Clinical Utility of Simultaneous Quantitation of 25-Hyd 24,25-Dihydroxyvitamin D by LC-MS/MS Involving Der

Journal of Clinical Endocrinology and Metabolism 99, 2567-2574 DOI: 10.1210/jc.2013-4388

Citation Report

#	Article	IF	CITATIONS
1	A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice. Endocrinology, 2015, 156, 4388-4397.	2.8	34
2	Maternal Hypercalcemia Due to Failure of 1,25-Dihydroxyvitamin-D ₃ Catabolism in a Patient With <i>CYP24A1</i> Mutations. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2832-2836.	3.6	48
3	Measurement of circulating 25-hydroxyvitamin D: A historical review. Practical Laboratory Medicine, 2015, 2, 1-14.	1.3	44
4	Interpreting Vitamin D Assay Results. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 331-334.	4.5	34
5	latrogenic vitamin D toxicity in an infant – a case report and review of literature. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 14-18.	2.5	48
6	Can vitamin D metabolite measurements facilitate a "treat-to-target―paradigm to guide vitamin D supplementation?. Osteoporosis International, 2015, 26, 1655-1660.	3.1	23
7	Candidate Reference Measurement Procedure for the Determination of (24 <i>R</i>),25-Dihydroxyvitamin D3 in Human Serum Using Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry, 2015, 87, 7964-7970.	6.5	56
8	Response of vitamin D binding protein and free vitamin D concentrations to vitamin D supplementation in hospitalized premature infants. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 1107-14.	0.9	8
9	Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study. Bone, 2015, 81, 89-96.	2.9	54
10	24,25-Dihydroxyvitamin D3 and Vitamin D Status of Community-Dwelling Black and White Americans. Clinical Chemistry, 2015, 61, 877-884.	3.2	90
11	Significance of Serum 24,25-Dihydroxyvitamin D in the Assessment of Vitamin D Status: A Double-edged Sword?. Clinical Chemistry, 2015, 61, 636-645.	3.2	98
12	<i>CYP24A1</i> Mutations in a Cohort of Hypercalcemic Patients: Evidence for a Recessive Trait. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1343-E1352.	3.6	116
13	A Young Woman With Recurrent Gestational Hypercalcemia and Acute Pancreatitis Caused by CYP24A1 Deficiency. Journal of Bone and Mineral Research, 2016, 31, 1841-1844.	2.8	35
14	Hyperparathyroidism complicating CYP 24A1 mutations. Annales D'Endocrinologie, 2016, 77, 615-619.	1.4	7
15	Requirement for vitamin <scp>D</scp> supplementation in patients using photoprotection: variations in vitamin <scp>D</scp> levels and bone formation markers. International Journal of Dermatology, 2016, 55, e176-83.	1.0	15
16	Analysis of vitamin D metabolites by liquid chromatography-tandem mass spectrometry. TrAC - Trends in Analytical Chemistry, 2016, 84, 117-130.	11.4	47
17	Measurement of Circulating 1,25-Dihydroxyvitamin D and Vitamin D–Binding Protein in Chronic Kidney Diseases. , 2016, , 117-128.		0
18	Vitamin D Metabolism Varies among Women in Different Reproductive States Consuming the Same Intakes of Vitamin D and Related Nutrients. Journal of Nutrition, 2016, 146, 1537-1545.	2.9	26

#	Article	IF	CITATIONS
19	Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. Journal of the American Society of Nephrology: JASN, 2016, 27, 604-614.	6.1	207
20	25-Hydroxyvitamin D assays: Potential interference from other circulating vitamin D metabolites. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 134-138.	2.5	51
21	Simultaneous analysis of 25OHD ₃ and 24,25(OH) ₂ D ₃ both in human serum and cerebrospinal fluid by LC-MS/MS. Analytical Methods, 2016, 8, 2400-2407.	2.7	7
22	LC-MS/MS for Identifying Patients with CYP24A1 Mutations. Clinical Chemistry, 2016, 62, 236-242.	3.2	49
23	Idiopathic infantile hypercalcemia: case report and review of the literature. Journal of Pediatric Endocrinology and Metabolism, 2016, 29, 127-32.	0.9	15
24	Controversy and consensus regarding vitamin D: Recent methodological changes and the risks and benefits of vitamin D supplementation. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 13-28.	6.1	27
25	Vitamin D metabolite profiling using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 110-114.	2.5	50
26	Vitamin D metabolism in the premature newborn: A randomized trial. Clinical Nutrition, 2016, 35, 835-841.	5.0	21
27	Vitamin D status in mothers with pre-eclampsia and their infants: a case–control study from Serbia, a country without a vitamin D fortification policy. Public Health Nutrition, 2017, 20, 1825-1835.	2.2	15
28	A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. Journal of Lipid Research, 2017, 58, 798-808.	4.2	25
29	Supplementation with 80,000ÂIU vitaminÂD3/month between November and April corrects vitaminÂD insufficiency without overdosing: Effect on serum 25-hydroxyvitaminÂD serum concentrations. Presse Medicale, 2017, 46, e69-e75.	1.9	2
30	CYP24A1 loss of function: Clinical phenotype of monoallelic and biallelic mutations. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 337-340.	2.5	48
31	The vitamin D metabolite ratio (<scp>VMR</scp>) as a predictor of functional biomarkers of bone health. Clinical Endocrinology, 2017, 86, 674-679.	2.4	14
32	Efficacy of High-Dose Vitamin D Supplements for Elite Athletes. Medicine and Science in Sports and Exercise, 2017, 49, 349-356.	0.4	43
33	Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC–MS/MS method. Journal of Nutritional Biochemistry, 2017, 46, 21-29.	4.2	82
35	Role of Mass Spectrometry in Clinical Endocrinology. Endocrinology and Metabolism Clinics of North America, 2017, 46, 593-613.	3.2	14
36	Vitamin D–Dependent Rickets Type 1B (25-Hydroxylase Deficiency): A Rare Condition or a Misdiagnosed Condition?. Journal of Bone and Mineral Research, 2017, 32, 1893-1899.	2.8	57
37	Impact of a single oral dose of 100,000 IU vitamin D3 on profiles of serum 25(OH)D3 and its metabolites 24,25(OH)2D3, 3-epi-25(OH)D3, and 1,25(OH)2D3 in adults with vitamin D insufficiency. Clinical Chemistry and Laboratory Medicine, 2017, 55, 1912-1921.	2.3	9

#	Article	IF	CITATIONS
38	Improved accuracy of an tandem liquid chromatography–mass spectrometry method measuring 24R,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D metabolites in serum using unspiked controls and its application to determining cross-reactivity of a chemiluminescent microparticle immunoassay. Journal of Chromatography A, 2017, 1497, 102-109.	3.7	28
39	Does Vitamin D Metabolite Measurement Help Predict 25(OH)D Change Following Vitamin D Supplementation?. Endocrine Practice, 2017, 23, 432-441.	2.1	15
40	Analytical considerations for the biochemical assessment of vitamin D status. Therapeutic Advances in Musculoskeletal Disease, 2017, 9, 97-104.	2.7	18
41	Quality assessment of vitamin D metabolite assays used by clinical and research laboratories. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 100-104.	2.5	26
42	Improved Screening Test for Idiopathic Infantile Hypercalcemia Confirms Residual Levels of Serum 24,25-(OH)2D3 in Affected Patients. Journal of Bone and Mineral Research, 2017, 32, 1589-1596.	2.8	49
43	Vitamin D metabolite quantitation by LC-MS/MS. , 2017, , 181-204.		2
44	Maternal vitamin D biomarkers are associated with maternal and fetal bone turnover among pregnant women consuming controlled amounts of vitamin D, calcium, and phosphorus. Bone, 2017, 95, 183-191.	2.9	14
45	Assessing Vitamin D Status in African Americans and the Influence of Vitamin D on Skeletal Health Parameters. Endocrinology and Metabolism Clinics of North America, 2017, 46, 135-152.	3.2	18
46	Genetic Diseases of Vitamin D Metabolizing Enzymes. Endocrinology and Metabolism Clinics of North America, 2017, 46, 1095-1117.	3.2	51
47	Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women. American Journal of Clinical Nutrition, 2017, 106, 1439-1448.	4.7	31
48	Vitamin D Testing—Where Are We and What Is on the Horizon?. Advances in Clinical Chemistry, 2017, 78, 59-101.	3.7	30
49	A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation. Journal of Biological Chemistry, 2017, 292, 17541-17558.	3.4	74
50	Acute homeostatic changes following Vitamin D2 supplementation. Journal of the Endocrine Society, 2017, 1, 1135-1149.	0.2	6
51	Interlaboratory Comparison for the Determination of 24,25-Dihydroxyvitamin D3 in Human Serum Using Liquid Chromatography with Tandem Mass Spectrometry. Journal of AOAC INTERNATIONAL, 2017, 100, 1308-1317.	1.5	17
52	Randomized trial of two doses of vitamin D3 in preterm infants <32 weeks: Dose impact on achieving desired serum 25(OH)D3 in a NICU population. PLoS ONE, 2017, 12, e0185950.	2.5	34
53	High-Dose Intramuscular Vitamin D Provides Long-Lasting Moderate Increases in Serum 25-Hydroxvitamin D Levels and Shorter-Term Changes in Plasma Calcium. Journal of AOAC INTERNATIONAL, 2017, 100, 1337-1344.	1.5	9
54	Comparison of the effect of daily versus bolus dose maternal vitamin D3 supplementation on the 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 ratio. Bone, 2018, 110, 321-325.	2.9	59
55	Regulation of vitamin D metabolism following disruption of the microbiota using broad spectrum antibiotics. Journal of Nutritional Biochemistry, 2018, 56, 65-73.	4.2	12

#	Article	IF	CITATIONS
56	Application of a new vitamin D blood test on the Emirati population. Journal of Steroid Biochemistry and Molecular Biology, 2018, 180, 118-128.	2.5	10
58	Hypercalcemic States Associated with Abnormalities of Vitamin D Metabolism. Frontiers of Hormone Research, 2018, , 89-113.	1.0	6
59	Vitamin D status and functional health outcomes in children aged 2–8 y: a 6-mo vitamin D randomized controlled trial. American Journal of Clinical Nutrition, 2018, 107, 355-364.	4.7	23
60	Serum 24,25-dihydroxyvitamin D3 response to native vitamin D2ÂandÂD3 Supplementation in patients with chronic kidney diseaseÂonÂhemodialysis. Clinical Nutrition, 2018, 37, 1041-1045.	5.0	20
61	Biochemistry of the menopause. Annals of Clinical Biochemistry, 2018, 55, 18-33.	1.6	58
62	Clinical diagnostic tools for vitamin D assessment. Journal of Steroid Biochemistry and Molecular Biology, 2018, 180, 105-117.	2.5	35
63	Impaired Phosphate Tolerance Revealed With an Acute Oral Challenge. Journal of Bone and Mineral Research, 2018, 33, 113-122.	2.8	17
64	Vitamin D binding protein rs7041 genotype alters vitamin D metabolism in pregnant women. FASEB Journal, 2018, 32, 2012-2020.	0.5	17
65	Measurement of vitamin D metabolites by mass spectrometry, an analytical challenge. Journal of Laboratory and Precision Medicine, 0, 3, 99-99.	1.1	31
66	Idiopathic Infantile Hypercalcemia Presenting in Childhood but Diagnosed in Adulthood. AACE Clinical Case Reports, 2018, 4, 256-262.	1.1	3
67	The When, What & How of Measuring Vitamin D Metabolism in Clinical Medicine. Nutrients, 2018, 10, 482.	4.1	60
68	Data comparing the separation and elution of vitamin D metabolites on an ultra performance supercritical fluid chromatography tandem-mass spectrometer (UPSFC-MS/MS) compared to liquid chromatography (LC) and data presenting approaches to UPSFC method optimization. Data in Brief, 20, 426, 435	1.0	0
69	Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. British Journal of Clinical Pharmacology, 2018, 84, 2194-2207.	2.4	211
70	Juvenile onset IIH and CYP24A1 mutations. Bone Reports, 2018, 9, 42-46.	0.4	14
71	Bone development in growing female mice fed calcium and vitamin D at lower levels than is present in the AIN-93G reference diet. Bone Reports, 2018, 8, 229-238.	0.4	9
72	Mass Spectrometry Assays of Vitamin D Metabolites. , 2018, , 909-923.		0
73	The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23. Frontiers in Immunology, 2018, 9, 408.	4.8	65
74	Italian Association of Clinical Endocrinologists (AME) and Italian Chapter of the American Association of Clinical Endocrinologists (AACE) Position Statement: Clinical Management of Vitamin D Deficiency in Adults. Nutrients, 2018, 10, 546.	4.1	103

#	Article	IF	CITATIONS
75	Pharmacology and Pharmacokinetics. , 2018, , 635-661.		7
76	CYP24A1. , 2018, , 81-95.		3
77	Infantile Hypercalcemia and CYP24A1 Mutations. , 2018, , 317-330.		1
78	MANAGEMENT OF ENDOCRINE DISEASE: Therapeutics of vitamin D. European Journal of Endocrinology, 2018, 179, R239-R259.	3.7	53
79	Calcitriol Accelerates Vascular Calcification Irrespective of Vitamin K Status in a Rat Model of Chronic Kidney Disease with Hyperphosphatemia and Secondary Hyperparathyroidism. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 433-445.	2.5	17
80	Hypercalcemia. , 2019, , 366-377.		1
81	The vitamin D metabolome: An update on analysis and function. Cell Biochemistry and Function, 2019, 37, 408-423.	2.9	66
82	A chromatin-based mechanism controls differential regulation of the cytochrome P450 gene Cyp24a1 in renal and non-renal tissues. Journal of Biological Chemistry, 2019, 294, 14467-14481.	3.4	40
83	Free versus total serum 25-hydroxyvitamin D in a murine model of colitis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 204-209.	2.5	5
84	Effect of vitamin D supplementation on total and free 25 hydroxyvitamin D and parathyroid hormone. An analysis of two randomized controlled trials. Journal of Internal Medicine, 2019, 286, 651-659.	6.0	9
85	Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. Journal of Biological Chemistry, 2019, 294, 9518-9535.	3.4	40
86	The dynamic relationships between the active and catabolic vitamin D metabolites, their ratios, and associations with PTH. Scientific Reports, 2019, 9, 6974.	3.3	35
87	Hereditary Hypercalcemia Caused by a Homozygous Pathogenic Variant in the <i>CYP24A1</i> Gene: A Case Report and Review of the Literature. Case Reports in Endocrinology, 2019, 2019, 1-7.	0.4	17
88	Investigation of relationship between vitamin D status and reproductive fitness in Scottish hill sheep. Scientific Reports, 2019, 9, 1162.	3.3	12
89	Calcioic acid: In vivo detection and quantification of the terminal C24-oxidation product of 25-hydroxyvitamin D3 and related intermediates in serum of mice treated with 24,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 23-28.	2.5	20
90	Methods for assessment of Vitamin D. , 2019, , 49-77.		3
91	Rapid liquid chromatography-tandem mass spectrometry method for determination of 24,25(OH)2D and 25OHD with efficient separation of 3-epi analogs. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 146-151.	2.5	11
92	Molecular characterization of a recurrent 10.9â€ [−] kb CYP24A1 deletion in Idiopathic Infantile Hypercalcemia. European Journal of Medical Genetics, 2019, 62, 103577.	1.3	5

#	Article	IF	CITATIONS
93	External Quality Assessment of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) assays. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 130-133.	2.5	8
94	Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 1-8.	2.5	28
95	Mineral Homeostasis in Murine Fetuses Is Sensitive to Maternal Calcitriol but Not to Absence of Fetal Calcitriol. Journal of Bone and Mineral Research, 2019, 34, 669-680.	2.8	9
96	Vitamin D nutritional status and bone turnover markers in childhood acute lymphoblastic leukemia survivors: A PETALE study. Clinical Nutrition, 2019, 38, 912-919.	5.0	17
97	Nonskeletal effects of vitamin D. , 2020, , 757-774.		0
98	Vitamin D Measurement, the Debates Continue, New Analytes Have Emerged, Developments Have Variable Outcomes. Calcified Tissue International, 2020, 106, 3-13.	3.1	41
99	Vitamin D supplementation in pregnancy: A word of caution. Familial hypercalcaemia due to disordered vitamin D metabolism. Annals of Clinical Biochemistry, 2020, 57, 186-191.	1.6	9
100	Simultaneous measurement of 25(OH)-vitamin D and 24,25(OH)2-vitamin D to define cut-offs for CYP24A1 mutation and vitamin D deficiency in a population of 1200 young subjects. Clinical Chemistry and Laboratory Medicine, 2020, 58, 197-201.	2.3	31
101	Vitamin D Status Increases During Pregnancy and in Response to Vitamin D Supplementation in Rural Gambian Women. Journal of Nutrition, 2020, 150, 492-504.	2.9	13
102	Towards a personalized assessment of vitamin D status. Clinical Chemistry and Laboratory Medicine, 2020, 58, 149-151.	2.3	10
103	Association between vitamin D metabolites, vitamin D binding protein, and proteinuria in dogs. Journal of Veterinary Internal Medicine, 2020, 34, 2468-2477.	1.6	8
104	Prevention of post-cardiac surgery vitamin D deficiency in children with congenital heart disease: a pilot feasibility dose evaluation randomized controlled trial. Pilot and Feasibility Studies, 2020, 6, 159.	1.2	7
105	Circulating Levels of Dickkopf-Related Protein 1 Decrease as Measured GFR Declines and Are Associated with PTH Levels. American Journal of Nephrology, 2020, 51, 871-880.	3.1	3
106	Controversies in Vitamin D: A Statement From the Third International Conference. JBMR Plus, 2020, 4, e10417.	2.7	118
107	Markers Indicating Body Vitamin D Stores and Responses of Liver and Adipose Tissues to Changes in Vitamin D Intake in Male Mice. Nutrients, 2020, 12, 1391.	4.1	4
108	Quantification of fat-soluble vitamins and their metabolites in biological matrices: an updated review. Bioanalysis, 2020, 12, 625-640.	1.5	10
109	PTH suppression by calcitriol does not predict offâ€ŧarget actions in experimental CKD. Pharmacology Research and Perspectives, 2020, 8, e00605.	2.4	2
110	Variable Phenotypes Seen with a Homozygous CYP24A1 Mutation: Case Report. SN Comprehensive Clinical Medicine, 2020, 2, 995-1002.	0.6	1

#	Article	IF	CITATIONS
111	New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nature Reviews Endocrinology, 2020, 16, 234-252.	9.6	181
112	Evaluation of vitamin D ₃ metabolites in <i>Callithrix jacchus</i> (common marmoset). American Journal of Primatology, 2020, 82, e23131.	1.7	4
113	The measurement of vitamin D metabolites part II—the measurement of the various vitamin D metabolites. Hormones, 2020, 19, 97-107.	1.9	9
114	Do the Heterozygous Carriers of a <i>CYP24A1</i> Mutation Display a Different Biochemical Phenotype Than Wild Types?. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 708-717.	3.6	11
115	The Vitamin D Metabolite Ratio Is Independent of Vitamin D Binding Protein Concentration. Clinical Chemistry, 2021, 67, 385-393.	3.2	18
116	Inherited Disorders of Renal Calcium Handling. , 2021, , 1-16.		0
117	<i>CYP24A1</i> and <i>SLC34A1</i> Pathogenic Variants Are Uncommon in a Canadian Cohort of Children with Hypercalcemia or Hypercalciuria. Hormone Research in Paediatrics, 2021, 94, 124-132.	1.8	3
118	Elucidation of metabolic pathways of 25-hydroxyvitamin D3 mediated by CYP24A1 and CYP3A using Cyp24a1 knockout rats generated by CRISPR/Cas9 system. Journal of Biological Chemistry, 2021, 296, 100668.	3.4	16
119	Vitamin D Metabolism or Action. , 2021, , 335-372.		0
120	Multiplex LC–MS/MS for simultaneous determination of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D3, albumin, and vitamin D-binding protein with its isoforms: One-step estimation of bioavailable vitamin D and vitamin D metabolite ratio. Journal of Steroid Biochemistry and Molecular Biology, 2021, 206, 105796.	2.5	14
121	Differential diagnosis of vitamin D–related hypercalcemia using serum vitamin D metabolite profiling. Journal of Bone and Mineral Research, 2020, 36, 1340-1350.	2.8	22
122	Vitamin D: Current Challenges between the Laboratory and Clinical Practice. Nutrients, 2021, 13, 1758.	4.1	18
123	Simultaneous measurement of 13 circulating vitamin D3 and D2 mono and dihydroxy metabolites using liquid chromatography mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1642-1652.	2.3	27
124	LC-MS/MS analysis of vitamin D3 metabolites in human serum using a salting-out based liquid-liquid extraction and DAPTAD derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1173, 122654.	2.3	10
125	Recommendations on the measurement and the clinical use of vitamin D metabolites and vitamin D binding protein – A position paper from the IFCC Committee on bone metabolism. Clinica Chimica Acta, 2021, 517, 171-197.	1.1	33
126	Effects of Vitamin D2 and 25-Hydroxyvitamin D2 Supplementation on Plasma Vitamin D Epimeric Metabolites in Adult Cats. Frontiers in Veterinary Science, 2021, 8, 654629.	2.2	2
127	24-Hydroxylase Deficiency Due to <i>CYP24A1</i> Sequence Variants: Comparison With Other Vitamin Dâ^'mediated Hypercalcemia Disorders. Journal of the Endocrine Society, 2021, 5, bvab119.	0.2	7
129	A Novel Method for the Determination of Vitamin D Metabolites Assessed at the Blood-Cerebrospinal Fluid Barrier. Biomolecules, 2021, 11, 1288.	4.0	5

		_
Γιτλτι	ON	DEDODT
CHAH		REPORT

#	Article	IF	CITATIONS
130	Investigation of the effects of dietary supplementation with 25-hydroxyvitamin D3 and vitamin D3 on indicators of vitamin D status in healthy dogs. American Journal of Veterinary Research, 2021, 82, 722-736.	0.6	4
131	Longitudinal changes in vitamin D and its metabolites in pregnant South Africans. Journal of Steroid Biochemistry and Molecular Biology, 2021, 212, 105949.	2.5	3
132	Secreted Phosphoprotein 24 is a Biomarker of Mineral Metabolism. Calcified Tissue International, 2021, 108, 354-363.	3.1	1
133	Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. Journal of Clinical Investigation, 2018, 128, 3546-3557.	8.2	56
134	Assessment of vitamin D status – a changing landscape. Clinical Chemistry and Laboratory Medicine, 2017, 55, 3-26.	2.3	169
135	Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. European Journal of Endocrinology, 2019, 180, P23-P54.	3.7	443
136	THE VITAMIN D STATUS OF ASIAN ELEPHANTS (ELEPHAS MAXIMUS) MANAGED IN A NORTHERN TEMPERATE CLIMATE. Journal of Zoo and Wildlife Medicine, 2020, 51, 1.	0.6	4
137	Associations of cholesterol and vitamin D metabolites with the risk for development of high grade colorectal cancer. Journal of Medical Biochemistry, 2019, 39, 318-327.	1.7	5
138	Overlapping Phenotypes Associated With CYP24A1, SLC34A1, and SLC34A3 Mutations: A Cohort Study of Patients With Hypersensitivity to Vitamin D. Frontiers in Endocrinology, 2021, 12, 736240.	3.5	13
139	Vitamin D biomarkers for Dietary Reference Intake development in children: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 2022, 115, 544-558.	4.7	14
140	Disorders of Calcium and Magnesium Metabolism. , 2016, , 921-952.		2
141	Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Annals of Laboratory Medicine, 2022, 42, 121-140.	2.5	20
142	Comparison of two LC-MS/MS methods for the quantification of 24,25-dihydroxyvitamin D3 in patients and external quality assurance samples. Clinical Chemistry and Laboratory Medicine, 2022, 60, 74-81.	2.3	10
143	A robust method for simultaneous measurement of serum 25(OH)D, 1,25(OH) ₂ D, and 24,25(OH) ₂ D by liquid chromatographyâ \in tandem mass spectrometry with efficient separation of 3â \in epi analogs, 23R,25(OH) ₂ D ₃ , and 4l ² .25(OH) ₂ , lournal of Mass Spectrometry, 2022, 57, e4792.	1.6	3
144	Diagnostic Aspects of Vitamin D: Clinical Utility of Vitamin D Metabolite Profiling. JBMR Plus, 2021, 5, e10581.	2.7	11
145	Validation of the 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 ratio as a biomarker of 25-hydroxyvitamin D3 clearance. Journal of Steroid Biochemistry and Molecular Biology, 2022, 217, 106047.	2.5	6
147	Draft federal clinical practice guidelines for the diagnosis, treatment, and prevention of vitamin D deficiency. Osteoporosis and Bone Diseases, 2022, 24, 4-26.	1.4	8
149	An ultrasensitive UHPLC-ESI-MS/MS method augmented with a controlled microwave derivatization reaction for quantitation of vitamin D3 and its major metabolites in COVID-19 patients. Talanta, 2022, 246, 123497.	5.5	5

#	Article	IF	CITATIONS
150	Long-term Efficacy and Safety of Rifampin in the Treatment of a Patient Carrying a <i>CYP24A1</i> Loss-of-Function Variant. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3159-e3166.	3.6	11
151	Inhibit progression of coronary artery calcification with vitamin K in hemodialysis patients (the) Tj ETQq1 1 0.784 Transplantation, 2023, 38, 746-756.	314 rgBT / 0.7	Overlock 10 7
152	Biomarkers of vitamin D status in healthy adults: Associations with serum lipid parameters: A pilot study. Arhiv Za Farmaciju, 2022, 72, 260-273.	0.5	0
153	Hypercalcemia in Pregnancy Due to CYP24A1 Mutations: Case Report and Review of the Literature. Nutrients, 2022, 14, 2518.	4.1	12
154	The metabolism of 1,25(OH)2D3 in clinical and experimental kidney disease. Scientific Reports, 2022, 12, .	3.3	4
155	Impaired Vitamin D Metabolism in Hospitalized COVID-19 Patients. Pharmaceuticals, 2022, 15, 906.	3.8	5
156	Vitamin D and Diseases of Mineral Homeostasis: A Cyp24a1 R396W Humanized Preclinical Model of Infantile Hypercalcemia Type 1. Nutrients, 2022, 14, 3221.	4.1	5
157	Inherited Disorders of Renal Calcium Handling. , 2022, , 1047-1061.		0
158	The 1,24,25(OH)3D3 metabolite in clinical and experimental CKD: Impact of calcitriol treatment. Journal of Steroid Biochemistry and Molecular Biology, 2023, 226, 106207.	2.5	1
159	Sex Differences in Phosphate Homeostasis: Females Excrete More Phosphate and Calcium After an Oral Phosphate Challenge. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 909-919.	3.6	9
160	Stability of sample extracts of vitamin D3 metabolites after chemical derivatization for LC–MS/MS analysis. Analytical and Bioanalytical Chemistry, 2023, 415, 327-333.	3.7	5
161	Vitamin D metabolites and analytical challenges. Analytical Methods, 2023, 15, 399-410.	2.7	2
162	Genomic mechanisms controlling renal vitamin D metabolism. Journal of Steroid Biochemistry and Molecular Biology, 2023, 228, 106252.	2.5	1
163	Effect of Vitamin D Supplementation on Bone Mass in Infants With 25-Hydroxyvitamin D Concentrations Less Than 50 nmol/L. JAMA Pediatrics, 2023, 177, 353.	6.2	7
164	Disorders of Calcium and Magnesium Metabolism. , 2023, , 1007-1045.		0
165	Formula Milk Supplementation and Bone Acquisition in 4–6 Years Chinese Children: A 12-Month Cluster-Randomized Controlled Trial. Nutrients, 2023, 15, 2012.	4.1	0
166	Determination of 24,25-dihydroxyvitamin D3 in Vitamin D External Quality Assessment Scheme samples using a reference measurement procedure. Journal of Steroid Biochemistry and Molecular Biology, 2023, 231, 106318.	2.5	1
167	Comparing derivatization reagents for quantitative LC–MS/MS analysis of a variety of vitamin D metabolites. Analytical and Bioanalytical Chemistry, 2023, 415, 4689-4701.	3.7	4

#	Article	IF	CITATIONS
168	Severe Hypercalcemia in Pregnancy Presenting a Diagnostic Conundrum. journal of applied laboratory medicine, The, 0, , .	1.3	0
170	Liquid chromatography-tandem mass spectrometry in fat-soluble vitamin deficiency. Clinica Chimica Acta, 2023, 548, 117469.	1.1	0
171	Measurements of the Vitamin D Metabolome in the Calgary Vitamin D Study: Relationship of Vitamin D Metabolites to Bone Loss. Journal of Bone and Mineral Research, 2023, 38, 1312-1321.	2.8	0
172	Epimeric vitamin D and cardiovascular structure and function in advanced CKD and after kidney transplantation. Nephrology Dialysis Transplantation, 0, , .	0.7	1
173	Metabolism of vitamin D is not affected by sport activity. Clinica Chimica Acta, 2023, 548, 117507.	1.1	0
174	Hypervitaminosis D Secondary to a <scp> <i>CYP24A1 </i> </scp> Lossâ€ofâ€Function Mutation: An Unusual Cause of Hypercalcemia in Two Siblings. JBMR Plus, 2023, 7, .	2.7	0
175	A phase II dose evaluation pilot feasibility randomized controlled trial of cholecalciferol in critically ill children with vitamin D deficiency (VITdAL-PICU study). BMC Pediatrics, 2023, 23, .	1.7	0
176	Mass spectrometry assays of vitamin D metabolites. , 2024, , 1063-1084.		0
177	CYP24A1: structure, function, and physiological role. , 2024, , 71-83.		0
178	Regulation of renal vitamin D metabolism. , 2024, , 139-154.		0
179	Pharmacology and pharmacokinetics of vitamin D. , 2024, , 633-668.		1
180	Infantile hypercalcemia and CYP24A1 mutations. , 2024, , 401-410.		0
181	The Vitamin D Metabolite Diagnostic Ratio Associates With Phenotypic Traits of Idiopathic Hypercalciuria. Kidney International Reports, 2024, 9, 1072-1082.	0.8	1