Multiple intrinsically identical single-photon emitters i

Nature Communications 5, 4739 DOI: 10.1038/ncomms5739

Citation Report

#	Article	IF	CITATIONS
1	Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Applied Physics Letters, 2014, 105, .	1.5	19
2	All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond. Physical Review Letters, 2014, 113, 263602.	2.9	216
3	Isotopically varying spectral features of silicon-vacancy in diamond. New Journal of Physics, 2014, 16, 113019.	1.2	85
4	High quality-factor optical nanocavities in bulk single-crystal diamond. Nature Communications, 2014, 5, 5718.	5.8	196
5	All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond. Physical Review Letters, 2014, 113, 263601.	2.9	121
6	Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Applied Physics Express, 2014, 7, 115201.	1.1	73
7	Silicon magic. Nature Photonics, 2014, 8, 818-819.	15.6	4
8	Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Physical Review Letters, 2014, 113, 113602.	2.9	333
9	Investigation of the silicon vacancy color center for quantum key distribution. Optics Express, 2015, 23, 32961.	1.7	11
10	Spin coherence and echo modulation of the silicon vacancy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>Hroom temperature. Physical Review B, 2015, 92, .</mml:mi></mml:mrow></mml:math 	⊳∢naml:mo	ວ <i>≫ີ</i> ຄັ°
11	High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition. Journal of Applied Physics, 2015, 118, .	1.1	47
12	Electrical stimulation of non-classical photon emission from diamond color centers by means of sub-superficial graphitic electrodes. Scientific Reports, 2015, 5, 15901.	1.6	26
13	Homoepitaxial diamond film growth: High purity, high crystalline quality, isotopic enrichment, and single color center formation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2365-2384.	0.8	68
14	Photoluminescence of SiV centers in single crystal CVD diamond <i>in situ</i> doped with Si from silane. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2525-2532.	0.8	65
15	Fluorescence Polarization Switching from a Single Silicon Vacancy Colour Centre in Diamond. Scientific Reports, 2015, 5, 12244.	1.6	13
16	Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters. Physical Review Letters, 2015, 114, 193601.	2.9	68
17	Electron–phonon processes of the silicon-vacancy centre in diamond. New Journal of Physics, 2015, 17, 043011.	1.2	203
18	Electrically Driven Quantum Light Sources. Advanced Optical Materials, 2015, 3, 1012-1033.	3.6	48

#	Article	IF	CITATIONS
19	Investigation of Line Width Narrowing and Spectral Jumps of Single Stable Defect Centers in ZnO at Cryogenic Temperature. Nano Letters, 2015, 15, 3024-3029.	4.5	35
20	High-pressure synthesis and characterization of diamond from an Mg–Si–C system. CrystEngComm, 2015, 17, 7323-7331.	1.3	27
21	Germanium-Vacancy Single Color Centers in Diamond. Scientific Reports, 2015, 5, 12882.	1.6	251
22	Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Science and Applications, 2015, 4, e338-e338.	7.7	60
23	Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New Journal of Physics, 2016, 18, 073036.	1.2	82
24	Selective absorption and emission on magnetic transitions in low dimensional dielectric structures. Applied Physics Letters, 2016, 108, .	1.5	4
25	Core-shell Mie resonant structures for quantum computing applications. Applied Physics Letters, 2016, 109, .	1.5	7
26	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	3.2	186
27	Incorporation of SiV-centers in diamond nanoparticles using silicon background doping. Diamond and Related Materials, 2016, 65, 87-90.	1.8	10
28	High-Pressure Synthesis and Characterization of Ge-Doped Single Crystal Diamond. Crystal Growth and Design, 2016, 16, 3510-3518.	1.4	68
29	Design for an efficient single photon source based on a single quantum dot embedded in a parabolic solid immersion lens. Optics Express, 2016, 24, 8045.	1.7	16
30	An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847-850.	6.0	570
31	Solid-state single-photon emitters. Nature Photonics, 2016, 10, 631-641.	15.6	1,174
32	Low-strain heteroepitaxial nanodiamonds: fabrication and photoluminescence of silicon-vacancy colour centres. Nanotechnology, 2016, 27, 395606.	1.3	23
33	Quantum nanophotonics in diamond [Invited]. Journal of the Optical Society of America B: Optical Physics, 2016, 33, B65.	0.9	178
34	EPR study of Si―and Geâ€related defects in HPHT diamonds synthesized from Mgâ€based solventâ€catalysts. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2623-2628.	0.8	35
35	Growth of CVD diamond nanopillars with imbedded silicon-vacancy color centers. Optical Materials, 2016, 61, 25-29.	1.7	11
36	Near-field levitated quantum optomechanics with nanodiamonds. Physical Review A, 2016, 94, .	1.0	17

#	Article	IF	CITATIONS
37	Precise control of photoluminescence of silicon-vacancy color centers in homoepitaxial single-crystal diamond: evaluation of efficiency of Si doping from gas phase. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	16
38	Nonblinking Emitters with Nearly Lifetime-Limited Linewidths in CVD Nanodiamonds. Physical Review Applied, 2016, 6, .	1.5	41
39	Spectral properties of the zero-phonon line from ensemble of silicon–vacancy center in nanodiamond. Optical and Quantum Electronics, 2016, 48, 1.	1.5	8
40	Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation. Physical Review Applied, 2016, 5, .	1.5	131
41	Photoluminescence excitation and spectral hole burning spectroscopy of silicon vacancy centers in diamond. Physical Review B, 2016, 94, .	1.1	34
42	Synthesis of SiV-diamond particulates via the microwave plasma chemical deposition of ultrananocrystalline diamond on soda-lime glass fibers. Materials Research Express, 2016, 3, 106205.	0.8	2
43	Wiring up pre-characterized single-photon emitters by laser lithography. Scientific Reports, 2016, 6, 31135.	1.6	41
44	Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers. Nano Letters, 2016, 16, 212-217.	4.5	46
45	Incorporation and study of SiV centers in diamond nanopillars. Diamond and Related Materials, 2016, 64, 64-69.	1.8	22
46	Electroluminescence from silicon vacancy centers in diamond p–i–n diodes. Diamond and Related Materials, 2016, 65, 42-46.	1.8	8
47	Bright Roomâ€Temperature Singleâ€Photon Emission from Defects in Gallium Nitride. Advanced Materials, 2017, 29, 1605092.	11.1	102
48	A DFT calculation of EPR parameters of a germanium-vacancy defect in diamond. Diamond and Related Materials, 2017, 76, 86-89.	1.8	22
49	Coupling of Quantum Emitters to Plasmonic Nanoguides. Springer Series in Solid-state Sciences, 2017, , 47-71.	0.3	1
50	Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nature Communications, 2017, 8, 15376.	5.8	141
51	Diamond photonics for distributed quantum networks. Progress in Quantum Electronics, 2017, 55, 129-165.	3.5	23
52	Coherent control of a strongly driven silicon vacancy optical transition in diamond. Nature Communications, 2017, 8, 14451.	5.8	57
53	Cooperative light scattering in any dimension. Physical Review A, 2017, 95, .	1.0	6
54	Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond. Physical Review Applied, 2017, 7, .	1.5	78

#	Article	IF	CITATIONS
55	Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation. ACS Photonics, 2017, 4, 2580-2586.	3.2	86
56	Photoluminescence of HPHT diamonds synthesized in the Mg-Ge-C system. Diamond and Related Materials, 2017, 79, 145-149.	1.8	8
57	Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes. Physical Review Letters, 2017, 119, 096402.	2.9	59
58	SiV Color Centers in Siâ€Đoped Isotopically Enriched ¹² C and ¹³ C CVD Diamonds. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700198.	0.8	14
59	Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters. APL Photonics, 2017, 2, .	3.0	18
60	Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10Âms with Single-Shot State Readout. Physical Review Letters, 2017, 119, 223602.	2.9	300
61	Coherence Properties and Quantum Control of Silicon Vacancy Color Centers in Diamond. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700586.	0.8	49
62	Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond. Physical Review Applied, 2017, 7, .	1.5	7
63	High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm, 2017, 19, 4459-4475.	1.3	54
64	Photoluminescence excitation spectroscopy of SiV ^{â^'} and GeV ^{â^'} color center in diamond. New Journal of Physics, 2017, 19, 063036.	1.2	75
65	Enhancing Diamond Color Center Fluorescence via Optimized Plasmonic Nanorod Configuration. Plasmonics, 2017, 12, 1263-1280.	1.8	12
66	2D inverse periodic opal structures in single crystal diamond with incorporated silicon-vacancy color centers. Diamond and Related Materials, 2017, 73, 204-209.	1.8	13
67	Tin-Vacancy Quantum Emitters in Diamond. Physical Review Letters, 2017, 119, 253601.	2.9	204
68	Ultrafast all-optical coherent control of silicon vacancy colour centres in diamond. , 2017, , .		0
69	Demonstration of diamond microlens structures by a three-dimensional (3D) dual-mask method. Optics Express, 2017, 25, 15572.	1.7	11
70	Measurement of deep-subwavelength emitter separation in a waveguide-QED system. Optics Express, 2017, 25, 31997.	1.7	12
71	Material platforms for integrated quantum photonics. Optical Materials Express, 2017, 7, 111.	1.6	109
72	Superconducting detector for visible and near-infrared quantum emitters [Invited]. Optical Materials Express, 2017, 7, 513.	1.6	17

#	Article	IF	CITATIONS
73	Excitation of nanowire surface plasmons by silicon vacancy centers in nanodiamonds. Optical Materials Express, 2017, 7, 2586.	1.6	16
74	Complete coherent control of silicon vacancies in diamond nanopillars containing single defect centers. Optica, 2017, 4, 1317.	4.8	33
75	Nonclassical Light Generation From Ill–V and Group-IV Solid-State Cavity Quantum Systems. Advances in Atomic, Molecular and Optical Physics, 2017, 66, 111-179.	2.3	10
76	Enhancing Diamond Fluorescence via Optimized Nanorod Dimer Configurations. Plasmonics, 2018, 13, 1977-1985.	1.8	13
77	Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion. Laser Physics, 2018, 28, 055401.	0.6	5
78	Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond. Nano Letters, 2018, 18, 1360-1365.	4.5	112
79	All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures. Physical Review Letters, 2018, 120, 053603.	2.9	103
80	Fiber-Coupled Cavity-QED Source of Identical Single Photons. Physical Review Applied, 2018, 9, .	1.5	47
81	Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing. Diamond and Related Materials, 2018, 84, 196-203.	1.8	32
82	Photoluminescent properties of single crystal diamond microneedles. Optical Materials, 2018, 75, 49-55.	1.7	22
83	Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New Journal of Physics, 2018, 20, 115002.	1.2	52
84	Limitations on the indistinguishability of photons from remote solid state sources. New Journal of Physics, 2018, 20, 115003.	1.2	52
85	Single-Photon Emitters in Lead-Implanted Single-Crystal Diamond. ACS Photonics, 2018, 5, 4864-4871.	3.2	66
86	Single Crystal Diamond Membranes and Photonic Resonators Containing Germanium Vacancy Color Centers. ACS Photonics, 2018, 5, 4817-4822.	3.2	39
87	Scaling Phononic Quantum Networks of Solid-State Spins with Closed Mechanical Subsystems. Physical Review X, 2018, 8, .	2.8	46
89	Diamond nano-pyramids with narrow linewidth SiV centers for quantum technologies. AIP Advances, 2018, 8, .	0.6	12
90	On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light: Science and Applications, 2018, 7, 61.	7.7	90
91	Diamond as a Platform for Integrated Quantum Photonics. Advanced Quantum Technologies, 2018, 1, 1800061.	1.8	49

#	Article	IF	CITATIONS
92	Quantum technologies with optically interfaced solid-state spins. Nature Photonics, 2018, 12, 516-527.	15.6	581
93	Spectral Alignment of Single-Photon Emitters in Diamond using Strain Gradient. Physical Review Applied, 2018, 10, .	1.5	30
94	Bright nanowire single photon source based on SiV centers in diamond. Optics Express, 2018, 26, 80.	1.7	37
95	Effect of the solvent-catalyst composition on diamond crystallization in the Mg-Ge-C system. Diamond and Related Materials, 2018, 89, 1-9.	1.8	10
96	Vibrational modes of negatively charged silicon-vacancy centers in diamond from <i>ab initio</i> calculations. Physical Review B, 2018, 98, .	1.1	27
97	Cavity-Enhanced Raman Emission from a Single Color Center in a Solid. Physical Review Letters, 2018, 121, 083601.	2.9	41
98	<i>AbÂlnitio</i> Magneto-Optical Spectrum of Group-IV Vacancy Color Centers in Diamond. Physical Review X, 2018, 8, .	2.8	104
99	Nonclassical Light from Large Ensembles of Trapped Ions. Physical Review Letters, 2018, 120, 253602.	2.9	15
100	Optical Interferometry with Quantum Networks. Physical Review Letters, 2019, 123, 070504.	2.9	74
101	Single Silicon Vacancy Centers in 10 nm Diamonds for Quantum Information Applications. ACS Applied Nano Materials, 2019, 2, 4765-4772.	2.4	26
102	Quantum light sources from semiconductor. Journal of Semiconductors, 2019, 40, 070301.	2.0	3
103	Nanodiamond Integration with Photonic Devices. Laser and Photonics Reviews, 2019, 13, 1800316.	4.4	50
104	Micron-sized diamond particles containing Ge-V and Si-V color centers. Chinese Physics B, 2019, 28, 076103.	0.7	6
105	Inverse-designed diamond photonics. Nature Communications, 2019, 10, 3309.	5.8	109
106	Light Harvesting with Guide-Slide Superabsorbing Condensed-Matter Nanostructures. Journal of Physical Chemistry Letters, 2019, 10, 4323-4329.	2.1	19
107	Silicon-vacancy color centers in diamond microcrystals from ethanol and tetramethoxysilane. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	0
108	Preparing single SiV ^{â^'} center in nanodiamonds for external, optical coupling with access to all degrees of freedom. New Journal of Physics, 2019, 21, 103047.	1.2	16
109	An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B, 2019, 100, .	1.1	111

#	Article	IF	CITATIONS
110	Sub-GHz Linewidth Ensembles of SiV Centers in a Diamond Nanopyramid Revealed by Charge State Conversion. ACS Photonics, 2019, 6, 2413-2420.	3.2	9
111	Quantum defects by design. Nanophotonics, 2019, 8, 1867-1888.	2.9	58
112	Numerical analyses of emission of a single-photon pulse based on single-atom–cavity quantum electrodynamics. Progress of Theoretical and Experimental Physics, 2019, 2019, .	1.8	2
113	Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation. Advanced Quantum Technologies, 2019, 2, 1900006.	1.8	31
114	Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity. Physical Review B, 2019, 99, .	1.1	41
115	Electronic structure of the neutral silicon-vacancy center in diamond. Physical Review B, 2019, 99, . Single < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathMI " display="inline"	1.1	34
116	overflow="scroll"> <mml:mi>Si</mml:mi> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msup><mml:mi>V</mml:mi><mml:mo>â^'</mml:mo></mml:msup> Centers in Low-Strain Nanodiamonds with Bulklike Spectral Properties and Nanomanipulation</mml:math 	1.5	34
117	Capabilities. Physical Review Applied, 2019, 11, . Quantum nanophotonics with group IV defects in diamond. Nature Communications, 2019, 10, 5625.	5.8	263
118	Monoisotopic Ensembles of Silicon-Vacancy Color Centers with Narrow-Line Luminescence in Homoepitaxial Diamond Layers Grown in H ₂ –CH ₄ – ^[<i>x</i>] SiH ₄ Gas Mixtures (<i>x</i> = 28,)	ſj ĔĨQq0 () 07gBT /Ovei
119	Building Blocks for Quantum Network Based on Groupâ€ŧV Splitâ€Vacancy Centers in Diamond. Advanced Quantum Technologies, 2020, 3, 1900069.	1.8	28
120	Multidimensional luminescence microscope for imaging defect colour centres in diamond. Methods and Applications in Fluorescence, 2020, 8, 014004.	1.1	5
121	Coherent acoustic control of a single silicon vacancy spin in diamond. Nature Communications, 2020, 11, 193.	5.8	92
122	Material platforms for defect qubits and single-photon emitters. Applied Physics Reviews, 2020, 7, .	5.5	96
123	Observation of Binary Spectral Jumps in Color Centers in Diamond. Advanced Optical Materials, 2020, 8, 2000495.	3.6	2
124	The silicon vacancy center in diamond. Semiconductors and Semimetals, 2020, 103, 201-235.	0.4	7
125	In-situ measurements of fabrication induced strain in diamond photonic-structures using intrinsic colour centres. Npj Quantum Information, 2020, 6, .	2.8	25
127	Fourier Transform Limited Linewidth of Optical Transitions in Single SiV Centers in "Adamantane― Nanodiamonds. JETP Letters, 2020, 112, 13-16.	0.4	4
128	Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	13

#	Article	IF	CITATIONS
129	Strong spin–orbit quenching via the product Jahn–Teller effect in neutral group IV qubits in diamond. Npj Quantum Materials, 2020, 5, .	1.8	16
130	Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nature Communications, 2020, 11, 2516.	5.8	56
131	Disorder-dressed quantum evolution. Physical Review B, 2020, 101, .	1.1	7
132	Deterministically fabricated solid-state quantum-light sources. Journal of Physics Condensed Matter, 2020, 32, 153003.	0.7	41
133	<i>Ab initio</i> study of structural stability and electronic properties of GeV in diamond. International Journal of Modern Physics B, 2020, 34, 2050036.	1.0	0
134	Large-scale integration of artificial atoms in hybrid photonic circuits. Nature, 2020, 583, 226-231.	13.7	248
135	Color centers based on heavy group-IV elements. Semiconductors and Semimetals, 2020, 103, 237-256.	0.4	5
136	Bright Single-Photon Emitting Diodes Based on the Silicon-Vacancy Center in AlN/Diamond Heterostructures. Nanomaterials, 2020, 10, 361.	1.9	12
137	Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond. Applied Physics Letters, 2020, 116, .	1.5	24
138	Strain tunable quantum dot based non-classical photon sources. Journal of Semiconductors, 2020, 41, 011901.	2.0	7
139	Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. Physical Review Letters, 2020, 124, 023602.	2.9	119
141	Photoluminescence study on the optical properties of silicon-vacancy centre in diamond. Journal of Alloys and Compounds, 2021, 860, 157914.	2.8	9
142	Structure of a diamond deposited from microwave plasma by a new gas-jet method. International Journal of Refractory Metals and Hard Materials, 2021, 94, 105386.	1.7	4
143	Tailoring of Typical Color Centers in Diamond for Photonics. Advanced Materials, 2021, 33, e2000891.	11.1	31
144	Investigation of silicon-vacancy center formation during the CVD diamond growth of thin and delta doped layers. Journal of Materials Chemistry C, 0, , .	2.7	6
145	Creation of Silicon-Vacancy Color Centers in Diamond by Ion Implantation. Frontiers in Physics, 2021, 8, .	1.0	20
146	Single germanium vacancy centers in nanodiamonds with bulk-like spectral stability. AVS Quantum Science, 2021, 3, .	1.8	13
147	Narrow inhomogeneous distribution of spin-active emitters in silicon carbide. Applied Physics Letters, 2021, 118, .	1.5	13

	CITATION R	EPORT	
#	Article	IF	CITATIONS
148	Hidden Silicon-Vacancy Centers in Diamond. Physical Review Letters, 2021, 126, 213601.	2.9	10
150	Electrical Tuning of Tin-Vacancy Centers in Diamond. Physical Review Applied, 2021, 15, .	1.5	19
151	Creation of silicon vacancy color centers with a narrow emission line in nanodiamonds by ion implantation. Optical Materials Express, 2021, 11, 1978.	1.6	13
152	Silicon photonic quantum computing with spin qubits. APL Photonics, 2021, 6, .	3.0	22
153	Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride. Optica, 2021, 8, 1153.	4.8	21
154	Quantum networks based on color centers in diamond. Journal of Applied Physics, 2021, 130, .	1.1	105
155	Low-Temperature Spectroscopic Investigation of Lead-Vacancy Centers in Diamond Fabricated by High-Pressure and High-Temperature Treatment. ACS Photonics, 2021, 8, 2947-2954.	3.2	14
156	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Si</mml:mi><mml:msup><mml:m mathvariant="normal">V</mml:m </mml:msup></mml:mrow> <mml:mo>â^'</mml:mo> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sn</mml:mi><mml:msup><mml:< td=""><td>irow><mn ith> 1.1 nrow><mi< td=""><td>hl:mi 5 ml:mi</td></mi<></mn </td></mml:<></mml:msup></mml:mrow></mml:math 	irow> <mn ith> 1.1 nrow><mi< td=""><td>hl:mi 5 ml:mi</td></mi<></mn 	hl:mi 5 ml:mi
157	mathvariant="normal">V <mml:mo>â^</mml:mo> Diamond quantum thermometry: from foundations to applications. Nanotechnology, 2021, 32, 482002.	.th> 1.3	39
158	Observation of photon antibunching with only one standard single-photon detector. Review of Scientific Instruments, 2021, 92, 013105.	0.6	1
159	Color centers in diamond for quantum applications. Semiconductors and Semimetals, 2020, , 1-36.	0.4	7
160	Red emission doublets in diamond from vacancies interacting with interstitial carbon aggregates in tunneling configurations. Carbon, 2017, 120, 294-303.	5.4	2
161	Photonic crystal cavity-enhanced emission from silicon vacancy centers in polycrystalline diamond achieved without postfabrication fine-tuning. Nanoscale, 2020, 12, 13055-13063.	2.8	13
162	Doubly charged silicon vacancy center, Si-N complexes, and photochromism in N and Si codoped diamond. Physical Review B, 2020, 101, .	1.1	13
163	Plasmonic enhancement of a silicon-vacancy center in a nanodiamond crystal. Physical Review Materials, 2017, 1, .	0.9	11
164	Spectroscopic signatures of electron-phonon coupling in silicon-vacancy centers in diamond. Physical Review Materials, 2020, 4, .	0.9	10
165	Photodynamics and quantum efficiency of germanium vacancy color centers in diamond. Advanced Photonics, 2019, 1, 1.	6.2	16
166	Proposed narrowband biphoton generation from an ensemble of solid-state quantum emitters. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 646.	0.9	5

#	Article	IF	CITATIONS
167	Optical coherence of implanted silicon vacancy centers in thin diamond membranes. Optics Express, 2019, 27, 31299.	1.7	8
168	Coupling silicon vacancy centers in a thin diamond membrane to a silica optical microresonator. Optics Express, 2020, 28, 27300.	1.7	2
169	Cavity quantum electrodynamics with color centers in diamond. Optica, 2020, 7, 1232.	4.8	72
170	- Quantum Dots. , 2015, , 88-97.		0
171	A bright nanowire single photon source. , 2016, , .		0
172	Low Strain Silicon-Vacancy Color Centers in Diamond Nanopillar Arrays. , 2016, , .		0
173	High-Q Diamond Microdisks for Coupling to SiV Quantum Emitters. , 2017, , .		0
174	Coherent control and photonic interfacing of color centers in diamond. , 2017, , .		0
175	Emission Lifetime Measurement of Silicon Vacancy in Diamond by Single-Photon Frequency Upconversion. , 2017, , .		0
176	All-optical coherent control of silicon vacancy colour centres in diamond via ultrafast laser pulses. , 2017, , .		0
177	Complete Coherent Control of Silicon-Vacancies in Diamond Nanopillars Containing Single Defect Centers. , 2017, , .		0
178	Controlled excitation of diamond color centers using low-loss dielectric-loaded surface plasmon polariton waveguides. , 2018, , .		0
179	Surface Acoustic Control of Single Silicon Vacancy Spins in Diamond. , 2019, , .		0
180	Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 168101.	0.2	1
181	Revealing the Orientation Dependence of Coherent Coupling in Silicon-Vacancy Centers in Diamond. , 2019, , .		0
182	Investigation of the spectral characteristics of silicon-vacancy centers in ultrananocrystalline diamond nanostructures and single crystalline diamond. Journal of Applied Physics, 2020, 127, 035302.	1.1	0
183	Ultrapure homoepitaxial diamond films grown by chemical vapor deposition for quantum device application. Semiconductors and Semimetals, 2020, 103, 37-55.	0.4	1
184	Multidimensional spectroscopy and imaging of defects in synthetic diamond: excitation-emission-lifetime luminescence measurements with multiexponential fitting and phasor analysis. Journal Physics D: Applied Physics, 2021, 54, 045303.	1.3	2

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
185	128 Identical Quantum Sources Integrated on a Single Silica Chip. Physical Review Applied, 2021, 16, .	1.5	5
186	A vertically-loaded diamond microdisk resonator spin-photon interface. Optics Express, 2021, 29, 43082.	1.7	4
187	Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides. EScience, 2022, 2, 183-191.	25.0	49
188	Negatively charged boron vacancy center in diamond. Physical Review B, 2022, 105, .	1.1	3
189	Control of NV, SiV and GeV centers formation in single crystal diamond needles. Diamond and Related Materials, 2022, 125, 109007.	1.8	13
190	High-pressure high-temperature industrial preparation of micron-sized diamond single crystals with silicon-vacancy colour centres. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105806.	1.7	9
191	Coherence of a charge stabilised tin-vacancy spin in diamond. Npj Quantum Information, 2022, 8, .	2.8	16
192	Generation of entangled photons with a second-order nonlinear photonic crystal and a beam splitter. Journal Physics D: Applied Physics, 0, , .	1.3	1
193	Luminescent diamond composites. Functional Diamond, 2022, 2, 53-63.	1.7	9
194	Information geometry, Pythagorean-theorem extension, and Euclidean distance behind optical sensing via spectral analysis. Laser Physics Letters, 2022, 19, 065401.	0.6	0
195	Characterization of the nitrogen state in HPHT diamonds grown in an Fe–C melt with a low sulfur addition. CrystEngComm, 2022, 24, 4408-4416.	1.3	5
196	Allâ€Optical Thermometry with NV and SiV Color Centers in Biocompatible Diamond Microneedles. Advanced Optical Materials, 2022, 10, .	3.6	11
197	Duo Emission of CVD Nanodiamonds Doped by SiV and GeV Color Centers: Effects of Growth Conditions. Materials, 2022, 15, 3589.	1.3	3
198	High-quality diamond microparticles containing SiV centers grown by chemical vapor deposition with preselected seeds. Journal of Materials Chemistry C, 2022, 10, 13734-13740.	2.7	7
199	First-principles predictions of qubits in defective MgS. Physical Review B, 2022, 105, .	1.1	1
200	All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds. Carbon, 2022, 198, 57-62.	5.4	13
201	Quantum Interference of Resonance Fluorescence from Germanium-Vacancy Color Centers in Diamond. Nano Letters, 2022, 22, 6306-6312.	4.5	13
202	Quantum Control of Optically Active Artificial Atoms With Surface Acoustic Waves. IEEE Transactions on Quantum Engineering, 2022, 3, 1-17.	2.9	5

#	Article	IF	CITATIONS
203	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15
204	Super-Poissonian Light Statistics from Individual Silicon Vacancy Centers Coupled to a Laser-Written Diamond Waveguide. ACS Photonics, 2022, 9, 3366-3373.	3.2	2
205	Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 038102.	0.2	1
206	Growth conditions and substrate misorientation angle dependences of silicon incorporation in CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	1
207	Machine and quantum learning for diamond-based quantum applications. Materials for Quantum Technology, 2023, 3, 012001.	1.2	2
208	Fabrication of single color centers in sub-50Ânm nanodiamonds using ion implantation. Nanophotonics, 2023, 12, 485-494.	2.9	5
209	Multiple Tin-Vacancy Centers in Diamond with Nearly Identical Photon Frequency and Linewidth. Physical Review Applied, 2023, 19, .	1.5	8
210	Scalable Quantum Memory Nodes Using Nuclear Spins in Silicon Carbide. Physical Review Applied, 2023, 19, .	1.5	4
212	Modular chip-integrated photonic control of artificial atoms in diamond waveguides. Optica, 2023, 10, 634.	4.8	6
213	Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control. Physical Review Letters, 2023, 130, .	2.9	8