Start a Research on Biopolymer Polyhydroxyalkanoate

Polymers 6, 706-754 DOI: 10.3390/polym6030706

Citation Report

#	Article	IF	CITATIONS
1	Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation. Molecules, 2014, 19, 8629-8643.	1.7	28
2	Bioconversion of Styrene to Poly(hydroxyalkanoate) (PHA) by the New Bacterial Strain <i>Pseudomonas putida</i> NBUS12. Microbes and Environments, 2015, 30, 76-85.	0.7	28
3	Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant <i>Escherichia coli</i> . Engineering in Life Sciences, 2015, 15, 700-709.	2.0	10
4	Techniques for tracing PHAâ€producing organisms and for qualitative and quantitative analysis of intra―and extracellular PHA. Engineering in Life Sciences, 2015, 15, 558-581.	2.0	47
5	Recycling of Waste Streams of the Biotechnological Poly(hydroxyalkanoate) Production by <i>Haloferax mediterranei</i> on Whey. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	80
6	Potential and Prospects of Continuous Polyhydroxyalkanoate (PHA) Production. Bioengineering, 2015, 2, 94-121.	1.6	51
7	Liquefied Wood as Inexpensive Precursor-Feedstock for Bio-Mediated Incorporation of (R)-3-Hydroxyvalerate into Polyhydroxyalkanoates. Materials, 2015, 8, 6543-6557.	1.3	37
8	Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 2015, 8, 56-77.	2.1	250
9	Bio-based poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates by dynamic crosslinking: structure vs. property. RSC Advances, 2015, 5, 15962-15968.	1.7	46
10	Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World Journal of Microbiology and Biotechnology, 2015, 31, 717-727.	1.7	52
11	Enhanced production of poly-3-hydroxybutyrate by Escherichia coli over-expressing multiple copies of NAD kinase integrated in the host genome. Biotechnology Letters, 2015, 37, 1273-1278.	1.1	14
12	Polymerase chain reaction-based screening method applicable universally to environmental haloarchaea and halobacteria for identifying polyhydroxyalkanoate producers among them. Extremophiles, 2015, 19, 1041-1054.	0.9	15
13	The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3′-thiodipropionic acid and hence the production of polythioesters. Journal of Biotechnology, 2015, 209, 85-95.	1.9	9
14	Biosynthesis of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) by Halogeometricum borinquense strain E3. International Journal of Biological Macromolecules, 2015, 78, 339-346.	3.6	44
15	Biopolymers made from methane in bioreactors. Engineering in Life Sciences, 2015, 15, 689-699.	2.0	25
16	Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian Journal of Microbiology, 2015, 55, 235-249.	1.5	126
17	Aerobic methylobacteria as promising objects of modern biotechnology (Review). Applied Biochemistry and Microbiology, 2015, 51, 125-134.	0.3	16
18	Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015, 6, 4497-4559.	1.9	1,917

#	Article	IF	CITATIONS
19	Hydrolytic Enzymes in Halophilic Bacteria, Properties and Biotechnological Potential. Sustainable Development and Biodiversity, 2015, , 355-378.	1.4	6
20	A horizon scan of global conservation issues for 2015. Trends in Ecology and Evolution, 2015, 30, 17-24.	4.2	53
21	Effect of Halloysite Nanoclay Concentration and Addition of Glycerol on Mechanical Properties of Bionanocomposite Films. Polymers and Polymer Composites, 2016, 24, 795-802.	1.0	19
22	Oxidized Polyethylene Wax as a Potential Carbon Source for PHA Production. Materials, 2016, 9, 367.	1.3	46
23	Fabrication of Porous Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Monoliths via Thermally Induced Phase Separation. Polymers, 2016, 8, 66.	2.0	18
24	Bio-Based Polymers with Potential for Biodegradability. Polymers, 2016, 8, 262.	2.0	190
25	Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers, 2016, 8, 273.	2.0	87
26	Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors, 2016, 16, 1808.	2.1	24
27	Green Synthesis of a Bioâ€Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromolecular Chemistry and Physics, 2016, 217, 1439-1447.	1.1	43
28	Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech, 2016, 6, 142.	1.1	40
29	Polyhydroxyalkanoates production from waste biomass. IOP Conference Series: Earth and Environmental Science, 2016, 36, 012040.	0.2	22
30	Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Research Notes, 2016, 9, 509.	0.6	204
31	Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Applied Microbiology and Biotechnology, 2016, 100, 10065-10080.	1.7	34
32	Synthesis kinetics of poly(3-hydroxybutyrate) by using a Pseudomonas aeruginosa mutant strain grown on hexadecane. International Biodeterioration and Biodegradation, 2016, 115, 171-178.	1.9	18
33	Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: Studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. International Journal of Pharmaceutics, 2016, 511, 876-889.	2.6	24
34	Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Applied and Environmental Microbiology, 2016, 82, 6132-6140.	1.4	42
35	Effect of NADH kinase on poly-3-hydroxybutyrate production by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 2016, 122, 685-688.	1.1	9
37	Combining the enrichment and accumulation step in non-axenic PHA production: Cultivation of Plasticicumulans acidivorans at high volume exchange ratios. Journal of Biotechnology, 2016, 231, 260-267	1.9	20

_

#	Article	IF	CITATIONS
38	Building a predictive model for PHB production from glycerol. Biochemical Engineering Journal, 2016, 116, 113-121.	1.8	16
39	Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Progress in Natural Science: Materials International, 2016, 26, 58-64.	1.8	54
40	Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. Korean Journal of Chemical Engineering, 2016, 33, 1505-1513.	1.2	22
41	Wastewater as renewable feedstock for bioplastics production: understanding the role of reactor microenvironment and system pH. Journal of Cleaner Production, 2016, 112, 4618-4627.	4.6	45
42	Determination of monomeric composition in polyhydroxyalkanoates by liquid chromatography coupled with on-line mass spectrometry and off-line nuclear magnetic resonance. Talanta, 2016, 146, 107-113.	2.9	5
43	Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 2017, 37, 24-38.	2.4	392
44	Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal. Water Research, 2017, 119, 267-275.	5.3	41
45	Synthesis of high-molecular-mass polyhydroxybutyrate from methanol in Methyloligella halotolerans C2. Applied Biochemistry and Microbiology, 2017, 53, 47-51.	0.3	5
46	Bioproduction of Polyhydroxyalkanoate from Plant Oils. , 2017, , 231-260.		4
47	Polyhydroxybutyrate and polyhydroxydodecanoate produced by <i>Burkholderia contaminans</i> IPT553. Journal of Applied Microbiology, 2017, 123, 124-133.	1.4	5
48	Synthesis of multifunctional monomers from rosin for the properties enhancement of soybean-oil based thermosets. Science China Technological Sciences, 2017, 60, 1332-1338.	2.0	12
49	Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Management, 2017, 67, 73-85.	3.7	74
50	Bioprospecting Archaea: Focus on Extreme Halophiles. Topics in Biodiversity and Conservation, 2017, , 81-112.	0.3	10
51	Enzymatic production of clickable and PEGylated recombinant polyhydroxyalkanoates. Green Chemistry, 2017, 19, 5494-5504.	4.6	17
52	Surface Modification of Polyhydroxyalkanoates toward Enhancing Cell Compatibility and Antibacterial Activity. Macromolecular Materials and Engineering, 2017, 302, 1700258.	1.7	28
53	The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnology, 2017, 39, 68-80.	2.4	54
54	Bacterial Polyhydroxyalkanoates: Recent Trends in Production and Applications. , 2017, , 19-53.		20

#	Article	IF	CITATIONS
56	Novel spectrophotometric technique for rapid determination of extractable PHA using Sudan black dye. Journal of Biotechnology, 2017, 255, 28-32.	1.9	11
57	Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnology, 2017, 37, 69-79.	2.4	125
58	Screening and Evaluation of Poly(3-hydroxybutyrate) with Rhodococcus equi Using Different Carbon Sources. Arabian Journal for Science and Engineering, 2017, 42, 2371-2379.	1.7	21
59	Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Critical Reviews in Microbiology, 2017, 43, 294-312.	2.7	22
60	Polyhydroxyalkanoates in the Food Packaging Industry. , 2017, , 153-177.		19
61	Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant. Bioengineering, 2017, 4, 26.	1.6	94
62	Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering, 2017, 4, 36.	1.6	45
63	Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria. Bioengineering, 2017, 4, 52.	1.6	9
64	Advances in Polyhydroxyalkanoate (PHA) Production. Bioengineering, 2017, 4, 88.	1.6	48
65	Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microbial Cell Factories, 2017, 16, 144.	1.9	13
66	Efficient polyhydroxybutyrate production from Bacillus thuringiensis using sugarcane juice substrate. Turkish Journal of Biology, 2017, 41, 992-1002.	2.1	16
67	Optimal Design of Poly (3-hydroxybutyrate) Production using alternative Carbon Sources. Computer Aided Chemical Engineering, 2017, , 877-882.	0.3	4
68	Partially bioâ€based aromatic polyimides derived from 2,5â€furandicarboxylic acid with high thermal and mechanical properties. Journal of Polymer Science Part A, 2018, 56, 1058-1066.	2.5	17
69	Sustainable Bioelectrosynthesis of the Bioplastic Polyhydroxybutyrate: Overcoming Substrate Requirement for NADH Regeneration. ACS Sustainable Chemistry and Engineering, 2018, 6, 4909-4915.	3.2	36
70	A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polymer Degradation and Stability, 2018, 152, 191-207.	2.7	81
71	A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 2018, 114, 512-519.	3.6	12
72	Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Applied Microbiology and Biotechnology, 2018, 102, 1923-1931.	1.7	66
73	Purification and characterization of polyhydroxyalkanoate (PHA) from a <scp><i>Bacillus megaterium</i></scp> strain using various dehydration techniques. Journal of Chemical Technology and Biotechnology, 2018, 93, 2292-2298.	1.6	27

#	Article	IF	CITATIONS
74	Polyhydroxyalkanoates (PHA) production in bacterial co ulture using glucose and volatile fatty acids as carbon source. Journal of Basic Microbiology, 2018, 58, 247-254.	1.8	36
75	Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10. International Journal of Biological Macromolecules, 2018, 107, 1480-1490.	3.6	34
76	Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. International Journal of Biological Macromolecules, 2018, 107, 762-778.	3.6	107
77	Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: Effect of culture conditions over microbial population and biopolymer yield and composition. European Polymer Journal, 2018, 98, 94-104.	2.6	38
78	Enrichment of PHA-producing bacteria under continuous substrate supply. New Biotechnology, 2018, 41, 55-61.	2.4	34
79	Production of Polyhydroxyalkanoates Copolymers by Recombinant <i>Pseudomonas</i> in Plasmid- and Antibiotic-Free Cultures. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 225-235.	1.0	0
80	Analysis of the Genome and Metabolome of Marine Myxobacteria Reveals High Potential for Biosynthesis of Novel Specialized Metabolites. Scientific Reports, 2018, 8, 16600.	1.6	40
81	Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria. Bioengineering, 2018, 5, 111.	1.6	38
82	Improving PHA production in a SBR of coupling PHA-storing microorganism enrichment and PHA accumulation by feed-on-demand control. AMB Express, 2018, 8, 97.	1.4	13
83	Characterization and Evaluation of Controlled Antimicrobial Release from Petrochemical (PU) and Biodegradable (PHB) Packaging. Polymers, 2018, 10, 817.	2.0	6
84	Role of PhaC Type I and Type II Enzymes during PHA Biosynthesis. Polymers, 2018, 10, 910.	2.0	40
85	Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	52
86	Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications – Review. International Journal of Biological Macromolecules, 2018, 120, 1294-1305.	3.6	82
87	Impact of Organic Acids Supplementation to Hardwood Spent Sulfite Liquor as Substrate for the Selection of Polyhydroxyalkanoates-Producing Organisms. Fermentation, 2018, 4, 58.	1.4	6
88	Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 2018, 126, 282-292.	1.1	71
89	Capture–Ferment–Upgrade: A Three-Step Approach for the Valorization of Sewage Organics as Commodities. Environmental Science & Technology, 2018, 52, 6729-6742.	4.6	97
90	Fermentation optimization and mathematical modeling of glycerol-based microbial poly(3-hydroxybutyrate) production. Process Biochemistry, 2018, 71, 1-11.	1.8	14
91	Polyhydroxyalkanoates Production from Renewable and Waste Materials Using Extremophiles/Recombinant Microbes. , 2018, , 207-227.		0

#	Article	IF	CITATIONS
92	Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers, 2018, 10, 732.	2.0	197
93	Effect of sodium chloride on polyhydroxyalkanoate production from food waste fermentation leachate under different organic loading rate. Bioresource Technology, 2018, 267, 133-140.	4.8	36
94	Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules, 2018, 23, 362.	1.7	206
95	Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiology Letters, 2018, 365, .	0.7	30
96	Transcriptome remodeling of <i>Pseudomonas putida</i> KT2440 during mcl-PHAs synthesis: effect of different carbon sources and response to nitrogen stress. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 433-446.	1.4	26
97	Wood-PHA Composites: Mapping Opportunities. Polymers, 2018, 10, 751.	2.0	59
98	Production of Polyhydroxyalkanoates from Renewable Sources Using Bacteria. Journal of Polymers and the Environment, 2018, 26, 3995-4012.	2.4	33
99	Biopolymer production in bio electrochemical system: Literature survey. Bioresource Technology Reports, 2019, 7, 100283.	1.5	14
100	Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: an overview. Reviews in Environmental Science and Biotechnology, 2019, 18, 741-769.	3.9	32
101	Poly-3-hydroxyalkanoates production potential of <i>Bacillus cereus</i> C113 isolated from cassava dumpsite using some carbon sources. Nigerian Journal of Biotechnology, 2019, 36, 203.	0.1	1
102	Microbial Secretion Platform for 3â€Hydroxybutyrate Oligomer and Its Endâ€Capped Forms Using Chain Transfer Reactionâ€Mediated Polyhydroxyalkanoate Synthases. Biotechnology Journal, 2019, 14, 1900201.	1.8	10
103	Melt processing of PHBV for functional fibres: effect of additives on process parameters. Materials Research Express, 2019, 6, 115344.	0.8	3
104	Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess and Biosystems Engineering, 2019, 42, 1893-1901.	1.7	66
105	Applications of PHA in Agriculture. , 2019, , 347-361.		24
106	Polyhydroxyalkanoates in Packaging. , 2019, , 363-388.		12
107	CH4-Based Polyhydroxyalkanoate Production: A Step Further Towards a Sustainable Bioeconomy. , 2019, , 283-321.		7
108	Storage of Hydrophobic Polymers in Bacteria. , 2019, , 483-507.		1
109	Effect of High Pressure on Paracoccus denitrificans Growth and Polyhydroxyalkanoates Production from Glycerol. Applied Biochemistry and Biotechnology, 2019, 188, 810-823.	1.4	13

#	Article	IF	CITATIONS
110	Production of polyhydroxyalkanoates by extremophilic microorganisms through valorization of waste materials. , 2019, , 419-443.		4
112	Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods in Enzymology, 2019, 627, 125-162.	0.4	13
113	Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnology Advances, 2019, 37, 107402.	6.0	33
114	Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Review of Medical Devices, 2019, 16, 467-482.	1.4	106
115	Scale Up Studies for Polyhydroxyalkanoate Production by a Bacillus flexus Strain with Industrial Potential. Indian Journal of Microbiology, 2019, 59, 383-386.	1.5	5
116	Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215.	5.7	149
117	Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 695-712.	1.9	98
118	New insight into poly (3-hydroxybutyrate) production by Azomonas macrocytogenes isolate KC685000: large scale production, kinetic modeling, recovery and characterization. Molecular Biology Reports, 2019, 46, 3357-3370.	1.0	4
119	Evaluation of polyhydroxyalkanoate (PHAs) production with a bacterial isolate using cassava flour hydrolysates as an alternative substrate. DYNA (Colombia), 2019, 86, 75-81.	0.2	4
120	Bioinformatics Analysis of Metabolism Pathways of Archaeal Energy Reserves. Scientific Reports, 2019, 9, 1034.	1.6	27
121	Effect of Operational Conditions on the Behaviour and Associated Costs of Mixed Microbial Cultures for PHA Production. Polymers, 2019, 11, 191.	2.0	16
122	Polyphosphate recovery by a native <i>Bacillus cereus</i> strain as a direct effect of glyphosate uptake. ISME Journal, 2019, 13, 1497-1505.	4.4	20
123	Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess and Biosystems Engineering, 2019, 42, 901-919.	1.7	34
125	Polyhydroxyalkanoate: a biodegradable polymer (a mini review). Journal of Physics: Conference Series, 2019, 1378, 042007.	0.3	20
126	Proteomic Response of Pseudomonas putida KT2440 to Dual Carbon-Phosphorus Limitation during mcl-PHAs Synthesis. Biomolecules, 2019, 9, 796.	1.8	12
127	RSM–GA Based Optimization of Bacterial PHA Production and In Silico Modulation of Citrate Synthase for Enhancing PHA Production. Biomolecules, 2019, 9, 872.	1.8	31
128	Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. International Journal of Biological Macromolecules, 2019, 122, 1144-1151.	3.6	50
129	Superhydrophobic Polyhydroxyalkanoates: Preparation and Applications. Biomacromolecules, 2019, 20, 618-624.	2.6	6

#	Article	IF	CITATIONS
130	Two-stage microbial conversion of crude glycerol to 1,3-propanediol and polyhydroxyalkanoates after pretreatment. Journal of Environmental Management, 2019, 232, 615-624.	3.8	25
131	Increased carbohydrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Bioprocess understanding and evaluation of productivities. Bioresource Technology, 2019, 273, 277-287.	4.8	30
132	Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines. New Biotechnology, 2020, 55, 84-90.	2.4	25
133	Bioconversion of Calophyllum inophyllum oilcake for intensification of rhamnolipid and polyhydroxyalkanoates co-production by Enterobacter aerogenes. Bioresource Technology, 2020, 296, 122321.	4.8	21
134	A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation. Journal of Biotechnology, 2020, 307, 77-86.	1.9	12
135	Complete Genome Sequence of a Novel Polyhydroxyalkanoate (PHA) Producer, Jeongeupia sp. USM3 (JCM 19920) and Characterization of Its PHA Synthases. Current Microbiology, 2020, 77, 500-508.	1.0	11
136	Production and Characterization of Bioplastic by Polyhydroxybutyrate Accumulating Erythrobacter aquimaris Isolated from Mangrove Rhizosphere. Molecules, 2020, 25, 179.	1.7	61
137	Transformation of organic contamination from wastewater into bioplastics (polyhydroxyalkanoate) by microorganisms. , 2020, , 415-433.		4
138	Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation. Journal of Environmental Management, 2020, 255, 109884.	3.8	66
139	Continuous cultivation strategy for yeast industrial wastewater-based polyhydroxyalkanoate production. Journal of Bioscience and Bioengineering, 2020, 129, 595-602.	1.1	20
140	Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach. Bioresource Technology, 2020, 298, 122584.	4.8	105
141	Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. International Journal of Biological Macromolecules, 2020, 147, 1255-1267.	3.6	24
142	Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy. Molecules, 2020, 25, 4331.	1.7	33
143	Cobetia sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 974.	2.0	18
144	Influence of inoculum variation and nutrient availability on polyhydroxybutyrate production from activated sludge. International Journal of Biological Macromolecules, 2020, 163, 2032-2047.	3.6	11
145	Bioconversion of oily waste to polyhydroxyalkanoates: Sustainable technology with circular bioeconomy approach and multidimensional impacts. Bioresource Technology Reports, 2020, 11, 100496.	1.5	28
146	Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using Cupriavidus necator DSM 545. Polymers, 2020, 12, 1496.	2.0	28
147	Efficient recovery of thermostable polyhydroxybutyrate (PHB) by a rapid and solvent-free extraction protocol assisted by ultrasound. International Journal of Biological Macromolecules, 2020, 164, 771-782.	3.6	36

ARTICLE IF CITATIONS # Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 148 1.1 30 Biotech, 2020, 10, 549. Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current 149 8.2 achievements and future prospects. Renewable and Sustainable Energy Reviews, 2020, 134, 110134. Reinforcement of Microbial Thermoplastics by Grafting to Polystyrene with Propargyl-Terminated Poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyhexanoate). ACS Applied Polymer Materials, 2020, 2, 150 2.0 3 3948-3956. Recovering PHA from mixed microbial biomass: Using non-ionic surfactants as a pretreatment step. 3.9 Separation and Purification Technology, 2020, 253, 117521. Brewer's spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Conversion and Biorefinery, 2022, 152 2.9 15 12, 3921-3932. Bacillus thermoamylovorans-Related Strain Isolated from High Temperature Sites as Potential Producers of Medium-Chain-Length Polyhydroxyalkanoate (mcl-PHA). Current Microbiology, 2020, 77, 1.0 3044-3056. Improvement of Interfacial Adhesion between Poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyhexanoate) 154 1.8 8 and Silica Particles. Industrial & amp; Engineering Chemistry Research, 2020, 59, 13595-13602. Extraction of Polyhydroxyakanoate (PHA) from Palm Oil Mill Effluent (POME) using Chemical Solvent 0.3 Extraction. Journal of Physics: Conference Series, 2020, 1532, 012015. A Deep Neural Network for Accurate and Robust Prediction of the Glass Transition Temperature of 156 12 1.3 Polyhydroxyalkanoate Homo- and Copolymers. Materials, 2020, 13, 5701. Isolation and identification of polyhydroxyalkanoates producing bacteria from biopolymers waste in soil. IOP Conference Series: Materials Science and Engineering, 2020, 928, 062014. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical 158 2.0 214 Characteristics. Polymers, 2020, 12, 2908. The use of LipidGreen2 for visualization and quantification of intracellular Poly(3-hydroxybutyrate) in Cupriavidus necator. Biochemistry and Biophysics Reports, 2020, 24, 100819. Estrone degrading enzymes of Spirulina CPCC-695 and synthesis of bioplastic precursor as a 160 2.1 6 by-product. Biotechnology Reports (Amsterdam, Netherlands), 2020, 26, e00464. Production enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense, characterization of the bioplastic and desalination of the bioreactor effluent. Process 1.8 Biochemistry, 2020, 94, 243-257. Characterization of polyhydroxyalkanoate synthases from the marine bacterium Neptunomonas 162 1.9 7 concharum JCM17730. Journal of Biotechnology, 2020, 319, 69-73. Anaerobic bioconversion of poultry industry-derived wastes for the production of biofuels and other value-added products., 2020, , 113-131. Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus 164 1.1 67 drentensis BP17 using pineapple peel. PLoS ONE, 2020, 15, e0230443. Polyâ€3â€hydroxybutyrateâ€based constructs with novel characteristics for drug delivery and tissue 1.5 engineering applicationsâ€"A review. Polymer Engineering and Science, 2020, 60, 1760-1772.

#	Article	IF	CITATIONS
166	Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnology Advances, 2020, 42, 107582.	6.0	61
167	Thauera aminoaromatica MZ1T Identified as a Polyhydroxyalkanoate-Producing Bacterium within a Mixed Microbial Consortium. Bioengineering, 2020, 7, 19.	1.6	13
168	Comparative analysis of PHAs production by Bacillus megaterium OUAT 016 under submerged and solid-state fermentation. Saudi Journal of Biological Sciences, 2020, 27, 1242-1250.	1.8	46
169	Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: Statistical optimization and characterization. International Journal of Biological Macromolecules, 2020, 148, 20-30.	3.6	45
170	Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials, 2020, 10, 175.	1.9	51
171	Microbial production of biopolymers with potential biotechnological applications. , 2020, , 105-137.		10
172	Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. Advanced Materials, 2020, 32, e1907138.	11.1	65
173	Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 2020, 263, 121500.	4.6	145
174	Environmental Biotechnology Vol. 3. Environmental Chemistry for A Sustainable World, 2021, , .	0.3	0
175	A novel strategy for triacylglycerides and polyhydroxyalkanoates production using waste lipids. Science of the Total Environment, 2021, 763, 142944.	3.9	15
176	Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – A viable domain of circular economy. Environmental Pollution, 2021, 271, 116311.	3.7	41
177	Biomedical applications of microbial polyhydroxyalkanoates. , 2021, , 495-513.		1
178	Production and application of bacterial polyhydroxyalkanoates. , 2021, , 223-252.		1
179	Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Scientific Reports, 2021, 11, 1896.	1.6	80
180	In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619266.	2.0	61
181	Aliphatic Biopolymers as a Sustainable Green Alternative to Traditional Petrochemical-Based Plastics. , 2021, , 295-306.		2
182	Polyhydroxyalkanoates: An Exotic Gleam in the Gloomy Tale of Plastics. Journal of Polymers and the Environment, 2021, 29, 2013-2032.	2.4	14
183	Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. International Journal of Biological Macromolecules, 2021, 167, 85-92.	3.6	31

#	Article	IF	CITATIONS
184	Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Biotechnology for Biofuels, 2021, 14, 11.	6.2	28
185	Polyhydroxyalkanoate production from algal biomass. , 2021, , 447-464.		1
186	Integral valorization of residual biomass: Hydrogen, polyhydroxyalkanoates, and compost production. , 2021, , 355-390.		0
187	Exploration of Cupriavidus necator ATCC 25207 for the Production of Poly(3-hydroxybutyrate) Using Acid Treated Beet Molasses. Journal of Polymers and the Environment, 2021, 29, 2111-2125.	2.4	8
188	Production of Poly(3-Hydroxybutyrate) by Haloarcula, Halorubrum, and Natrinema Haloarchaeal Genera Using Starch as a Carbon Source. Archaea, 2021, 2021, 1-10.	2.3	13
189	Bio-plastic Polyhydroxyalkanoate (PHA): Applications in Modern Medicine. , 2021, , 231-257.		1
190	Biosynthesis and Characterization of Poly-(3)-hydroxyalkanoic Acid by Bacillus megaterium SF4 Using Different Carbohydrates. , 2021, , 109-129.		1
191	An Overview of Microbial Derived Polyhydroxybutyrate (PHB): Production and Characterization. , 2021, , 143-176.		2
192	New model development for qualitative and quantitative analysis of microbial polyhydroxyalkanoates: A comparison of Fourier Transform Infrared Spectroscopy with Gas Chromatography. Journal of Biotechnology, 2021, 329, 38-48.	1.9	6
193	Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha. Polymers, 2021, 13, 1084.	2.0	15
194	Microbial production of medium-chain length polyhydroxyalkanoates. Process Biochemistry, 2021, 102, 393-407.	1.8	32
195	Haloarchaea as Cell Factories to Produce Bioplastics. Marine Drugs, 2021, 19, 159.	2.2	24
196	Biomedical Applications of Bacteria-Derived Polymers. Polymers, 2021, 13, 1081.	2.0	25
197	Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresource Technology, 2021, 326, 124737.	4.8	114
198	The role of biotechnology in the transition from plastics to bioplastics: an opportunity to reconnect global growth with sustainability. FEBS Open Bio, 2021, 11, 967-983.	1.0	35
199	BIOSYNTHESIS OF POLY (HYDROXYALKANOATES). Biological & Clinical Sciences Research Journal, 2021, 2021, .	0.4	3
200	What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?. Polymers, 2021, 13, 1731.	2.0	11
201	Fast, inexpensive, and reliable HPLC method to determine monomer fractions in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Applied Microbiology and Biotechnology, 2021, 105, 4743-4749.	1.7	12

#	Article	IF	Citations
202	A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers, 2021, 13, 1544.	2.0	86
203	Development of Electrospun Films from Wastewater Treatment Plant Sludge. Coatings, 2021, 11, 733.	1.2	1
204	Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production – A stateâ€ofâ€ŧhe art review. Biotechnology Journal, 2021, 16, e2100136.	1.8	9
205	Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review. International Journal of Biological Macromolecules, 2021, 183, 1881-1890.	3.6	39
206	Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources. Microorganisms, 2021, 9, 1636.	1.6	21
208	Isolation and Characterization of Polyhydroxyalkanoates (PHAs) Producers from Kg Batu Melintang hotspring. Journal of Tropical Resources and Sustainable Science, 2021, 8, 1-4.	0.1	0
209	Advanced Kinetic Modeling of Bio-co-polymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production Using Fructose and Propionate as Carbon Sources. Processes, 2021, 9, 1260.	1.3	10
210	Biomedical applications of environmental friendly poly-hydroxyalkanoates. International Journal of Biological Macromolecules, 2021, 183, 549-563.	3.6	40
211	Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life, 2021, 11, 807.	1.1	36
212	Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life, 2021, 11, 853.	1.1	1
213	Integrated review of resource recovery on aerobic granular sludge systems: Possibilities and challenges for the application of the biorefinery concept. Journal of Environmental Management, 2021, 291, 112718.	3.8	13
214	Bioplastics: A boon or bane?. Renewable and Sustainable Energy Reviews, 2021, 147, 111237.	8.2	76
215	A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Bioresource Technology, 2021, 341, 125900.	4.8	49
216	An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chemical Engineering Journal, 2022, 427, 131908.	6.6	30
217	Process engineering and commercialization of polyhydroxyalkanoates. , 2021, , 517-549.		1
218	Biocomposites of Polyhydroxyalkanoates and Lignocellulosic Components: A Focus on Biodegradation and 3D Printing. , 2021, , 325-345.		4
219	Production of polyhydroxyalkanoates (PHAs) by <i>Bacillus megaterium</i> using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered, 2021, 12, 2480-2498.	1.4	50
221	Polyhydroxyalcanoates (PHAs) in Industrial Applications. , 2017, , 1-30.		20

#	Article	IF	CITATIONS
222	Polyhydroxyalkanoates (PHAs) in Industrial Applications. , 2018, , 1-30.		6
223	Polyhydroxyalkanoates (PHAs) in Industrial Applications. , 2019, , 2843-2872.		11
224	The Sustainable Use of Delftia in Agriculture, Bioremediation, and Bioproducts Synthesis. , 2016, , 227-247.		14
225	Production, Characterization, and Applications of Biodegradable Polymer: Polyhydroxyalkanoates. Materials Horizons, 2020, , 51-94.	0.3	15
226	The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresources and Bioprocessing, 2019, 6, .	2.0	18
227	Perspectives of Polyhydroxyalkanoate (PHAs) Biopolymer Production Using Indigenous Bacteria: Screening and Characterization. Journal of Pure and Applied Microbiology, 2018, 12, 1997-2009.	0.3	4
228	Petri Net Recommender System to Model Metabolic Pathway of Polyhydroxyalkanoates. International Journal of Knowledge and Systems Science, 2019, 10, 42-59.	0.5	12
229	Poly-β-hydroxybutyrate: A Biodegradable Polyester, Biosynthesis and Biodegradation. British Microbiology Research Journal, 2016, 14, 1-11.	0.2	16
230	Screening, Optimization and Extraction of Polyhydroxyalkanoates (PHAs) from Bacillus thuringienesis. Journal of Advances in Biology & Biotechnology, 2014, 1, 40-54.	0.2	13
231	Regulated strategies of cold-adapted microorganisms in response to cold: a review. Environmental Science and Pollution Research, 2021, 28, 68006-68024.	2.7	7
232	The application of purple non-sulfur bacteria for microbial mixed culture polyhydroxyalkanoates production. Reviews in Environmental Science and Biotechnology, 2021, 20, 959-983.	3.9	17
233	The Journey of Alternative and Sustainable Substitutes for "Singleâ€Use―Plastics. Advanced Sustainable Systems, 2021, 5, 2100085.	2.7	8
234	From waste to wealth: upcycling of plastic and lignocellulosic wastes to <scp>PHAs</scp> . Journal of Chemical Technology and Biotechnology, 2022, 97, 3217-3240.	1.6	11
235	A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. International Journal of Biological Macromolecules, 2021, 192, 978-998.	3.6	13
236	Guar Gum and Its Derivatives: Versatile Materials for Controlled Drug Delivery. , 2016, , 289-316.		0
237	Storage of Hydrophobic Polymers in Bacteria. , 2018, , 1-25.		2
238	BIOSYNTHESIS OF POLYHYDOXYALKANOATE. International Journal of Research -GRANTHAALAYAH, 2019, 7, 200-206.	0.1	3
240	Microbiological Production of Polyhydroxbutyrates From Renewable Sources. Eurasian Journal of Applied Biotechnology, 2020, , .	0.0	Ο

#	Article	IF	CITATIONS
241	Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate-co-4-hydroxybutyrate): A Review on the Promising Next-Generation Biomaterial. Polymers, 2021, 13, 51.	2.0	12
242	Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresource Technology, 2022, 344, 126307.	4.8	14
243	Integration of Polyhydroxyalkanoates Production with Industrial Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2021, , 105-159.	0.3	0
244	CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440. Methods in Molecular Biology, 2022, 2397, 341-358.	0.4	7
245	Enhanced biosynthesis of polyhydroxyalkanoates by continuous feeding of volatile fatty acids in Haloferax mediterranei. Biochemical Engineering Journal, 2022, 179, 108307.	1.8	13
246	Current strategies on algae-based biopolymer production and scale-up. Chemosphere, 2022, 289, 133178.	4.2	24
247	The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. Science of the Total Environment, 2022, 811, 152341.	3.9	17
248	Assessment of implantable drug delivery technology: poly (3-hydroxybutyrate) / polypropylene glycol films containing simvastatin. Revista Materia, 2021, 26, .	0.1	0
249	Polyhydroxyalkanoate production from food industry residual streams using mixed microbial cultures. , 2022, , 265-284.		0
250	In situ quantification of poly(3-hydroxybutyrate) and biomass in Cupriavidus necator by a fluorescence spectroscopic assay. Applied Microbiology and Biotechnology, 2022, 106, 635-645.	1.7	3
251	Advances in Polyhydroxyalkanoate Nanocarriers for Effective Drug Delivery: An Overview and Challenges. Nanomaterials, 2022, 12, 175.	1.9	23
252	Evaluation of Biodegradabilities of Biosynthetic Polyhydroxyalkanoates in Thailand Seawater and Toxicity Assessment of Environmental Safety Levels. Polymers, 2022, 14, 428.	2.0	3
253	Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Archives of Microbiology, 2022, 204, 149.	1.0	16
254	Bioreactor scale co-production of poly(hydroxyalkanoate) and rhamnolipids with distinct nitrogen sources. Biologia (Poland), 2022, 77, 1391-1404.	0.8	2
255	Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge?. Environmental Science and Pollution Research, 2022, 29, 11039-11053.	2.7	29
256	Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Chemosphere, 2022, 294, 133723.	4.2	29
257	Polyhydroxyalkanoates: Production and Biodegradation - A Review. , 2022, , .		0
258	Polylactide/poly(hydroxyalkanoate) blends. , 2022, , 271-289.		0

	Сіта	tion Report	
#	Article	IF	Citations
259	Recovery Techniques Enabling Circular Chemistry from Wastewater. Molecules, 2022, 27, 1389.	1.7	10
260	Poly(3-hydroxybutyrate) biosynthesis by Cupriavidus necator: A review on waste substrates utilization for a circular economy approach. Bioresource Technology Reports, 2022, 17, 100985.	1.5	17
261	Microbial conversion of lignin rich biomass hydrolysates to medium chain length polyhydroxyalkanoates (mcl-PHA) using <i>Pseudomonas putida</i> KT2440. Preparative Biochemistry and Biotechnology, 2023, 53, 54-63.	1.0	4
262	Development of a layered bacterial <scp>nanocelluloseâ€PHBV</scp> composite for food packaging. Journal of the Science of Food and Agriculture, 2023, 103, 1077-1087.	1.7	13
263	Assessment and characterization of poly(3-hydroxybutyrate) accumulated by endophytic bacterium Exiguobacterium acetylicum BNL 103 from oleaginous plant Brassica napus L. Environmental Sustainability, 2022, 5, 103-117.	1.4	1
264	Leptolyngbya sp. NIVA-CYA 255, a Promising Candidate for Poly(3-hydroxybutyrate) Production under Mixotrophic Deficiency Conditions. Biomolecules, 2022, 12, 504.	1.8	6
265	The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions. International Journal of Biological Macromolecules, 2022, 206, 977-989.	3.6	6
266	Extending biopolyesters circularity by using natural stabilizers: A review on the potential of polyphenols to enhance Poly(hydroxyalkanoates) thermal stability while preserving its biodegradability. Polymer Testing, 2022, 110, 107561.	2.3	12
267	Application of Biobased and Biodegradable Polymers. , 2021, , .		0
268	Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. Polymer Reviews, 2022, 62, 653-721.	5.3	6
269	A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 2022, 321, 124039.	3.4	10
270	Biosynthesis of diverse α,ï‰-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagen Metabolic Engineering, 2022, 72, 275-288.	esis. 3.6	13
274	Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Scientific Reports, 2022, 12, 7263.	1.6	8
276	A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Advances, 2022, 12, 16105-16118.	1.7	7
277	Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate. International Journal of Biological Macromolecules, 2022, 213, 902-914.	3.6	8
278	Leads and hurdles to sustainable microbial bioplastic production. Chemosphere, 2022, 305, 135390.	4.2	14
279	Polymer-based green composites and their applications. , 2022, , 123-145.		0
280	Conversion of Short and Medium Chain Fatty Acids into Novel Polyhydroxyalkanoates Copolymers by Aeromonas sp. AC_01. Materials, 2022, 15, 4482.	1.3	0

#	Article	IF	CITATIONS
281	Functional bioplastics from food residual: Potentiality and safety issues. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3177-3204.	5.9	9
282	Feeding in Oxygen-Limiting Phase: An Optimized Anaerobic–Aaerobic Process for Polyhydroxyalkanoates Accumlation and a Selective Pressure for Bacterial Communities' Direct Succession. Waste and Biomass Valorization, 2023, 14, 237-247.	1.8	1
283	Microbial biopolymers in articular cartilage tissue engineering. Journal of Polymer Research, 2022, 29,	1.2	4
284	Effect of short- and medium-chain fatty acid mixture on polyhydroxyalkanoate production by Pseudomonas strains grown under different culture conditions. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
285	A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
286	Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics, 2022, 14, 1618.	2.0	2
287	Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. International Journal of Biological Macromolecules, 2022, 221, 1184-1201.	3.6	27
288	Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Science of the Total Environment, 2022, 851, 158328.	3.9	44
289	Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. Current Research in Biotechnology, 2022, 4, 377-391.	1.9	9
290	Production and characterization of PHAs by pure culture using protein hydrolysates as sole carbon source. Environmental Technology and Innovation, 2022, , 102919.	3.0	4
291	Biological conversion of agricultural residues into microbial proteins for aquaculture using PHA-producing mixed microbial cultures. Journal of Cleaner Production, 2022, 378, 134554.	4.6	3
293	Biosynthesis of PHBs by the Method of Full-Factorial Design for Obtaining PHB/Magnetite Composites. Springer Proceedings in Materials, 2022, , 57-69.	0.1	0
294	Characterization of Polyhydroxybutyrate, PHB, Synthesized by Newly Isolated Haloarchaea Halolamina spp Molecules, 2022, 27, 7366.	1.7	5
295	Microbial cell factories for bio-based biodegradable plastics production. IScience, 2022, 25, 105462.	1.9	5
296	Environmental Sustainability with Polyhydroxyalkanoates (PHA) as Plastic Alternatives. Environmental Contamination Remediation and Management, 2022, , 17-49.	0.5	0
297	Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. Bioresource Technology, 2023, 368, 128287.	4.8	7
298	Optimum Condition for Polyhydroxyalkanoate Production from Crude Glycerol by Bacillus sp. Isolated from Lipid-Containing Wastewater. Trends in Sciences, 2022, 19, 2588.	0.2	3
299	Recirculation factor as a key parameter in continuous-flow biomass selection for polyhydroxyalkanoates production. Chemical Engineering Journal, 2023, 455, 140208.	6.6	0

#	Article	IF	CITATIONS
300	Recovery of polyhydroxyalkanoates (PHAs) polymers from a mixed microbial culture through combined ultrasonic disruption and alkaline digestion. Journal of Environmental Management, 2023, 326, 116786.	3.8	9
301	Synthesis and properties of high performance biobased liquid crystal polyester based on furandicarboxylic acid and sebacic acid. European Polymer Journal, 2023, 183, 111738.	2.6	5
302	Biosynthesis and biodegradation of poly(3-hydroxybutyrate) from Priestia flexa; A promising mangrove halophyte towards the development of sustainable eco-friendly bioplastics. Microbiological Research, 2023, 267, 127270.	2.5	7
303	Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms, 2022, 10, 2320.	1.6	10
304	Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 2022, 14, 5062.	2.0	25
305	Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate – a review. Biotechnology and Genetic Engineering Reviews, 0, , 1-40.	2.4	2
306	Genotypic and Phenotypic Detection of Polyhydroxyalkanoate Production in Bacterial Isolates from Food. International Journal of Molecular Sciences, 2023, 24, 1250.	1.8	1
307	Production of polyhydroxyalkanoates by the thermophile Cupriavidus cauae PHS1. Bioresource Technology, 2023, 371, 128627.	4.8	6
308	Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers, 2023, 15, 97.	2.0	0
309	Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Archives of Microbiology, 2023, 205, .	1.0	8
310	A comprehensive view of Bacillus cereus as a polyhydroxyalkanoate (PHA) producer: A promising alternative to Petroplastics. Process Biochemistry, 2023, 129, 281-292.	1.8	5
311	Characterization of polyhydroxybutyrate (PHB) synthesized by newly isolated rare actinomycetes Aquabacterium sp. A7-Y. International Journal of Biological Macromolecules, 2023, 232, 123366.	3.6	0
312	Cost effective media optimization for PHB production by Bacillus badius MTCC 13004 using the statistical approach. International Journal of Biological Macromolecules, 2023, 233, 123575.	3.6	1
313	Solid State Polymerization of Biodegradable Poly(butylene sebacate-co-terephthalate): A Rapid, Facile Method for Property Enhancement. Polymers, 2023, 15, 1133.	2.0	0
314	Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99. PLoS ONE, 2023, 18, e0282623.	1.1	1
315	Granule formation mechanism, key inï¬,uencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. Journal of Environmental Management, 2023, 338, 117771.	3.8	14
316	Development of biopolymers from microbes and their environmental applications. ChemistrySelect, 2023, .	0.7	0
317	Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Science of the Total Environment, 2023, 882, 163446.	3.9	35

#	Article	IF	CITATIONS
320	Polyhydroxyalkanoates production from biowastes: A route towards environmental sustainability. , 2023, , 143-182.		0
324	Green wood fiber composites and their applications. , 2023, , 1-28.		0
325	Renewable bio-based materials: A journey towards the development of sustainable ecosystem. , 2023, , 31-75.		3
328	Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomaterials Science, 2023, 11, 6013-6034.	2.6	2
333	Microbial accumulation of bioplastics from waste stream: recent advancements and applications. International Journal of Environmental Science and Technology, 0, , .	1.8	0
335	Comprehensive study of microbial bioplastic: present status and future perspectives for sustainable development. Environment, Development and Sustainability, 0, , .	2.7	0
340	Bioplastic Production Using Whey (Polyhydroxyalkanoates and Polyhydroxybutyrates). , 2023, , 103-113.		0
342	Bio-based Polyesters. , 2023, , 167-212.		0
342 343	Bio-based Polyesters. , 2023, , 167-212. Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499.	1.5	0 0
	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and	1.5 0.4	
343	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499.		0
343 352	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499. Sustainable Raw Materials. Textile Science and Clothing Technology, 2023, , 59-128.		0
343 352 355	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499. Sustainable Raw Materials. Textile Science and Clothing Technology, 2023, , 59-128. Biodegradable and biobased plastic materials based on starch. , 2024, , 311-334. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a	0.4	0 0 0
343 352 355 357	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499. Sustainable Raw Materials. Textile Science and Clothing Technology, 2023, , 59-128. Biodegradable and biobased plastic materials based on starch. , 2024, , 311-334. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation, 0, , . Harnessing economical biopolymer extrusion: the Bacillus clade as endotoxin-free platforms for	0.4	0 0 0

361 Other novel materials to manufacture bioplastics. , 2024, , 77-109.