A white organic light-emitting diode with ultra-high collection of the efficiency, and extremely low efficiency roll-off

Applied Physics Letters 105, DOI: 10.1063/1.4890217

Citation Report

#	Article	IF	CITATIONS
1	Modulating dual-wavelength multiple quantum wells in white light emitting diodes to suppress efficiency droop and improve color rendering index. Journal of Applied Physics, 2015, 118, 145702.	1.1	7
2	Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes. Journal of Applied Physics, 2015, 118, .	1.1	8
3	Carrier Modulation Layer-Enhanced Organic Light-Emitting Diodes. Molecules, 2015, 20, 13005-13030.	1.7	40
4	Efficient single-emitting layer hybrid white organic light-emitting diodes with low efficiency roll-off, stable color and extremely high luminance. Journal of Industrial and Engineering Chemistry, 2015, 30, 85-91.	2.9	20
5	Harnessing charge and exciton distribution towards extremely high performance: the critical role of guests in single-emitting-layer white OLEDs. Materials Horizons, 2015, 2, 536-544.	6.4	48
6	Fabrication of cyanine dye thin films grown by a layer-by-layer method. Materials Research Express, 2015, 2, 076402.	0.8	4
7	Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index. Journal of Alloys and Compounds, 2015, 647, 837-843.	2.8	24
8	High-performance hybrid white organic light-emitting diodes employing p-type interlayers. Journal of Industrial and Engineering Chemistry, 2015, 27, 240-244.	2.9	19
9	Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers. Organic Electronics, 2015, 26, 451-457.	1.4	53
10	An ideal host-guest system to accomplish high-performance greenish yellow and hybrid white organic light-emitting diodes. Organic Electronics, 2015, 27, 29-34.	1.4	28
11	Manipulation of Charge and Exciton Distribution Based on Blue Aggregationâ€Induced Emission Fluorophors: A Novel Concept to Achieve Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 776-783.	7.8	194
12	Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities. Applied Physics Letters, 2016, 109, .	1.5	9
13	Extremely high-efficiency and ultrasimplified hybrid white organic light-emitting diodes exploiting double multifunctional blue emitting layers. Light: Science and Applications, 2016, 5, e16137-e16137.	7.7	103
14	Management of Singlet and Triplet Excitons: A Universal Approach to Highâ€Efficiency All Fluorescent WOLEDs with Reduced Efficiency Rollâ€Off Using a Conventional Fluorescent Emitter. Advanced Optical Materials, 2016, 4, 1067-1074.	3.6	84
15	Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Rollâ€Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter. Advanced Functional Materials, 2016, 26, 3306-3313.	7.8	154
16	Manipulation of exciton distribution for high-performance fluorescent/phosphorescent hybrid white organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7668-7683.	2.7	95
17	Precise Exciton Allocation for Highly Efficient White Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Advanced Optical Materials, 2017, 5, 1700415.	3.6	95
18	Ultra-simple white organic light-emitting diodes employing only two complementary colors with color-rendering index beyond 90. RSC Advances, 2017, 7, 49769-49776.	1.7	13

	CITATION	KEPORT	
#	Article	IF	CITATIONS
19	Strategies to Achieve High-Performance White Organic Light-Emitting Diodes. Materials, 2017, 10, 1378.	1.3	43
20	Efficient co-host exciplex emission for white organic light-emitting diodes. Journal of Physics and Chemistry of Solids, 2018, 119, 276-280.	1.9	1
21	Combining emissions of hole- and electron-transporting layers simultaneously for simple blue and white organic light-emitting diodes with superior device performance. Journal of Materials Chemistry C, 2018, 6, 1853-1862.	2.7	32
22	Solutionâ€Processed Warm White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescence Dendrimer. ChemPlusChem, 2018, 83, 274-278.	1.3	21
23	White Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence Emitters. , 0, , .		1
24	Identification of Absorption Bands of Monomers and Aggregates in a Layer of Cyanine Dye and Determination of the Orientation of Molecules. Optics and Spectroscopy (English Translation of) Tj ETQq1 1 0	.784 @1 24 rgBT	b verlock
25	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34
26	Precise manipulation of the carrier recombination zone: a universal novel device structure for highly efficient monochrome and white phosphorescent organic light-emitting diodes with extremely small efficiency roll-off. Journal of Materials Chemistry C, 2018, 6, 8122-8134.	2.7	49
27	High light-quality OLEDs with a wet-processed single emissive layer. Scientific Reports, 2018, 8, 7133.	1.6	19
28	Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2018, 8, 1449.	1.3	37
29	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
30	Emergence of Flexible White Organic Light-Emitting Diodes. Polymers, 2019, 11, 384.	2.0	42
31	High Efficiency and Low Rollâ€Off Hybrid WOLEDs by Using a Deep Blue Aggregationâ€Induced Emission Material Simultaneously as Blue Emitter and Phosphor Host. Advanced Optical Materials, 2019, 7, 1801539.	3.6	23
32	Recent Developments in Tandem White Organic Light-Emitting Diodes. Molecules, 2019, 24, 151.	1.7	22
33	Dopingâ€Free White Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1596-1610.	2.9	11
34	White organic light emitting diodes based on localized surface plasmon resonance of Au nanoparticles and neat thermally activated delayed fluorescence and phosphorescence emission layers. Journal of Luminescence, 2020, 220, 117022.	1.5	7
35	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10
36	Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials, 2021, 11, 103.	1.9	15

#	Article	IF	CITATIONS
37	Multiple emission mechanism based four-peak tuning strategy to achieve ultra-high color rendering index and chromatic-stable white organic light emitting diodes. Optical Materials, 2021, 113, 110587.	1.7	2
38	Improving the color-rendering index of a tandem warm white organic light-emitting device by employing a simple fabrication process. Optics Letters, 2019, 44, 931.	1.7	11
39	Green solvent assisted preparation of one-dimensional CsPbBr ₃ nanocrystals with a controllable morphology for cyan-emitting applications. CrystEngComm, 2021, 23, 7805-7812.	1.3	2
40	High CRI RGB Laser Lighting With 11-Gb/s WDM Link Using Off-the-Shelf Phosphor Plate. IEEE Photonics Technology Letters, 2022, 34, 97-100.	1.3	7
41	Ytterbium oxide electron injection interface in organic light-emitting diode. Applied Physics Letters, 2022, 120, .	1.5	3
42	Squaraine Dyes Derived from Indolenine and Benzo[<i>e</i>]indole as Potential Fluorescent Probes for HSA Detection and Antifungal Agents. Photochemistry and Photobiology, 2022, 98, 1402-1417.	1.3	7
43	Approach for Designing Human-Centered and Energy Saving Lighting Luminaires. Photonics, 2022, 9, 726.	0.9	3

CITATION REPORT