Mesenchymal Stromal Cells MediateAspergillusHyphal Inflammation by Inhibition of the Th17 Signaling Pathw

Stem Cells Translational Medicine

3, 194-205

DOI: 10.5966/sctm.2013-0061

Citation Report

#	Article	IF	CITATIONS
1	Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplantation Research, 2014, 3, 19.	1.5	52
2	Effects of bone marrow mononuclear cells from healthy or ovalbumin-induced lung inflammation donors on recipient allergic asthma mice. Stem Cell Research and Therapy, 2014, 5, 108.	5.5	23
3	Stem cells in animal asthma models: a systematic review. Cytotherapy, 2014, 16, 1629-1642.	0.7	19
4	Human Mesenchymal Stem Cells Resolve Airway Inflammation, Hyperreactivity, and Histopathology in a Mouse Model of Occupational Asthma. Stem Cells and Development, 2014, 23, 2352-2363.	2.1	22
5	Mesenchymal Stem Cells — Their Antimicrobial Effects and Their Promising Future Role as Novel Therapies of Infectious Complications in High Risk Patients. , 0, , .		8
6	Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunology Letters, 2015, 168, 208-214.	2.5	71
7	Freshly Thawed and Continuously Cultured Human Bone Marrow-Derived Mesenchymal Stromal Cells Comparably Ameliorate Allergic Airways Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 615-624.	3.3	71
8	Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates <i>Aspergillus</i> Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 1302-1316.	3.3	191
9	Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Research and Therapy, 2015, 6, 3.	5.5	48
10	Immunomodulation of Airway Epithelium Cell Activation by Mesenchymal Stromal Cells Ameliorates House Dust Mite–Induced Airway Inflammation in Mice. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 615-624.	2.9	36
11	CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Translational Medicine, 2016, 5, 488-499.	3.3	27
12	Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?. Stem Cell Research and Therapy, 2016, 7, 53.	5.5	98
13	Intratracheal therapy with autologous bone marrow-derived mononuclear cells reduces airway inflammation in horses with recurrent airway obstruction. Respiratory Physiology and Neurobiology, 2016, 232, 35-42.	1.6	24
14	Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis. Stem Cell Research and Therapy, 2016, 7, 43.	5.5	36
15	Immunomodulatory effect of mesenchymal stem cells on the immune response of macrophages stimulated by <i>Aspergillus fumigatus</i> conidia. Medical Mycology, 2016, 54, 377-383.	0.7	10
16	The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents?. Clinical and Experimental Immunology, 2017, 188, 1-11.	2.6	65
17	Bone Marrow, Adipose, and Lung Tissue-Derived Murine Mesenchymal Stromal Cells Release Different Mediators and Differentially Affect Airway and Lung Parenchyma in Experimental Asthma. Stem Cells Translational Medicine, 2017, 6, 1557-1567.	3.3	74
18	Effects of human umbilical cord blood mononuclear cells on respiratory system mechanics in a murine model of neonatal lung injury. Experimental Lung Research, 2017, 43, 66-81.	1.2	13

#	Article	IF	CITATIONS
19	Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. Stem Cells in Clinical Applications, 2017, , 77-117.	0.4	1
20	Placenta-derived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Molecular Medicine Reports, 2017, 16, 8137-8145.	2.4	30
21	Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research and Therapy, 2017, 8, 151.	5.5	110
22	The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2017, 3, 55.	3.5	44
23	Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Neglected Tropical Diseases, 2017, 11, e0006006.	3.0	8
24	Stem-cell extracellular vesicles and lung repair. Stem Cell Investigation, 2017, 4, 78-78.	3.0	39
25	Bone marrow–derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response. Medical Mycology, 2018, 56, 884-895.	0.7	14
26	Therapeutic administration of bone marrowâ€derived mesenchymal stromal cells reduces airway inflammation without upâ€regulating Tregs in experimental asthma. Clinical and Experimental Allergy, 2018, 48, 205-216.	2.9	34
27	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.9	59
28	hMSCs as an alternative therapeutic option for asthma with neutrophil mediated inflammation. Experimental and Molecular Medicine, 2018, 50, 1-2.	7.7	3
29	Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Research and Therapy, 2018, 9, 147.	5.5	26
30	Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Frontiers in Immunology, 2018, 9, 1147.	4.8	36
31	Airway mycosis in allergic airway disease. Advances in Immunology, 2019, 142, 85-140.	2.2	29
32	Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Translational Medicine, 2019, 8, 301-312.	3.3	40
33	Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: A systematic review and meta-analysis. Pulmonary Pharmacology and Therapeutics, 2019, 54, 39-52.	2.6	27
34	The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14, 31-39.	2.5	106
35	Mesenchymal stem cells in allergic diseases: Current status. Allergology International, 2020, 69, 35-45.	3.3	37
36	Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Translational Medicine, 2020, 9, 250-260.	3.3	34

#	Article	IF	CITATIONS
37	Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Research and Therapy, 2020, 11, 400.	5.5	24
38	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	2.9	20
39	A narrative review of research advances in mesenchymal stem cell therapy for asthma. Annals of Translational Medicine, 2020, 8, 1461-1461.	1.7	11
40	Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma. Stem Cell Research and Therapy, 2020, 11, 167.	5.5	14
41	Medicinal signaling cells: A potential antimicrobial drug store. Journal of Cellular Physiology, 2020, 235, 7731-7746.	4.1	18
42	Mesenchymal Stromal Cell-Based Therapy: A Promising Approach for Severe COVID-19. Cell Transplantation, 2021, 30, 096368972199545.	2.5	13
43	Emerging Cell-Based Therapies in Chronic Lung Diseases: What About Asthma?. Frontiers in Pharmacology, 2021, 12, 648506.	3.5	3
44	Hematopoietic and mesenchymal stromal cells: New immunological roles during fungal infections. Stem Cells and Development, 2021, 30, 1049-1055.	2.1	1
45	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1
46	Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. , 2019, , 131-152.		15
47	Evaluation of Human MSCs Treatment Frequency on Airway Inflammation in a Mouse Model of Acute Asthma. Journal of Korean Medical Science, 2020, 35, e188.	2.5	6
48	Newer Horizon of Mesenchymal Stem Cell–Based Therapy in the Management of SARS-CoV-2–Associated Mucormycosis: A Safe Hope for Future Medicine. Frontiers in Microbiology, 2021, 12, 738983.	3.5	2
49	Challenges of Cell Therapy for Lung Diseases and Critical Illnesses. Pancreatic Islet Biology, 2015, , 93-112.	0.3	0
50	Regenerating the Respiratory Tract. Pancreatic Islet Biology, 2015, , 289-307.	0.3	0
51	Role of Progenitors in Pulmonary Fibrosis and Asthma. Pancreatic Islet Biology, 2015, , 71-91.	0.3	0
52	The Inflammatory Environment and Its Effects on Mesenchymal Stem/Stromal Cells. , 2017, , 449-474.		0
53	Bone Marrow Mesenchymal Stem Cells Regulate Coagulation and Inflammation Together in Methotrexate Induced Lung Injury Rat Model. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	1
54	Efecto inmunodulador y microbicida de las células mesenquimales estromales obtenidas de médula ósea. Hechos Microbiologicos, 2020, 11, 72-81.	0.1	0

#	Article	IF	CITATIONS
61	Effects of human adipose tissue- and bone marrow-derived mesenchymal stem cells on airway inflammation and remodeling in a murine model of chronic asthma. Scientific Reports, 2022, 12, .	3.3	8
62	Dose-dependent effects of human umbilical cord-derived mesenchymal stem cell treatment in hyperoxia-induced lung injury of neonatal rats. Frontiers in Pediatrics, 0, 11, .	1.9	2
63	Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Frontiers in Pharmacology, 0, 14, .	3.5	7
64	Mesenchymal stromal cell therapy for chronic lung diseases: experimental and clinical evidence. Expert Review of Respiratory Medicine, 2023, 17, 223-235.	2.5	2
65	Mesenchymal Stem/Stromal Cells in Asthma Therapy: Mechanisms and Strategies for Enhancement. Cell Transplantation, 2023, 32, .	2.5	3
66	Human macrophage migration inhibitory factor potentiates mesenchymal stromal cell efficacy in a clinically relevant model of allergic asthma. Molecular Therapy, 2023, 31, 3243-3258.	8.2	2