions on Emerging Topics in Computing, 2023, 11, 170-181.	3.2	8
239	DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Physical Chemistry Chemical Physics, 2022, 24, 28700-28781.	1.3	91
240	PreF: Predicting job failure on supercomputers with job path and user behavior. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	1
241	Artificial Intelligence Enabled Effective Fault Prediction Techniques in Cloud Computing Environment for Improving Resource Optimization. Scientific Programming, 2022, 2022, 1-7.	0.5	1
242	Accurate FIT Rate Estimation Through High-Level Software Fault Injection. IEEE Transactions on Nuclear Science, 2022, 69, 2018-2026.	1.2	0
243	CMinx: A CMake Documentation Generator. Journal of Open Source Software, 2022, 7, 4680.	2.0	1
244	Checkpointing à la Young/Daly: An Overview. , 2022, , .		0
245	A Fault-Model-Relevant Classification of Consensus Mechanisms for MPI and HPC. International Journal of Parallel Programming, 0, , .	1.1	0

#	Article	IF	Citations
246	Calculation of the high-energy neutron flux for anticipating errors and recovery techniques in exascale supercomputer centres. Journal of Supercomputing, 2023, 79, 8205-8235.	2.4	2
247	Ensemble Classification With Noisy Real-Valued Base Functions. IEEE Journal on Selected Areas in Communications, 2023, 41, 1067-1080.	9.7	0
248	Anthropomorphic diagnosis of runtime hidden behaviors in OpenMP multi-threaded applications. Journal of Parallel and Distributed Computing, 2023, 177, 17-27.	2.7	1
249	Towards Precision-Aware Fault Tolerance Approaches for Mixed-Precision Applications. , 2022, , .		0
250	ReStore: In-Memory REplicated STORagE for Rapid Recovery in Fault-Tolerant Algorithms. , 2022, , .		0
251	Exploring Data Corruption Inside SZ. , 2022, , .		1
252	Characterizing Deep Learning Neural Network Failures Between Algorithmic Inaccuracy and Transient Hardware Faults., 2022,,.		1
253	Silent Data Errors: Sources, Detection, and Modeling. , 2023, , .		3
254	Anatomy of High-Performance GEMM with Online Fault Tolerance on GPUs., 2023,,.		2
257	Silent Data Corruptions: The Stealthy Saboteurs of Digital Integrity. , 2023, , .		2
258	Stragglers inÂDistributed Matrix Multiplication. Lecture Notes in Computer Science, 2023, , 74-96.	1.0	0
261	Recovering Detectable Uncorrectable Errors via Spatial Data Prediction., 2023,,.		0
262	Prodigy: Towards Unsupervised Anomaly Detection in Production HPC Systems. , 2023, , .		0
263	Visilience: An Interactive Visualization Framework for Resilience Analysis using Control-Flow Graph. , 2023, , .		O
264	PreFlush: Lightweight Hardware Prediction Mechanism for Cache Line Flush and Writeback., 2023,,.		0