The Canarypox Virus Vector ALVAC Induces Distinct Cy Vaccinia Virus-Based Vectors MVA and NYVAC in Rhest

Journal of Virology 88, 1809-1814 DOI: 10.1128/jvi.02386-13

Citation Report

#	Article	IF	CITATIONS
1	The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development. Expert Review of Vaccines, 2014, 13, 1489-1500.	4.4	28
2	HIV-1 vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 1734-1746.	3.3	30
3	Different HIV pox viral vector-based vaccines and adjuvants can induce unique antigen presenting cells that modulate CD8 T cell avidity. Virology, 2014, 468-470, 479-489.	2.4	29
4	Nonneutralizing Functional Antibodies: a New "Old―Paradigm for HIV Vaccines. Vaccine Journal, 2014, 21, 1023-1036.	3.1	107
5	Construction and characterization of novel fowlpox virus shuttle vectors. Virus Research, 2015, 197, 59-66.	2.2	10
6	A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine. Frontiers in Immunology, 2015, 6, 124.	4.8	26
7	Codelivery of Envelope Protein in Alum with MVA Vaccine Induces CXCR3-Biased CXCR5+ and CXCR5â^' CD4 T Cell Responses in Rhesus Macaques. Journal of Immunology, 2015, 195, 994-1005.	0.8	50
8	Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors. Journal of Virology, 2015, 89, 1512-1522.	3.4	47
9	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	3.4	35
10	Six host-range restricted poxviruses from three genera induce distinct gene expression profiles in an in vivo mouse model. BMC Genomics, 2015, 16, 510.	2.8	12
11	Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis. Vaccine, 2015, 33, 4349-4358.	3.8	10
12	Lessons from the RV144 Thai Phase III HIV-1 Vaccine Trial and the Search for Correlates of Protection. Annual Review of Medicine, 2015, 66, 423-437.	12.2	150
13	Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles. Journal of Virology, 2015, 89, 970-988.	3.4	30
14	Protection of mice against the highly pathogenic VVIHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity. Antiviral Research, 2016, 134, 182-191.	4.1	3
15	Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro. Journal of Translational Medicine, 2016, 14, 241.	4.4	12
16	High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques. Journal of Immunology, 2016, 197, 3586-3596.	0.8	16
17	Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells. Journal of Immunology, 2016, 197, 1809-1822.	0.8	41
18	Lessons from HIV-1 vaccine efficacy trials. Current Opinion in HIV and AIDS, 2016, 11, 607-613.	3.8	21

CITATION REPORT

#	Article	IF	CITATIONS
19	HIV Susceptibility of human antigen-specific CD4 T cells in AIDS pathogenesis and vaccine response. Expert Review of Vaccines, 2016, 15, 709-717.	4.4	7
20	New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Review of Vaccines, 2016, 15, 1015-1027.	4.4	9
21	Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Research, 2016, 216, 1-15.	2.2	1
22	A novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Scientific Reports, 2017, 7, 1057.	3.3	10
23	Distinct Roles of Vaccinia Virus NF-κB Inhibitor Proteins A52, B15, and K7 in the Immune Response. Journal of Virology, 2017, 91, .	3.4	31
24	Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16–STING–Type I IFN Pathway and AIM2 Sensor. Journal of Immunology, 2017, 199, 3293-3305.	0.8	33
25	Novel Concepts for HIV Vaccine Vector Design. MSphere, 2017, 2, .	2.9	11
26	Prime and Boost Vaccination Elicit a Distinct Innate Myeloid Cell Immune Response. Scientific Reports, 2018, 8, 3087.	3.3	35
27	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	2.4	29
28	A System Based-Approach to Examine Cytokine Response in Poxvirus-Infected Macrophages. Viruses, 2018, 10, 692.	3.3	8
29	CXCR3+ T Follicular Helper Cells Induced by Co-Administration of RTS,S/AS01B and Viral-Vectored Vaccines Are Associated With Reduced Immunogenicity and Efficacy Against Malaria. Frontiers in Immunology, 2018, 9, 1660.	4.8	26
30	The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Frontiers in Immunology, 2018, 9, 2052.	4.8	18
31	Oncolytic Viruses for Canine Cancer Treatment. Cancers, 2018, 10, 404.	3.7	31
32	HIV vaccine candidate activation of hypoxia and the inflammasome in CD14+ monocytes is associated with a decreased risk of SIVmac251 acquisition. Nature Medicine, 2018, 24, 847-856.	30.7	65
33	The 135 Gene of Goatpox Virus Encodes an Inhibitor of NF-κB and Apoptosis and May Serve as an Improved Insertion Site To Generate Vectored Live Vaccine. Journal of Virology, 2018, 92, .	3.4	8
34	Advances in HIV-1 Vaccine Development. Viruses, 2018, 10, 167.	3.3	56
35	V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines, 2019, 7, 82.	4.4	11
36	Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. Current Immunology Reviews, 2019, 15, 102-122.	1.2	24

CITATION REPORT

#	Article	IF	CITATIONS
37	Myeloid Cell Crosstalk Regulates the Efficacy of the DNA/ALVAC/gp120 HIV Vaccine Candidate. Frontiers in Immunology, 2019, 10, 1072.	4.8	15
38	ALVAC-HIV B/C candidate HIV vaccine efficacy dependent on neutralization profile of challenge virus and adjuvant dose and type. PLoS Pathogens, 2019, 15, e1008121.	4.7	19
39	Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines, 2020, 8, 680.	4.4	50
40	A Zigzag but Upward Way to Develop an HIV-1 Vaccine. Vaccines, 2020, 8, 511.	4.4	5
41	Myeloid Cell-Mediated Trained Innate Immunity in Mucosal AIDS Vaccine Development. Frontiers in Immunology, 2020, 11, 315.	4.8	14
42	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	4.7	14
43	Expression of CD40L by the ALVAC-Simian Immunodeficiency Virus Vector Abrogates T Cell Responses in Macaques. Journal of Virology, 2020, 94, .	3.4	8
44	Innate immune signatures to a partially-efficacious HIV vaccine predict correlates of HIV-1 infection risk. PLoS Pathogens, 2021, 17, e1009363.	4.7	19
45	The impact of MDSCs on the efficacy of preventive and therapeutic HIV vaccines. Cellular Immunology, 2021, 369, 104440.	3.0	6
46	Distinct biomarker signatures in HIV acute infection associate with viral dynamics and reservoir size. JCI Insight, 2018, 3, .	5.0	32
47	Advancements in the Growth and Construction of Recombinant Lumpy Skin Disease Virus (LSDV) for Use as a Vaccine Vector. Vaccines, 2021, 9, 1131.	4.4	9
48	Early Pro-Inflammatory Signal and T-Cell Activation Associate With Vaccine-Induced Anti-Vaccinia Protective Neutralizing Antibodies. Frontiers in Immunology, 2021, 12, 737487.	4.8	2
49	Updates on the use of vaccines in dermatological conditions. Indian Journal of Dermatology, Venereology and Leprology, 2018, 84, 388.	0.6	0
50	What Is Required to Develop a Viral Vector Vaccine: Key Components of Vaccine-Induced Immune Responses. , 2021, , 13-19.		0
51	Nipah Virus. Livestock Diseases and Management, 2020, , 69-79.	0.5	0
52	New prospects for a preventive HIV-1 vaccine. Journal of Virus Eradication, 2015, 1, 78-88.	0.5	1
53	Sequence and vector shapes vaccine induced antibody effector functions in HIV vaccine trials. PLoS Pathogens, 2021, 17, e1010016.	4.7	1
54	Ex Vivo Evaluation of Mucosal Responses to Vaccination with ALVAC and AIDSVAX of Non-Human Primates. Vaccines, 2022, 10, 187.	4.4	2

(ITATION REDO	DT

#	Article	IF	CITATIONS
58	HIV vaccine candidate efficacy in female macaques mediated by cAMP-dependent efferocytosis and V2-specific ADCC. Nature Communications, 2023, 14, .	12.8	8
59	Nano-vaccines for gene delivery against HIV-1 infection. Expert Review of Vaccines, 2023, 22, 315-326.	4.4	1
60	Viral vector delivered immunogen focuses HIV-1 antibody specificity and increases durability of the circulating antibody recall response. PLoS Pathogens, 2023, 19, e1011359.	4.7	0
61	Human Immunodeficiency Virus Vaccines. , 2023, , 458-483.e15.		Ο
62	Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses, 2024, 16, 368.	3.3	0