One-way Einstein-Podolsky-Rosen Steering

Physical Review Letters 112,

DOI: 10.1103/physrevlett.112.200402

Citation Report

#	Article	IF	CITATIONS
1	Joint Measurability of Generalized Measurements Implies Classicality. Physical Review Letters, 2014, 113, 160403.	2.9	172
2	Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Physical Review A, 2014, 90, .	1.0	58
3	Role of thermal noise in tripartite quantum steering. Physical Review A, 2014, 90, .	1.0	27
4	Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Physical Review Letters, 2014, 113, 160402.	2.9	209
5	Local hidden–variable models for entangled quantum states. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 424002.	0.7	56
6	Optimal measurements for tests of Einstein-Podolsky-Rosen steering with no detection loophole using two-qubit Werner states. Physical Review A, 2014, 90, .	1.0	45
7	Certifying single-system steering for quantum-information processing. Physical Review A, 2015, 92, .	1.0	38
8	Hybrid Einstein-Podolsky-Rosen steering in an atom-optomechanical system. Physical Review A, 2015, 92,	1.0	18
9	Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2015, 115, 180502.	2.9	237
10	Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Physical Review A, 2015, 92, .	1.0	165
11	Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum systems. Physical Review A, 2015, 92, .	1.0	20
12	Linear monogamy of entanglement in three-qubit systems. Scientific Reports, 2015, 5, 16745.	1.6	13
13	Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering. Scientific Reports, 2015, 5, 12346.	1.6	11
14	Resource Theory of Steering. Physical Review X, 2015, 5, .	2.8	125
15	Experimental measurement-device-independent verification of quantum steering. Nature Communications, 2015, 6, 5886.	5.8	67
16	Necessary and Sufficient Quantum Information Characterization of Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2015, 114, 060404.	2.9	360
17	Quantification of Gaussian Quantum Steering. Physical Review Letters, 2015, 114, 060403.	2.9	264
18	Classifying Directional Gaussian Entanglement, Einstein-Podolsky-Rosen Steering, and Discord. Physical Review Letters, 2015, 114, 060402.	2.9	111

#	Article	IF	CITATIONS
19	Detection of quantum steering in multipartite continuous-variable Greenberger-Horne-Zeilinger–like states. Physical Review A, 2015, 91, .	1.0	20
20	Geometric Bell-like inequalities for steering. Physical Review A, 2015, 91, .	1.0	51
21	Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 135301.	0.7	39
22	Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces. Physical Review A, 2015, 91, .	1.0	49
23	Measurement incompatibility and Schr \tilde{A} \P dinger-Einstein-Podolsky-Rosen steering in a class of probabilistic theories. Journal of Mathematical Physics, 2015, 56, .	0.5	27
24	Local Hidden Variable Models for Entangled Quantum States Using Finite Shared Randomness. Physical Review Letters, 2015, 114, 120401.	2.9	25
25	Analog of the Clauser–Horne–Shimony–Holt inequality for steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A74.	0.9	76
26	Decoherence of Einstein–Podolsky–Rosen steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A82.	0.9	49
27	Asymmetric quantum network based on multipartite Einstein–Podolsky–Rosen steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A20.	0.9	4
28	Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots. Optics Express, 2015, 23, 21306.	1.7	6
29	Einstein–Podolsky–Rosen steering and the steering ellipsoid. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A40.	0.9	91
30	Optimal quantum violation of Clauser–Horne–Shimony–Holt like steering inequality. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 415302.	0.7	10
31	Bell's Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality. Scientific Reports, 2016, 6, 39063.	1.6	31
32	Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification. Physical Review A, 2016, 94, .	1.0	29
33	Steering Bell-diagonal states. Scientific Reports, 2016, 6, 22025.	1.6	37
34	Superactivation of quantum steering. Physical Review A, 2016, 94, .	1.0	25
35	Steering Maps and Their Application to Dimension-Bounded Steering. Physical Review Letters, 2016, 116, 090403.	2.9	35
36	All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal. Physical Review A, 2016, 94, .	1.0	37

#	Article	IF	Citations
37	Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle. Physical Review A, 2016, 93, .	1.0	46
38	Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Physical Review A, 2016, 93, .	1.0	115
39	Sufficient criterion for guaranteeing that a two-qubit state is unsteerable. Physical Review A, 2016, 93,	1.0	98
40	Gaussian quantum steering and its asymmetry in curved spacetime. Physical Review D, 2016, 93, .	1.6	39
41	Universal Steering Criteria. Physical Review Letters, 2016, 116, 070403.	2.9	55
42	Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality. Physical Review Letters, 2016, 116, 130401.	2.9	49
43	Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2016, 116, 160404.	2.9	155
44	Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2016, 116, 160403.	2.9	167
45	Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States. Physical Review Letters, 2016, 117, 190402.	2.9	55
46	Quantum steering of Gaussian states via non-Gaussian measurements. Scientific Reports, 2016, 6, 29729.	1.6	24
47	EPR Steering inequalities with Communication Assistance. Scientific Reports, 2016, 6, 21634.	1.6	12
48	Entanglement without hidden nonlocality. New Journal of Physics, 2016, 18, 113019.	1.2	16
49	Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Scientific Reports, 2017, 7, 39651.	1.6	49
50	Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications. Physical Review A, 2017, 95, .	1.0	119
51	Einstein-Podolsky-Rosen steering and quantum steering ellipsoids: Optimal two-qubit states and projective measurements. Physical Review A, 2017, 95, .	1.0	22
52	Dynamical Gaussian quantum steering in optomechanics. European Physical Journal D, 2017, 71, 1.	0.6	16
53	Quantum steering: a review with focus on semidefinite programming. Reports on Progress in Physics, 2017, 80, 024001.	8.1	293
54	Optimized detection of steering via linear criteria for arbitrary-dimensional states. Physical Review A, 2017, 95, .	1.0	7

#	Article	IF	CITATIONS
55	Controlled Asymmetry of Einstein-Podolsky-Rosen Steering with an Injected Nondegenerate Optical Parametric Oscillator. Physical Review Letters, 2017, 119, 160501.	2.9	28
56	Most incompatible measurements for robust steering tests. Physical Review A, 2017, 96, .	1.0	33
57	Swapping of Gaussian Einstein-Podolsky-Rosen steering. Physical Review A, 2017, 95, .	1.0	12
58	Interpreting the macroscopic pointer by analysing the elements of reality of a SchrĶdinger cat. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 41LT01.	0.7	12
59	Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Physical Review A, 2017, 95, .	1.0	24
60	Demonstration of Multisetting One-Way Einstein-Podolsky-Rosen Steering in Two-Qubit Systems. Physical Review Letters, 2017, 118, 140404.	2.9	85
61	Manipulating the direction of Einstein-Podolsky-Rosen steering. Physical Review A, 2017, 95, .	1.0	47
62	Effect of local noise for achieving nonlocal advantage of quantum coherence. Quantum Information Processing, 2017, 16, 1.	1.0	13
63	Recovering the lost steerability of quantum states within non-Markovian environments by utilizing quantum partially collapsing measurements. Laser Physics Letters, 2017, 14, 125204.	0.6	10
64	Quantum steerability based on joint measurability. Scientific Reports, 2017, 7, 15822.	1.6	5
65	Quantum behaviour of pumped and damped triangular Bose–Hubbard systems. Optics Communications, 2017, 405, 29-34.	1.0	2
66	Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. Physical Review Letters, 2017, 118, 230501.	2.9	101
67	Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario. Physical Review A, 2017, 95, .	1.0	15
68	Quantum steering in magnetic Heisenberg models at finite temperature. Europhysics Letters, 2017, 120, 60007.	0.7	10
69	Experimental nonlocal steering of Bohmian trajectories. Optics Express, 2017, 25, 14463.	1.7	19
70	Experimental simulation of a quantum channel without the rotating-wave approximation: testing quantum temporal steering. Optica, 2017, 4, 1065.	4.8	15
71	Cost of Einstein-Podolsky-Rosen steering in the context of extremal boxes. Physical Review A, 2018, 97, .	1.0	18
72	Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination. Npj Quantum Information, 2018, 4, .	2.8	61

#	Article	IF	CITATIONS
73	Chaos in quantum steering in high-dimensional systems. Physical Review A, 2018, 97, .	1.0	2
74	Deriving Einstein–Podolsky–Rosen steering inequalities from the few-body Abner Shimony inequalities. Modern Physics Letters A, 2018, 33, 1850064.	0.5	1
75	Quantification of quantum steering in a Gaussian Greenberger–Horne–Zeilinger state. Optics Communications, 2018, 421, 14-18.	1.0	9
76	The influence of Unruh effect on quantum steering for accelerated two-level detectors with different measurements. Annals of Physics, 2018, 390, 334-344.	1.0	21
77	Necessary condition for steerability of arbitrary two-qubit states with loss. Journal of Optics (United) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf !
78	Geometric steering criterion for two-qubit states. Physical Review A, 2018, 97, .	1.0	13
79	Experimental verification of multidimensional quantum steering. Optics Communications, 2018, 410, 956-960.	1.0	8
80	Generation of one-way Einstein–Podolsky–Rosen steering using interference-controlled asymmetric dissipation process. Annals of Physics, 2018, 388, 162-172.	1.0	7
81	Entanglement, nonlocality and multi-particle quantum correlations. AIP Conference Proceedings, $2018, \ldots$	0.3	1
82	Quantum correlations across two octaves from combined up- and down-conversion. Physical Review A, 2018, 97, .	1.0	13
83	Quantum Temporal Steering in a Dephasing Channel With Quantum Criticality. Annalen Der Physik, 2018, 530, 1700373.	0.9	7
84	Quantum behaviour of open pumped and damped Bose–Hubbard trimers. Laser Physics, 2018, 28, 015501.	0.6	3
85	Absolute non-violation of a three-setting steering inequality by two-qubit states. Quantum Information Processing, 2018, 17, 1.	1.0	10
86	Monogamy of Einsteinâ€Podolskyâ€Rosen Steering in the Background of an Asymptotically Flat Black Hole. Annalen Der Physik, 2018, 530, 1700261.	0.9	10
87	Geometric local-hidden-state model for some two-qubit states. Physical Review A, 2018, 98, .	1.0	5
88	Quantum steering in Heisenberg models with Dzyaloshinskii–Moriya interactions. Chinese Physics B, 2018, 27, 120304.	0.7	7
89	Revealing the quantitative relation between simultaneous correlations in complementary bases and quantum steering for two-qubit Bell diagonal states. Physical Review A, 2018, 98, .	1.0	1
90	Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light. Physical Review Letters, 2018, 121, 170403.	2.9	42

#	Article	IF	CITATIONS
91	Controlling stationary one-way steering via thermal effects in optomechanics. Physical Review A, 2018, 98, .	1.0	24
92	Satelliteâ€Based Quantum Steering under the Influence of Spacetime Curvature of the Earth. Advanced Quantum Technologies, 2018, 1, 1800072.	1.8	16
93	Characterization of the quantumness of unsteerable tripartite correlations. Annals of Physics, 2018, 398, 55-79.	1.0	3
94	Conclusive Experimental Demonstration of One-Way Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2018, 121, 100401.	2.9	56
95	Dynamics and Recovery of Genuine Multipartite Einstein–Podolsky–Rosen Steering and Genuine Multipartite Nonlocality for a Dissipative Dirac System via the Unruh Effect. Annalen Der Physik, 2018, 530, 1700442.	0.9	15
96	Operational characterization of quantumness of unsteerable bipartite states. Physical Review A, 2018, 97, .	1.0	7
97	Chained Einstein–Podolsky–Rosen steering inequalities with improved visibility. International Journal of Quantum Information, 2018, 16, 1850034.	0.6	1
98	Optical Rabi oscillations and EPR steering from asymmetrically pumped non-degenerate three wave mixing. Optics Communications, 2018, 427, 447-451.	1.0	0
99	Comparing Bell nonlocality and Einstein–Podolsky–Rosen steering based on the chained inequalities. Optics Communications, 2018, 425, 101-105.	1.0	2
100	Creation of quantum steering by interaction with a common bath. Physical Review A, 2018, 97, .	1.0	5
101	Einstein-Podolsky-Rosen steering, depth of steering, and planar spin squeezing in two-mode Bose-Einstein condensates. Physical Review A, 2018, 98, .	1.0	10
102	Creation of bipartite steering correlations by a fast damped auxiliary mode. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185501.	0.6	1
103	Algorithmic construction of local models for entangled quantum states: Optimization for two-qubit states. Physical Review A, 2018, 98, .	1.0	14
104	Quantum coherence of the spin-1 system under an XY spin chain with three-spin interaction. Solid State Communications, 2019, 300, 113696.	0.9	2
105	Dynamics of Einstein-Podolsky-Rosen Steering in Quantum Spin Environment. International Journal of Theoretical Physics, 2019, 58, 4069-4078.	0.5	1
106	Local-hidden-state models for T-states using finite shared randomness. Europhysics Letters, 2019, 127, 20007.	0.7	1
107	Restoration of Coherence by Local PT-Symmetric Operator. International Journal of Theoretical Physics, 2019, 58, 4184-4193.	0.5	1
108	Strong mechanical squeezing and optomechanical steering via continuous monitoring in optomechanical systems. Physical Review A, 2019, 100, .	1.0	9

#	Article	IF	CITATIONS
109	Role of maximally entangled states in the context of linear steering inequalities. Quantum Information Processing, 2019, 18 , 1 .	1.0	3
110	Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Physical Review A, 2019, 99, .	1.0	19
111	Geometry of Einstein-Podolsky-Rosen Correlations. Physical Review Letters, 2019, 122, 240401.	2.9	27
112	Einstein-Podolsky-Rosen steering and entanglement based on two-photon correlation for bipartite Gaussian states. Physical Review A, 2019, 99, .	1.0	6
113	Local-hidden-state models for Bell diagonal states and beyond. Physical Review A, 2019, 99, .	1.0	6
114	The Einstein–Podolsky–Rosen Steering and Its Certification. Entropy, 2019, 21, 422.	1.1	8
115	Detecting Einstein-Podolsky-Rosen steering through entanglement detection. Physical Review A, 2019, 99, .	1.0	18
116	Activating the Violation of Steering Inequality for Twoâ€Qubit X States. Annalen Der Physik, 2019, 531, 1800495.	0.9	0
117	Directional steering as a sufficient and necessary condition for Gaussian entanglement swapping: Application to distant optomechanical oscillators. Physical Review A, 2019, 99, .	1.0	6
118	Einstein–Podolsky–Rosen steering in critical systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 085501.	0.6	4
119	Effect of PT-Symmetric Operator on Coherence Under the Non-Markovian Environments. International Journal of Theoretical Physics, 2019, 58, 1874-1881.	0.5	12
120	Several trade off features of quantum steering in distributed scenario. European Physical Journal D, 2019, 73, 1.	0.6	3
121	Manipulation and enhancement of asymmetric steering via interference effects induced by closed-loop coupling. Physical Review A, 2019, 99, .	1.0	34
122	Steering evolution of two-mode Gaussian states in noisy environments. International Journal of Quantum Information, 2019, 17, 1950030.	0.6	1
123	Scaling of Einstein–Podolsky–Rosen steering in spin chains. Physica Scripta, 2020, 95, 035105.	1.2	4
124	Diagnosing steerability of a bipartite state with the nonsteering threshold. Physical Review A, 2020, 102, .	1.0	3
125	Hierarchy of genuine multipartite quantum correlations. Quantum Information Processing, 2020, $19, 1$.	1.0	5
126	Improving of steering and nonlocality via local filtering operation in Heisenberg XY model. Modern Physics Letters A, 2020, 35, 2050233.	0.5	3

#	ARTICLE	IF	CITATIONS
127	Experimental demonstration of measurement-device-independent measure of quantum steering. Npj Quantum Information, 2020, 6 , .	2.8	24
128	Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes. Physical Review A, 2020, 101, .	1.0	13
129	Necessary conditions for steerability of two qubits from consideration of local operations. Physical Review A, 2020, 101 , .	1.0	6
130	Generation of tripartite Einstein–Podolsky–Rosen steering by cascaded nonlinear process*. Chinese Physics B, 2020, 29, 050301.	0.7	8
131	Quantum steering. Reviews of Modern Physics, 2020, 92, .	16.4	315
132	Quantum steering for continuous variable in de Sitter space. European Physical Journal C, 2020, 80, 1.	1.4	6
133	Experimental demonstration of one-sided device-independent self-testing of any pure two-qubit entangled state. Physical Review A, 2020, 101, .	1.0	13
134	Quantum steering and its asymmetry of open quantum systems in accelerated frames. European Physical Journal Plus, 2020, 135, 1.	1.2	6
135	Demonstration of monogamy laws for Gaussian steering in optomechanics. European Physical Journal Plus, 2020, 135, 1.	1.2	3
136	Quantum Decoherence of Gaussian Steering and Entanglement in Hawking Radiation and Thermal Bath. International Journal of Theoretical Physics, 2020, 59, 861-872.	0.5	5
137	Quantum steering between two accelerated parties. Laser Physics Letters, 2020, 17, 035202.	0.6	5
138	Einstein-Podolsky-Rosen steering and nonlocality in quantum dot systems. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114412.	1.3	3
139	Quantum Resources in Heisenberg XX Model Under Noisy Environment. International Journal of Theoretical Physics, 2021, 60, 2412-2422.	0.5	0
140	Continuous variable tripartite entanglement and steering using a third-order nonlinear optical interaction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 371.	0.9	8
141	Quantum steering based on cascaded four-wave mixing processes. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 160301.	0.2	1
142	Nonlinear steering criteria for arbitrary two-qubit quantum systems. Quantum Information Processing, 2021, 20, 1.	1.0	2
143	Einstein–Podolsky–Rosen steering under asymmetry noise channels. Laser Physics Letters, 2021, 18, 045201.	0.6	1
144	Quantum temporal steering in a noise channel with topological characterization. European Physical Journal D, 2021, 75, 1.	0.6	3

#	ARTICLE	IF	CITATIONS
145	Manipulation of the asymmetric Einstein–Podolsky–Rosen steering via coherent population transfer. Laser Physics Letters, 2021, 18, 065204.	0.6	1
146	Steering sharing for a two-qubit system via weak measurements. Physical Review A, 2021, 103, .	1.0	9
147	Asymmetry quantum steering of spins in an inhomogeneous magnetic field. Laser Physics, 2021, 31, 085203.	0.6	2
148	Manipulation of Oneâ€Way Gaussian Steering via Quantum Correlated Microwave Fields. Annalen Der Physik, 2021, 533, 2100156.	0.9	4
149	Einstein–Podolsky–Rosen steering testing via quantum measurement. Laser Physics Letters, 2021, 18, 105202.	0.6	1
150	Averaged fidelity-based steering criteria. Physical Review A, 2021, 103, .	1.0	4
151	Detecting EPR steering via two classes of local measurements. Quantum Information Processing, 2020, 19, 1.	1.0	137
152	Estimating the privacy of quantum-random numbers. New Journal of Physics, 2020, 22, 093063.	1.2	2
153	Versatile multipartite Einstein-Podolsky-Rosen steering via a quantum frequency comb. Physical Review Research, 2020, 2, .	1.3	27
154	Quantum steering of a two-mode Gaussian state using a quantum beat laser. Applied Optics, 2019, 58, 7014.	0.9	9
155	Tunable asymmetric Einstein–Podolsky–Rosen steering of microwave photons in superconducting circuits. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 337.	0.9	4
156	Tripartite Einstein-Podolsky-Rosen steering with linear and nonlinear beamsplitters in four-wave mixing of Rubidium atoms. Optics Express, 2019, 27, 33070.	1.7	16
157	Genuine tripartite Einstein-Podolsky-Rosen steering in the cascaded nonlinear processes of third-harmonic generation. Optics Express, 2020, 28, 2722.	1.7	18
158	Better local hidden variable models for two-qubit overner states and an upper bound on the Grothendieck constant <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>K</mml:mi><mml:mi></mml:mi>o></mml:msub></mml:math> .	> < /ത.ത ി:ms	subs7k mml:m
159	Quantum - the Open Journal for Quantum Science, 0, 1, 3. Network Quantum Steering. Physical Review Letters, 2021, 127, 170405.	2.9	22
160	Asymmetric steerability of quantum equilibrium and nonequilibrium steady states through entanglement detection. Physical Review A, 2021, 104, .	1.0	4
161	Entanglement cost for steering assemblages. Physical Review A, 2021, 104, .	1.0	1
162	Effects of initial states on the quantum correlation in Bose-Hubbard model. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 220301.	0.2	0

#	Article	IF	CITATIONS
163	Quantifying Asymmetric Einstein-Podolsky-Rosen Steering. , 2017, , .		0
164	Observation of One-way Einstein-Podolsky-Rosen steering. , 2018, , .		0
165	Environmental Effects on Nonlocal Correlations. Quanta, 2019, 8, 57-67.	0.2	1
166	Einstein-Podolsky-Rosen Steering for Mixed Entangled Coherent States. Entropy, 2021, 23, 1442.	1.1	O
167	Gaussian–Rényi-2 correlations hierarchy in optomechanics. International Journal of Quantum Information, 2020, 18, 2150004.	0.6	0
168	Asymmetric Einstein–Podolsky–Rosen steering manipulating among multipartite entangled states. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2920.	0.9	2
169	Dynamics of Einstein–Podolsky–Rosen steering in Heisenberg model under decoherence. Quantum Information Processing, 2021, 20, 1.	1.0	3
170	Exploiting Gaussian steering to probe non-Markovianity due to the interaction with a structured environment. Physical Review A, 2021, 104, .	1.0	3
171	Einstein-Podolsky-Rosen steering based on semisupervised machine learning. Physical Review A, 2021, 104, .	1.0	8
172	Cyclic Einstein-Podolsky-Rosen steering. Physical Review Research, 2021, 3, .	1.3	4
173	Remote asymmetric Einstein-Podolsky-Rosen steering of magnons via a single pathway of Bogoliubov dissipation. Physical Review Research, 2022, 4, .	1.3	21
174	Reliable experimental certification of one-way Einstein-Podolsky-Rosen steering. Physical Review Research, 2022, 4, .	1.3	9
175	Demonstrating Shareability of Multipartite Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2022, 128, 120402.	2.9	17
176	Robust method for certifying genuine high-dimensional quantum steering with multimeasurement settings. Optica, 2022, 9, 473.	4.8	7
177	Conditions for experimental detection of one-way quantum steering in a three-mode optomechanical system. AEJ - Alexandria Engineering Journal, 2022, 61, 9297-9304.	3.4	2
178	Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states. Chinese Physics B, O, , .	0.7	2
179	Unidirectional Gaussian Oneâ€Way Steering. Annalen Der Physik, 2022, 534, .	0.9	4
180	Asymmetric Quantum Steering Generated by Triple-Photon Down-Conversion Process With Injected Signals. Frontiers in Physics, 0, 10, .	1.0	2

#	Article	IF	CITATIONS
181	Two-colour high-purity Einstein-Podolsky-Rosen photonic state. Nature Communications, 2022, 13, .	5.8	3
182	Characterizing Bell nonlocality and EPR steerability with quantum magic squares. Quantum Information Processing, 2022, 21, .	1.0	1
183	Quantum Steering: Practical Challenges and Future Directions. PRX Quantum, 2022, 3, .	3.5	24
184	Complete classification of steerability under local filters and its relation with measurement incompatibility. Nature Communications, 2022, 13, .	5.8	9
185	Detecting Tripartite Steering via Quantum Entanglement. Entropy, 2022, 24, 1297.	1.1	1
186	Cooperative-effect-induced one-way steering in open cavity magnonics. Npj Quantum Information, 2022, 8, .	2.8	15
187	One-way Einstein-Podolsky-Rosen steering beyond qubits. Physical Review A, 2022, 106, .	1.0	4
188	Detecting Einstein-Podolsky-Rosen steering via correlation matrices. Physical Review A, 2022, 106, .	1.0	5
189	Identifying quantum correlations using explicit $SO(3)$ to $SU(2)$ maps. Quantum Information Processing, 2022, 21, .	1.0	1
190	Manipulation and enhancement of asymmetric steering via down-converted nondegenerate photons. AAPPS Bulletin, 2022, 32, .	2.7	2
191	Manipulating the quantum steering direction with sequential unsharp measurements. Physical Review A, 2022, 106, .	1.0	3
192	Improving Steering and Entanglement by Local Filtering Operation under Noisy Channels. Journal of the Physical Society of Japan, 2022, 91, .	0.7	0
193	Detecting the genuine multipartite two-way steerability with linear steering inequalities. Quantum Information Processing, 2022, 21, .	1.0	2
194	Quantum Battery Based on Hybrid Field Charging. Entropy, 2022, 24, 1821.	1.1	0
195	Enhancement of Steady Quantum Entanglement and Directional Controllability of Quantum Steering in Cavity Magnetic Hybrid Systems. Annalen Der Physik, 2023, 535, .	0.9	3
196	Genuine quadripartite steering in three-photon spontaneous parametric down-conversion. Physical Review A, 2022, 106, .	1.0	2
197	Manipulation and enhancement of Einstein-Podolsky-Rosen steering between two mechanical modes generated by two Bogoliubov dissipation pathways. Physical Review Research, 2023, 5, .	1.3	6
198	Steerability criteria based on Heisenberg–Weyl observables. Journal of Physics A: Mathematical and Theoretical, 2023, 56, 115305.	0.7	1

#	Article	IF	CITATIONS
199	Dynamics of multipartite quantum steering for different types of decoherence channels. Scientific Reports, 2023 , 13 , .	1.6	2
200	Optimization of tripartite quantum steering inequalities via machine learning. Quantum Information Processing, 2023, 22, .	1.0	0
201	Reliable experimental manipulation of quantum steering direction. Optics Express, 2023, 31, 14771.	1.7	0